3 ** File: fmopl.c -- software implementation of FM sound generator
5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
19 * This library is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU Lesser General Public
21 * License as published by the Free Software Foundation; either
22 * version 2.1 of the License, or (at your option) any later version.
24 * This library is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 * Lesser General Public License for more details.
29 * You should have received a copy of the GNU Lesser General Public
30 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
40 //#include "driver.h" /* use M.A.M.E. */
44 #define PI 3.14159265358979323846
48 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
51 /* -------------------- for debug --------------------- */
52 /* #define OPL_OUTPUT_LOG */
54 static FILE *opl_dbg_fp
= NULL
;
55 static FM_OPL
*opl_dbg_opl
[16];
56 static int opl_dbg_maxchip
,opl_dbg_chip
;
59 /* -------------------- preliminary define section --------------------- */
60 /* attack/decay rate time rate */
61 #define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */
62 #define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */
64 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
66 #define FREQ_BITS 24 /* frequency turn */
68 /* counter bits = 20 , octerve 7 */
69 #define FREQ_RATE (1<<(FREQ_BITS-20))
70 #define TL_BITS (FREQ_BITS+2)
72 /* final output shift , limit minimum and maximum */
73 #define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */
74 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
75 #define OPL_MINOUT (-0x8000<<OPL_OUTSB)
77 /* -------------------- quality selection --------------------- */
80 /* used static memory = SIN_ENT * 4 (byte) */
83 /* output level entries (envelope,sinwave) */
84 /* envelope counter lower bits */
86 /* envelope output entries */
88 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
89 /* used static memory = EG_ENT*4 (byte) */
91 #define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */
93 #define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */
95 #define EG_AST 0 /* ATTACK START */
97 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */
99 /* LFO table entries */
101 #define VIB_SHIFT (32-9)
103 #define AMS_SHIFT (32-9)
107 /* -------------------- local defines , macros --------------------- */
109 /* register number to channel number , slot offset */
114 #define ENV_MOD_RR 0x00
115 #define ENV_MOD_DR 0x01
116 #define ENV_MOD_AR 0x02
118 /* -------------------- tables --------------------- */
119 static const int slot_array
[32]=
121 0, 2, 4, 1, 3, 5,-1,-1,
122 6, 8,10, 7, 9,11,-1,-1,
123 12,14,16,13,15,17,-1,-1,
124 -1,-1,-1,-1,-1,-1,-1,-1
127 /* key scale level */
128 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
129 #define DV (EG_STEP/2)
130 static const UINT32 KSL_TABLE
[8*16]=
133 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
134 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
135 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
136 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
138 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
139 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
140 0.000/DV
, 0.750/DV
, 1.125/DV
, 1.500/DV
,
141 1.875/DV
, 2.250/DV
, 2.625/DV
, 3.000/DV
,
143 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
144 0.000/DV
, 1.125/DV
, 1.875/DV
, 2.625/DV
,
145 3.000/DV
, 3.750/DV
, 4.125/DV
, 4.500/DV
,
146 4.875/DV
, 5.250/DV
, 5.625/DV
, 6.000/DV
,
148 0.000/DV
, 0.000/DV
, 0.000/DV
, 1.875/DV
,
149 3.000/DV
, 4.125/DV
, 4.875/DV
, 5.625/DV
,
150 6.000/DV
, 6.750/DV
, 7.125/DV
, 7.500/DV
,
151 7.875/DV
, 8.250/DV
, 8.625/DV
, 9.000/DV
,
153 0.000/DV
, 0.000/DV
, 3.000/DV
, 4.875/DV
,
154 6.000/DV
, 7.125/DV
, 7.875/DV
, 8.625/DV
,
155 9.000/DV
, 9.750/DV
,10.125/DV
,10.500/DV
,
156 10.875/DV
,11.250/DV
,11.625/DV
,12.000/DV
,
158 0.000/DV
, 3.000/DV
, 6.000/DV
, 7.875/DV
,
159 9.000/DV
,10.125/DV
,10.875/DV
,11.625/DV
,
160 12.000/DV
,12.750/DV
,13.125/DV
,13.500/DV
,
161 13.875/DV
,14.250/DV
,14.625/DV
,15.000/DV
,
163 0.000/DV
, 6.000/DV
, 9.000/DV
,10.875/DV
,
164 12.000/DV
,13.125/DV
,13.875/DV
,14.625/DV
,
165 15.000/DV
,15.750/DV
,16.125/DV
,16.500/DV
,
166 16.875/DV
,17.250/DV
,17.625/DV
,18.000/DV
,
168 0.000/DV
, 9.000/DV
,12.000/DV
,13.875/DV
,
169 15.000/DV
,16.125/DV
,16.875/DV
,17.625/DV
,
170 18.000/DV
,18.750/DV
,19.125/DV
,19.500/DV
,
171 19.875/DV
,20.250/DV
,20.625/DV
,21.000/DV
175 /* sustain lebel table (3db per step) */
176 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
177 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
178 static const INT32 SL_TABLE
[16]={
179 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
180 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
184 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
185 /* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */
186 /* TL_TABLE[ 0 to TL_MAX ] : plus section */
187 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
188 static INT32
*TL_TABLE
;
190 /* pointers to TL_TABLE with sinwave output offset */
191 static INT32
**SIN_TABLE
;
194 static INT32
*AMS_TABLE
;
195 static INT32
*VIB_TABLE
;
197 /* envelope output curve table */
198 /* attack + decay + OFF */
199 static INT32 ENV_CURVE
[2*EG_ENT
+1];
203 static const UINT32 MUL_TABLE
[16]= {
204 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
205 0.50*ML
, 1.00*ML
, 2.00*ML
, 3.00*ML
, 4.00*ML
, 5.00*ML
, 6.00*ML
, 7.00*ML
,
206 8.00*ML
, 9.00*ML
,10.00*ML
,10.00*ML
,12.00*ML
,12.00*ML
,15.00*ML
,15.00*ML
210 /* dummy attack / decay rate ( when rate == 0 ) */
211 static INT32 RATE_0
[16]=
212 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
214 /* -------------------- static state --------------------- */
216 /* lock level of common table */
217 static int num_lock
= 0;
220 static void *cur_chip
= NULL
; /* current chip point */
221 /* currenct chip state */
222 /* static OPLSAMPLE *bufL,*bufR; */
225 static OPL_SLOT
*SLOT7_1
, *SLOT7_2
, *SLOT8_1
, *SLOT8_2
;
227 static INT32 outd
[1];
230 static INT32
*ams_table
;
231 static INT32
*vib_table
;
232 static INT32 amsIncr
;
233 static INT32 vibIncr
;
234 static INT32 feedback2
; /* connect for SLOT 2 */
236 /* log output level */
237 #define LOG_ERR 3 /* ERROR */
238 #define LOG_WAR 2 /* WARNING */
239 #define LOG_INF 1 /* INFORMATION */
241 //#define LOG_LEVEL LOG_INF
242 #define LOG_LEVEL LOG_ERR
244 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
247 /* --------------------- subroutines --------------------- */
249 static inline int Limit( int val
, int max
, int min
) {
252 else if ( val
< min
)
258 /* status set and IRQ handling */
259 static inline void OPL_STATUS_SET(FM_OPL
*OPL
,int flag
)
261 /* set status flag */
263 if(!(OPL
->status
& 0x80))
265 if(OPL
->status
& OPL
->statusmask
)
268 /* callback user interrupt handler (IRQ is OFF to ON) */
269 if(OPL
->IRQHandler
) (OPL
->IRQHandler
)(OPL
->IRQParam
,1);
274 /* status reset and IRQ handling */
275 static inline void OPL_STATUS_RESET(FM_OPL
*OPL
,int flag
)
277 /* reset status flag */
279 if((OPL
->status
& 0x80))
281 if (!(OPL
->status
& OPL
->statusmask
) )
284 /* callback user interrupt handler (IRQ is ON to OFF) */
285 if(OPL
->IRQHandler
) (OPL
->IRQHandler
)(OPL
->IRQParam
,0);
291 static inline void OPL_STATUSMASK_SET(FM_OPL
*OPL
,int flag
)
293 OPL
->statusmask
= flag
;
294 /* IRQ handling check */
295 OPL_STATUS_SET(OPL
,0);
296 OPL_STATUS_RESET(OPL
,0);
299 /* ----- key on ----- */
300 static inline void OPL_KEYON(OPL_SLOT
*SLOT
)
302 /* sin wave restart */
305 SLOT
->evm
= ENV_MOD_AR
;
306 SLOT
->evs
= SLOT
->evsa
;
310 /* ----- key off ----- */
311 static inline void OPL_KEYOFF(OPL_SLOT
*SLOT
)
313 if( SLOT
->evm
> ENV_MOD_RR
)
315 /* set envelope counter from envleope output */
316 SLOT
->evm
= ENV_MOD_RR
;
317 if( !(SLOT
->evc
&EG_DST
) )
318 //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
321 SLOT
->evs
= SLOT
->evsr
;
325 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */
326 /* return : envelope output */
327 static inline UINT32
OPL_CALC_SLOT( OPL_SLOT
*SLOT
)
329 /* calcrate envelope generator */
330 if( (SLOT
->evc
+=SLOT
->evs
) >= SLOT
->eve
)
333 case ENV_MOD_AR
: /* ATTACK -> DECAY1 */
335 SLOT
->evm
= ENV_MOD_DR
;
337 SLOT
->eve
= SLOT
->SL
;
338 SLOT
->evs
= SLOT
->evsd
;
340 case ENV_MOD_DR
: /* DECAY -> SL or RR */
341 SLOT
->evc
= SLOT
->SL
;
349 SLOT
->evm
= ENV_MOD_RR
;
350 SLOT
->evs
= SLOT
->evsr
;
353 case ENV_MOD_RR
: /* RR -> OFF */
355 SLOT
->eve
= EG_OFF
+1;
360 /* calcrate envelope */
361 return SLOT
->TLL
+ENV_CURVE
[SLOT
->evc
>>ENV_BITS
]+(SLOT
->ams
? ams
: 0);
364 /* set algorithm connection */
365 static void set_algorithm( OPL_CH
*CH
)
367 INT32
*carrier
= &outd
[0];
368 CH
->connect1
= CH
->CON
? carrier
: &feedback2
;
369 CH
->connect2
= carrier
;
372 /* ---------- frequency counter for operater update ---------- */
373 static inline void CALC_FCSLOT(OPL_CH
*CH
,OPL_SLOT
*SLOT
)
377 /* frequency step counter */
378 SLOT
->Incr
= CH
->fc
* SLOT
->mul
;
379 ksr
= CH
->kcode
>> SLOT
->KSR
;
381 if( SLOT
->ksr
!= ksr
)
384 /* attack , decay rate recalcration */
385 SLOT
->evsa
= SLOT
->AR
[ksr
];
386 SLOT
->evsd
= SLOT
->DR
[ksr
];
387 SLOT
->evsr
= SLOT
->RR
[ksr
];
389 SLOT
->TLL
= SLOT
->TL
+ (CH
->ksl_base
>>SLOT
->ksl
);
392 /* set multi,am,vib,EG-TYP,KSR,mul */
393 static inline void set_mul(FM_OPL
*OPL
,int slot
,int v
)
395 OPL_CH
*CH
= &OPL
->P_CH
[slot
/2];
396 OPL_SLOT
*SLOT
= &CH
->SLOT
[slot
&1];
398 SLOT
->mul
= MUL_TABLE
[v
&0x0f];
399 SLOT
->KSR
= (v
&0x10) ? 0 : 2;
400 SLOT
->eg_typ
= (v
&0x20)>>5;
401 SLOT
->vib
= (v
&0x40);
402 SLOT
->ams
= (v
&0x80);
403 CALC_FCSLOT(CH
,SLOT
);
407 static inline void set_ksl_tl(FM_OPL
*OPL
,int slot
,int v
)
409 OPL_CH
*CH
= &OPL
->P_CH
[slot
/2];
410 OPL_SLOT
*SLOT
= &CH
->SLOT
[slot
&1];
411 int ksl
= v
>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
413 SLOT
->ksl
= ksl
? 3-ksl
: 31;
414 SLOT
->TL
= (v
&0x3f)*(0.75/EG_STEP
); /* 0.75db step */
416 if( !(OPL
->mode
&0x80) )
417 { /* not CSM latch total level */
418 SLOT
->TLL
= SLOT
->TL
+ (CH
->ksl_base
>>SLOT
->ksl
);
422 /* set attack rate & decay rate */
423 static inline void set_ar_dr(FM_OPL
*OPL
,int slot
,int v
)
425 OPL_CH
*CH
= &OPL
->P_CH
[slot
/2];
426 OPL_SLOT
*SLOT
= &CH
->SLOT
[slot
&1];
430 SLOT
->AR
= ar
? &OPL
->AR_TABLE
[ar
<<2] : RATE_0
;
431 SLOT
->evsa
= SLOT
->AR
[SLOT
->ksr
];
432 if( SLOT
->evm
== ENV_MOD_AR
) SLOT
->evs
= SLOT
->evsa
;
434 SLOT
->DR
= dr
? &OPL
->DR_TABLE
[dr
<<2] : RATE_0
;
435 SLOT
->evsd
= SLOT
->DR
[SLOT
->ksr
];
436 if( SLOT
->evm
== ENV_MOD_DR
) SLOT
->evs
= SLOT
->evsd
;
439 /* set sustain level & release rate */
440 static inline void set_sl_rr(FM_OPL
*OPL
,int slot
,int v
)
442 OPL_CH
*CH
= &OPL
->P_CH
[slot
/2];
443 OPL_SLOT
*SLOT
= &CH
->SLOT
[slot
&1];
447 SLOT
->SL
= SL_TABLE
[sl
];
448 if( SLOT
->evm
== ENV_MOD_DR
) SLOT
->eve
= SLOT
->SL
;
449 SLOT
->RR
= &OPL
->DR_TABLE
[rr
<<2];
450 SLOT
->evsr
= SLOT
->RR
[SLOT
->ksr
];
451 if( SLOT
->evm
== ENV_MOD_RR
) SLOT
->evs
= SLOT
->evsr
;
454 /* operator output calcrator */
455 #define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
456 /* ---------- calcrate one of channel ---------- */
457 static inline void OPL_CALC_CH( OPL_CH
*CH
)
464 SLOT
= &CH
->SLOT
[SLOT1
];
465 env_out
=OPL_CALC_SLOT(SLOT
);
466 if( env_out
< EG_ENT
-1 )
469 if(SLOT
->vib
) SLOT
->Cnt
+= (SLOT
->Incr
*vib
/VIB_RATE
);
470 else SLOT
->Cnt
+= SLOT
->Incr
;
474 int feedback1
= (CH
->op1_out
[0]+CH
->op1_out
[1])>>CH
->FB
;
475 CH
->op1_out
[1] = CH
->op1_out
[0];
476 *CH
->connect1
+= CH
->op1_out
[0] = OP_OUT(SLOT
,env_out
,feedback1
);
480 *CH
->connect1
+= OP_OUT(SLOT
,env_out
,0);
484 CH
->op1_out
[1] = CH
->op1_out
[0];
488 SLOT
= &CH
->SLOT
[SLOT2
];
489 env_out
=OPL_CALC_SLOT(SLOT
);
490 if( env_out
< EG_ENT
-1 )
493 if(SLOT
->vib
) SLOT
->Cnt
+= (SLOT
->Incr
*vib
/VIB_RATE
);
494 else SLOT
->Cnt
+= SLOT
->Incr
;
496 outd
[0] += OP_OUT(SLOT
,env_out
, feedback2
);
500 /* ---------- calcrate rhythm block ---------- */
501 #define WHITE_NOISE_db 6.0
502 static inline void OPL_CALC_RH( OPL_CH
*CH
)
504 UINT32 env_tam
,env_sd
,env_top
,env_hh
;
505 int whitenoise
= (rand()&1)*(WHITE_NOISE_db
/EG_STEP
);
511 /* BD : same as FM serial mode and output level is large */
514 SLOT
= &CH
[6].SLOT
[SLOT1
];
515 env_out
=OPL_CALC_SLOT(SLOT
);
516 if( env_out
< EG_ENT
-1 )
519 if(SLOT
->vib
) SLOT
->Cnt
+= (SLOT
->Incr
*vib
/VIB_RATE
);
520 else SLOT
->Cnt
+= SLOT
->Incr
;
524 int feedback1
= (CH
[6].op1_out
[0]+CH
[6].op1_out
[1])>>CH
[6].FB
;
525 CH
[6].op1_out
[1] = CH
[6].op1_out
[0];
526 feedback2
= CH
[6].op1_out
[0] = OP_OUT(SLOT
,env_out
,feedback1
);
530 feedback2
= OP_OUT(SLOT
,env_out
,0);
535 CH
[6].op1_out
[1] = CH
[6].op1_out
[0];
536 CH
[6].op1_out
[0] = 0;
539 SLOT
= &CH
[6].SLOT
[SLOT2
];
540 env_out
=OPL_CALC_SLOT(SLOT
);
541 if( env_out
< EG_ENT
-1 )
544 if(SLOT
->vib
) SLOT
->Cnt
+= (SLOT
->Incr
*vib
/VIB_RATE
);
545 else SLOT
->Cnt
+= SLOT
->Incr
;
547 outd
[0] += OP_OUT(SLOT
,env_out
, feedback2
)*2;
550 // SD (17) = mul14[fnum7] + white noise
551 // TAM (15) = mul15[fnum8]
552 // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
553 // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
554 env_sd
=OPL_CALC_SLOT(SLOT7_2
) + whitenoise
;
555 env_tam
=OPL_CALC_SLOT(SLOT8_1
);
556 env_top
=OPL_CALC_SLOT(SLOT8_2
);
557 env_hh
=OPL_CALC_SLOT(SLOT7_1
) + whitenoise
;
560 if(SLOT7_1
->vib
) SLOT7_1
->Cnt
+= (2*SLOT7_1
->Incr
*vib
/VIB_RATE
);
561 else SLOT7_1
->Cnt
+= 2*SLOT7_1
->Incr
;
562 if(SLOT7_2
->vib
) SLOT7_2
->Cnt
+= ((CH
[7].fc
*8)*vib
/VIB_RATE
);
563 else SLOT7_2
->Cnt
+= (CH
[7].fc
*8);
564 if(SLOT8_1
->vib
) SLOT8_1
->Cnt
+= (SLOT8_1
->Incr
*vib
/VIB_RATE
);
565 else SLOT8_1
->Cnt
+= SLOT8_1
->Incr
;
566 if(SLOT8_2
->vib
) SLOT8_2
->Cnt
+= ((CH
[8].fc
*48)*vib
/VIB_RATE
);
567 else SLOT8_2
->Cnt
+= (CH
[8].fc
*48);
569 tone8
= OP_OUT(SLOT8_2
,whitenoise
,0 );
572 if( env_sd
< EG_ENT
-1 )
573 outd
[0] += OP_OUT(SLOT7_1
,env_sd
, 0)*8;
575 if( env_tam
< EG_ENT
-1 )
576 outd
[0] += OP_OUT(SLOT8_1
,env_tam
, 0)*2;
578 if( env_top
< EG_ENT
-1 )
579 outd
[0] += OP_OUT(SLOT7_2
,env_top
,tone8
)*2;
581 if( env_hh
< EG_ENT
-1 )
582 outd
[0] += OP_OUT(SLOT7_2
,env_hh
,tone8
)*2;
585 /* ----------- initialize time tabls ----------- */
586 static void init_timetables( FM_OPL
*OPL
, int ARRATE
, int DRRATE
)
591 /* make attack rate & decay rate tables */
592 for (i
= 0;i
< 4;i
++) OPL
->AR_TABLE
[i
] = OPL
->DR_TABLE
[i
] = 0;
593 for (i
= 4;i
<= 60;i
++){
594 rate
= OPL
->freqbase
; /* frequency rate */
595 if( i
< 60 ) rate
*= 1.0+(i
&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
596 rate
*= 1<<((i
>>2)-1); /* b2-5 : shift bit */
597 rate
*= (double)(EG_ENT
<<ENV_BITS
);
598 OPL
->AR_TABLE
[i
] = rate
/ ARRATE
;
599 OPL
->DR_TABLE
[i
] = rate
/ DRRATE
;
601 for (i
= 60; i
< ARRAY_SIZE(OPL
->AR_TABLE
); i
++)
603 OPL
->AR_TABLE
[i
] = EG_AED
-1;
604 OPL
->DR_TABLE
[i
] = OPL
->DR_TABLE
[60];
607 for (i
= 0;i
< 64 ;i
++){ /* make for overflow area */
608 LOG(LOG_WAR
, ("rate %2d , ar %f ms , dr %f ms\n", i
,
609 ((double)(EG_ENT
<<ENV_BITS
) / OPL
->AR_TABLE
[i
]) * (1000.0 / OPL
->rate
),
610 ((double)(EG_ENT
<<ENV_BITS
) / OPL
->DR_TABLE
[i
]) * (1000.0 / OPL
->rate
) ));
615 /* ---------- generic table initialize ---------- */
616 static int OPLOpenTable( void )
623 /* allocate dynamic tables */
624 if( (TL_TABLE
= malloc(TL_MAX
*2*sizeof(INT32
))) == NULL
)
626 if( (SIN_TABLE
= malloc(SIN_ENT
*4 *sizeof(INT32
*))) == NULL
)
631 if( (AMS_TABLE
= malloc(AMS_ENT
*2 *sizeof(INT32
))) == NULL
)
637 if( (VIB_TABLE
= malloc(VIB_ENT
*2 *sizeof(INT32
))) == NULL
)
644 /* make total level table */
645 for (t
= 0;t
< EG_ENT
-1 ;t
++){
646 rate
= ((1<<TL_BITS
)-1)/pow(10,EG_STEP
*t
/20); /* dB -> voltage */
647 TL_TABLE
[ t
] = (int)rate
;
648 TL_TABLE
[TL_MAX
+t
] = -TL_TABLE
[t
];
649 /* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
651 /* fill volume off area */
652 for ( t
= EG_ENT
-1; t
< TL_MAX
;t
++){
653 TL_TABLE
[t
] = TL_TABLE
[TL_MAX
+t
] = 0;
656 /* make sinwave table (total level offet) */
657 /* degree 0 = degree 180 = off */
658 SIN_TABLE
[0] = SIN_TABLE
[SIN_ENT
/2] = &TL_TABLE
[EG_ENT
-1];
659 for (s
= 1;s
<= SIN_ENT
/4;s
++){
660 pom
= sin(2*PI
*s
/SIN_ENT
); /* sin */
661 pom
= 20*log10(1/pom
); /* decibel */
662 j
= pom
/ EG_STEP
; /* TL_TABLE steps */
664 /* degree 0 - 90 , degree 180 - 90 : plus section */
665 SIN_TABLE
[ s
] = SIN_TABLE
[SIN_ENT
/2-s
] = &TL_TABLE
[j
];
666 /* degree 180 - 270 , degree 360 - 270 : minus section */
667 SIN_TABLE
[SIN_ENT
/2+s
] = SIN_TABLE
[SIN_ENT
-s
] = &TL_TABLE
[TL_MAX
+j
];
668 /* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
670 for (s
= 0;s
< SIN_ENT
;s
++)
672 SIN_TABLE
[SIN_ENT
*1+s
] = s
<(SIN_ENT
/2) ? SIN_TABLE
[s
] : &TL_TABLE
[EG_ENT
];
673 SIN_TABLE
[SIN_ENT
*2+s
] = SIN_TABLE
[s
% (SIN_ENT
/2)];
674 SIN_TABLE
[SIN_ENT
*3+s
] = (s
/(SIN_ENT
/4))&1 ? &TL_TABLE
[EG_ENT
] : SIN_TABLE
[SIN_ENT
*2+s
];
677 /* envelope counter -> envelope output table */
678 for (i
=0; i
<EG_ENT
; i
++)
681 pom
= pow( ((double)(EG_ENT
-1-i
)/EG_ENT
) , 8 ) * EG_ENT
;
682 /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
683 ENV_CURVE
[i
] = (int)pom
;
684 /* DECAY ,RELEASE curve */
685 ENV_CURVE
[(EG_DST
>>ENV_BITS
)+i
]= i
;
688 ENV_CURVE
[EG_OFF
>>ENV_BITS
]= EG_ENT
-1;
689 /* make LFO ams table */
690 for (i
=0; i
<AMS_ENT
; i
++)
692 pom
= (1.0+sin(2*PI
*i
/AMS_ENT
))/2; /* sin */
693 AMS_TABLE
[i
] = (1.0/EG_STEP
)*pom
; /* 1dB */
694 AMS_TABLE
[AMS_ENT
+i
] = (4.8/EG_STEP
)*pom
; /* 4.8dB */
696 /* make LFO vibrate table */
697 for (i
=0; i
<VIB_ENT
; i
++)
699 /* 100cent = 1seminote = 6% ?? */
700 pom
= (double)VIB_RATE
*0.06*sin(2*PI
*i
/VIB_ENT
); /* +-100sect step */
701 VIB_TABLE
[i
] = VIB_RATE
+ (pom
*0.07); /* +- 7cent */
702 VIB_TABLE
[VIB_ENT
+i
] = VIB_RATE
+ (pom
*0.14); /* +-14cent */
703 /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
709 static void OPLCloseTable( void )
717 /* CSM Key Control */
718 static inline void CSMKeyControll(OPL_CH
*CH
)
720 OPL_SLOT
*slot1
= &CH
->SLOT
[SLOT1
];
721 OPL_SLOT
*slot2
= &CH
->SLOT
[SLOT2
];
725 /* total level latch */
726 slot1
->TLL
= slot1
->TL
+ (CH
->ksl_base
>>slot1
->ksl
);
727 slot1
->TLL
= slot1
->TL
+ (CH
->ksl_base
>>slot1
->ksl
);
729 CH
->op1_out
[0] = CH
->op1_out
[1] = 0;
734 /* ---------- opl initialize ---------- */
735 static void OPL_initialize(FM_OPL
*OPL
)
740 OPL
->freqbase
= (OPL
->rate
) ? ((double)OPL
->clock
/ OPL
->rate
) / 72 : 0;
741 /* Timer base time */
742 OPL
->TimerBase
= 1.0/((double)OPL
->clock
/ 72.0 );
743 /* make time tables */
744 init_timetables( OPL
, OPL_ARRATE
, OPL_DRRATE
);
745 /* make fnumber -> increment counter table */
746 for( fn
=0 ; fn
< 1024 ; fn
++ )
748 OPL
->FN_TABLE
[fn
] = OPL
->freqbase
* fn
* FREQ_RATE
* (1<<7) / 2;
751 OPL
->amsIncr
= OPL
->rate
? (double)AMS_ENT
*(1<<AMS_SHIFT
) / OPL
->rate
* 3.7 * ((double)OPL
->clock
/3600000) : 0;
752 OPL
->vibIncr
= OPL
->rate
? (double)VIB_ENT
*(1<<VIB_SHIFT
) / OPL
->rate
* 6.4 * ((double)OPL
->clock
/3600000) : 0;
755 /* ---------- write a OPL registers ---------- */
756 static void OPLWriteReg(FM_OPL
*OPL
, int r
, int v
)
764 case 0x00: /* 00-1f:control */
768 /* wave selector enable */
769 if(OPL
->type
&OPL_TYPE_WAVESEL
)
771 OPL
->wavesel
= v
&0x20;
774 /* preset compatible mode */
776 for(c
=0;c
<OPL
->max_ch
;c
++)
778 OPL
->P_CH
[c
].SLOT
[SLOT1
].wavetable
= &SIN_TABLE
[0];
779 OPL
->P_CH
[c
].SLOT
[SLOT2
].wavetable
= &SIN_TABLE
[0];
784 case 0x02: /* Timer 1 */
785 OPL
->T
[0] = (256-v
)*4;
787 case 0x03: /* Timer 2 */
788 OPL
->T
[1] = (256-v
)*16;
790 case 0x04: /* IRQ clear / mask and Timer enable */
792 { /* IRQ flag clear */
793 OPL_STATUS_RESET(OPL
,0x7f);
796 { /* set IRQ mask ,timer enable*/
798 UINT8 st2
= (v
>>1)&1;
799 /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
800 OPL_STATUS_RESET(OPL
,v
&0x78);
801 OPL_STATUSMASK_SET(OPL
,((~v
)&0x78)|0x01);
803 if(OPL
->st
[1] != st2
)
805 double interval
= st2
? (double)OPL
->T
[1]*OPL
->TimerBase
: 0.0;
807 if (OPL
->TimerHandler
) (OPL
->TimerHandler
)(OPL
->TimerParam
+1,interval
);
810 if(OPL
->st
[0] != st1
)
812 double interval
= st1
? (double)OPL
->T
[0]*OPL
->TimerBase
: 0.0;
814 if (OPL
->TimerHandler
) (OPL
->TimerHandler
)(OPL
->TimerParam
+0,interval
);
819 case 0x06: /* Key Board OUT */
820 if(OPL
->type
&OPL_TYPE_KEYBOARD
)
822 if(OPL
->keyboardhandler_w
)
823 OPL
->keyboardhandler_w(OPL
->keyboard_param
,v
);
825 LOG(LOG_WAR
,("OPL:write unmapped KEYBOARD port\n"));
828 case 0x07: /* DELTA-T control : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
829 if(OPL
->type
&OPL_TYPE_ADPCM
)
830 YM_DELTAT_ADPCM_Write(OPL
->deltat
,r
-0x07,v
);
832 case 0x08: /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
834 v
&=0x1f; /* for DELTA-T unit */
835 case 0x09: /* START ADD */
837 case 0x0b: /* STOP ADD */
839 case 0x0d: /* PRESCALE */
841 case 0x0f: /* ADPCM data */
842 case 0x10: /* DELTA-N */
843 case 0x11: /* DELTA-N */
844 case 0x12: /* EG-CTRL */
845 if(OPL
->type
&OPL_TYPE_ADPCM
)
846 YM_DELTAT_ADPCM_Write(OPL
->deltat
,r
-0x07,v
);
849 case 0x15: /* DAC data */
851 case 0x17: /* SHIFT */
853 case 0x18: /* I/O CTRL (Direction) */
854 if(OPL
->type
&OPL_TYPE_IO
)
855 OPL
->portDirection
= v
&0x0f;
857 case 0x19: /* I/O DATA */
858 if(OPL
->type
&OPL_TYPE_IO
)
861 if(OPL
->porthandler_w
)
862 OPL
->porthandler_w(OPL
->port_param
,v
&OPL
->portDirection
);
865 case 0x1a: /* PCM data */
871 case 0x20: /* am,vib,ksr,eg type,mul */
872 slot
= slot_array
[r
&0x1f];
873 if(slot
== -1) return;
877 slot
= slot_array
[r
&0x1f];
878 if(slot
== -1) return;
879 set_ksl_tl(OPL
,slot
,v
);
882 slot
= slot_array
[r
&0x1f];
883 if(slot
== -1) return;
884 set_ar_dr(OPL
,slot
,v
);
887 slot
= slot_array
[r
&0x1f];
888 if(slot
== -1) return;
889 set_sl_rr(OPL
,slot
,v
);
895 /* amsep,vibdep,r,bd,sd,tom,tc,hh */
897 UINT8 rkey
= OPL
->rhythm
^v
;
898 OPL
->ams_table
= &AMS_TABLE
[v
&0x80 ? AMS_ENT
: 0];
899 OPL
->vib_table
= &VIB_TABLE
[v
&0x40 ? VIB_ENT
: 0];
900 OPL
->rhythm
= v
&0x3f;
904 usrintf_showmessage("OPL Rhythm mode select");
911 OPL
->P_CH
[6].op1_out
[0] = OPL
->P_CH
[6].op1_out
[1] = 0;
912 OPL_KEYON(&OPL
->P_CH
[6].SLOT
[SLOT1
]);
913 OPL_KEYON(&OPL
->P_CH
[6].SLOT
[SLOT2
]);
917 OPL_KEYOFF(&OPL
->P_CH
[6].SLOT
[SLOT1
]);
918 OPL_KEYOFF(&OPL
->P_CH
[6].SLOT
[SLOT2
]);
924 if(v
&0x08) OPL_KEYON(&OPL
->P_CH
[7].SLOT
[SLOT2
]);
925 else OPL_KEYOFF(&OPL
->P_CH
[7].SLOT
[SLOT2
]);
926 }/* TAM key on/off */
929 if(v
&0x04) OPL_KEYON(&OPL
->P_CH
[8].SLOT
[SLOT1
]);
930 else OPL_KEYOFF(&OPL
->P_CH
[8].SLOT
[SLOT1
]);
932 /* TOP-CY key on/off */
935 if(v
&0x02) OPL_KEYON(&OPL
->P_CH
[8].SLOT
[SLOT2
]);
936 else OPL_KEYOFF(&OPL
->P_CH
[8].SLOT
[SLOT2
]);
941 if(v
&0x01) OPL_KEYON(&OPL
->P_CH
[7].SLOT
[SLOT1
]);
942 else OPL_KEYOFF(&OPL
->P_CH
[7].SLOT
[SLOT1
]);
948 /* keyon,block,fnum */
949 if( (r
&0x0f) > 8) return;
950 CH
= &OPL
->P_CH
[r
&0x0f];
953 block_fnum
= (CH
->block_fnum
&0x1f00) | v
;
957 int keyon
= (v
>>5)&1;
958 block_fnum
= ((v
&0x1f)<<8) | (CH
->block_fnum
&0xff);
959 if(CH
->keyon
!= keyon
)
961 if( (CH
->keyon
=keyon
) )
963 CH
->op1_out
[0] = CH
->op1_out
[1] = 0;
964 OPL_KEYON(&CH
->SLOT
[SLOT1
]);
965 OPL_KEYON(&CH
->SLOT
[SLOT2
]);
969 OPL_KEYOFF(&CH
->SLOT
[SLOT1
]);
970 OPL_KEYOFF(&CH
->SLOT
[SLOT2
]);
975 if(CH
->block_fnum
!= block_fnum
)
977 int blockRv
= 7-(block_fnum
>>10);
978 int fnum
= block_fnum
&0x3ff;
979 CH
->block_fnum
= block_fnum
;
981 CH
->ksl_base
= KSL_TABLE
[block_fnum
>>6];
982 CH
->fc
= OPL
->FN_TABLE
[fnum
]>>blockRv
;
983 CH
->kcode
= CH
->block_fnum
>>9;
984 if( (OPL
->mode
&0x40) && CH
->block_fnum
&0x100) CH
->kcode
|=1;
985 CALC_FCSLOT(CH
,&CH
->SLOT
[SLOT1
]);
986 CALC_FCSLOT(CH
,&CH
->SLOT
[SLOT2
]);
991 if( (r
&0x0f) > 8) return;
992 CH
= &OPL
->P_CH
[r
&0x0f];
994 int feedback
= (v
>>1)&7;
995 CH
->FB
= feedback
? (8+1) - feedback
: 0;
1000 case 0xe0: /* wave type */
1001 slot
= slot_array
[r
&0x1f];
1002 if(slot
== -1) return;
1003 CH
= &OPL
->P_CH
[slot
/2];
1006 /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
1007 CH
->SLOT
[slot
&1].wavetable
= &SIN_TABLE
[(v
&0x03)*SIN_ENT
];
1013 /* lock/unlock for common table */
1014 static int OPL_LockTable(void)
1017 if(num_lock
>1) return 0;
1020 /* allocate total level table (128kb space) */
1021 if( !OPLOpenTable() )
1029 static void OPL_UnLockTable(void)
1031 if(num_lock
) num_lock
--;
1032 if(num_lock
) return;
1038 #if (BUILD_YM3812 || BUILD_YM3526)
1039 /*******************************************************************************/
1040 /* YM3812 local section */
1041 /*******************************************************************************/
1043 /* ---------- update one of chip ----------- */
1044 void YM3812UpdateOne(FM_OPL
*OPL
, INT16
*buffer
, int length
)
1048 OPLSAMPLE
*buf
= buffer
;
1049 UINT32 amsCnt
= OPL
->amsCnt
;
1050 UINT32 vibCnt
= OPL
->vibCnt
;
1051 UINT8 rhythm
= OPL
->rhythm
&0x20;
1054 if( (void *)OPL
!= cur_chip
){
1055 cur_chip
= (void *)OPL
;
1056 /* channel pointers */
1060 SLOT7_1
= &S_CH
[7].SLOT
[SLOT1
];
1061 SLOT7_2
= &S_CH
[7].SLOT
[SLOT2
];
1062 SLOT8_1
= &S_CH
[8].SLOT
[SLOT1
];
1063 SLOT8_2
= &S_CH
[8].SLOT
[SLOT2
];
1065 amsIncr
= OPL
->amsIncr
;
1066 vibIncr
= OPL
->vibIncr
;
1067 ams_table
= OPL
->ams_table
;
1068 vib_table
= OPL
->vib_table
;
1070 R_CH
= rhythm
? &S_CH
[6] : E_CH
;
1071 for( i
=0; i
< length
; i
++ )
1073 /* channel A channel B channel C */
1075 ams
= ams_table
[(amsCnt
+=amsIncr
)>>AMS_SHIFT
];
1076 vib
= vib_table
[(vibCnt
+=vibIncr
)>>VIB_SHIFT
];
1079 for(CH
=S_CH
; CH
< R_CH
; CH
++)
1085 data
= Limit( outd
[0] , OPL_MAXOUT
, OPL_MINOUT
);
1086 /* store to sound buffer */
1087 buf
[i
] = data
>> OPL_OUTSB
;
1090 OPL
->amsCnt
= amsCnt
;
1091 OPL
->vibCnt
= vibCnt
;
1092 #ifdef OPL_OUTPUT_LOG
1095 for(opl_dbg_chip
=0;opl_dbg_chip
<opl_dbg_maxchip
;opl_dbg_chip
++)
1096 if( opl_dbg_opl
[opl_dbg_chip
] == OPL
) break;
1097 fprintf(opl_dbg_fp
,"%c%c%c",0x20+opl_dbg_chip
,length
&0xff,length
/256);
1101 #endif /* (BUILD_YM3812 || BUILD_YM3526) */
1105 void Y8950UpdateOne(FM_OPL
*OPL
, INT16
*buffer
, int length
)
1109 OPLSAMPLE
*buf
= buffer
;
1110 UINT32 amsCnt
= OPL
->amsCnt
;
1111 UINT32 vibCnt
= OPL
->vibCnt
;
1112 UINT8 rhythm
= OPL
->rhythm
&0x20;
1114 YM_DELTAT
*DELTAT
= OPL
->deltat
;
1116 /* setup DELTA-T unit */
1117 YM_DELTAT_DECODE_PRESET(DELTAT
);
1119 if( (void *)OPL
!= cur_chip
){
1120 cur_chip
= (void *)OPL
;
1121 /* channel pointers */
1125 SLOT7_1
= &S_CH
[7].SLOT
[SLOT1
];
1126 SLOT7_2
= &S_CH
[7].SLOT
[SLOT2
];
1127 SLOT8_1
= &S_CH
[8].SLOT
[SLOT1
];
1128 SLOT8_2
= &S_CH
[8].SLOT
[SLOT2
];
1130 amsIncr
= OPL
->amsIncr
;
1131 vibIncr
= OPL
->vibIncr
;
1132 ams_table
= OPL
->ams_table
;
1133 vib_table
= OPL
->vib_table
;
1135 R_CH
= rhythm
? &S_CH
[6] : E_CH
;
1136 for( i
=0; i
< length
; i
++ )
1138 /* channel A channel B channel C */
1140 ams
= ams_table
[(amsCnt
+=amsIncr
)>>AMS_SHIFT
];
1141 vib
= vib_table
[(vibCnt
+=vibIncr
)>>VIB_SHIFT
];
1144 if( DELTAT
->portstate
)
1145 YM_DELTAT_ADPCM_CALC(DELTAT
);
1147 for(CH
=S_CH
; CH
< R_CH
; CH
++)
1153 data
= Limit( outd
[0] , OPL_MAXOUT
, OPL_MINOUT
);
1154 /* store to sound buffer */
1155 buf
[i
] = data
>> OPL_OUTSB
;
1157 OPL
->amsCnt
= amsCnt
;
1158 OPL
->vibCnt
= vibCnt
;
1159 /* deltaT START flag */
1160 if( !DELTAT
->portstate
)
1161 OPL
->status
&= 0xfe;
1165 /* ---------- reset one of chip ---------- */
1166 void OPLResetChip(FM_OPL
*OPL
)
1172 OPL
->mode
= 0; /* normal mode */
1173 OPL_STATUS_RESET(OPL
,0x7f);
1174 /* reset with register write */
1175 OPLWriteReg(OPL
,0x01,0); /* wabesel disable */
1176 OPLWriteReg(OPL
,0x02,0); /* Timer1 */
1177 OPLWriteReg(OPL
,0x03,0); /* Timer2 */
1178 OPLWriteReg(OPL
,0x04,0); /* IRQ mask clear */
1179 for(i
= 0xff ; i
>= 0x20 ; i
-- ) OPLWriteReg(OPL
,i
,0);
1180 /* reset operator parameter */
1181 for( c
= 0 ; c
< OPL
->max_ch
; c
++ )
1183 OPL_CH
*CH
= &OPL
->P_CH
[c
];
1184 /* OPL->P_CH[c].PAN = OPN_CENTER; */
1185 for(s
= 0 ; s
< 2 ; s
++ )
1188 CH
->SLOT
[s
].wavetable
= &SIN_TABLE
[0];
1189 /* CH->SLOT[s].evm = ENV_MOD_RR; */
1190 CH
->SLOT
[s
].evc
= EG_OFF
;
1191 CH
->SLOT
[s
].eve
= EG_OFF
+1;
1192 CH
->SLOT
[s
].evs
= 0;
1196 if(OPL
->type
&OPL_TYPE_ADPCM
)
1198 YM_DELTAT
*DELTAT
= OPL
->deltat
;
1200 DELTAT
->freqbase
= OPL
->freqbase
;
1201 DELTAT
->output_pointer
= outd
;
1202 DELTAT
->portshift
= 5;
1203 DELTAT
->output_range
= DELTAT_MIXING_LEVEL
<<TL_BITS
;
1204 YM_DELTAT_ADPCM_Reset(DELTAT
,0);
1209 /* ---------- Create one of vietual YM3812 ---------- */
1210 /* 'rate' is sampling rate and 'bufsiz' is the size of the */
1211 FM_OPL
*OPLCreate(int type
, int clock
, int rate
)
1216 int max_ch
= 9; /* normaly 9 channels */
1218 if( OPL_LockTable() ==-1) return NULL
;
1219 /* allocate OPL state space */
1220 state_size
= sizeof(FM_OPL
);
1221 state_size
+= sizeof(OPL_CH
)*max_ch
;
1223 if(type
&OPL_TYPE_ADPCM
) state_size
+= sizeof(YM_DELTAT
);
1225 /* allocate memory block */
1226 ptr
= malloc(state_size
);
1227 if(ptr
==NULL
) return NULL
;
1229 memset(ptr
,0,state_size
);
1230 OPL
= (FM_OPL
*)ptr
; ptr
+=sizeof(FM_OPL
);
1231 OPL
->P_CH
= (OPL_CH
*)ptr
; ptr
+=sizeof(OPL_CH
)*max_ch
;
1233 if(type
&OPL_TYPE_ADPCM
) OPL
->deltat
= (YM_DELTAT
*)ptr
; ptr
+=sizeof(YM_DELTAT
);
1235 /* set channel state pointer */
1239 OPL
->max_ch
= max_ch
;
1240 /* init grobal tables */
1241 OPL_initialize(OPL
);
1244 #ifdef OPL_OUTPUT_LOG
1247 opl_dbg_fp
= fopen("opllog.opl","wb");
1248 opl_dbg_maxchip
= 0;
1252 opl_dbg_opl
[opl_dbg_maxchip
] = OPL
;
1253 fprintf(opl_dbg_fp
,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip
,
1257 (clock
/0x10000)&0xff,
1258 (clock
/0x1000000)&0xff);
1265 /* ---------- Destroy one of vietual YM3812 ---------- */
1266 void OPLDestroy(FM_OPL
*OPL
)
1268 #ifdef OPL_OUTPUT_LOG
1279 /* ---------- Option handlers ---------- */
1281 void OPLSetTimerHandler(FM_OPL
*OPL
,OPL_TIMERHANDLER TimerHandler
,int channelOffset
)
1283 OPL
->TimerHandler
= TimerHandler
;
1284 OPL
->TimerParam
= channelOffset
;
1286 void OPLSetIRQHandler(FM_OPL
*OPL
,OPL_IRQHANDLER IRQHandler
,int param
)
1288 OPL
->IRQHandler
= IRQHandler
;
1289 OPL
->IRQParam
= param
;
1291 void OPLSetUpdateHandler(FM_OPL
*OPL
,OPL_UPDATEHANDLER UpdateHandler
,int param
)
1293 OPL
->UpdateHandler
= UpdateHandler
;
1294 OPL
->UpdateParam
= param
;
1297 void OPLSetPortHandler(FM_OPL
*OPL
,OPL_PORTHANDLER_W PortHandler_w
,OPL_PORTHANDLER_R PortHandler_r
,int param
)
1299 OPL
->porthandler_w
= PortHandler_w
;
1300 OPL
->porthandler_r
= PortHandler_r
;
1301 OPL
->port_param
= param
;
1304 void OPLSetKeyboardHandler(FM_OPL
*OPL
,OPL_PORTHANDLER_W KeyboardHandler_w
,OPL_PORTHANDLER_R KeyboardHandler_r
,int param
)
1306 OPL
->keyboardhandler_w
= KeyboardHandler_w
;
1307 OPL
->keyboardhandler_r
= KeyboardHandler_r
;
1308 OPL
->keyboard_param
= param
;
1311 /* ---------- YM3812 I/O interface ---------- */
1312 int OPLWrite(FM_OPL
*OPL
,int a
,int v
)
1315 { /* address port */
1316 OPL
->address
= v
& 0xff;
1320 if(OPL
->UpdateHandler
) OPL
->UpdateHandler(OPL
->UpdateParam
,0);
1321 #ifdef OPL_OUTPUT_LOG
1324 for(opl_dbg_chip
=0;opl_dbg_chip
<opl_dbg_maxchip
;opl_dbg_chip
++)
1325 if( opl_dbg_opl
[opl_dbg_chip
] == OPL
) break;
1326 fprintf(opl_dbg_fp
,"%c%c%c",0x10+opl_dbg_chip
,OPL
->address
,v
);
1329 OPLWriteReg(OPL
,OPL
->address
,v
);
1331 return OPL
->status
>>7;
1334 unsigned char OPLRead(FM_OPL
*OPL
,int a
)
1338 return OPL
->status
& (OPL
->statusmask
|0x80);
1341 switch(OPL
->address
)
1343 case 0x05: /* KeyBoard IN */
1344 if(OPL
->type
&OPL_TYPE_KEYBOARD
)
1346 if(OPL
->keyboardhandler_r
)
1347 return OPL
->keyboardhandler_r(OPL
->keyboard_param
);
1349 LOG(LOG_WAR
,("OPL:read unmapped KEYBOARD port\n"));
1354 case 0x0f: /* ADPCM-DATA */
1357 case 0x19: /* I/O DATA */
1358 if(OPL
->type
&OPL_TYPE_IO
)
1360 if(OPL
->porthandler_r
)
1361 return OPL
->porthandler_r(OPL
->port_param
);
1363 LOG(LOG_WAR
,("OPL:read unmapped I/O port\n"));
1367 case 0x1a: /* PCM-DATA */
1373 int OPLTimerOver(FM_OPL
*OPL
,int c
)
1377 OPL_STATUS_SET(OPL
,0x20);
1381 OPL_STATUS_SET(OPL
,0x40);
1382 /* CSM mode key,TL control */
1383 if( OPL
->mode
& 0x80 )
1384 { /* CSM mode total level latch and auto key on */
1386 if(OPL
->UpdateHandler
) OPL
->UpdateHandler(OPL
->UpdateParam
,0);
1388 CSMKeyControll( &OPL
->P_CH
[ch
] );
1392 if (OPL
->TimerHandler
) (OPL
->TimerHandler
)(OPL
->TimerParam
+c
,(double)OPL
->T
[c
]*OPL
->TimerBase
);
1393 return OPL
->status
>>7;