2 * Arm SSE (Subsystems for Embedded): IoTKit
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 #include "qemu/osdep.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/armsse-version.h"
23 #include "hw/arm/boot.h"
25 #include "hw/qdev-clock.h"
28 * The SSE-300 puts some devices in different places to the
29 * SSE-200 (and original IoTKit). We use an array of these structs
30 * to define how each variant lays out these devices. (Parts of the
31 * SoC that are the same for all variants aren't handled via these
38 * Special values for ARMSSEDeviceInfo::irq to indicate that this
39 * device uses one of the inputs to the OR gate that feeds into the
45 typedef struct ARMSSEDeviceInfo
{
46 const char *name
; /* name to use for the QOM object; NULL terminates list */
47 const char *type
; /* QOM type name */
48 unsigned int index
; /* Which of the N devices of this type is this ? */
50 hwaddr size
; /* only needed for TYPE_UNIMPLEMENTED_DEVICE */
51 int ppc
; /* Index of APB PPC this device is wired up to, or NO_PPC */
52 int ppc_port
; /* Port number of this device on the PPC */
53 int irq
; /* NO_IRQ, or 0..NUM_SSE_IRQS-1, or NMI_0 or NMI_1 */
54 bool slowclk
; /* true if device uses the slow 32KHz clock */
73 const ARMSSEDeviceInfo
*devinfo
;
74 const bool *irq_is_common
;
77 static Property iotkit_properties
[] = {
78 DEFINE_PROP_LINK("memory", ARMSSE
, board_memory
, TYPE_MEMORY_REGION
,
80 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE
, exp_numirq
, 64),
81 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE
, sram_addr_width
, 15),
82 DEFINE_PROP_UINT32("init-svtor", ARMSSE
, init_svtor
, 0x10000000),
83 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE
, cpu_fpu
[0], true),
84 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE
, cpu_dsp
[0], true),
85 DEFINE_PROP_END_OF_LIST()
88 static Property sse200_properties
[] = {
89 DEFINE_PROP_LINK("memory", ARMSSE
, board_memory
, TYPE_MEMORY_REGION
,
91 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE
, exp_numirq
, 64),
92 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE
, sram_addr_width
, 15),
93 DEFINE_PROP_UINT32("init-svtor", ARMSSE
, init_svtor
, 0x10000000),
94 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE
, cpu_fpu
[0], false),
95 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE
, cpu_dsp
[0], false),
96 DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE
, cpu_fpu
[1], true),
97 DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE
, cpu_dsp
[1], true),
98 DEFINE_PROP_END_OF_LIST()
101 static Property sse300_properties
[] = {
102 DEFINE_PROP_LINK("memory", ARMSSE
, board_memory
, TYPE_MEMORY_REGION
,
104 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE
, exp_numirq
, 64),
105 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE
, sram_addr_width
, 15),
106 DEFINE_PROP_UINT32("init-svtor", ARMSSE
, init_svtor
, 0x10000000),
107 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE
, cpu_fpu
[0], true),
108 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE
, cpu_dsp
[0], true),
109 DEFINE_PROP_END_OF_LIST()
112 static const ARMSSEDeviceInfo iotkit_devices
[] = {
115 .type
= TYPE_CMSDK_APB_TIMER
,
124 .type
= TYPE_CMSDK_APB_TIMER
,
133 .type
= TYPE_CMSDK_APB_TIMER
,
143 .type
= TYPE_CMSDK_APB_DUALTIMER
,
151 .name
= "s32kwatchdog",
152 .type
= TYPE_CMSDK_APB_WATCHDOG
,
160 .name
= "nswatchdog",
161 .type
= TYPE_CMSDK_APB_WATCHDOG
,
169 .type
= TYPE_CMSDK_APB_WATCHDOG
,
176 .name
= "armsse-sysinfo",
177 .type
= TYPE_IOTKIT_SYSINFO
,
184 .name
= "armsse-sysctl",
185 .type
= TYPE_IOTKIT_SYSCTL
,
196 static const ARMSSEDeviceInfo sse200_devices
[] = {
199 .type
= TYPE_CMSDK_APB_TIMER
,
208 .type
= TYPE_CMSDK_APB_TIMER
,
217 .type
= TYPE_CMSDK_APB_TIMER
,
227 .type
= TYPE_CMSDK_APB_DUALTIMER
,
235 .name
= "s32kwatchdog",
236 .type
= TYPE_CMSDK_APB_WATCHDOG
,
244 .name
= "nswatchdog",
245 .type
= TYPE_CMSDK_APB_WATCHDOG
,
253 .type
= TYPE_CMSDK_APB_WATCHDOG
,
260 .name
= "armsse-sysinfo",
261 .type
= TYPE_IOTKIT_SYSINFO
,
268 .name
= "armsse-sysctl",
269 .type
= TYPE_IOTKIT_SYSCTL
,
276 .name
= "CPU0CORE_PPU",
277 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
285 .name
= "CPU1CORE_PPU",
286 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
295 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
304 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
313 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
322 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
331 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
340 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
352 static const ARMSSEDeviceInfo sse300_devices
[] = {
355 .type
= TYPE_SSE_TIMER
,
364 .type
= TYPE_SSE_TIMER
,
373 .type
= TYPE_SSE_TIMER
,
382 .type
= TYPE_SSE_TIMER
,
391 .type
= TYPE_CMSDK_APB_TIMER
,
400 .name
= "s32kwatchdog",
401 .type
= TYPE_CMSDK_APB_WATCHDOG
,
410 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
418 .name
= "armsse-sysinfo",
419 .type
= TYPE_IOTKIT_SYSINFO
,
426 .name
= "armsse-sysctl",
427 .type
= TYPE_IOTKIT_SYSCTL
,
435 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
443 .name
= "CPU0CORE_PPU",
444 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
453 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
462 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
474 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
475 static const bool sse200_irq_is_common
[32] = {
477 /* 6, 7: per-CPU MHU interrupts */
479 /* 13: per-CPU icache interrupt */
485 /* 28, 29: per-CPU CTI interrupts */
486 /* 30, 31: reserved */
489 static const bool sse300_irq_is_common
[32] = {
491 /* 6, 7: per-CPU MHU interrupts */
495 /* 17-25: reserved */
497 /* 28, 29: per-CPU CTI interrupts */
498 /* 30, 31: reserved */
501 static const ARMSSEInfo armsse_variants
[] = {
504 .sse_version
= ARMSSE_IOTKIT
,
505 .cpu_type
= ARM_CPU_TYPE_NAME("cortex-m33"),
508 .sys_version
= 0x41743,
512 .has_cachectrl
= false,
513 .has_cpusecctrl
= false,
515 .has_cpu_pwrctrl
= false,
516 .has_sse_counter
= false,
517 .props
= iotkit_properties
,
518 .devinfo
= iotkit_devices
,
519 .irq_is_common
= sse200_irq_is_common
,
523 .sse_version
= ARMSSE_SSE200
,
524 .cpu_type
= ARM_CPU_TYPE_NAME("cortex-m33"),
527 .sys_version
= 0x22041743,
531 .has_cachectrl
= true,
532 .has_cpusecctrl
= true,
534 .has_cpu_pwrctrl
= false,
535 .has_sse_counter
= false,
536 .props
= sse200_properties
,
537 .devinfo
= sse200_devices
,
538 .irq_is_common
= sse200_irq_is_common
,
542 .sse_version
= ARMSSE_SSE300
,
543 .cpu_type
= ARM_CPU_TYPE_NAME("cortex-m55"),
546 .sys_version
= 0x7e00043b,
550 .has_cachectrl
= false,
551 .has_cpusecctrl
= true,
553 .has_cpu_pwrctrl
= true,
554 .has_sse_counter
= true,
555 .props
= sse300_properties
,
556 .devinfo
= sse300_devices
,
557 .irq_is_common
= sse300_irq_is_common
,
561 static uint32_t armsse_sys_config_value(ARMSSE
*s
, const ARMSSEInfo
*info
)
563 /* Return the SYS_CONFIG value for this SSE */
566 switch (info
->sse_version
) {
569 sys_config
= deposit32(sys_config
, 0, 4, info
->sram_banks
);
570 sys_config
= deposit32(sys_config
, 4, 4, s
->sram_addr_width
- 12);
574 sys_config
= deposit32(sys_config
, 0, 4, info
->sram_banks
);
575 sys_config
= deposit32(sys_config
, 4, 5, s
->sram_addr_width
);
576 sys_config
= deposit32(sys_config
, 24, 4, 2);
577 if (info
->num_cpus
> 1) {
578 sys_config
= deposit32(sys_config
, 10, 1, 1);
579 sys_config
= deposit32(sys_config
, 20, 4, info
->sram_banks
- 1);
580 sys_config
= deposit32(sys_config
, 28, 4, 2);
585 sys_config
= deposit32(sys_config
, 0, 4, info
->sram_banks
);
586 sys_config
= deposit32(sys_config
, 4, 5, s
->sram_addr_width
);
587 sys_config
= deposit32(sys_config
, 16, 3, 3); /* CPU0 = Cortex-M55 */
590 g_assert_not_reached();
595 /* Clock frequency in HZ of the 32KHz "slow clock" */
596 #define S32KCLK (32 * 1000)
599 * Create an alias region in @container of @size bytes starting at @base
600 * which mirrors the memory starting at @orig.
602 static void make_alias(ARMSSE
*s
, MemoryRegion
*mr
, MemoryRegion
*container
,
603 const char *name
, hwaddr base
, hwaddr size
, hwaddr orig
)
605 memory_region_init_alias(mr
, NULL
, name
, container
, orig
, size
);
606 /* The alias is even lower priority than unimplemented_device regions */
607 memory_region_add_subregion_overlap(container
, base
, mr
, -1500);
610 static void irq_status_forwarder(void *opaque
, int n
, int level
)
612 qemu_irq destirq
= opaque
;
614 qemu_set_irq(destirq
, level
);
617 static void nsccfg_handler(void *opaque
, int n
, int level
)
619 ARMSSE
*s
= ARM_SSE(opaque
);
624 static void armsse_forward_ppc(ARMSSE
*s
, const char *ppcname
, int ppcnum
)
626 /* Each of the 4 AHB and 4 APB PPCs that might be present in a
627 * system using the ARMSSE has a collection of control lines which
628 * are provided by the security controller and which we want to
629 * expose as control lines on the ARMSSE device itself, so the
630 * code using the ARMSSE can wire them up to the PPCs.
632 SplitIRQ
*splitter
= &s
->ppc_irq_splitter
[ppcnum
];
633 DeviceState
*armssedev
= DEVICE(s
);
634 DeviceState
*dev_secctl
= DEVICE(&s
->secctl
);
635 DeviceState
*dev_splitter
= DEVICE(splitter
);
638 name
= g_strdup_printf("%s_nonsec", ppcname
);
639 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
641 name
= g_strdup_printf("%s_ap", ppcname
);
642 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
644 name
= g_strdup_printf("%s_irq_enable", ppcname
);
645 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
647 name
= g_strdup_printf("%s_irq_clear", ppcname
);
648 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
651 /* irq_status is a little more tricky, because we need to
652 * split it so we can send it both to the security controller
653 * and to our OR gate for the NVIC interrupt line.
654 * Connect up the splitter's outputs, and create a GPIO input
655 * which will pass the line state to the input splitter.
657 name
= g_strdup_printf("%s_irq_status", ppcname
);
658 qdev_connect_gpio_out(dev_splitter
, 0,
659 qdev_get_gpio_in_named(dev_secctl
,
661 qdev_connect_gpio_out(dev_splitter
, 1,
662 qdev_get_gpio_in(DEVICE(&s
->ppc_irq_orgate
), ppcnum
));
663 s
->irq_status_in
[ppcnum
] = qdev_get_gpio_in(dev_splitter
, 0);
664 qdev_init_gpio_in_named_with_opaque(armssedev
, irq_status_forwarder
,
665 s
->irq_status_in
[ppcnum
], name
, 1);
669 static void armsse_forward_sec_resp_cfg(ARMSSE
*s
)
671 /* Forward the 3rd output from the splitter device as a
672 * named GPIO output of the armsse object.
674 DeviceState
*dev
= DEVICE(s
);
675 DeviceState
*dev_splitter
= DEVICE(&s
->sec_resp_splitter
);
677 qdev_init_gpio_out_named(dev
, &s
->sec_resp_cfg
, "sec_resp_cfg", 1);
678 s
->sec_resp_cfg_in
= qemu_allocate_irq(irq_status_forwarder
,
680 qdev_connect_gpio_out(dev_splitter
, 2, s
->sec_resp_cfg_in
);
683 static void armsse_mainclk_update(void *opaque
, ClockEvent event
)
685 ARMSSE
*s
= ARM_SSE(opaque
);
688 * Set system_clock_scale from our Clock input; this is what
689 * controls the tick rate of the CPU SysTick timer.
691 system_clock_scale
= clock_ticks_to_ns(s
->mainclk
, 1);
694 static void armsse_init(Object
*obj
)
696 ARMSSE
*s
= ARM_SSE(obj
);
697 ARMSSEClass
*asc
= ARM_SSE_GET_CLASS(obj
);
698 const ARMSSEInfo
*info
= asc
->info
;
699 const ARMSSEDeviceInfo
*devinfo
;
702 assert(info
->sram_banks
<= MAX_SRAM_BANKS
);
703 assert(info
->num_cpus
<= SSE_MAX_CPUS
);
705 s
->mainclk
= qdev_init_clock_in(DEVICE(s
), "MAINCLK",
706 armsse_mainclk_update
, s
, ClockUpdate
);
707 s
->s32kclk
= qdev_init_clock_in(DEVICE(s
), "S32KCLK", NULL
, NULL
, 0);
709 memory_region_init(&s
->container
, obj
, "armsse-container", UINT64_MAX
);
711 for (i
= 0; i
< info
->num_cpus
; i
++) {
713 * We put each CPU in its own cluster as they are logically
714 * distinct and may be configured differently.
718 name
= g_strdup_printf("cluster%d", i
);
719 object_initialize_child(obj
, name
, &s
->cluster
[i
], TYPE_CPU_CLUSTER
);
720 qdev_prop_set_uint32(DEVICE(&s
->cluster
[i
]), "cluster-id", i
);
723 name
= g_strdup_printf("armv7m%d", i
);
724 object_initialize_child(OBJECT(&s
->cluster
[i
]), name
, &s
->armv7m
[i
],
726 qdev_prop_set_string(DEVICE(&s
->armv7m
[i
]), "cpu-type", info
->cpu_type
);
728 name
= g_strdup_printf("arm-sse-cpu-container%d", i
);
729 memory_region_init(&s
->cpu_container
[i
], obj
, name
, UINT64_MAX
);
732 name
= g_strdup_printf("arm-sse-container-alias%d", i
);
733 memory_region_init_alias(&s
->container_alias
[i
- 1], obj
,
734 name
, &s
->container
, 0, UINT64_MAX
);
739 for (devinfo
= info
->devinfo
; devinfo
->name
; devinfo
++) {
740 assert(devinfo
->ppc
== NO_PPC
|| devinfo
->ppc
< ARRAY_SIZE(s
->apb_ppc
));
741 if (!strcmp(devinfo
->type
, TYPE_CMSDK_APB_TIMER
)) {
742 assert(devinfo
->index
< ARRAY_SIZE(s
->timer
));
743 object_initialize_child(obj
, devinfo
->name
,
744 &s
->timer
[devinfo
->index
],
745 TYPE_CMSDK_APB_TIMER
);
746 } else if (!strcmp(devinfo
->type
, TYPE_CMSDK_APB_DUALTIMER
)) {
747 assert(devinfo
->index
== 0);
748 object_initialize_child(obj
, devinfo
->name
, &s
->dualtimer
,
749 TYPE_CMSDK_APB_DUALTIMER
);
750 } else if (!strcmp(devinfo
->type
, TYPE_SSE_TIMER
)) {
751 assert(devinfo
->index
< ARRAY_SIZE(s
->sse_timer
));
752 object_initialize_child(obj
, devinfo
->name
,
753 &s
->sse_timer
[devinfo
->index
],
755 } else if (!strcmp(devinfo
->type
, TYPE_CMSDK_APB_WATCHDOG
)) {
756 assert(devinfo
->index
< ARRAY_SIZE(s
->cmsdk_watchdog
));
757 object_initialize_child(obj
, devinfo
->name
,
758 &s
->cmsdk_watchdog
[devinfo
->index
],
759 TYPE_CMSDK_APB_WATCHDOG
);
760 } else if (!strcmp(devinfo
->type
, TYPE_IOTKIT_SYSINFO
)) {
761 assert(devinfo
->index
== 0);
762 object_initialize_child(obj
, devinfo
->name
, &s
->sysinfo
,
763 TYPE_IOTKIT_SYSINFO
);
764 } else if (!strcmp(devinfo
->type
, TYPE_IOTKIT_SYSCTL
)) {
765 assert(devinfo
->index
== 0);
766 object_initialize_child(obj
, devinfo
->name
, &s
->sysctl
,
768 } else if (!strcmp(devinfo
->type
, TYPE_UNIMPLEMENTED_DEVICE
)) {
769 assert(devinfo
->index
< ARRAY_SIZE(s
->unimp
));
770 object_initialize_child(obj
, devinfo
->name
,
771 &s
->unimp
[devinfo
->index
],
772 TYPE_UNIMPLEMENTED_DEVICE
);
774 g_assert_not_reached();
778 object_initialize_child(obj
, "secctl", &s
->secctl
, TYPE_IOTKIT_SECCTL
);
780 for (i
= 0; i
< ARRAY_SIZE(s
->apb_ppc
); i
++) {
781 g_autofree
char *name
= g_strdup_printf("apb-ppc%d", i
);
782 object_initialize_child(obj
, name
, &s
->apb_ppc
[i
], TYPE_TZ_PPC
);
785 for (i
= 0; i
< info
->sram_banks
; i
++) {
786 char *name
= g_strdup_printf("mpc%d", i
);
787 object_initialize_child(obj
, name
, &s
->mpc
[i
], TYPE_TZ_MPC
);
790 object_initialize_child(obj
, "mpc-irq-orgate", &s
->mpc_irq_orgate
,
793 for (i
= 0; i
< IOTS_NUM_EXP_MPC
+ info
->sram_banks
; i
++) {
794 char *name
= g_strdup_printf("mpc-irq-splitter-%d", i
);
795 SplitIRQ
*splitter
= &s
->mpc_irq_splitter
[i
];
797 object_initialize_child(obj
, name
, splitter
, TYPE_SPLIT_IRQ
);
801 if (info
->has_mhus
) {
802 object_initialize_child(obj
, "mhu0", &s
->mhu
[0], TYPE_ARMSSE_MHU
);
803 object_initialize_child(obj
, "mhu1", &s
->mhu
[1], TYPE_ARMSSE_MHU
);
805 if (info
->has_cachectrl
) {
806 for (i
= 0; i
< info
->num_cpus
; i
++) {
807 char *name
= g_strdup_printf("cachectrl%d", i
);
809 object_initialize_child(obj
, name
, &s
->cachectrl
[i
],
810 TYPE_UNIMPLEMENTED_DEVICE
);
814 if (info
->has_cpusecctrl
) {
815 for (i
= 0; i
< info
->num_cpus
; i
++) {
816 char *name
= g_strdup_printf("cpusecctrl%d", i
);
818 object_initialize_child(obj
, name
, &s
->cpusecctrl
[i
],
819 TYPE_UNIMPLEMENTED_DEVICE
);
823 if (info
->has_cpuid
) {
824 for (i
= 0; i
< info
->num_cpus
; i
++) {
825 char *name
= g_strdup_printf("cpuid%d", i
);
827 object_initialize_child(obj
, name
, &s
->cpuid
[i
],
832 if (info
->has_cpu_pwrctrl
) {
833 for (i
= 0; i
< info
->num_cpus
; i
++) {
834 char *name
= g_strdup_printf("cpu_pwrctrl%d", i
);
836 object_initialize_child(obj
, name
, &s
->cpu_pwrctrl
[i
],
837 TYPE_ARMSSE_CPU_PWRCTRL
);
841 if (info
->has_sse_counter
) {
842 object_initialize_child(obj
, "sse-counter", &s
->sse_counter
,
846 object_initialize_child(obj
, "nmi-orgate", &s
->nmi_orgate
, TYPE_OR_IRQ
);
847 object_initialize_child(obj
, "ppc-irq-orgate", &s
->ppc_irq_orgate
,
849 object_initialize_child(obj
, "sec-resp-splitter", &s
->sec_resp_splitter
,
851 for (i
= 0; i
< ARRAY_SIZE(s
->ppc_irq_splitter
); i
++) {
852 char *name
= g_strdup_printf("ppc-irq-splitter-%d", i
);
853 SplitIRQ
*splitter
= &s
->ppc_irq_splitter
[i
];
855 object_initialize_child(obj
, name
, splitter
, TYPE_SPLIT_IRQ
);
858 if (info
->num_cpus
> 1) {
859 for (i
= 0; i
< ARRAY_SIZE(s
->cpu_irq_splitter
); i
++) {
860 if (info
->irq_is_common
[i
]) {
861 char *name
= g_strdup_printf("cpu-irq-splitter%d", i
);
862 SplitIRQ
*splitter
= &s
->cpu_irq_splitter
[i
];
864 object_initialize_child(obj
, name
, splitter
, TYPE_SPLIT_IRQ
);
871 static void armsse_exp_irq(void *opaque
, int n
, int level
)
873 qemu_irq
*irqarray
= opaque
;
875 qemu_set_irq(irqarray
[n
], level
);
878 static void armsse_mpcexp_status(void *opaque
, int n
, int level
)
880 ARMSSE
*s
= ARM_SSE(opaque
);
881 qemu_set_irq(s
->mpcexp_status_in
[n
], level
);
884 static qemu_irq
armsse_get_common_irq_in(ARMSSE
*s
, int irqno
)
887 * Return a qemu_irq which can be used to signal IRQ n to
888 * all CPUs in the SSE.
890 ARMSSEClass
*asc
= ARM_SSE_GET_CLASS(s
);
891 const ARMSSEInfo
*info
= asc
->info
;
893 assert(info
->irq_is_common
[irqno
]);
895 if (info
->num_cpus
== 1) {
896 /* Only one CPU -- just connect directly to it */
897 return qdev_get_gpio_in(DEVICE(&s
->armv7m
[0]), irqno
);
899 /* Connect to the splitter which feeds all CPUs */
900 return qdev_get_gpio_in(DEVICE(&s
->cpu_irq_splitter
[irqno
]), 0);
904 static void armsse_realize(DeviceState
*dev
, Error
**errp
)
906 ARMSSE
*s
= ARM_SSE(dev
);
907 ARMSSEClass
*asc
= ARM_SSE_GET_CLASS(dev
);
908 const ARMSSEInfo
*info
= asc
->info
;
909 const ARMSSEDeviceInfo
*devinfo
;
913 SysBusDevice
*sbd_apb_ppc0
;
914 SysBusDevice
*sbd_secctl
;
915 DeviceState
*dev_apb_ppc0
;
916 DeviceState
*dev_apb_ppc1
;
917 DeviceState
*dev_secctl
;
918 DeviceState
*dev_splitter
;
919 uint32_t addr_width_max
;
921 if (!s
->board_memory
) {
922 error_setg(errp
, "memory property was not set");
926 if (!clock_has_source(s
->mainclk
)) {
927 error_setg(errp
, "MAINCLK clock was not connected");
929 if (!clock_has_source(s
->s32kclk
)) {
930 error_setg(errp
, "S32KCLK clock was not connected");
933 assert(info
->num_cpus
<= SSE_MAX_CPUS
);
935 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
936 assert(is_power_of_2(info
->sram_banks
));
937 addr_width_max
= 24 - ctz32(info
->sram_banks
);
938 if (s
->sram_addr_width
< 1 || s
->sram_addr_width
> addr_width_max
) {
939 error_setg(errp
, "SRAM_ADDR_WIDTH must be between 1 and %d",
944 /* Handling of which devices should be available only to secure
945 * code is usually done differently for M profile than for A profile.
946 * Instead of putting some devices only into the secure address space,
947 * devices exist in both address spaces but with hard-wired security
948 * permissions that will cause the CPU to fault for non-secure accesses.
950 * The ARMSSE has an IDAU (Implementation Defined Access Unit),
951 * which specifies hard-wired security permissions for different
952 * areas of the physical address space. For the ARMSSE IDAU, the
953 * top 4 bits of the physical address are the IDAU region ID, and
954 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
955 * region, otherwise it is an S region.
957 * The various devices and RAMs are generally all mapped twice,
958 * once into a region that the IDAU defines as secure and once
959 * into a non-secure region. They sit behind either a Memory
960 * Protection Controller (for RAM) or a Peripheral Protection
961 * Controller (for devices), which allow a more fine grained
962 * configuration of whether non-secure accesses are permitted.
964 * (The other place that guest software can configure security
965 * permissions is in the architected SAU (Security Attribution
966 * Unit), which is entirely inside the CPU. The IDAU can upgrade
967 * the security attributes for a region to more restrictive than
968 * the SAU specifies, but cannot downgrade them.)
970 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
971 * 0x20000000..0x2007ffff 32KB FPGA block RAM
972 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
973 * 0x40000000..0x4000ffff base peripheral region 1
974 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
975 * 0x40020000..0x4002ffff system control element peripherals
976 * 0x40080000..0x400fffff base peripheral region 2
977 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
980 memory_region_add_subregion_overlap(&s
->container
, 0, s
->board_memory
, -2);
982 for (i
= 0; i
< info
->num_cpus
; i
++) {
983 DeviceState
*cpudev
= DEVICE(&s
->armv7m
[i
]);
984 Object
*cpuobj
= OBJECT(&s
->armv7m
[i
]);
988 qdev_prop_set_uint32(cpudev
, "num-irq", s
->exp_numirq
+ NUM_SSE_IRQS
);
990 * In real hardware the initial Secure VTOR is set from the INITSVTOR*
991 * registers in the IoT Kit System Control Register block. In QEMU
992 * we set the initial value here, and also the reset value of the
993 * sysctl register, from this object's QOM init-svtor property.
994 * If the guest changes the INITSVTOR* registers at runtime then the
995 * code in iotkit-sysctl.c will update the CPU init-svtor property
996 * (which will then take effect on the next CPU warm-reset).
998 * Note that typically a board using the SSE-200 will have a system
999 * control processor whose boot firmware initializes the INITSVTOR*
1000 * registers before powering up the CPUs. QEMU doesn't emulate
1001 * the control processor, so instead we behave in the way that the
1002 * firmware does: the initial value should be set by the board code
1003 * (using the init-svtor property on the ARMSSE object) to match
1004 * whatever its firmware does.
1006 qdev_prop_set_uint32(cpudev
, "init-svtor", s
->init_svtor
);
1008 * CPUs start powered down if the corresponding bit in the CPUWAIT
1009 * register is 1. In real hardware the CPUWAIT register reset value is
1010 * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
1011 * CPUWAIT1_RST parameters), but since all the boards we care about
1012 * start CPU0 and leave CPU1 powered off, we hard-code that in
1013 * info->cpuwait_rst for now. We can add QOM properties for this
1014 * later if necessary.
1016 if (extract32(info
->cpuwait_rst
, i
, 1)) {
1017 if (!object_property_set_bool(cpuobj
, "start-powered-off", true,
1022 if (!s
->cpu_fpu
[i
]) {
1023 if (!object_property_set_bool(cpuobj
, "vfp", false, errp
)) {
1027 if (!s
->cpu_dsp
[i
]) {
1028 if (!object_property_set_bool(cpuobj
, "dsp", false, errp
)) {
1034 memory_region_add_subregion_overlap(&s
->cpu_container
[i
], 0,
1035 &s
->container_alias
[i
- 1], -1);
1037 memory_region_add_subregion_overlap(&s
->cpu_container
[i
], 0,
1040 object_property_set_link(cpuobj
, "memory",
1041 OBJECT(&s
->cpu_container
[i
]), &error_abort
);
1042 object_property_set_link(cpuobj
, "idau", OBJECT(s
), &error_abort
);
1043 if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj
), errp
)) {
1047 * The cluster must be realized after the armv7m container, as
1048 * the container's CPU object is only created on realize, and the
1049 * CPU must exist and have been parented into the cluster before
1050 * the cluster is realized.
1052 if (!qdev_realize(DEVICE(&s
->cluster
[i
]), NULL
, errp
)) {
1056 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
1057 s
->exp_irqs
[i
] = g_new(qemu_irq
, s
->exp_numirq
);
1058 for (j
= 0; j
< s
->exp_numirq
; j
++) {
1059 s
->exp_irqs
[i
][j
] = qdev_get_gpio_in(cpudev
, j
+ NUM_SSE_IRQS
);
1062 gpioname
= g_strdup("EXP_IRQ");
1064 gpioname
= g_strdup_printf("EXP_CPU%d_IRQ", i
);
1066 qdev_init_gpio_in_named_with_opaque(dev
, armsse_exp_irq
,
1068 gpioname
, s
->exp_numirq
);
1072 /* Wire up the splitters that connect common IRQs to all CPUs */
1073 if (info
->num_cpus
> 1) {
1074 for (i
= 0; i
< ARRAY_SIZE(s
->cpu_irq_splitter
); i
++) {
1075 if (info
->irq_is_common
[i
]) {
1076 Object
*splitter
= OBJECT(&s
->cpu_irq_splitter
[i
]);
1077 DeviceState
*devs
= DEVICE(splitter
);
1080 if (!object_property_set_int(splitter
, "num-lines",
1081 info
->num_cpus
, errp
)) {
1084 if (!qdev_realize(DEVICE(splitter
), NULL
, errp
)) {
1087 for (cpunum
= 0; cpunum
< info
->num_cpus
; cpunum
++) {
1088 DeviceState
*cpudev
= DEVICE(&s
->armv7m
[cpunum
]);
1090 qdev_connect_gpio_out(devs
, cpunum
,
1091 qdev_get_gpio_in(cpudev
, i
));
1097 /* Set up the big aliases first */
1098 make_alias(s
, &s
->alias1
, &s
->container
, "alias 1",
1099 0x10000000, 0x10000000, 0x00000000);
1100 make_alias(s
, &s
->alias2
, &s
->container
,
1101 "alias 2", 0x30000000, 0x10000000, 0x20000000);
1102 /* The 0x50000000..0x5fffffff region is not a pure alias: it has
1103 * a few extra devices that only appear there (generally the
1104 * control interfaces for the protection controllers).
1105 * We implement this by mapping those devices over the top of this
1106 * alias MR at a higher priority. Some of the devices in this range
1107 * are per-CPU, so we must put this alias in the per-cpu containers.
1109 for (i
= 0; i
< info
->num_cpus
; i
++) {
1110 make_alias(s
, &s
->alias3
[i
], &s
->cpu_container
[i
],
1111 "alias 3", 0x50000000, 0x10000000, 0x40000000);
1114 /* Security controller */
1115 object_property_set_int(OBJECT(&s
->secctl
), "sse-version",
1116 info
->sse_version
, &error_abort
);
1117 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->secctl
), errp
)) {
1120 sbd_secctl
= SYS_BUS_DEVICE(&s
->secctl
);
1121 dev_secctl
= DEVICE(&s
->secctl
);
1122 sysbus_mmio_map(sbd_secctl
, 0, 0x50080000);
1123 sysbus_mmio_map(sbd_secctl
, 1, 0x40080000);
1125 s
->nsc_cfg_in
= qemu_allocate_irq(nsccfg_handler
, s
, 1);
1126 qdev_connect_gpio_out_named(dev_secctl
, "nsc_cfg", 0, s
->nsc_cfg_in
);
1128 /* The sec_resp_cfg output from the security controller must be split into
1129 * multiple lines, one for each of the PPCs within the ARMSSE and one
1130 * that will be an output from the ARMSSE to the system.
1132 if (!object_property_set_int(OBJECT(&s
->sec_resp_splitter
),
1133 "num-lines", 3, errp
)) {
1136 if (!qdev_realize(DEVICE(&s
->sec_resp_splitter
), NULL
, errp
)) {
1139 dev_splitter
= DEVICE(&s
->sec_resp_splitter
);
1140 qdev_connect_gpio_out_named(dev_secctl
, "sec_resp_cfg", 0,
1141 qdev_get_gpio_in(dev_splitter
, 0));
1143 /* Each SRAM bank lives behind its own Memory Protection Controller */
1144 for (i
= 0; i
< info
->sram_banks
; i
++) {
1145 char *ramname
= g_strdup_printf("armsse.sram%d", i
);
1146 SysBusDevice
*sbd_mpc
;
1147 uint32_t sram_bank_size
= 1 << s
->sram_addr_width
;
1149 memory_region_init_ram(&s
->sram
[i
], NULL
, ramname
,
1150 sram_bank_size
, &err
);
1153 error_propagate(errp
, err
);
1156 object_property_set_link(OBJECT(&s
->mpc
[i
]), "downstream",
1157 OBJECT(&s
->sram
[i
]), &error_abort
);
1158 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->mpc
[i
]), errp
)) {
1161 /* Map the upstream end of the MPC into the right place... */
1162 sbd_mpc
= SYS_BUS_DEVICE(&s
->mpc
[i
]);
1163 memory_region_add_subregion(&s
->container
,
1164 0x20000000 + i
* sram_bank_size
,
1165 sysbus_mmio_get_region(sbd_mpc
, 1));
1166 /* ...and its register interface */
1167 memory_region_add_subregion(&s
->container
, 0x50083000 + i
* 0x1000,
1168 sysbus_mmio_get_region(sbd_mpc
, 0));
1171 /* We must OR together lines from the MPC splitters to go to the NVIC */
1172 if (!object_property_set_int(OBJECT(&s
->mpc_irq_orgate
), "num-lines",
1173 IOTS_NUM_EXP_MPC
+ info
->sram_banks
,
1177 if (!qdev_realize(DEVICE(&s
->mpc_irq_orgate
), NULL
, errp
)) {
1180 qdev_connect_gpio_out(DEVICE(&s
->mpc_irq_orgate
), 0,
1181 armsse_get_common_irq_in(s
, 9));
1183 /* This OR gate wires together outputs from the secure watchdogs to NMI */
1184 if (!object_property_set_int(OBJECT(&s
->nmi_orgate
), "num-lines", 2,
1188 if (!qdev_realize(DEVICE(&s
->nmi_orgate
), NULL
, errp
)) {
1191 qdev_connect_gpio_out(DEVICE(&s
->nmi_orgate
), 0,
1192 qdev_get_gpio_in_named(DEVICE(&s
->armv7m
), "NMI", 0));
1194 /* The SSE-300 has a System Counter / System Timestamp Generator */
1195 if (info
->has_sse_counter
) {
1196 SysBusDevice
*sbd
= SYS_BUS_DEVICE(&s
->sse_counter
);
1198 qdev_connect_clock_in(DEVICE(sbd
), "CLK", s
->mainclk
);
1199 if (!sysbus_realize(sbd
, errp
)) {
1203 * The control frame is only in the Secure region;
1204 * the status frame is in the NS region (and visible in the
1205 * S region via the alias mapping).
1207 memory_region_add_subregion(&s
->container
, 0x58100000,
1208 sysbus_mmio_get_region(sbd
, 0));
1209 memory_region_add_subregion(&s
->container
, 0x48101000,
1210 sysbus_mmio_get_region(sbd
, 1));
1213 /* Devices behind APB PPC0:
1214 * 0x40000000: timer0
1215 * 0x40001000: timer1
1216 * 0x40002000: dual timer
1217 * 0x40003000: MHU0 (SSE-200 only)
1218 * 0x40004000: MHU1 (SSE-200 only)
1219 * We must configure and realize each downstream device and connect
1220 * it to the appropriate PPC port; then we can realize the PPC and
1221 * map its upstream ends to the right place in the container.
1223 for (devinfo
= info
->devinfo
; devinfo
->name
; devinfo
++) {
1227 if (!strcmp(devinfo
->type
, TYPE_CMSDK_APB_TIMER
)) {
1228 sbd
= SYS_BUS_DEVICE(&s
->timer
[devinfo
->index
]);
1230 qdev_connect_clock_in(DEVICE(sbd
), "pclk",
1231 devinfo
->slowclk
? s
->s32kclk
: s
->mainclk
);
1232 if (!sysbus_realize(sbd
, errp
)) {
1235 mr
= sysbus_mmio_get_region(sbd
, 0);
1236 } else if (!strcmp(devinfo
->type
, TYPE_CMSDK_APB_DUALTIMER
)) {
1237 sbd
= SYS_BUS_DEVICE(&s
->dualtimer
);
1239 qdev_connect_clock_in(DEVICE(sbd
), "TIMCLK", s
->mainclk
);
1240 if (!sysbus_realize(sbd
, errp
)) {
1243 mr
= sysbus_mmio_get_region(sbd
, 0);
1244 } else if (!strcmp(devinfo
->type
, TYPE_SSE_TIMER
)) {
1245 sbd
= SYS_BUS_DEVICE(&s
->sse_timer
[devinfo
->index
]);
1247 assert(info
->has_sse_counter
);
1248 object_property_set_link(OBJECT(sbd
), "counter",
1249 OBJECT(&s
->sse_counter
), &error_abort
);
1250 if (!sysbus_realize(sbd
, errp
)) {
1253 mr
= sysbus_mmio_get_region(sbd
, 0);
1254 } else if (!strcmp(devinfo
->type
, TYPE_CMSDK_APB_WATCHDOG
)) {
1255 sbd
= SYS_BUS_DEVICE(&s
->cmsdk_watchdog
[devinfo
->index
]);
1257 qdev_connect_clock_in(DEVICE(sbd
), "WDOGCLK",
1258 devinfo
->slowclk
? s
->s32kclk
: s
->mainclk
);
1259 if (!sysbus_realize(sbd
, errp
)) {
1262 mr
= sysbus_mmio_get_region(sbd
, 0);
1263 } else if (!strcmp(devinfo
->type
, TYPE_IOTKIT_SYSINFO
)) {
1264 sbd
= SYS_BUS_DEVICE(&s
->sysinfo
);
1266 object_property_set_int(OBJECT(&s
->sysinfo
), "SYS_VERSION",
1267 info
->sys_version
, &error_abort
);
1268 object_property_set_int(OBJECT(&s
->sysinfo
), "SYS_CONFIG",
1269 armsse_sys_config_value(s
, info
),
1271 object_property_set_int(OBJECT(&s
->sysinfo
), "sse-version",
1272 info
->sse_version
, &error_abort
);
1273 object_property_set_int(OBJECT(&s
->sysinfo
), "IIDR",
1274 info
->iidr
, &error_abort
);
1275 if (!sysbus_realize(sbd
, errp
)) {
1278 mr
= sysbus_mmio_get_region(sbd
, 0);
1279 } else if (!strcmp(devinfo
->type
, TYPE_IOTKIT_SYSCTL
)) {
1280 /* System control registers */
1281 sbd
= SYS_BUS_DEVICE(&s
->sysctl
);
1283 object_property_set_int(OBJECT(&s
->sysctl
), "sse-version",
1284 info
->sse_version
, &error_abort
);
1285 object_property_set_int(OBJECT(&s
->sysctl
), "CPUWAIT_RST",
1286 info
->cpuwait_rst
, &error_abort
);
1287 object_property_set_int(OBJECT(&s
->sysctl
), "INITSVTOR0_RST",
1288 s
->init_svtor
, &error_abort
);
1289 object_property_set_int(OBJECT(&s
->sysctl
), "INITSVTOR1_RST",
1290 s
->init_svtor
, &error_abort
);
1291 if (!sysbus_realize(sbd
, errp
)) {
1294 mr
= sysbus_mmio_get_region(sbd
, 0);
1295 } else if (!strcmp(devinfo
->type
, TYPE_UNIMPLEMENTED_DEVICE
)) {
1296 sbd
= SYS_BUS_DEVICE(&s
->unimp
[devinfo
->index
]);
1298 qdev_prop_set_string(DEVICE(sbd
), "name", devinfo
->name
);
1299 qdev_prop_set_uint64(DEVICE(sbd
), "size", devinfo
->size
);
1300 if (!sysbus_realize(sbd
, errp
)) {
1303 mr
= sysbus_mmio_get_region(sbd
, 0);
1305 g_assert_not_reached();
1308 switch (devinfo
->irq
) {
1312 case 0 ... NUM_SSE_IRQS
- 1:
1313 irq
= armsse_get_common_irq_in(s
, devinfo
->irq
);
1317 irq
= qdev_get_gpio_in(DEVICE(&s
->nmi_orgate
),
1318 devinfo
->irq
- NMI_0
);
1321 g_assert_not_reached();
1325 sysbus_connect_irq(sbd
, 0, irq
);
1329 * Devices connected to a PPC are connected to the port here;
1330 * we will map the upstream end of that port to the right address
1331 * in the container later after the PPC has been realized.
1332 * Devices not connected to a PPC can be mapped immediately.
1334 if (devinfo
->ppc
!= NO_PPC
) {
1335 TZPPC
*ppc
= &s
->apb_ppc
[devinfo
->ppc
];
1336 g_autofree
char *portname
= g_strdup_printf("port[%d]",
1338 object_property_set_link(OBJECT(ppc
), portname
, OBJECT(mr
),
1341 memory_region_add_subregion(&s
->container
, devinfo
->addr
, mr
);
1345 if (info
->has_mhus
) {
1347 * An SSE-200 with only one CPU should have only one MHU created,
1348 * with the region where the second MHU usually is being RAZ/WI.
1349 * We don't implement that SSE-200 config; if we want to support
1350 * it then this code needs to be enhanced to handle creating the
1351 * RAZ/WI region instead of the second MHU.
1353 assert(info
->num_cpus
== ARRAY_SIZE(s
->mhu
));
1355 for (i
= 0; i
< ARRAY_SIZE(s
->mhu
); i
++) {
1358 SysBusDevice
*mhu_sbd
= SYS_BUS_DEVICE(&s
->mhu
[i
]);
1360 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->mhu
[i
]), errp
)) {
1363 port
= g_strdup_printf("port[%d]", i
+ 3);
1364 mr
= sysbus_mmio_get_region(mhu_sbd
, 0);
1365 object_property_set_link(OBJECT(&s
->apb_ppc
[0]), port
, OBJECT(mr
),
1370 * Each MHU has an irq line for each CPU:
1371 * MHU 0 irq line 0 -> CPU 0 IRQ 6
1372 * MHU 0 irq line 1 -> CPU 1 IRQ 6
1373 * MHU 1 irq line 0 -> CPU 0 IRQ 7
1374 * MHU 1 irq line 1 -> CPU 1 IRQ 7
1376 for (cpunum
= 0; cpunum
< info
->num_cpus
; cpunum
++) {
1377 DeviceState
*cpudev
= DEVICE(&s
->armv7m
[cpunum
]);
1379 sysbus_connect_irq(mhu_sbd
, cpunum
,
1380 qdev_get_gpio_in(cpudev
, 6 + i
));
1385 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->apb_ppc
[0]), errp
)) {
1389 sbd_apb_ppc0
= SYS_BUS_DEVICE(&s
->apb_ppc
[0]);
1390 dev_apb_ppc0
= DEVICE(&s
->apb_ppc
[0]);
1392 if (info
->has_mhus
) {
1393 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 3);
1394 memory_region_add_subregion(&s
->container
, 0x40003000, mr
);
1395 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 4);
1396 memory_region_add_subregion(&s
->container
, 0x40004000, mr
);
1398 for (i
= 0; i
< IOTS_APB_PPC0_NUM_PORTS
; i
++) {
1399 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_nonsec", i
,
1400 qdev_get_gpio_in_named(dev_apb_ppc0
,
1402 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_ap", i
,
1403 qdev_get_gpio_in_named(dev_apb_ppc0
,
1406 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_irq_enable", 0,
1407 qdev_get_gpio_in_named(dev_apb_ppc0
,
1409 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_irq_clear", 0,
1410 qdev_get_gpio_in_named(dev_apb_ppc0
,
1412 qdev_connect_gpio_out(dev_splitter
, 0,
1413 qdev_get_gpio_in_named(dev_apb_ppc0
,
1414 "cfg_sec_resp", 0));
1416 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
1417 * ones) are sent individually to the security controller, and also
1418 * ORed together to give a single combined PPC interrupt to the NVIC.
1420 if (!object_property_set_int(OBJECT(&s
->ppc_irq_orgate
),
1421 "num-lines", NUM_PPCS
, errp
)) {
1424 if (!qdev_realize(DEVICE(&s
->ppc_irq_orgate
), NULL
, errp
)) {
1427 qdev_connect_gpio_out(DEVICE(&s
->ppc_irq_orgate
), 0,
1428 armsse_get_common_irq_in(s
, 10));
1431 * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
1432 * private per-CPU region (all these devices are SSE-200 only):
1433 * 0x50010000: L1 icache control registers
1434 * 0x50011000: CPUSECCTRL (CPU local security control registers)
1435 * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
1436 * The SSE-300 has an extra:
1437 * 0x40012000 and 0x50012000: CPU_PWRCTRL register block
1439 if (info
->has_cachectrl
) {
1440 for (i
= 0; i
< info
->num_cpus
; i
++) {
1441 char *name
= g_strdup_printf("cachectrl%d", i
);
1444 qdev_prop_set_string(DEVICE(&s
->cachectrl
[i
]), "name", name
);
1446 qdev_prop_set_uint64(DEVICE(&s
->cachectrl
[i
]), "size", 0x1000);
1447 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->cachectrl
[i
]), errp
)) {
1451 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cachectrl
[i
]), 0);
1452 memory_region_add_subregion(&s
->cpu_container
[i
], 0x50010000, mr
);
1455 if (info
->has_cpusecctrl
) {
1456 for (i
= 0; i
< info
->num_cpus
; i
++) {
1457 char *name
= g_strdup_printf("CPUSECCTRL%d", i
);
1460 qdev_prop_set_string(DEVICE(&s
->cpusecctrl
[i
]), "name", name
);
1462 qdev_prop_set_uint64(DEVICE(&s
->cpusecctrl
[i
]), "size", 0x1000);
1463 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->cpusecctrl
[i
]), errp
)) {
1467 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cpusecctrl
[i
]), 0);
1468 memory_region_add_subregion(&s
->cpu_container
[i
], 0x50011000, mr
);
1471 if (info
->has_cpuid
) {
1472 for (i
= 0; i
< info
->num_cpus
; i
++) {
1475 qdev_prop_set_uint32(DEVICE(&s
->cpuid
[i
]), "CPUID", i
);
1476 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->cpuid
[i
]), errp
)) {
1480 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cpuid
[i
]), 0);
1481 memory_region_add_subregion(&s
->cpu_container
[i
], 0x4001F000, mr
);
1484 if (info
->has_cpu_pwrctrl
) {
1485 for (i
= 0; i
< info
->num_cpus
; i
++) {
1488 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->cpu_pwrctrl
[i
]), errp
)) {
1492 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cpu_pwrctrl
[i
]), 0);
1493 memory_region_add_subregion(&s
->cpu_container
[i
], 0x40012000, mr
);
1497 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->apb_ppc
[1]), errp
)) {
1501 dev_apb_ppc1
= DEVICE(&s
->apb_ppc
[1]);
1502 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_nonsec", 0,
1503 qdev_get_gpio_in_named(dev_apb_ppc1
,
1505 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_ap", 0,
1506 qdev_get_gpio_in_named(dev_apb_ppc1
,
1508 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_irq_enable", 0,
1509 qdev_get_gpio_in_named(dev_apb_ppc1
,
1511 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_irq_clear", 0,
1512 qdev_get_gpio_in_named(dev_apb_ppc1
,
1514 qdev_connect_gpio_out(dev_splitter
, 1,
1515 qdev_get_gpio_in_named(dev_apb_ppc1
,
1516 "cfg_sec_resp", 0));
1519 * Now both PPCs are realized we can map the upstream ends of
1520 * ports which correspond to entries in the devinfo array.
1521 * The ports which are connected to non-devinfo devices have
1522 * already been mapped.
1524 for (devinfo
= info
->devinfo
; devinfo
->name
; devinfo
++) {
1525 SysBusDevice
*ppc_sbd
;
1527 if (devinfo
->ppc
== NO_PPC
) {
1530 ppc_sbd
= SYS_BUS_DEVICE(&s
->apb_ppc
[devinfo
->ppc
]);
1531 mr
= sysbus_mmio_get_region(ppc_sbd
, devinfo
->ppc_port
);
1532 memory_region_add_subregion(&s
->container
, devinfo
->addr
, mr
);
1535 for (i
= 0; i
< ARRAY_SIZE(s
->ppc_irq_splitter
); i
++) {
1536 Object
*splitter
= OBJECT(&s
->ppc_irq_splitter
[i
]);
1538 if (!object_property_set_int(splitter
, "num-lines", 2, errp
)) {
1541 if (!qdev_realize(DEVICE(splitter
), NULL
, errp
)) {
1546 for (i
= 0; i
< IOTS_NUM_AHB_EXP_PPC
; i
++) {
1547 char *ppcname
= g_strdup_printf("ahb_ppcexp%d", i
);
1549 armsse_forward_ppc(s
, ppcname
, i
);
1553 for (i
= 0; i
< IOTS_NUM_APB_EXP_PPC
; i
++) {
1554 char *ppcname
= g_strdup_printf("apb_ppcexp%d", i
);
1556 armsse_forward_ppc(s
, ppcname
, i
+ IOTS_NUM_AHB_EXP_PPC
);
1560 for (i
= NUM_EXTERNAL_PPCS
; i
< NUM_PPCS
; i
++) {
1561 /* Wire up IRQ splitter for internal PPCs */
1562 DeviceState
*devs
= DEVICE(&s
->ppc_irq_splitter
[i
]);
1563 char *gpioname
= g_strdup_printf("apb_ppc%d_irq_status",
1564 i
- NUM_EXTERNAL_PPCS
);
1565 TZPPC
*ppc
= &s
->apb_ppc
[i
- NUM_EXTERNAL_PPCS
];
1567 qdev_connect_gpio_out(devs
, 0,
1568 qdev_get_gpio_in_named(dev_secctl
, gpioname
, 0));
1569 qdev_connect_gpio_out(devs
, 1,
1570 qdev_get_gpio_in(DEVICE(&s
->ppc_irq_orgate
), i
));
1571 qdev_connect_gpio_out_named(DEVICE(ppc
), "irq", 0,
1572 qdev_get_gpio_in(devs
, 0));
1576 /* Wire up the splitters for the MPC IRQs */
1577 for (i
= 0; i
< IOTS_NUM_EXP_MPC
+ info
->sram_banks
; i
++) {
1578 SplitIRQ
*splitter
= &s
->mpc_irq_splitter
[i
];
1579 DeviceState
*dev_splitter
= DEVICE(splitter
);
1581 if (!object_property_set_int(OBJECT(splitter
), "num-lines", 2,
1585 if (!qdev_realize(DEVICE(splitter
), NULL
, errp
)) {
1589 if (i
< IOTS_NUM_EXP_MPC
) {
1590 /* Splitter input is from GPIO input line */
1591 s
->mpcexp_status_in
[i
] = qdev_get_gpio_in(dev_splitter
, 0);
1592 qdev_connect_gpio_out(dev_splitter
, 0,
1593 qdev_get_gpio_in_named(dev_secctl
,
1594 "mpcexp_status", i
));
1596 /* Splitter input is from our own MPC */
1597 qdev_connect_gpio_out_named(DEVICE(&s
->mpc
[i
- IOTS_NUM_EXP_MPC
]),
1599 qdev_get_gpio_in(dev_splitter
, 0));
1600 qdev_connect_gpio_out(dev_splitter
, 0,
1601 qdev_get_gpio_in_named(dev_secctl
,
1603 i
- IOTS_NUM_EXP_MPC
));
1606 qdev_connect_gpio_out(dev_splitter
, 1,
1607 qdev_get_gpio_in(DEVICE(&s
->mpc_irq_orgate
), i
));
1609 /* Create GPIO inputs which will pass the line state for our
1610 * mpcexp_irq inputs to the correct splitter devices.
1612 qdev_init_gpio_in_named(dev
, armsse_mpcexp_status
, "mpcexp_status",
1615 armsse_forward_sec_resp_cfg(s
);
1617 /* Forward the MSC related signals */
1618 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_status");
1619 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_clear");
1620 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_ns");
1621 qdev_connect_gpio_out_named(dev_secctl
, "msc_irq", 0,
1622 armsse_get_common_irq_in(s
, 11));
1625 * Expose our container region to the board model; this corresponds
1626 * to the AHB Slave Expansion ports which allow bus master devices
1627 * (eg DMA controllers) in the board model to make transactions into
1628 * devices in the ARMSSE.
1630 sysbus_init_mmio(SYS_BUS_DEVICE(s
), &s
->container
);
1632 /* Set initial system_clock_scale from MAINCLK */
1633 armsse_mainclk_update(s
, ClockUpdate
);
1636 static void armsse_idau_check(IDAUInterface
*ii
, uint32_t address
,
1637 int *iregion
, bool *exempt
, bool *ns
, bool *nsc
)
1640 * For ARMSSE systems the IDAU responses are simple logical functions
1641 * of the address bits. The NSC attribute is guest-adjustable via the
1642 * NSCCFG register in the security controller.
1644 ARMSSE
*s
= ARM_SSE(ii
);
1645 int region
= extract32(address
, 28, 4);
1647 *ns
= !(region
& 1);
1648 *nsc
= (region
== 1 && (s
->nsccfg
& 1)) || (region
== 3 && (s
->nsccfg
& 2));
1649 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1650 *exempt
= (address
& 0xeff00000) == 0xe0000000;
1654 static const VMStateDescription armsse_vmstate
= {
1657 .minimum_version_id
= 2,
1658 .fields
= (VMStateField
[]) {
1659 VMSTATE_CLOCK(mainclk
, ARMSSE
),
1660 VMSTATE_CLOCK(s32kclk
, ARMSSE
),
1661 VMSTATE_UINT32(nsccfg
, ARMSSE
),
1662 VMSTATE_END_OF_LIST()
1666 static void armsse_reset(DeviceState
*dev
)
1668 ARMSSE
*s
= ARM_SSE(dev
);
1673 static void armsse_class_init(ObjectClass
*klass
, void *data
)
1675 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1676 IDAUInterfaceClass
*iic
= IDAU_INTERFACE_CLASS(klass
);
1677 ARMSSEClass
*asc
= ARM_SSE_CLASS(klass
);
1678 const ARMSSEInfo
*info
= data
;
1680 dc
->realize
= armsse_realize
;
1681 dc
->vmsd
= &armsse_vmstate
;
1682 device_class_set_props(dc
, info
->props
);
1683 dc
->reset
= armsse_reset
;
1684 iic
->check
= armsse_idau_check
;
1688 static const TypeInfo armsse_info
= {
1689 .name
= TYPE_ARM_SSE
,
1690 .parent
= TYPE_SYS_BUS_DEVICE
,
1691 .instance_size
= sizeof(ARMSSE
),
1692 .class_size
= sizeof(ARMSSEClass
),
1693 .instance_init
= armsse_init
,
1695 .interfaces
= (InterfaceInfo
[]) {
1696 { TYPE_IDAU_INTERFACE
},
1701 static void armsse_register_types(void)
1705 type_register_static(&armsse_info
);
1707 for (i
= 0; i
< ARRAY_SIZE(armsse_variants
); i
++) {
1709 .name
= armsse_variants
[i
].name
,
1710 .parent
= TYPE_ARM_SSE
,
1711 .class_init
= armsse_class_init
,
1712 .class_data
= (void *)&armsse_variants
[i
],
1718 type_init(armsse_register_types
);