exec: allocate PROT_NONE pages on top of RAM
[qemu/ar7.git] / target-arm / helper.c
blob83679970b43249da85e9c4a16a278e4162423f3b
1 #include "cpu.h"
2 #include "internals.h"
3 #include "exec/gdbstub.h"
4 #include "exec/helper-proto.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include "exec/cpu_ldst.h"
11 #include "arm_ldst.h"
12 #include <zlib.h> /* For crc32 */
13 #include "exec/semihost.h"
15 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
17 #ifndef CONFIG_USER_ONLY
18 static inline bool get_phys_addr(CPUARMState *env, target_ulong address,
19 int access_type, ARMMMUIdx mmu_idx,
20 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
21 target_ulong *page_size, uint32_t *fsr);
23 /* Definitions for the PMCCNTR and PMCR registers */
24 #define PMCRD 0x8
25 #define PMCRC 0x4
26 #define PMCRE 0x1
27 #endif
29 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
31 int nregs;
33 /* VFP data registers are always little-endian. */
34 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
35 if (reg < nregs) {
36 stfq_le_p(buf, env->vfp.regs[reg]);
37 return 8;
39 if (arm_feature(env, ARM_FEATURE_NEON)) {
40 /* Aliases for Q regs. */
41 nregs += 16;
42 if (reg < nregs) {
43 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
44 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
45 return 16;
48 switch (reg - nregs) {
49 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
50 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
51 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
53 return 0;
56 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
58 int nregs;
60 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
61 if (reg < nregs) {
62 env->vfp.regs[reg] = ldfq_le_p(buf);
63 return 8;
65 if (arm_feature(env, ARM_FEATURE_NEON)) {
66 nregs += 16;
67 if (reg < nregs) {
68 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
69 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
70 return 16;
73 switch (reg - nregs) {
74 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
75 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
76 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
78 return 0;
81 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
83 switch (reg) {
84 case 0 ... 31:
85 /* 128 bit FP register */
86 stfq_le_p(buf, env->vfp.regs[reg * 2]);
87 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
88 return 16;
89 case 32:
90 /* FPSR */
91 stl_p(buf, vfp_get_fpsr(env));
92 return 4;
93 case 33:
94 /* FPCR */
95 stl_p(buf, vfp_get_fpcr(env));
96 return 4;
97 default:
98 return 0;
102 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
104 switch (reg) {
105 case 0 ... 31:
106 /* 128 bit FP register */
107 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
108 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
109 return 16;
110 case 32:
111 /* FPSR */
112 vfp_set_fpsr(env, ldl_p(buf));
113 return 4;
114 case 33:
115 /* FPCR */
116 vfp_set_fpcr(env, ldl_p(buf));
117 return 4;
118 default:
119 return 0;
123 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
125 assert(ri->fieldoffset);
126 if (cpreg_field_is_64bit(ri)) {
127 return CPREG_FIELD64(env, ri);
128 } else {
129 return CPREG_FIELD32(env, ri);
133 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
134 uint64_t value)
136 assert(ri->fieldoffset);
137 if (cpreg_field_is_64bit(ri)) {
138 CPREG_FIELD64(env, ri) = value;
139 } else {
140 CPREG_FIELD32(env, ri) = value;
144 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
146 return (char *)env + ri->fieldoffset;
149 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
151 /* Raw read of a coprocessor register (as needed for migration, etc). */
152 if (ri->type & ARM_CP_CONST) {
153 return ri->resetvalue;
154 } else if (ri->raw_readfn) {
155 return ri->raw_readfn(env, ri);
156 } else if (ri->readfn) {
157 return ri->readfn(env, ri);
158 } else {
159 return raw_read(env, ri);
163 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
164 uint64_t v)
166 /* Raw write of a coprocessor register (as needed for migration, etc).
167 * Note that constant registers are treated as write-ignored; the
168 * caller should check for success by whether a readback gives the
169 * value written.
171 if (ri->type & ARM_CP_CONST) {
172 return;
173 } else if (ri->raw_writefn) {
174 ri->raw_writefn(env, ri, v);
175 } else if (ri->writefn) {
176 ri->writefn(env, ri, v);
177 } else {
178 raw_write(env, ri, v);
182 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
184 /* Return true if the regdef would cause an assertion if you called
185 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
186 * program bug for it not to have the NO_RAW flag).
187 * NB that returning false here doesn't necessarily mean that calling
188 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
189 * read/write access functions which are safe for raw use" from "has
190 * read/write access functions which have side effects but has forgotten
191 * to provide raw access functions".
192 * The tests here line up with the conditions in read/write_raw_cp_reg()
193 * and assertions in raw_read()/raw_write().
195 if ((ri->type & ARM_CP_CONST) ||
196 ri->fieldoffset ||
197 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
198 return false;
200 return true;
203 bool write_cpustate_to_list(ARMCPU *cpu)
205 /* Write the coprocessor state from cpu->env to the (index,value) list. */
206 int i;
207 bool ok = true;
209 for (i = 0; i < cpu->cpreg_array_len; i++) {
210 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
211 const ARMCPRegInfo *ri;
213 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
214 if (!ri) {
215 ok = false;
216 continue;
218 if (ri->type & ARM_CP_NO_RAW) {
219 continue;
221 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
223 return ok;
226 bool write_list_to_cpustate(ARMCPU *cpu)
228 int i;
229 bool ok = true;
231 for (i = 0; i < cpu->cpreg_array_len; i++) {
232 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
233 uint64_t v = cpu->cpreg_values[i];
234 const ARMCPRegInfo *ri;
236 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
237 if (!ri) {
238 ok = false;
239 continue;
241 if (ri->type & ARM_CP_NO_RAW) {
242 continue;
244 /* Write value and confirm it reads back as written
245 * (to catch read-only registers and partially read-only
246 * registers where the incoming migration value doesn't match)
248 write_raw_cp_reg(&cpu->env, ri, v);
249 if (read_raw_cp_reg(&cpu->env, ri) != v) {
250 ok = false;
253 return ok;
256 static void add_cpreg_to_list(gpointer key, gpointer opaque)
258 ARMCPU *cpu = opaque;
259 uint64_t regidx;
260 const ARMCPRegInfo *ri;
262 regidx = *(uint32_t *)key;
263 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
265 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
266 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
267 /* The value array need not be initialized at this point */
268 cpu->cpreg_array_len++;
272 static void count_cpreg(gpointer key, gpointer opaque)
274 ARMCPU *cpu = opaque;
275 uint64_t regidx;
276 const ARMCPRegInfo *ri;
278 regidx = *(uint32_t *)key;
279 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
281 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
282 cpu->cpreg_array_len++;
286 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
288 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
289 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
291 if (aidx > bidx) {
292 return 1;
294 if (aidx < bidx) {
295 return -1;
297 return 0;
300 void init_cpreg_list(ARMCPU *cpu)
302 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
303 * Note that we require cpreg_tuples[] to be sorted by key ID.
305 GList *keys;
306 int arraylen;
308 keys = g_hash_table_get_keys(cpu->cp_regs);
309 keys = g_list_sort(keys, cpreg_key_compare);
311 cpu->cpreg_array_len = 0;
313 g_list_foreach(keys, count_cpreg, cpu);
315 arraylen = cpu->cpreg_array_len;
316 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
317 cpu->cpreg_values = g_new(uint64_t, arraylen);
318 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
319 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
320 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
321 cpu->cpreg_array_len = 0;
323 g_list_foreach(keys, add_cpreg_to_list, cpu);
325 assert(cpu->cpreg_array_len == arraylen);
327 g_list_free(keys);
331 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
332 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
334 * access_el3_aa32ns: Used to check AArch32 register views.
335 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
337 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
338 const ARMCPRegInfo *ri)
340 bool secure = arm_is_secure_below_el3(env);
342 assert(!arm_el_is_aa64(env, 3));
343 if (secure) {
344 return CP_ACCESS_TRAP_UNCATEGORIZED;
346 return CP_ACCESS_OK;
349 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
350 const ARMCPRegInfo *ri)
352 if (!arm_el_is_aa64(env, 3)) {
353 return access_el3_aa32ns(env, ri);
355 return CP_ACCESS_OK;
358 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
360 ARMCPU *cpu = arm_env_get_cpu(env);
362 raw_write(env, ri, value);
363 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
366 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
368 ARMCPU *cpu = arm_env_get_cpu(env);
370 if (raw_read(env, ri) != value) {
371 /* Unlike real hardware the qemu TLB uses virtual addresses,
372 * not modified virtual addresses, so this causes a TLB flush.
374 tlb_flush(CPU(cpu), 1);
375 raw_write(env, ri, value);
379 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
380 uint64_t value)
382 ARMCPU *cpu = arm_env_get_cpu(env);
384 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
385 && !extended_addresses_enabled(env)) {
386 /* For VMSA (when not using the LPAE long descriptor page table
387 * format) this register includes the ASID, so do a TLB flush.
388 * For PMSA it is purely a process ID and no action is needed.
390 tlb_flush(CPU(cpu), 1);
392 raw_write(env, ri, value);
395 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
396 uint64_t value)
398 /* Invalidate all (TLBIALL) */
399 ARMCPU *cpu = arm_env_get_cpu(env);
401 tlb_flush(CPU(cpu), 1);
404 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
405 uint64_t value)
407 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
408 ARMCPU *cpu = arm_env_get_cpu(env);
410 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
413 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
414 uint64_t value)
416 /* Invalidate by ASID (TLBIASID) */
417 ARMCPU *cpu = arm_env_get_cpu(env);
419 tlb_flush(CPU(cpu), value == 0);
422 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
423 uint64_t value)
425 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
426 ARMCPU *cpu = arm_env_get_cpu(env);
428 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
431 /* IS variants of TLB operations must affect all cores */
432 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
433 uint64_t value)
435 CPUState *other_cs;
437 CPU_FOREACH(other_cs) {
438 tlb_flush(other_cs, 1);
442 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
443 uint64_t value)
445 CPUState *other_cs;
447 CPU_FOREACH(other_cs) {
448 tlb_flush(other_cs, value == 0);
452 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
453 uint64_t value)
455 CPUState *other_cs;
457 CPU_FOREACH(other_cs) {
458 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
462 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
463 uint64_t value)
465 CPUState *other_cs;
467 CPU_FOREACH(other_cs) {
468 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
472 static const ARMCPRegInfo cp_reginfo[] = {
473 /* Define the secure and non-secure FCSE identifier CP registers
474 * separately because there is no secure bank in V8 (no _EL3). This allows
475 * the secure register to be properly reset and migrated. There is also no
476 * v8 EL1 version of the register so the non-secure instance stands alone.
478 { .name = "FCSEIDR(NS)",
479 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
480 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
481 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
482 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
483 { .name = "FCSEIDR(S)",
484 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
485 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
486 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
487 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
488 /* Define the secure and non-secure context identifier CP registers
489 * separately because there is no secure bank in V8 (no _EL3). This allows
490 * the secure register to be properly reset and migrated. In the
491 * non-secure case, the 32-bit register will have reset and migration
492 * disabled during registration as it is handled by the 64-bit instance.
494 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
495 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
496 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
497 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
498 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
499 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
500 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
501 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
502 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
503 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
504 REGINFO_SENTINEL
507 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
508 /* NB: Some of these registers exist in v8 but with more precise
509 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
511 /* MMU Domain access control / MPU write buffer control */
512 { .name = "DACR",
513 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
514 .access = PL1_RW, .resetvalue = 0,
515 .writefn = dacr_write, .raw_writefn = raw_write,
516 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
517 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
518 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
519 * For v6 and v5, these mappings are overly broad.
521 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
522 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
523 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
524 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
525 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
526 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
527 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
528 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
529 /* Cache maintenance ops; some of this space may be overridden later. */
530 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
531 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
532 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
533 REGINFO_SENTINEL
536 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
537 /* Not all pre-v6 cores implemented this WFI, so this is slightly
538 * over-broad.
540 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
541 .access = PL1_W, .type = ARM_CP_WFI },
542 REGINFO_SENTINEL
545 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
546 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
547 * is UNPREDICTABLE; we choose to NOP as most implementations do).
549 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
550 .access = PL1_W, .type = ARM_CP_WFI },
551 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
552 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
553 * OMAPCP will override this space.
555 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
556 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
557 .resetvalue = 0 },
558 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
559 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
560 .resetvalue = 0 },
561 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
562 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
563 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
564 .resetvalue = 0 },
565 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
566 * implementing it as RAZ means the "debug architecture version" bits
567 * will read as a reserved value, which should cause Linux to not try
568 * to use the debug hardware.
570 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
571 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
572 /* MMU TLB control. Note that the wildcarding means we cover not just
573 * the unified TLB ops but also the dside/iside/inner-shareable variants.
575 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
576 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
577 .type = ARM_CP_NO_RAW },
578 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
579 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
580 .type = ARM_CP_NO_RAW },
581 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
582 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
583 .type = ARM_CP_NO_RAW },
584 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
585 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
586 .type = ARM_CP_NO_RAW },
587 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
588 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
589 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
590 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
591 REGINFO_SENTINEL
594 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
595 uint64_t value)
597 uint32_t mask = 0;
599 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
600 if (!arm_feature(env, ARM_FEATURE_V8)) {
601 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
602 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
603 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
605 if (arm_feature(env, ARM_FEATURE_VFP)) {
606 /* VFP coprocessor: cp10 & cp11 [23:20] */
607 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
609 if (!arm_feature(env, ARM_FEATURE_NEON)) {
610 /* ASEDIS [31] bit is RAO/WI */
611 value |= (1 << 31);
614 /* VFPv3 and upwards with NEON implement 32 double precision
615 * registers (D0-D31).
617 if (!arm_feature(env, ARM_FEATURE_NEON) ||
618 !arm_feature(env, ARM_FEATURE_VFP3)) {
619 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
620 value |= (1 << 30);
623 value &= mask;
625 env->cp15.cpacr_el1 = value;
628 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri)
630 if (arm_feature(env, ARM_FEATURE_V8)) {
631 /* Check if CPACR accesses are to be trapped to EL2 */
632 if (arm_current_el(env) == 1 &&
633 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
634 return CP_ACCESS_TRAP_EL2;
635 /* Check if CPACR accesses are to be trapped to EL3 */
636 } else if (arm_current_el(env) < 3 &&
637 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
638 return CP_ACCESS_TRAP_EL3;
642 return CP_ACCESS_OK;
645 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri)
647 /* Check if CPTR accesses are set to trap to EL3 */
648 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
649 return CP_ACCESS_TRAP_EL3;
652 return CP_ACCESS_OK;
655 static const ARMCPRegInfo v6_cp_reginfo[] = {
656 /* prefetch by MVA in v6, NOP in v7 */
657 { .name = "MVA_prefetch",
658 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
659 .access = PL1_W, .type = ARM_CP_NOP },
660 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
661 .access = PL0_W, .type = ARM_CP_NOP },
662 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
663 .access = PL0_W, .type = ARM_CP_NOP },
664 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
665 .access = PL0_W, .type = ARM_CP_NOP },
666 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
667 .access = PL1_RW,
668 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
669 offsetof(CPUARMState, cp15.ifar_ns) },
670 .resetvalue = 0, },
671 /* Watchpoint Fault Address Register : should actually only be present
672 * for 1136, 1176, 11MPCore.
674 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
675 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
676 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
677 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
678 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
679 .resetvalue = 0, .writefn = cpacr_write },
680 REGINFO_SENTINEL
683 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
685 /* Performance monitor registers user accessibility is controlled
686 * by PMUSERENR.
688 if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) {
689 return CP_ACCESS_TRAP;
691 return CP_ACCESS_OK;
694 #ifndef CONFIG_USER_ONLY
696 static inline bool arm_ccnt_enabled(CPUARMState *env)
698 /* This does not support checking PMCCFILTR_EL0 register */
700 if (!(env->cp15.c9_pmcr & PMCRE)) {
701 return false;
704 return true;
707 void pmccntr_sync(CPUARMState *env)
709 uint64_t temp_ticks;
711 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
712 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
714 if (env->cp15.c9_pmcr & PMCRD) {
715 /* Increment once every 64 processor clock cycles */
716 temp_ticks /= 64;
719 if (arm_ccnt_enabled(env)) {
720 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
724 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
725 uint64_t value)
727 pmccntr_sync(env);
729 if (value & PMCRC) {
730 /* The counter has been reset */
731 env->cp15.c15_ccnt = 0;
734 /* only the DP, X, D and E bits are writable */
735 env->cp15.c9_pmcr &= ~0x39;
736 env->cp15.c9_pmcr |= (value & 0x39);
738 pmccntr_sync(env);
741 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
743 uint64_t total_ticks;
745 if (!arm_ccnt_enabled(env)) {
746 /* Counter is disabled, do not change value */
747 return env->cp15.c15_ccnt;
750 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
751 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
753 if (env->cp15.c9_pmcr & PMCRD) {
754 /* Increment once every 64 processor clock cycles */
755 total_ticks /= 64;
757 return total_ticks - env->cp15.c15_ccnt;
760 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
761 uint64_t value)
763 uint64_t total_ticks;
765 if (!arm_ccnt_enabled(env)) {
766 /* Counter is disabled, set the absolute value */
767 env->cp15.c15_ccnt = value;
768 return;
771 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
772 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
774 if (env->cp15.c9_pmcr & PMCRD) {
775 /* Increment once every 64 processor clock cycles */
776 total_ticks /= 64;
778 env->cp15.c15_ccnt = total_ticks - value;
781 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
782 uint64_t value)
784 uint64_t cur_val = pmccntr_read(env, NULL);
786 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
789 #else /* CONFIG_USER_ONLY */
791 void pmccntr_sync(CPUARMState *env)
795 #endif
797 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
798 uint64_t value)
800 pmccntr_sync(env);
801 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
802 pmccntr_sync(env);
805 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
806 uint64_t value)
808 value &= (1 << 31);
809 env->cp15.c9_pmcnten |= value;
812 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
813 uint64_t value)
815 value &= (1 << 31);
816 env->cp15.c9_pmcnten &= ~value;
819 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
820 uint64_t value)
822 env->cp15.c9_pmovsr &= ~value;
825 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
826 uint64_t value)
828 env->cp15.c9_pmxevtyper = value & 0xff;
831 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
832 uint64_t value)
834 env->cp15.c9_pmuserenr = value & 1;
837 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
838 uint64_t value)
840 /* We have no event counters so only the C bit can be changed */
841 value &= (1 << 31);
842 env->cp15.c9_pminten |= value;
845 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
846 uint64_t value)
848 value &= (1 << 31);
849 env->cp15.c9_pminten &= ~value;
852 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
853 uint64_t value)
855 /* Note that even though the AArch64 view of this register has bits
856 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
857 * architectural requirements for bits which are RES0 only in some
858 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
859 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
861 raw_write(env, ri, value & ~0x1FULL);
864 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
866 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
867 * For bits that vary between AArch32/64, code needs to check the
868 * current execution mode before directly using the feature bit.
870 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
872 if (!arm_feature(env, ARM_FEATURE_EL2)) {
873 valid_mask &= ~SCR_HCE;
875 /* On ARMv7, SMD (or SCD as it is called in v7) is only
876 * supported if EL2 exists. The bit is UNK/SBZP when
877 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
878 * when EL2 is unavailable.
879 * On ARMv8, this bit is always available.
881 if (arm_feature(env, ARM_FEATURE_V7) &&
882 !arm_feature(env, ARM_FEATURE_V8)) {
883 valid_mask &= ~SCR_SMD;
887 /* Clear all-context RES0 bits. */
888 value &= valid_mask;
889 raw_write(env, ri, value);
892 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
894 ARMCPU *cpu = arm_env_get_cpu(env);
896 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
897 * bank
899 uint32_t index = A32_BANKED_REG_GET(env, csselr,
900 ri->secure & ARM_CP_SECSTATE_S);
902 return cpu->ccsidr[index];
905 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
906 uint64_t value)
908 raw_write(env, ri, value & 0xf);
911 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
913 CPUState *cs = ENV_GET_CPU(env);
914 uint64_t ret = 0;
916 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
917 ret |= CPSR_I;
919 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
920 ret |= CPSR_F;
922 /* External aborts are not possible in QEMU so A bit is always clear */
923 return ret;
926 static const ARMCPRegInfo v7_cp_reginfo[] = {
927 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
928 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
929 .access = PL1_W, .type = ARM_CP_NOP },
930 /* Performance monitors are implementation defined in v7,
931 * but with an ARM recommended set of registers, which we
932 * follow (although we don't actually implement any counters)
934 * Performance registers fall into three categories:
935 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
936 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
937 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
938 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
939 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
941 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
942 .access = PL0_RW, .type = ARM_CP_ALIAS,
943 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
944 .writefn = pmcntenset_write,
945 .accessfn = pmreg_access,
946 .raw_writefn = raw_write },
947 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
948 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
949 .access = PL0_RW, .accessfn = pmreg_access,
950 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
951 .writefn = pmcntenset_write, .raw_writefn = raw_write },
952 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
953 .access = PL0_RW,
954 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
955 .accessfn = pmreg_access,
956 .writefn = pmcntenclr_write,
957 .type = ARM_CP_ALIAS },
958 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
959 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
960 .access = PL0_RW, .accessfn = pmreg_access,
961 .type = ARM_CP_ALIAS,
962 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
963 .writefn = pmcntenclr_write },
964 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
965 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
966 .accessfn = pmreg_access,
967 .writefn = pmovsr_write,
968 .raw_writefn = raw_write },
969 /* Unimplemented so WI. */
970 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
971 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
972 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
973 * We choose to RAZ/WI.
975 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
976 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
977 .accessfn = pmreg_access },
978 #ifndef CONFIG_USER_ONLY
979 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
980 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
981 .readfn = pmccntr_read, .writefn = pmccntr_write32,
982 .accessfn = pmreg_access },
983 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
984 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
985 .access = PL0_RW, .accessfn = pmreg_access,
986 .type = ARM_CP_IO,
987 .readfn = pmccntr_read, .writefn = pmccntr_write, },
988 #endif
989 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
990 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
991 .writefn = pmccfiltr_write,
992 .access = PL0_RW, .accessfn = pmreg_access,
993 .type = ARM_CP_IO,
994 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
995 .resetvalue = 0, },
996 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
997 .access = PL0_RW,
998 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
999 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
1000 .raw_writefn = raw_write },
1001 /* Unimplemented, RAZ/WI. */
1002 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1003 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1004 .accessfn = pmreg_access },
1005 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1006 .access = PL0_R | PL1_RW,
1007 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1008 .resetvalue = 0,
1009 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1010 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1011 .access = PL1_RW,
1012 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1013 .resetvalue = 0,
1014 .writefn = pmintenset_write, .raw_writefn = raw_write },
1015 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1016 .access = PL1_RW, .type = ARM_CP_ALIAS,
1017 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1018 .writefn = pmintenclr_write, },
1019 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
1020 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
1021 .access = PL1_RW, .writefn = vbar_write,
1022 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
1023 offsetof(CPUARMState, cp15.vbar_ns) },
1024 .resetvalue = 0 },
1025 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1026 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1027 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1028 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1029 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1030 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1031 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1032 offsetof(CPUARMState, cp15.csselr_ns) } },
1033 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1034 * just RAZ for all cores:
1036 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1037 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1038 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1039 /* Auxiliary fault status registers: these also are IMPDEF, and we
1040 * choose to RAZ/WI for all cores.
1042 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1043 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1044 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1045 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1046 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1047 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1048 /* MAIR can just read-as-written because we don't implement caches
1049 * and so don't need to care about memory attributes.
1051 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1052 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1053 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1054 .resetvalue = 0 },
1055 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1056 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1057 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1058 .resetvalue = 0 },
1059 /* For non-long-descriptor page tables these are PRRR and NMRR;
1060 * regardless they still act as reads-as-written for QEMU.
1062 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1063 * allows them to assign the correct fieldoffset based on the endianness
1064 * handled in the field definitions.
1066 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1067 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1068 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1069 offsetof(CPUARMState, cp15.mair0_ns) },
1070 .resetfn = arm_cp_reset_ignore },
1071 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1072 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1073 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1074 offsetof(CPUARMState, cp15.mair1_ns) },
1075 .resetfn = arm_cp_reset_ignore },
1076 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1077 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1078 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1079 /* 32 bit ITLB invalidates */
1080 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1081 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1082 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1083 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1084 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1085 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1086 /* 32 bit DTLB invalidates */
1087 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1088 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1089 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1090 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1091 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1092 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1093 /* 32 bit TLB invalidates */
1094 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1095 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1096 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1097 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1098 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1099 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1100 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1101 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1102 REGINFO_SENTINEL
1105 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1106 /* 32 bit TLB invalidates, Inner Shareable */
1107 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1108 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1109 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1110 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1111 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1112 .type = ARM_CP_NO_RAW, .access = PL1_W,
1113 .writefn = tlbiasid_is_write },
1114 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1115 .type = ARM_CP_NO_RAW, .access = PL1_W,
1116 .writefn = tlbimvaa_is_write },
1117 REGINFO_SENTINEL
1120 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1121 uint64_t value)
1123 value &= 1;
1124 env->teecr = value;
1127 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
1129 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1130 return CP_ACCESS_TRAP;
1132 return CP_ACCESS_OK;
1135 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1136 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1137 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1138 .resetvalue = 0,
1139 .writefn = teecr_write },
1140 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1141 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1142 .accessfn = teehbr_access, .resetvalue = 0 },
1143 REGINFO_SENTINEL
1146 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1147 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1148 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1149 .access = PL0_RW,
1150 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1151 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1152 .access = PL0_RW,
1153 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1154 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1155 .resetfn = arm_cp_reset_ignore },
1156 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1157 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1158 .access = PL0_R|PL1_W,
1159 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1160 .resetvalue = 0},
1161 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1162 .access = PL0_R|PL1_W,
1163 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1164 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1165 .resetfn = arm_cp_reset_ignore },
1166 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1167 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1168 .access = PL1_RW,
1169 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1170 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1171 .access = PL1_RW,
1172 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1173 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1174 .resetvalue = 0 },
1175 REGINFO_SENTINEL
1178 #ifndef CONFIG_USER_ONLY
1180 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
1182 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1183 if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
1184 return CP_ACCESS_TRAP;
1186 return CP_ACCESS_OK;
1189 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
1191 unsigned int cur_el = arm_current_el(env);
1192 bool secure = arm_is_secure(env);
1194 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1195 if (cur_el == 0 &&
1196 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1197 return CP_ACCESS_TRAP;
1200 if (arm_feature(env, ARM_FEATURE_EL2) &&
1201 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1202 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1203 return CP_ACCESS_TRAP_EL2;
1205 return CP_ACCESS_OK;
1208 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
1210 unsigned int cur_el = arm_current_el(env);
1211 bool secure = arm_is_secure(env);
1213 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1214 * EL0[PV]TEN is zero.
1216 if (cur_el == 0 &&
1217 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1218 return CP_ACCESS_TRAP;
1221 if (arm_feature(env, ARM_FEATURE_EL2) &&
1222 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1223 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1224 return CP_ACCESS_TRAP_EL2;
1226 return CP_ACCESS_OK;
1229 static CPAccessResult gt_pct_access(CPUARMState *env,
1230 const ARMCPRegInfo *ri)
1232 return gt_counter_access(env, GTIMER_PHYS);
1235 static CPAccessResult gt_vct_access(CPUARMState *env,
1236 const ARMCPRegInfo *ri)
1238 return gt_counter_access(env, GTIMER_VIRT);
1241 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1243 return gt_timer_access(env, GTIMER_PHYS);
1246 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1248 return gt_timer_access(env, GTIMER_VIRT);
1251 static CPAccessResult gt_stimer_access(CPUARMState *env,
1252 const ARMCPRegInfo *ri)
1254 /* The AArch64 register view of the secure physical timer is
1255 * always accessible from EL3, and configurably accessible from
1256 * Secure EL1.
1258 switch (arm_current_el(env)) {
1259 case 1:
1260 if (!arm_is_secure(env)) {
1261 return CP_ACCESS_TRAP;
1263 if (!(env->cp15.scr_el3 & SCR_ST)) {
1264 return CP_ACCESS_TRAP_EL3;
1266 return CP_ACCESS_OK;
1267 case 0:
1268 case 2:
1269 return CP_ACCESS_TRAP;
1270 case 3:
1271 return CP_ACCESS_OK;
1272 default:
1273 g_assert_not_reached();
1277 static uint64_t gt_get_countervalue(CPUARMState *env)
1279 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1282 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1284 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1286 if (gt->ctl & 1) {
1287 /* Timer enabled: calculate and set current ISTATUS, irq, and
1288 * reset timer to when ISTATUS next has to change
1290 uint64_t offset = timeridx == GTIMER_VIRT ?
1291 cpu->env.cp15.cntvoff_el2 : 0;
1292 uint64_t count = gt_get_countervalue(&cpu->env);
1293 /* Note that this must be unsigned 64 bit arithmetic: */
1294 int istatus = count - offset >= gt->cval;
1295 uint64_t nexttick;
1297 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1298 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1299 (istatus && !(gt->ctl & 2)));
1300 if (istatus) {
1301 /* Next transition is when count rolls back over to zero */
1302 nexttick = UINT64_MAX;
1303 } else {
1304 /* Next transition is when we hit cval */
1305 nexttick = gt->cval + offset;
1307 /* Note that the desired next expiry time might be beyond the
1308 * signed-64-bit range of a QEMUTimer -- in this case we just
1309 * set the timer for as far in the future as possible. When the
1310 * timer expires we will reset the timer for any remaining period.
1312 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1313 nexttick = INT64_MAX / GTIMER_SCALE;
1315 timer_mod(cpu->gt_timer[timeridx], nexttick);
1316 } else {
1317 /* Timer disabled: ISTATUS and timer output always clear */
1318 gt->ctl &= ~4;
1319 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1320 timer_del(cpu->gt_timer[timeridx]);
1324 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1325 int timeridx)
1327 ARMCPU *cpu = arm_env_get_cpu(env);
1329 timer_del(cpu->gt_timer[timeridx]);
1332 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1334 return gt_get_countervalue(env);
1337 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1339 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1342 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1343 int timeridx,
1344 uint64_t value)
1346 env->cp15.c14_timer[timeridx].cval = value;
1347 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1350 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1351 int timeridx)
1353 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1355 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1356 (gt_get_countervalue(env) - offset));
1359 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1360 int timeridx,
1361 uint64_t value)
1363 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1365 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1366 sextract64(value, 0, 32);
1367 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1370 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1371 int timeridx,
1372 uint64_t value)
1374 ARMCPU *cpu = arm_env_get_cpu(env);
1375 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1377 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1378 if ((oldval ^ value) & 1) {
1379 /* Enable toggled */
1380 gt_recalc_timer(cpu, timeridx);
1381 } else if ((oldval ^ value) & 2) {
1382 /* IMASK toggled: don't need to recalculate,
1383 * just set the interrupt line based on ISTATUS
1385 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1386 (oldval & 4) && !(value & 2));
1390 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1392 gt_timer_reset(env, ri, GTIMER_PHYS);
1395 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1396 uint64_t value)
1398 gt_cval_write(env, ri, GTIMER_PHYS, value);
1401 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1403 return gt_tval_read(env, ri, GTIMER_PHYS);
1406 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1407 uint64_t value)
1409 gt_tval_write(env, ri, GTIMER_PHYS, value);
1412 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1413 uint64_t value)
1415 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1418 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1420 gt_timer_reset(env, ri, GTIMER_VIRT);
1423 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1424 uint64_t value)
1426 gt_cval_write(env, ri, GTIMER_VIRT, value);
1429 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1431 return gt_tval_read(env, ri, GTIMER_VIRT);
1434 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1435 uint64_t value)
1437 gt_tval_write(env, ri, GTIMER_VIRT, value);
1440 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1441 uint64_t value)
1443 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1446 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1447 uint64_t value)
1449 ARMCPU *cpu = arm_env_get_cpu(env);
1451 raw_write(env, ri, value);
1452 gt_recalc_timer(cpu, GTIMER_VIRT);
1455 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1457 gt_timer_reset(env, ri, GTIMER_HYP);
1460 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1461 uint64_t value)
1463 gt_cval_write(env, ri, GTIMER_HYP, value);
1466 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1468 return gt_tval_read(env, ri, GTIMER_HYP);
1471 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1472 uint64_t value)
1474 gt_tval_write(env, ri, GTIMER_HYP, value);
1477 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1478 uint64_t value)
1480 gt_ctl_write(env, ri, GTIMER_HYP, value);
1483 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1485 gt_timer_reset(env, ri, GTIMER_SEC);
1488 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1489 uint64_t value)
1491 gt_cval_write(env, ri, GTIMER_SEC, value);
1494 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1496 return gt_tval_read(env, ri, GTIMER_SEC);
1499 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1500 uint64_t value)
1502 gt_tval_write(env, ri, GTIMER_SEC, value);
1505 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1506 uint64_t value)
1508 gt_ctl_write(env, ri, GTIMER_SEC, value);
1511 void arm_gt_ptimer_cb(void *opaque)
1513 ARMCPU *cpu = opaque;
1515 gt_recalc_timer(cpu, GTIMER_PHYS);
1518 void arm_gt_vtimer_cb(void *opaque)
1520 ARMCPU *cpu = opaque;
1522 gt_recalc_timer(cpu, GTIMER_VIRT);
1525 void arm_gt_htimer_cb(void *opaque)
1527 ARMCPU *cpu = opaque;
1529 gt_recalc_timer(cpu, GTIMER_HYP);
1532 void arm_gt_stimer_cb(void *opaque)
1534 ARMCPU *cpu = opaque;
1536 gt_recalc_timer(cpu, GTIMER_SEC);
1539 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1540 /* Note that CNTFRQ is purely reads-as-written for the benefit
1541 * of software; writing it doesn't actually change the timer frequency.
1542 * Our reset value matches the fixed frequency we implement the timer at.
1544 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1545 .type = ARM_CP_ALIAS,
1546 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1547 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1549 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1550 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1551 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1552 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1553 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1555 /* overall control: mostly access permissions */
1556 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1557 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1558 .access = PL1_RW,
1559 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1560 .resetvalue = 0,
1562 /* per-timer control */
1563 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1564 .secure = ARM_CP_SECSTATE_NS,
1565 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1566 .accessfn = gt_ptimer_access,
1567 .fieldoffset = offsetoflow32(CPUARMState,
1568 cp15.c14_timer[GTIMER_PHYS].ctl),
1569 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1571 { .name = "CNTP_CTL(S)",
1572 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1573 .secure = ARM_CP_SECSTATE_S,
1574 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1575 .accessfn = gt_ptimer_access,
1576 .fieldoffset = offsetoflow32(CPUARMState,
1577 cp15.c14_timer[GTIMER_SEC].ctl),
1578 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1580 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1581 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1582 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1583 .accessfn = gt_ptimer_access,
1584 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1585 .resetvalue = 0,
1586 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1588 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1589 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1590 .accessfn = gt_vtimer_access,
1591 .fieldoffset = offsetoflow32(CPUARMState,
1592 cp15.c14_timer[GTIMER_VIRT].ctl),
1593 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1595 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1596 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1597 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1598 .accessfn = gt_vtimer_access,
1599 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1600 .resetvalue = 0,
1601 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1603 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1604 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1605 .secure = ARM_CP_SECSTATE_NS,
1606 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1607 .accessfn = gt_ptimer_access,
1608 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1610 { .name = "CNTP_TVAL(S)",
1611 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1612 .secure = ARM_CP_SECSTATE_S,
1613 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1614 .accessfn = gt_ptimer_access,
1615 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1617 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1618 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1619 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1620 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1621 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1623 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1624 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1625 .accessfn = gt_vtimer_access,
1626 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1628 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1629 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1630 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1631 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
1632 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1634 /* The counter itself */
1635 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1636 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1637 .accessfn = gt_pct_access,
1638 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1640 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1641 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1642 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1643 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
1645 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1646 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1647 .accessfn = gt_vct_access,
1648 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
1650 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1651 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1652 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1653 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
1655 /* Comparison value, indicating when the timer goes off */
1656 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1657 .secure = ARM_CP_SECSTATE_NS,
1658 .access = PL1_RW | PL0_R,
1659 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1660 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1661 .accessfn = gt_ptimer_access,
1662 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1664 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
1665 .secure = ARM_CP_SECSTATE_S,
1666 .access = PL1_RW | PL0_R,
1667 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1668 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1669 .accessfn = gt_ptimer_access,
1670 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1672 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1673 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1674 .access = PL1_RW | PL0_R,
1675 .type = ARM_CP_IO,
1676 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1677 .resetvalue = 0, .accessfn = gt_ptimer_access,
1678 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1680 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1681 .access = PL1_RW | PL0_R,
1682 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1683 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1684 .accessfn = gt_vtimer_access,
1685 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1687 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1688 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1689 .access = PL1_RW | PL0_R,
1690 .type = ARM_CP_IO,
1691 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1692 .resetvalue = 0, .accessfn = gt_vtimer_access,
1693 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1695 /* Secure timer -- this is actually restricted to only EL3
1696 * and configurably Secure-EL1 via the accessfn.
1698 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
1699 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
1700 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
1701 .accessfn = gt_stimer_access,
1702 .readfn = gt_sec_tval_read,
1703 .writefn = gt_sec_tval_write,
1704 .resetfn = gt_sec_timer_reset,
1706 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
1707 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
1708 .type = ARM_CP_IO, .access = PL1_RW,
1709 .accessfn = gt_stimer_access,
1710 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
1711 .resetvalue = 0,
1712 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1714 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
1715 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
1716 .type = ARM_CP_IO, .access = PL1_RW,
1717 .accessfn = gt_stimer_access,
1718 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1719 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1721 REGINFO_SENTINEL
1724 #else
1725 /* In user-mode none of the generic timer registers are accessible,
1726 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1727 * so instead just don't register any of them.
1729 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1730 REGINFO_SENTINEL
1733 #endif
1735 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1737 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1738 raw_write(env, ri, value);
1739 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1740 raw_write(env, ri, value & 0xfffff6ff);
1741 } else {
1742 raw_write(env, ri, value & 0xfffff1ff);
1746 #ifndef CONFIG_USER_ONLY
1747 /* get_phys_addr() isn't present for user-mode-only targets */
1749 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
1751 if (ri->opc2 & 4) {
1752 /* The ATS12NSO* operations must trap to EL3 if executed in
1753 * Secure EL1 (which can only happen if EL3 is AArch64).
1754 * They are simply UNDEF if executed from NS EL1.
1755 * They function normally from EL2 or EL3.
1757 if (arm_current_el(env) == 1) {
1758 if (arm_is_secure_below_el3(env)) {
1759 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
1761 return CP_ACCESS_TRAP_UNCATEGORIZED;
1764 return CP_ACCESS_OK;
1767 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
1768 int access_type, ARMMMUIdx mmu_idx)
1770 hwaddr phys_addr;
1771 target_ulong page_size;
1772 int prot;
1773 uint32_t fsr;
1774 bool ret;
1775 uint64_t par64;
1776 MemTxAttrs attrs = {};
1778 ret = get_phys_addr(env, value, access_type, mmu_idx,
1779 &phys_addr, &attrs, &prot, &page_size, &fsr);
1780 if (extended_addresses_enabled(env)) {
1781 /* fsr is a DFSR/IFSR value for the long descriptor
1782 * translation table format, but with WnR always clear.
1783 * Convert it to a 64-bit PAR.
1785 par64 = (1 << 11); /* LPAE bit always set */
1786 if (!ret) {
1787 par64 |= phys_addr & ~0xfffULL;
1788 if (!attrs.secure) {
1789 par64 |= (1 << 9); /* NS */
1791 /* We don't set the ATTR or SH fields in the PAR. */
1792 } else {
1793 par64 |= 1; /* F */
1794 par64 |= (fsr & 0x3f) << 1; /* FS */
1795 /* Note that S2WLK and FSTAGE are always zero, because we don't
1796 * implement virtualization and therefore there can't be a stage 2
1797 * fault.
1800 } else {
1801 /* fsr is a DFSR/IFSR value for the short descriptor
1802 * translation table format (with WnR always clear).
1803 * Convert it to a 32-bit PAR.
1805 if (!ret) {
1806 /* We do not set any attribute bits in the PAR */
1807 if (page_size == (1 << 24)
1808 && arm_feature(env, ARM_FEATURE_V7)) {
1809 par64 = (phys_addr & 0xff000000) | (1 << 1);
1810 } else {
1811 par64 = phys_addr & 0xfffff000;
1813 if (!attrs.secure) {
1814 par64 |= (1 << 9); /* NS */
1816 } else {
1817 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
1818 ((fsr & 0xf) << 1) | 1;
1821 return par64;
1824 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1826 int access_type = ri->opc2 & 1;
1827 uint64_t par64;
1828 ARMMMUIdx mmu_idx;
1829 int el = arm_current_el(env);
1830 bool secure = arm_is_secure_below_el3(env);
1832 switch (ri->opc2 & 6) {
1833 case 0:
1834 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
1835 switch (el) {
1836 case 3:
1837 mmu_idx = ARMMMUIdx_S1E3;
1838 break;
1839 case 2:
1840 mmu_idx = ARMMMUIdx_S1NSE1;
1841 break;
1842 case 1:
1843 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1844 break;
1845 default:
1846 g_assert_not_reached();
1848 break;
1849 case 2:
1850 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
1851 switch (el) {
1852 case 3:
1853 mmu_idx = ARMMMUIdx_S1SE0;
1854 break;
1855 case 2:
1856 mmu_idx = ARMMMUIdx_S1NSE0;
1857 break;
1858 case 1:
1859 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1860 break;
1861 default:
1862 g_assert_not_reached();
1864 break;
1865 case 4:
1866 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
1867 mmu_idx = ARMMMUIdx_S12NSE1;
1868 break;
1869 case 6:
1870 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
1871 mmu_idx = ARMMMUIdx_S12NSE0;
1872 break;
1873 default:
1874 g_assert_not_reached();
1877 par64 = do_ats_write(env, value, access_type, mmu_idx);
1879 A32_BANKED_CURRENT_REG_SET(env, par, par64);
1882 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
1883 uint64_t value)
1885 int access_type = ri->opc2 & 1;
1886 uint64_t par64;
1888 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
1890 A32_BANKED_CURRENT_REG_SET(env, par, par64);
1893 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri)
1895 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
1896 return CP_ACCESS_TRAP;
1898 return CP_ACCESS_OK;
1901 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
1902 uint64_t value)
1904 int access_type = ri->opc2 & 1;
1905 ARMMMUIdx mmu_idx;
1906 int secure = arm_is_secure_below_el3(env);
1908 switch (ri->opc2 & 6) {
1909 case 0:
1910 switch (ri->opc1) {
1911 case 0: /* AT S1E1R, AT S1E1W */
1912 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1913 break;
1914 case 4: /* AT S1E2R, AT S1E2W */
1915 mmu_idx = ARMMMUIdx_S1E2;
1916 break;
1917 case 6: /* AT S1E3R, AT S1E3W */
1918 mmu_idx = ARMMMUIdx_S1E3;
1919 break;
1920 default:
1921 g_assert_not_reached();
1923 break;
1924 case 2: /* AT S1E0R, AT S1E0W */
1925 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1926 break;
1927 case 4: /* AT S12E1R, AT S12E1W */
1928 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
1929 break;
1930 case 6: /* AT S12E0R, AT S12E0W */
1931 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
1932 break;
1933 default:
1934 g_assert_not_reached();
1937 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
1939 #endif
1941 static const ARMCPRegInfo vapa_cp_reginfo[] = {
1942 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1943 .access = PL1_RW, .resetvalue = 0,
1944 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
1945 offsetoflow32(CPUARMState, cp15.par_ns) },
1946 .writefn = par_write },
1947 #ifndef CONFIG_USER_ONLY
1948 /* This underdecoding is safe because the reginfo is NO_RAW. */
1949 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1950 .access = PL1_W, .accessfn = ats_access,
1951 .writefn = ats_write, .type = ARM_CP_NO_RAW },
1952 #endif
1953 REGINFO_SENTINEL
1956 /* Return basic MPU access permission bits. */
1957 static uint32_t simple_mpu_ap_bits(uint32_t val)
1959 uint32_t ret;
1960 uint32_t mask;
1961 int i;
1962 ret = 0;
1963 mask = 3;
1964 for (i = 0; i < 16; i += 2) {
1965 ret |= (val >> i) & mask;
1966 mask <<= 2;
1968 return ret;
1971 /* Pad basic MPU access permission bits to extended format. */
1972 static uint32_t extended_mpu_ap_bits(uint32_t val)
1974 uint32_t ret;
1975 uint32_t mask;
1976 int i;
1977 ret = 0;
1978 mask = 3;
1979 for (i = 0; i < 16; i += 2) {
1980 ret |= (val & mask) << i;
1981 mask <<= 2;
1983 return ret;
1986 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1987 uint64_t value)
1989 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
1992 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1994 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
1997 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1998 uint64_t value)
2000 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2003 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2005 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2008 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2010 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2012 if (!u32p) {
2013 return 0;
2016 u32p += env->cp15.c6_rgnr;
2017 return *u32p;
2020 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2021 uint64_t value)
2023 ARMCPU *cpu = arm_env_get_cpu(env);
2024 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2026 if (!u32p) {
2027 return;
2030 u32p += env->cp15.c6_rgnr;
2031 tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */
2032 *u32p = value;
2035 static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2037 ARMCPU *cpu = arm_env_get_cpu(env);
2038 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2040 if (!u32p) {
2041 return;
2044 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
2047 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2048 uint64_t value)
2050 ARMCPU *cpu = arm_env_get_cpu(env);
2051 uint32_t nrgs = cpu->pmsav7_dregion;
2053 if (value >= nrgs) {
2054 qemu_log_mask(LOG_GUEST_ERROR,
2055 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2056 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2057 return;
2060 raw_write(env, ri, value);
2063 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2064 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2065 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2066 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2067 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2068 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2069 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2070 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2071 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2072 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2073 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2074 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2075 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2076 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2077 .access = PL1_RW,
2078 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
2079 .writefn = pmsav7_rgnr_write },
2080 REGINFO_SENTINEL
2083 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2084 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2085 .access = PL1_RW, .type = ARM_CP_ALIAS,
2086 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2087 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2088 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2089 .access = PL1_RW, .type = ARM_CP_ALIAS,
2090 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2091 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2092 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2093 .access = PL1_RW,
2094 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2095 .resetvalue = 0, },
2096 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2097 .access = PL1_RW,
2098 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2099 .resetvalue = 0, },
2100 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2101 .access = PL1_RW,
2102 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2103 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2104 .access = PL1_RW,
2105 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2106 /* Protection region base and size registers */
2107 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2108 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2109 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2110 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2111 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2112 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2113 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2114 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2115 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2116 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2117 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2118 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2119 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2120 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2121 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2122 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2123 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2124 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2125 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2126 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2127 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2128 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2129 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2130 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2131 REGINFO_SENTINEL
2134 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2135 uint64_t value)
2137 TCR *tcr = raw_ptr(env, ri);
2138 int maskshift = extract32(value, 0, 3);
2140 if (!arm_feature(env, ARM_FEATURE_V8)) {
2141 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2142 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2143 * using Long-desciptor translation table format */
2144 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2145 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2146 /* In an implementation that includes the Security Extensions
2147 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2148 * Short-descriptor translation table format.
2150 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2151 } else {
2152 value &= TTBCR_N;
2156 /* Update the masks corresponding to the TCR bank being written
2157 * Note that we always calculate mask and base_mask, but
2158 * they are only used for short-descriptor tables (ie if EAE is 0);
2159 * for long-descriptor tables the TCR fields are used differently
2160 * and the mask and base_mask values are meaningless.
2162 tcr->raw_tcr = value;
2163 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2164 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2167 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2168 uint64_t value)
2170 ARMCPU *cpu = arm_env_get_cpu(env);
2172 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2173 /* With LPAE the TTBCR could result in a change of ASID
2174 * via the TTBCR.A1 bit, so do a TLB flush.
2176 tlb_flush(CPU(cpu), 1);
2178 vmsa_ttbcr_raw_write(env, ri, value);
2181 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2183 TCR *tcr = raw_ptr(env, ri);
2185 /* Reset both the TCR as well as the masks corresponding to the bank of
2186 * the TCR being reset.
2188 tcr->raw_tcr = 0;
2189 tcr->mask = 0;
2190 tcr->base_mask = 0xffffc000u;
2193 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2194 uint64_t value)
2196 ARMCPU *cpu = arm_env_get_cpu(env);
2197 TCR *tcr = raw_ptr(env, ri);
2199 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2200 tlb_flush(CPU(cpu), 1);
2201 tcr->raw_tcr = value;
2204 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2205 uint64_t value)
2207 /* 64 bit accesses to the TTBRs can change the ASID and so we
2208 * must flush the TLB.
2210 if (cpreg_field_is_64bit(ri)) {
2211 ARMCPU *cpu = arm_env_get_cpu(env);
2213 tlb_flush(CPU(cpu), 1);
2215 raw_write(env, ri, value);
2218 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2219 uint64_t value)
2221 ARMCPU *cpu = arm_env_get_cpu(env);
2222 CPUState *cs = CPU(cpu);
2224 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2225 if (raw_read(env, ri) != value) {
2226 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2227 ARMMMUIdx_S2NS, -1);
2228 raw_write(env, ri, value);
2232 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2233 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2234 .access = PL1_RW, .type = ARM_CP_ALIAS,
2235 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2236 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2237 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2238 .access = PL1_RW, .resetvalue = 0,
2239 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2240 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2241 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2242 .access = PL1_RW, .resetvalue = 0,
2243 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2244 offsetof(CPUARMState, cp15.dfar_ns) } },
2245 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2246 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2247 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2248 .resetvalue = 0, },
2249 REGINFO_SENTINEL
2252 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2253 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2254 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2255 .access = PL1_RW,
2256 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2257 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2258 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2259 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2260 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2261 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2262 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2263 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2264 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2265 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2266 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2267 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2268 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2269 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2270 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2271 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2272 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2273 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2274 .raw_writefn = vmsa_ttbcr_raw_write,
2275 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2276 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2277 REGINFO_SENTINEL
2280 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2281 uint64_t value)
2283 env->cp15.c15_ticonfig = value & 0xe7;
2284 /* The OS_TYPE bit in this register changes the reported CPUID! */
2285 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2286 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2289 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2290 uint64_t value)
2292 env->cp15.c15_threadid = value & 0xffff;
2295 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2296 uint64_t value)
2298 /* Wait-for-interrupt (deprecated) */
2299 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2302 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2303 uint64_t value)
2305 /* On OMAP there are registers indicating the max/min index of dcache lines
2306 * containing a dirty line; cache flush operations have to reset these.
2308 env->cp15.c15_i_max = 0x000;
2309 env->cp15.c15_i_min = 0xff0;
2312 static const ARMCPRegInfo omap_cp_reginfo[] = {
2313 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2314 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2315 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2316 .resetvalue = 0, },
2317 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2318 .access = PL1_RW, .type = ARM_CP_NOP },
2319 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2320 .access = PL1_RW,
2321 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2322 .writefn = omap_ticonfig_write },
2323 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2324 .access = PL1_RW,
2325 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2326 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2327 .access = PL1_RW, .resetvalue = 0xff0,
2328 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2329 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2330 .access = PL1_RW,
2331 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2332 .writefn = omap_threadid_write },
2333 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2334 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2335 .type = ARM_CP_NO_RAW,
2336 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2337 /* TODO: Peripheral port remap register:
2338 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2339 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2340 * when MMU is off.
2342 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2343 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2344 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2345 .writefn = omap_cachemaint_write },
2346 { .name = "C9", .cp = 15, .crn = 9,
2347 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2348 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2349 REGINFO_SENTINEL
2352 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2353 uint64_t value)
2355 env->cp15.c15_cpar = value & 0x3fff;
2358 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2359 { .name = "XSCALE_CPAR",
2360 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2361 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2362 .writefn = xscale_cpar_write, },
2363 { .name = "XSCALE_AUXCR",
2364 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2365 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2366 .resetvalue = 0, },
2367 /* XScale specific cache-lockdown: since we have no cache we NOP these
2368 * and hope the guest does not really rely on cache behaviour.
2370 { .name = "XSCALE_LOCK_ICACHE_LINE",
2371 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2372 .access = PL1_W, .type = ARM_CP_NOP },
2373 { .name = "XSCALE_UNLOCK_ICACHE",
2374 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2375 .access = PL1_W, .type = ARM_CP_NOP },
2376 { .name = "XSCALE_DCACHE_LOCK",
2377 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2378 .access = PL1_RW, .type = ARM_CP_NOP },
2379 { .name = "XSCALE_UNLOCK_DCACHE",
2380 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2381 .access = PL1_W, .type = ARM_CP_NOP },
2382 REGINFO_SENTINEL
2385 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2386 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2387 * implementation of this implementation-defined space.
2388 * Ideally this should eventually disappear in favour of actually
2389 * implementing the correct behaviour for all cores.
2391 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2392 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2393 .access = PL1_RW,
2394 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2395 .resetvalue = 0 },
2396 REGINFO_SENTINEL
2399 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2400 /* Cache status: RAZ because we have no cache so it's always clean */
2401 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2402 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2403 .resetvalue = 0 },
2404 REGINFO_SENTINEL
2407 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2408 /* We never have a a block transfer operation in progress */
2409 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2410 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2411 .resetvalue = 0 },
2412 /* The cache ops themselves: these all NOP for QEMU */
2413 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2414 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2415 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2416 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2417 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2418 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2419 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2420 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2421 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2422 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2423 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2424 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2425 REGINFO_SENTINEL
2428 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2429 /* The cache test-and-clean instructions always return (1 << 30)
2430 * to indicate that there are no dirty cache lines.
2432 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2433 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2434 .resetvalue = (1 << 30) },
2435 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2436 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2437 .resetvalue = (1 << 30) },
2438 REGINFO_SENTINEL
2441 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2442 /* Ignore ReadBuffer accesses */
2443 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2444 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2445 .access = PL1_RW, .resetvalue = 0,
2446 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2447 REGINFO_SENTINEL
2450 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2452 ARMCPU *cpu = arm_env_get_cpu(env);
2453 unsigned int cur_el = arm_current_el(env);
2454 bool secure = arm_is_secure(env);
2456 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2457 return env->cp15.vpidr_el2;
2459 return raw_read(env, ri);
2462 static uint64_t mpidr_read_val(CPUARMState *env)
2464 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2465 uint64_t mpidr = cpu->mp_affinity;
2467 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2468 mpidr |= (1U << 31);
2469 /* Cores which are uniprocessor (non-coherent)
2470 * but still implement the MP extensions set
2471 * bit 30. (For instance, Cortex-R5).
2473 if (cpu->mp_is_up) {
2474 mpidr |= (1u << 30);
2477 return mpidr;
2480 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2482 unsigned int cur_el = arm_current_el(env);
2483 bool secure = arm_is_secure(env);
2485 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2486 return env->cp15.vmpidr_el2;
2488 return mpidr_read_val(env);
2491 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2492 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2493 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2494 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2495 REGINFO_SENTINEL
2498 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2499 /* NOP AMAIR0/1 */
2500 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2501 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2502 .access = PL1_RW, .type = ARM_CP_CONST,
2503 .resetvalue = 0 },
2504 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2505 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2506 .access = PL1_RW, .type = ARM_CP_CONST,
2507 .resetvalue = 0 },
2508 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2509 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2510 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2511 offsetof(CPUARMState, cp15.par_ns)} },
2512 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2513 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2514 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2515 offsetof(CPUARMState, cp15.ttbr0_ns) },
2516 .writefn = vmsa_ttbr_write, },
2517 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2518 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2519 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2520 offsetof(CPUARMState, cp15.ttbr1_ns) },
2521 .writefn = vmsa_ttbr_write, },
2522 REGINFO_SENTINEL
2525 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2527 return vfp_get_fpcr(env);
2530 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2531 uint64_t value)
2533 vfp_set_fpcr(env, value);
2536 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2538 return vfp_get_fpsr(env);
2541 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2542 uint64_t value)
2544 vfp_set_fpsr(env, value);
2547 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
2549 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2550 return CP_ACCESS_TRAP;
2552 return CP_ACCESS_OK;
2555 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2556 uint64_t value)
2558 env->daif = value & PSTATE_DAIF;
2561 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2562 const ARMCPRegInfo *ri)
2564 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2565 * SCTLR_EL1.UCI is set.
2567 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2568 return CP_ACCESS_TRAP;
2570 return CP_ACCESS_OK;
2573 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2574 * Page D4-1736 (DDI0487A.b)
2577 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2578 uint64_t value)
2580 ARMCPU *cpu = arm_env_get_cpu(env);
2581 CPUState *cs = CPU(cpu);
2583 if (arm_is_secure_below_el3(env)) {
2584 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2585 } else {
2586 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2590 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2591 uint64_t value)
2593 bool sec = arm_is_secure_below_el3(env);
2594 CPUState *other_cs;
2596 CPU_FOREACH(other_cs) {
2597 if (sec) {
2598 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2599 } else {
2600 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2601 ARMMMUIdx_S12NSE0, -1);
2606 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2607 uint64_t value)
2609 /* Note that the 'ALL' scope must invalidate both stage 1 and
2610 * stage 2 translations, whereas most other scopes only invalidate
2611 * stage 1 translations.
2613 ARMCPU *cpu = arm_env_get_cpu(env);
2614 CPUState *cs = CPU(cpu);
2616 if (arm_is_secure_below_el3(env)) {
2617 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2618 } else {
2619 if (arm_feature(env, ARM_FEATURE_EL2)) {
2620 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2621 ARMMMUIdx_S2NS, -1);
2622 } else {
2623 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2628 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2629 uint64_t value)
2631 ARMCPU *cpu = arm_env_get_cpu(env);
2632 CPUState *cs = CPU(cpu);
2634 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
2637 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2638 uint64_t value)
2640 ARMCPU *cpu = arm_env_get_cpu(env);
2641 CPUState *cs = CPU(cpu);
2643 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1);
2646 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2647 uint64_t value)
2649 /* Note that the 'ALL' scope must invalidate both stage 1 and
2650 * stage 2 translations, whereas most other scopes only invalidate
2651 * stage 1 translations.
2653 bool sec = arm_is_secure_below_el3(env);
2654 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
2655 CPUState *other_cs;
2657 CPU_FOREACH(other_cs) {
2658 if (sec) {
2659 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2660 } else if (has_el2) {
2661 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2662 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
2663 } else {
2664 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2665 ARMMMUIdx_S12NSE0, -1);
2670 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2671 uint64_t value)
2673 CPUState *other_cs;
2675 CPU_FOREACH(other_cs) {
2676 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
2680 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2681 uint64_t value)
2683 CPUState *other_cs;
2685 CPU_FOREACH(other_cs) {
2686 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1);
2690 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2691 uint64_t value)
2693 /* Invalidate by VA, EL1&0 (AArch64 version).
2694 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2695 * since we don't support flush-for-specific-ASID-only or
2696 * flush-last-level-only.
2698 ARMCPU *cpu = arm_env_get_cpu(env);
2699 CPUState *cs = CPU(cpu);
2700 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2702 if (arm_is_secure_below_el3(env)) {
2703 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1,
2704 ARMMMUIdx_S1SE0, -1);
2705 } else {
2706 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1,
2707 ARMMMUIdx_S12NSE0, -1);
2711 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2712 uint64_t value)
2714 /* Invalidate by VA, EL2
2715 * Currently handles both VAE2 and VALE2, since we don't support
2716 * flush-last-level-only.
2718 ARMCPU *cpu = arm_env_get_cpu(env);
2719 CPUState *cs = CPU(cpu);
2720 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2722 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
2725 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2726 uint64_t value)
2728 /* Invalidate by VA, EL3
2729 * Currently handles both VAE3 and VALE3, since we don't support
2730 * flush-last-level-only.
2732 ARMCPU *cpu = arm_env_get_cpu(env);
2733 CPUState *cs = CPU(cpu);
2734 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2736 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1);
2739 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2740 uint64_t value)
2742 bool sec = arm_is_secure_below_el3(env);
2743 CPUState *other_cs;
2744 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2746 CPU_FOREACH(other_cs) {
2747 if (sec) {
2748 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1,
2749 ARMMMUIdx_S1SE0, -1);
2750 } else {
2751 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1,
2752 ARMMMUIdx_S12NSE0, -1);
2757 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2758 uint64_t value)
2760 CPUState *other_cs;
2761 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2763 CPU_FOREACH(other_cs) {
2764 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
2768 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2769 uint64_t value)
2771 CPUState *other_cs;
2772 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2774 CPU_FOREACH(other_cs) {
2775 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1);
2779 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2780 uint64_t value)
2782 /* Invalidate by IPA. This has to invalidate any structures that
2783 * contain only stage 2 translation information, but does not need
2784 * to apply to structures that contain combined stage 1 and stage 2
2785 * translation information.
2786 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
2788 ARMCPU *cpu = arm_env_get_cpu(env);
2789 CPUState *cs = CPU(cpu);
2790 uint64_t pageaddr;
2792 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
2793 return;
2796 pageaddr = sextract64(value << 12, 0, 48);
2798 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
2801 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2802 uint64_t value)
2804 CPUState *other_cs;
2805 uint64_t pageaddr;
2807 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
2808 return;
2811 pageaddr = sextract64(value << 12, 0, 48);
2813 CPU_FOREACH(other_cs) {
2814 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
2818 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
2820 /* We don't implement EL2, so the only control on DC ZVA is the
2821 * bit in the SCTLR which can prohibit access for EL0.
2823 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
2824 return CP_ACCESS_TRAP;
2826 return CP_ACCESS_OK;
2829 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
2831 ARMCPU *cpu = arm_env_get_cpu(env);
2832 int dzp_bit = 1 << 4;
2834 /* DZP indicates whether DC ZVA access is allowed */
2835 if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) {
2836 dzp_bit = 0;
2838 return cpu->dcz_blocksize | dzp_bit;
2841 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
2843 if (!(env->pstate & PSTATE_SP)) {
2844 /* Access to SP_EL0 is undefined if it's being used as
2845 * the stack pointer.
2847 return CP_ACCESS_TRAP_UNCATEGORIZED;
2849 return CP_ACCESS_OK;
2852 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
2854 return env->pstate & PSTATE_SP;
2857 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
2859 update_spsel(env, val);
2862 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2863 uint64_t value)
2865 ARMCPU *cpu = arm_env_get_cpu(env);
2867 if (raw_read(env, ri) == value) {
2868 /* Skip the TLB flush if nothing actually changed; Linux likes
2869 * to do a lot of pointless SCTLR writes.
2871 return;
2874 raw_write(env, ri, value);
2875 /* ??? Lots of these bits are not implemented. */
2876 /* This may enable/disable the MMU, so do a TLB flush. */
2877 tlb_flush(CPU(cpu), 1);
2880 static const ARMCPRegInfo v8_cp_reginfo[] = {
2881 /* Minimal set of EL0-visible registers. This will need to be expanded
2882 * significantly for system emulation of AArch64 CPUs.
2884 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
2885 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
2886 .access = PL0_RW, .type = ARM_CP_NZCV },
2887 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
2888 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
2889 .type = ARM_CP_NO_RAW,
2890 .access = PL0_RW, .accessfn = aa64_daif_access,
2891 .fieldoffset = offsetof(CPUARMState, daif),
2892 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
2893 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
2894 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
2895 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
2896 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
2897 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
2898 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
2899 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
2900 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
2901 .access = PL0_R, .type = ARM_CP_NO_RAW,
2902 .readfn = aa64_dczid_read },
2903 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
2904 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
2905 .access = PL0_W, .type = ARM_CP_DC_ZVA,
2906 #ifndef CONFIG_USER_ONLY
2907 /* Avoid overhead of an access check that always passes in user-mode */
2908 .accessfn = aa64_zva_access,
2909 #endif
2911 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
2912 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
2913 .access = PL1_R, .type = ARM_CP_CURRENTEL },
2914 /* Cache ops: all NOPs since we don't emulate caches */
2915 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
2916 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2917 .access = PL1_W, .type = ARM_CP_NOP },
2918 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
2919 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2920 .access = PL1_W, .type = ARM_CP_NOP },
2921 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
2922 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
2923 .access = PL0_W, .type = ARM_CP_NOP,
2924 .accessfn = aa64_cacheop_access },
2925 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
2926 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2927 .access = PL1_W, .type = ARM_CP_NOP },
2928 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
2929 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2930 .access = PL1_W, .type = ARM_CP_NOP },
2931 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
2932 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
2933 .access = PL0_W, .type = ARM_CP_NOP,
2934 .accessfn = aa64_cacheop_access },
2935 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
2936 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2937 .access = PL1_W, .type = ARM_CP_NOP },
2938 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
2939 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
2940 .access = PL0_W, .type = ARM_CP_NOP,
2941 .accessfn = aa64_cacheop_access },
2942 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
2943 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
2944 .access = PL0_W, .type = ARM_CP_NOP,
2945 .accessfn = aa64_cacheop_access },
2946 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
2947 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2948 .access = PL1_W, .type = ARM_CP_NOP },
2949 /* TLBI operations */
2950 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
2951 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2952 .access = PL1_W, .type = ARM_CP_NO_RAW,
2953 .writefn = tlbi_aa64_vmalle1is_write },
2954 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
2955 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2956 .access = PL1_W, .type = ARM_CP_NO_RAW,
2957 .writefn = tlbi_aa64_vae1is_write },
2958 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
2959 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2960 .access = PL1_W, .type = ARM_CP_NO_RAW,
2961 .writefn = tlbi_aa64_vmalle1is_write },
2962 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
2963 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2964 .access = PL1_W, .type = ARM_CP_NO_RAW,
2965 .writefn = tlbi_aa64_vae1is_write },
2966 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
2967 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2968 .access = PL1_W, .type = ARM_CP_NO_RAW,
2969 .writefn = tlbi_aa64_vae1is_write },
2970 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
2971 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2972 .access = PL1_W, .type = ARM_CP_NO_RAW,
2973 .writefn = tlbi_aa64_vae1is_write },
2974 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
2975 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2976 .access = PL1_W, .type = ARM_CP_NO_RAW,
2977 .writefn = tlbi_aa64_vmalle1_write },
2978 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
2979 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2980 .access = PL1_W, .type = ARM_CP_NO_RAW,
2981 .writefn = tlbi_aa64_vae1_write },
2982 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
2983 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2984 .access = PL1_W, .type = ARM_CP_NO_RAW,
2985 .writefn = tlbi_aa64_vmalle1_write },
2986 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
2987 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2988 .access = PL1_W, .type = ARM_CP_NO_RAW,
2989 .writefn = tlbi_aa64_vae1_write },
2990 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
2991 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2992 .access = PL1_W, .type = ARM_CP_NO_RAW,
2993 .writefn = tlbi_aa64_vae1_write },
2994 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
2995 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2996 .access = PL1_W, .type = ARM_CP_NO_RAW,
2997 .writefn = tlbi_aa64_vae1_write },
2998 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
2999 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3000 .access = PL2_W, .type = ARM_CP_NO_RAW,
3001 .writefn = tlbi_aa64_ipas2e1is_write },
3002 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3003 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3004 .access = PL2_W, .type = ARM_CP_NO_RAW,
3005 .writefn = tlbi_aa64_ipas2e1is_write },
3006 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3007 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3008 .access = PL2_W, .type = ARM_CP_NO_RAW,
3009 .writefn = tlbi_aa64_alle1is_write },
3010 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3011 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3012 .access = PL2_W, .type = ARM_CP_NO_RAW,
3013 .writefn = tlbi_aa64_alle1is_write },
3014 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3015 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3016 .access = PL2_W, .type = ARM_CP_NO_RAW,
3017 .writefn = tlbi_aa64_ipas2e1_write },
3018 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3019 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3020 .access = PL2_W, .type = ARM_CP_NO_RAW,
3021 .writefn = tlbi_aa64_ipas2e1_write },
3022 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3023 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3024 .access = PL2_W, .type = ARM_CP_NO_RAW,
3025 .writefn = tlbi_aa64_alle1_write },
3026 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3027 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3028 .access = PL2_W, .type = ARM_CP_NO_RAW,
3029 .writefn = tlbi_aa64_alle1is_write },
3030 #ifndef CONFIG_USER_ONLY
3031 /* 64 bit address translation operations */
3032 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3033 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3034 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3035 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3036 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3037 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3038 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3039 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3040 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3041 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3042 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3043 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3044 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3045 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3046 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3047 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3048 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3049 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3050 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3051 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3052 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3053 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3054 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3055 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3056 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3057 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3058 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3059 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3060 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3061 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3062 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3063 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3064 .type = ARM_CP_ALIAS,
3065 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3066 .access = PL1_RW, .resetvalue = 0,
3067 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3068 .writefn = par_write },
3069 #endif
3070 /* TLB invalidate last level of translation table walk */
3071 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3072 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3073 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3074 .type = ARM_CP_NO_RAW, .access = PL1_W,
3075 .writefn = tlbimvaa_is_write },
3076 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3077 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3078 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3079 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3080 /* 32 bit cache operations */
3081 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3082 .type = ARM_CP_NOP, .access = PL1_W },
3083 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3084 .type = ARM_CP_NOP, .access = PL1_W },
3085 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3086 .type = ARM_CP_NOP, .access = PL1_W },
3087 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3088 .type = ARM_CP_NOP, .access = PL1_W },
3089 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3090 .type = ARM_CP_NOP, .access = PL1_W },
3091 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3092 .type = ARM_CP_NOP, .access = PL1_W },
3093 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3094 .type = ARM_CP_NOP, .access = PL1_W },
3095 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3096 .type = ARM_CP_NOP, .access = PL1_W },
3097 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3098 .type = ARM_CP_NOP, .access = PL1_W },
3099 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3100 .type = ARM_CP_NOP, .access = PL1_W },
3101 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3102 .type = ARM_CP_NOP, .access = PL1_W },
3103 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3104 .type = ARM_CP_NOP, .access = PL1_W },
3105 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3106 .type = ARM_CP_NOP, .access = PL1_W },
3107 /* MMU Domain access control / MPU write buffer control */
3108 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3109 .access = PL1_RW, .resetvalue = 0,
3110 .writefn = dacr_write, .raw_writefn = raw_write,
3111 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3112 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3113 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3114 .type = ARM_CP_ALIAS,
3115 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3116 .access = PL1_RW,
3117 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3118 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3119 .type = ARM_CP_ALIAS,
3120 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3121 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[1]) },
3122 /* We rely on the access checks not allowing the guest to write to the
3123 * state field when SPSel indicates that it's being used as the stack
3124 * pointer.
3126 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3127 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3128 .access = PL1_RW, .accessfn = sp_el0_access,
3129 .type = ARM_CP_ALIAS,
3130 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3131 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3132 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3133 .access = PL2_RW, .type = ARM_CP_ALIAS,
3134 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3135 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3136 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3137 .type = ARM_CP_NO_RAW,
3138 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3139 REGINFO_SENTINEL
3142 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3143 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3144 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3145 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3146 .access = PL2_RW,
3147 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3148 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3149 .type = ARM_CP_NO_RAW,
3150 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3151 .access = PL2_RW,
3152 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3153 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3154 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3155 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3156 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3157 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3158 .access = PL2_RW, .type = ARM_CP_CONST,
3159 .resetvalue = 0 },
3160 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3161 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3162 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3163 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3164 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3165 .access = PL2_RW, .type = ARM_CP_CONST,
3166 .resetvalue = 0 },
3167 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3168 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3169 .access = PL2_RW, .type = ARM_CP_CONST,
3170 .resetvalue = 0 },
3171 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3172 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3173 .access = PL2_RW, .type = ARM_CP_CONST,
3174 .resetvalue = 0 },
3175 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3176 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3177 .access = PL2_RW, .type = ARM_CP_CONST,
3178 .resetvalue = 0 },
3179 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3180 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3181 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3182 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3183 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3184 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3185 .type = ARM_CP_CONST, .resetvalue = 0 },
3186 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3187 .cp = 15, .opc1 = 6, .crm = 2,
3188 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3189 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3190 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3191 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3192 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3193 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3194 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3195 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3196 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3197 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3198 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3199 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3200 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3201 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3202 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3203 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3204 .resetvalue = 0 },
3205 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3206 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3207 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3208 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3209 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3210 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3211 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3212 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3213 .resetvalue = 0 },
3214 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3215 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3216 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3217 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3218 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3219 .resetvalue = 0 },
3220 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3221 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3222 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3223 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3224 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3225 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3226 REGINFO_SENTINEL
3229 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3231 ARMCPU *cpu = arm_env_get_cpu(env);
3232 uint64_t valid_mask = HCR_MASK;
3234 if (arm_feature(env, ARM_FEATURE_EL3)) {
3235 valid_mask &= ~HCR_HCD;
3236 } else {
3237 valid_mask &= ~HCR_TSC;
3240 /* Clear RES0 bits. */
3241 value &= valid_mask;
3243 /* These bits change the MMU setup:
3244 * HCR_VM enables stage 2 translation
3245 * HCR_PTW forbids certain page-table setups
3246 * HCR_DC Disables stage1 and enables stage2 translation
3248 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3249 tlb_flush(CPU(cpu), 1);
3251 raw_write(env, ri, value);
3254 static const ARMCPRegInfo el2_cp_reginfo[] = {
3255 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3256 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3257 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3258 .writefn = hcr_write },
3259 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3260 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3261 .access = PL2_RW, .resetvalue = 0,
3262 .writefn = dacr_write, .raw_writefn = raw_write,
3263 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3264 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3265 .type = ARM_CP_ALIAS,
3266 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3267 .access = PL2_RW,
3268 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3269 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3270 .type = ARM_CP_ALIAS,
3271 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3272 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3273 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3274 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3275 .access = PL2_RW, .resetvalue = 0,
3276 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3277 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3278 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3279 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3280 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3281 .type = ARM_CP_ALIAS,
3282 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3283 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) },
3284 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3285 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3286 .access = PL2_RW, .writefn = vbar_write,
3287 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3288 .resetvalue = 0 },
3289 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3290 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3291 .access = PL3_RW, .type = ARM_CP_ALIAS,
3292 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3293 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3294 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3295 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3296 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3297 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3298 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3299 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3300 .resetvalue = 0 },
3301 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3302 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3303 .access = PL2_RW, .type = ARM_CP_ALIAS,
3304 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3305 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3306 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3307 .access = PL2_RW, .type = ARM_CP_CONST,
3308 .resetvalue = 0 },
3309 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3310 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3311 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3312 .access = PL2_RW, .type = ARM_CP_CONST,
3313 .resetvalue = 0 },
3314 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3315 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3316 .access = PL2_RW, .type = ARM_CP_CONST,
3317 .resetvalue = 0 },
3318 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3319 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3320 .access = PL2_RW, .type = ARM_CP_CONST,
3321 .resetvalue = 0 },
3322 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3323 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3324 .access = PL2_RW, .writefn = vmsa_tcr_el1_write,
3325 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3326 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3327 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3328 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3329 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3330 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3331 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3332 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3333 .access = PL2_RW, .type = ARM_CP_ALIAS,
3334 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3335 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3336 .cp = 15, .opc1 = 6, .crm = 2,
3337 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3338 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3339 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3340 .writefn = vttbr_write },
3341 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3342 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3343 .access = PL2_RW, .writefn = vttbr_write,
3344 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3345 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3346 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3347 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3348 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3349 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3350 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3351 .access = PL2_RW, .resetvalue = 0,
3352 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3353 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3354 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3355 .access = PL2_RW, .resetvalue = 0,
3356 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3357 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3358 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3359 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3360 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3361 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3362 .type = ARM_CP_NO_RAW, .access = PL2_W,
3363 .writefn = tlbi_aa64_alle2_write },
3364 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3365 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3366 .type = ARM_CP_NO_RAW, .access = PL2_W,
3367 .writefn = tlbi_aa64_vae2_write },
3368 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3369 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3370 .access = PL2_W, .type = ARM_CP_NO_RAW,
3371 .writefn = tlbi_aa64_vae2_write },
3372 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3373 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3374 .access = PL2_W, .type = ARM_CP_NO_RAW,
3375 .writefn = tlbi_aa64_alle2is_write },
3376 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3377 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3378 .type = ARM_CP_NO_RAW, .access = PL2_W,
3379 .writefn = tlbi_aa64_vae2is_write },
3380 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3381 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3382 .access = PL2_W, .type = ARM_CP_NO_RAW,
3383 .writefn = tlbi_aa64_vae2is_write },
3384 #ifndef CONFIG_USER_ONLY
3385 /* Unlike the other EL2-related AT operations, these must
3386 * UNDEF from EL3 if EL2 is not implemented, which is why we
3387 * define them here rather than with the rest of the AT ops.
3389 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3390 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3391 .access = PL2_W, .accessfn = at_s1e2_access,
3392 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3393 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3394 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3395 .access = PL2_W, .accessfn = at_s1e2_access,
3396 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3397 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3398 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3399 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3400 * to behave as if SCR.NS was 1.
3402 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3403 .access = PL2_W,
3404 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3405 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3406 .access = PL2_W,
3407 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3408 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3409 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3410 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3411 * reset values as IMPDEF. We choose to reset to 3 to comply with
3412 * both ARMv7 and ARMv8.
3414 .access = PL2_RW, .resetvalue = 3,
3415 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3416 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3417 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3418 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3419 .writefn = gt_cntvoff_write,
3420 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3421 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3422 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3423 .writefn = gt_cntvoff_write,
3424 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3425 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3426 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3427 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3428 .type = ARM_CP_IO, .access = PL2_RW,
3429 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3430 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3431 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3432 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3433 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3434 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3435 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3436 .type = ARM_CP_IO, .access = PL2_RW,
3437 .resetfn = gt_hyp_timer_reset,
3438 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3439 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3440 .type = ARM_CP_IO,
3441 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3442 .access = PL2_RW,
3443 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3444 .resetvalue = 0,
3445 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3446 #endif
3447 REGINFO_SENTINEL
3450 static const ARMCPRegInfo el3_cp_reginfo[] = {
3451 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3452 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3453 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3454 .resetvalue = 0, .writefn = scr_write },
3455 { .name = "SCR", .type = ARM_CP_ALIAS,
3456 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
3457 .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
3458 .writefn = scr_write },
3459 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
3460 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
3461 .access = PL3_RW, .resetvalue = 0,
3462 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
3463 { .name = "SDER",
3464 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
3465 .access = PL3_RW, .resetvalue = 0,
3466 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
3467 /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
3468 { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
3469 .access = PL3_W | PL1_R, .resetvalue = 0,
3470 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) },
3471 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3472 .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0,
3473 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
3474 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
3475 .type = ARM_CP_ALIAS, /* reset handled by AArch32 view */
3476 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
3477 .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3478 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) },
3479 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
3480 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
3481 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3482 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
3483 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
3484 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
3485 .access = PL3_RW, .writefn = vmsa_tcr_el1_write,
3486 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3487 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
3488 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
3489 .type = ARM_CP_ALIAS,
3490 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
3491 .access = PL3_RW,
3492 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
3493 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
3494 .type = ARM_CP_ALIAS,
3495 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
3496 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
3497 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
3498 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
3499 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
3500 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
3501 .type = ARM_CP_ALIAS,
3502 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
3503 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) },
3504 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
3505 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
3506 .access = PL3_RW, .writefn = vbar_write,
3507 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
3508 .resetvalue = 0 },
3509 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
3510 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
3511 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
3512 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
3513 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
3514 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
3515 .access = PL3_RW, .resetvalue = 0,
3516 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
3517 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
3518 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
3519 .access = PL3_RW, .type = ARM_CP_CONST,
3520 .resetvalue = 0 },
3521 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
3522 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
3523 .access = PL3_RW, .type = ARM_CP_CONST,
3524 .resetvalue = 0 },
3525 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
3526 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
3527 .access = PL3_RW, .type = ARM_CP_CONST,
3528 .resetvalue = 0 },
3529 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
3530 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
3531 .access = PL3_W, .type = ARM_CP_NO_RAW,
3532 .writefn = tlbi_aa64_alle3is_write },
3533 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
3534 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
3535 .access = PL3_W, .type = ARM_CP_NO_RAW,
3536 .writefn = tlbi_aa64_vae3is_write },
3537 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
3538 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
3539 .access = PL3_W, .type = ARM_CP_NO_RAW,
3540 .writefn = tlbi_aa64_vae3is_write },
3541 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
3542 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
3543 .access = PL3_W, .type = ARM_CP_NO_RAW,
3544 .writefn = tlbi_aa64_alle3_write },
3545 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
3546 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
3547 .access = PL3_W, .type = ARM_CP_NO_RAW,
3548 .writefn = tlbi_aa64_vae3_write },
3549 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
3550 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
3551 .access = PL3_W, .type = ARM_CP_NO_RAW,
3552 .writefn = tlbi_aa64_vae3_write },
3553 REGINFO_SENTINEL
3556 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
3558 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3559 * but the AArch32 CTR has its own reginfo struct)
3561 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
3562 return CP_ACCESS_TRAP;
3564 return CP_ACCESS_OK;
3567 static const ARMCPRegInfo debug_cp_reginfo[] = {
3568 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
3569 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
3570 * unlike DBGDRAR it is never accessible from EL0.
3571 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
3572 * accessor.
3574 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
3575 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3576 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
3577 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
3578 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3579 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3580 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3581 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
3582 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
3583 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
3584 .access = PL1_RW,
3585 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
3586 .resetvalue = 0 },
3587 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
3588 * We don't implement the configurable EL0 access.
3590 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
3591 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
3592 .type = ARM_CP_ALIAS,
3593 .access = PL1_R,
3594 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
3595 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
3596 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
3597 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
3598 .access = PL1_W, .type = ARM_CP_NOP },
3599 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
3600 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
3601 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
3602 .access = PL1_RW, .type = ARM_CP_NOP },
3603 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
3604 * implement vector catch debug events yet.
3606 { .name = "DBGVCR",
3607 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
3608 .access = PL1_RW, .type = ARM_CP_NOP },
3609 REGINFO_SENTINEL
3612 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
3613 /* 64 bit access versions of the (dummy) debug registers */
3614 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
3615 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3616 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
3617 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3618 REGINFO_SENTINEL
3621 void hw_watchpoint_update(ARMCPU *cpu, int n)
3623 CPUARMState *env = &cpu->env;
3624 vaddr len = 0;
3625 vaddr wvr = env->cp15.dbgwvr[n];
3626 uint64_t wcr = env->cp15.dbgwcr[n];
3627 int mask;
3628 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
3630 if (env->cpu_watchpoint[n]) {
3631 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
3632 env->cpu_watchpoint[n] = NULL;
3635 if (!extract64(wcr, 0, 1)) {
3636 /* E bit clear : watchpoint disabled */
3637 return;
3640 switch (extract64(wcr, 3, 2)) {
3641 case 0:
3642 /* LSC 00 is reserved and must behave as if the wp is disabled */
3643 return;
3644 case 1:
3645 flags |= BP_MEM_READ;
3646 break;
3647 case 2:
3648 flags |= BP_MEM_WRITE;
3649 break;
3650 case 3:
3651 flags |= BP_MEM_ACCESS;
3652 break;
3655 /* Attempts to use both MASK and BAS fields simultaneously are
3656 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
3657 * thus generating a watchpoint for every byte in the masked region.
3659 mask = extract64(wcr, 24, 4);
3660 if (mask == 1 || mask == 2) {
3661 /* Reserved values of MASK; we must act as if the mask value was
3662 * some non-reserved value, or as if the watchpoint were disabled.
3663 * We choose the latter.
3665 return;
3666 } else if (mask) {
3667 /* Watchpoint covers an aligned area up to 2GB in size */
3668 len = 1ULL << mask;
3669 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
3670 * whether the watchpoint fires when the unmasked bits match; we opt
3671 * to generate the exceptions.
3673 wvr &= ~(len - 1);
3674 } else {
3675 /* Watchpoint covers bytes defined by the byte address select bits */
3676 int bas = extract64(wcr, 5, 8);
3677 int basstart;
3679 if (bas == 0) {
3680 /* This must act as if the watchpoint is disabled */
3681 return;
3684 if (extract64(wvr, 2, 1)) {
3685 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
3686 * ignored, and BAS[3:0] define which bytes to watch.
3688 bas &= 0xf;
3690 /* The BAS bits are supposed to be programmed to indicate a contiguous
3691 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
3692 * we fire for each byte in the word/doubleword addressed by the WVR.
3693 * We choose to ignore any non-zero bits after the first range of 1s.
3695 basstart = ctz32(bas);
3696 len = cto32(bas >> basstart);
3697 wvr += basstart;
3700 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
3701 &env->cpu_watchpoint[n]);
3704 void hw_watchpoint_update_all(ARMCPU *cpu)
3706 int i;
3707 CPUARMState *env = &cpu->env;
3709 /* Completely clear out existing QEMU watchpoints and our array, to
3710 * avoid possible stale entries following migration load.
3712 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
3713 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
3715 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
3716 hw_watchpoint_update(cpu, i);
3720 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3721 uint64_t value)
3723 ARMCPU *cpu = arm_env_get_cpu(env);
3724 int i = ri->crm;
3726 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
3727 * register reads and behaves as if values written are sign extended.
3728 * Bits [1:0] are RES0.
3730 value = sextract64(value, 0, 49) & ~3ULL;
3732 raw_write(env, ri, value);
3733 hw_watchpoint_update(cpu, i);
3736 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3737 uint64_t value)
3739 ARMCPU *cpu = arm_env_get_cpu(env);
3740 int i = ri->crm;
3742 raw_write(env, ri, value);
3743 hw_watchpoint_update(cpu, i);
3746 void hw_breakpoint_update(ARMCPU *cpu, int n)
3748 CPUARMState *env = &cpu->env;
3749 uint64_t bvr = env->cp15.dbgbvr[n];
3750 uint64_t bcr = env->cp15.dbgbcr[n];
3751 vaddr addr;
3752 int bt;
3753 int flags = BP_CPU;
3755 if (env->cpu_breakpoint[n]) {
3756 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
3757 env->cpu_breakpoint[n] = NULL;
3760 if (!extract64(bcr, 0, 1)) {
3761 /* E bit clear : watchpoint disabled */
3762 return;
3765 bt = extract64(bcr, 20, 4);
3767 switch (bt) {
3768 case 4: /* unlinked address mismatch (reserved if AArch64) */
3769 case 5: /* linked address mismatch (reserved if AArch64) */
3770 qemu_log_mask(LOG_UNIMP,
3771 "arm: address mismatch breakpoint types not implemented");
3772 return;
3773 case 0: /* unlinked address match */
3774 case 1: /* linked address match */
3776 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
3777 * we behave as if the register was sign extended. Bits [1:0] are
3778 * RES0. The BAS field is used to allow setting breakpoints on 16
3779 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
3780 * a bp will fire if the addresses covered by the bp and the addresses
3781 * covered by the insn overlap but the insn doesn't start at the
3782 * start of the bp address range. We choose to require the insn and
3783 * the bp to have the same address. The constraints on writing to
3784 * BAS enforced in dbgbcr_write mean we have only four cases:
3785 * 0b0000 => no breakpoint
3786 * 0b0011 => breakpoint on addr
3787 * 0b1100 => breakpoint on addr + 2
3788 * 0b1111 => breakpoint on addr
3789 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
3791 int bas = extract64(bcr, 5, 4);
3792 addr = sextract64(bvr, 0, 49) & ~3ULL;
3793 if (bas == 0) {
3794 return;
3796 if (bas == 0xc) {
3797 addr += 2;
3799 break;
3801 case 2: /* unlinked context ID match */
3802 case 8: /* unlinked VMID match (reserved if no EL2) */
3803 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
3804 qemu_log_mask(LOG_UNIMP,
3805 "arm: unlinked context breakpoint types not implemented");
3806 return;
3807 case 9: /* linked VMID match (reserved if no EL2) */
3808 case 11: /* linked context ID and VMID match (reserved if no EL2) */
3809 case 3: /* linked context ID match */
3810 default:
3811 /* We must generate no events for Linked context matches (unless
3812 * they are linked to by some other bp/wp, which is handled in
3813 * updates for the linking bp/wp). We choose to also generate no events
3814 * for reserved values.
3816 return;
3819 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
3822 void hw_breakpoint_update_all(ARMCPU *cpu)
3824 int i;
3825 CPUARMState *env = &cpu->env;
3827 /* Completely clear out existing QEMU breakpoints and our array, to
3828 * avoid possible stale entries following migration load.
3830 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
3831 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
3833 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
3834 hw_breakpoint_update(cpu, i);
3838 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3839 uint64_t value)
3841 ARMCPU *cpu = arm_env_get_cpu(env);
3842 int i = ri->crm;
3844 raw_write(env, ri, value);
3845 hw_breakpoint_update(cpu, i);
3848 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3849 uint64_t value)
3851 ARMCPU *cpu = arm_env_get_cpu(env);
3852 int i = ri->crm;
3854 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
3855 * copy of BAS[0].
3857 value = deposit64(value, 6, 1, extract64(value, 5, 1));
3858 value = deposit64(value, 8, 1, extract64(value, 7, 1));
3860 raw_write(env, ri, value);
3861 hw_breakpoint_update(cpu, i);
3864 static void define_debug_regs(ARMCPU *cpu)
3866 /* Define v7 and v8 architectural debug registers.
3867 * These are just dummy implementations for now.
3869 int i;
3870 int wrps, brps, ctx_cmps;
3871 ARMCPRegInfo dbgdidr = {
3872 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
3873 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
3876 /* Note that all these register fields hold "number of Xs minus 1". */
3877 brps = extract32(cpu->dbgdidr, 24, 4);
3878 wrps = extract32(cpu->dbgdidr, 28, 4);
3879 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
3881 assert(ctx_cmps <= brps);
3883 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
3884 * of the debug registers such as number of breakpoints;
3885 * check that if they both exist then they agree.
3887 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
3888 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
3889 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3890 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
3893 define_one_arm_cp_reg(cpu, &dbgdidr);
3894 define_arm_cp_regs(cpu, debug_cp_reginfo);
3896 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
3897 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
3900 for (i = 0; i < brps + 1; i++) {
3901 ARMCPRegInfo dbgregs[] = {
3902 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
3903 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
3904 .access = PL1_RW,
3905 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
3906 .writefn = dbgbvr_write, .raw_writefn = raw_write
3908 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
3909 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
3910 .access = PL1_RW,
3911 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
3912 .writefn = dbgbcr_write, .raw_writefn = raw_write
3914 REGINFO_SENTINEL
3916 define_arm_cp_regs(cpu, dbgregs);
3919 for (i = 0; i < wrps + 1; i++) {
3920 ARMCPRegInfo dbgregs[] = {
3921 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
3922 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
3923 .access = PL1_RW,
3924 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
3925 .writefn = dbgwvr_write, .raw_writefn = raw_write
3927 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
3928 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
3929 .access = PL1_RW,
3930 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
3931 .writefn = dbgwcr_write, .raw_writefn = raw_write
3933 REGINFO_SENTINEL
3935 define_arm_cp_regs(cpu, dbgregs);
3939 void register_cp_regs_for_features(ARMCPU *cpu)
3941 /* Register all the coprocessor registers based on feature bits */
3942 CPUARMState *env = &cpu->env;
3943 if (arm_feature(env, ARM_FEATURE_M)) {
3944 /* M profile has no coprocessor registers */
3945 return;
3948 define_arm_cp_regs(cpu, cp_reginfo);
3949 if (!arm_feature(env, ARM_FEATURE_V8)) {
3950 /* Must go early as it is full of wildcards that may be
3951 * overridden by later definitions.
3953 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
3956 if (arm_feature(env, ARM_FEATURE_V6)) {
3957 /* The ID registers all have impdef reset values */
3958 ARMCPRegInfo v6_idregs[] = {
3959 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
3960 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
3961 .access = PL1_R, .type = ARM_CP_CONST,
3962 .resetvalue = cpu->id_pfr0 },
3963 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
3964 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
3965 .access = PL1_R, .type = ARM_CP_CONST,
3966 .resetvalue = cpu->id_pfr1 },
3967 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
3968 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
3969 .access = PL1_R, .type = ARM_CP_CONST,
3970 .resetvalue = cpu->id_dfr0 },
3971 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
3972 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
3973 .access = PL1_R, .type = ARM_CP_CONST,
3974 .resetvalue = cpu->id_afr0 },
3975 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
3976 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
3977 .access = PL1_R, .type = ARM_CP_CONST,
3978 .resetvalue = cpu->id_mmfr0 },
3979 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
3980 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
3981 .access = PL1_R, .type = ARM_CP_CONST,
3982 .resetvalue = cpu->id_mmfr1 },
3983 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
3984 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
3985 .access = PL1_R, .type = ARM_CP_CONST,
3986 .resetvalue = cpu->id_mmfr2 },
3987 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
3988 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
3989 .access = PL1_R, .type = ARM_CP_CONST,
3990 .resetvalue = cpu->id_mmfr3 },
3991 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
3992 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
3993 .access = PL1_R, .type = ARM_CP_CONST,
3994 .resetvalue = cpu->id_isar0 },
3995 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
3996 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
3997 .access = PL1_R, .type = ARM_CP_CONST,
3998 .resetvalue = cpu->id_isar1 },
3999 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4000 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4001 .access = PL1_R, .type = ARM_CP_CONST,
4002 .resetvalue = cpu->id_isar2 },
4003 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4004 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4005 .access = PL1_R, .type = ARM_CP_CONST,
4006 .resetvalue = cpu->id_isar3 },
4007 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4008 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4009 .access = PL1_R, .type = ARM_CP_CONST,
4010 .resetvalue = cpu->id_isar4 },
4011 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4012 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4013 .access = PL1_R, .type = ARM_CP_CONST,
4014 .resetvalue = cpu->id_isar5 },
4015 /* 6..7 are as yet unallocated and must RAZ */
4016 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
4017 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
4018 .resetvalue = 0 },
4019 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
4020 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
4021 .resetvalue = 0 },
4022 REGINFO_SENTINEL
4024 define_arm_cp_regs(cpu, v6_idregs);
4025 define_arm_cp_regs(cpu, v6_cp_reginfo);
4026 } else {
4027 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4029 if (arm_feature(env, ARM_FEATURE_V6K)) {
4030 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4032 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4033 !arm_feature(env, ARM_FEATURE_MPU)) {
4034 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4036 if (arm_feature(env, ARM_FEATURE_V7)) {
4037 /* v7 performance monitor control register: same implementor
4038 * field as main ID register, and we implement only the cycle
4039 * count register.
4041 #ifndef CONFIG_USER_ONLY
4042 ARMCPRegInfo pmcr = {
4043 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4044 .access = PL0_RW,
4045 .type = ARM_CP_IO | ARM_CP_ALIAS,
4046 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4047 .accessfn = pmreg_access, .writefn = pmcr_write,
4048 .raw_writefn = raw_write,
4050 ARMCPRegInfo pmcr64 = {
4051 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4052 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4053 .access = PL0_RW, .accessfn = pmreg_access,
4054 .type = ARM_CP_IO,
4055 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4056 .resetvalue = cpu->midr & 0xff000000,
4057 .writefn = pmcr_write, .raw_writefn = raw_write,
4059 define_one_arm_cp_reg(cpu, &pmcr);
4060 define_one_arm_cp_reg(cpu, &pmcr64);
4061 #endif
4062 ARMCPRegInfo clidr = {
4063 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4064 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4065 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4067 define_one_arm_cp_reg(cpu, &clidr);
4068 define_arm_cp_regs(cpu, v7_cp_reginfo);
4069 define_debug_regs(cpu);
4070 } else {
4071 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4073 if (arm_feature(env, ARM_FEATURE_V8)) {
4074 /* AArch64 ID registers, which all have impdef reset values */
4075 ARMCPRegInfo v8_idregs[] = {
4076 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4077 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4078 .access = PL1_R, .type = ARM_CP_CONST,
4079 .resetvalue = cpu->id_aa64pfr0 },
4080 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4081 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4082 .access = PL1_R, .type = ARM_CP_CONST,
4083 .resetvalue = cpu->id_aa64pfr1},
4084 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4085 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4086 .access = PL1_R, .type = ARM_CP_CONST,
4087 /* We mask out the PMUVer field, because we don't currently
4088 * implement the PMU. Not advertising it prevents the guest
4089 * from trying to use it and getting UNDEFs on registers we
4090 * don't implement.
4092 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
4093 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4094 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4095 .access = PL1_R, .type = ARM_CP_CONST,
4096 .resetvalue = cpu->id_aa64dfr1 },
4097 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4098 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4099 .access = PL1_R, .type = ARM_CP_CONST,
4100 .resetvalue = cpu->id_aa64afr0 },
4101 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4102 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4103 .access = PL1_R, .type = ARM_CP_CONST,
4104 .resetvalue = cpu->id_aa64afr1 },
4105 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4106 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4107 .access = PL1_R, .type = ARM_CP_CONST,
4108 .resetvalue = cpu->id_aa64isar0 },
4109 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4110 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4111 .access = PL1_R, .type = ARM_CP_CONST,
4112 .resetvalue = cpu->id_aa64isar1 },
4113 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4114 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4115 .access = PL1_R, .type = ARM_CP_CONST,
4116 .resetvalue = cpu->id_aa64mmfr0 },
4117 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4118 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4119 .access = PL1_R, .type = ARM_CP_CONST,
4120 .resetvalue = cpu->id_aa64mmfr1 },
4121 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4122 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4123 .access = PL1_R, .type = ARM_CP_CONST,
4124 .resetvalue = cpu->mvfr0 },
4125 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4126 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4127 .access = PL1_R, .type = ARM_CP_CONST,
4128 .resetvalue = cpu->mvfr1 },
4129 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4130 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4131 .access = PL1_R, .type = ARM_CP_CONST,
4132 .resetvalue = cpu->mvfr2 },
4133 REGINFO_SENTINEL
4135 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4136 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4137 !arm_feature(env, ARM_FEATURE_EL2)) {
4138 ARMCPRegInfo rvbar = {
4139 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4140 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4141 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4143 define_one_arm_cp_reg(cpu, &rvbar);
4145 define_arm_cp_regs(cpu, v8_idregs);
4146 define_arm_cp_regs(cpu, v8_cp_reginfo);
4148 if (arm_feature(env, ARM_FEATURE_EL2)) {
4149 uint64_t vmpidr_def = mpidr_read_val(env);
4150 ARMCPRegInfo vpidr_regs[] = {
4151 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4152 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4153 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4154 .resetvalue = cpu->midr,
4155 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4156 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4157 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4158 .access = PL2_RW, .resetvalue = cpu->midr,
4159 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4160 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4161 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4162 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4163 .resetvalue = vmpidr_def,
4164 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4165 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4166 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4167 .access = PL2_RW,
4168 .resetvalue = vmpidr_def,
4169 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4170 REGINFO_SENTINEL
4172 define_arm_cp_regs(cpu, vpidr_regs);
4173 define_arm_cp_regs(cpu, el2_cp_reginfo);
4174 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4175 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4176 ARMCPRegInfo rvbar = {
4177 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4178 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4179 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4181 define_one_arm_cp_reg(cpu, &rvbar);
4183 } else {
4184 /* If EL2 is missing but higher ELs are enabled, we need to
4185 * register the no_el2 reginfos.
4187 if (arm_feature(env, ARM_FEATURE_EL3)) {
4188 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4189 * of MIDR_EL1 and MPIDR_EL1.
4191 ARMCPRegInfo vpidr_regs[] = {
4192 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4193 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4194 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4195 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4196 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4197 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4198 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4199 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4200 .type = ARM_CP_NO_RAW,
4201 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4202 REGINFO_SENTINEL
4204 define_arm_cp_regs(cpu, vpidr_regs);
4205 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4208 if (arm_feature(env, ARM_FEATURE_EL3)) {
4209 define_arm_cp_regs(cpu, el3_cp_reginfo);
4210 ARMCPRegInfo rvbar = {
4211 .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4212 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4213 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar
4215 define_one_arm_cp_reg(cpu, &rvbar);
4217 if (arm_feature(env, ARM_FEATURE_MPU)) {
4218 if (arm_feature(env, ARM_FEATURE_V6)) {
4219 /* PMSAv6 not implemented */
4220 assert(arm_feature(env, ARM_FEATURE_V7));
4221 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4222 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4223 } else {
4224 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4226 } else {
4227 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4228 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4230 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4231 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4233 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4234 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4236 if (arm_feature(env, ARM_FEATURE_VAPA)) {
4237 define_arm_cp_regs(cpu, vapa_cp_reginfo);
4239 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
4240 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
4242 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
4243 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
4245 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
4246 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
4248 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
4249 define_arm_cp_regs(cpu, omap_cp_reginfo);
4251 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
4252 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
4254 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4255 define_arm_cp_regs(cpu, xscale_cp_reginfo);
4257 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
4258 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
4260 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4261 define_arm_cp_regs(cpu, lpae_cp_reginfo);
4263 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4264 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4265 * be read-only (ie write causes UNDEF exception).
4268 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
4269 /* Pre-v8 MIDR space.
4270 * Note that the MIDR isn't a simple constant register because
4271 * of the TI925 behaviour where writes to another register can
4272 * cause the MIDR value to change.
4274 * Unimplemented registers in the c15 0 0 0 space default to
4275 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4276 * and friends override accordingly.
4278 { .name = "MIDR",
4279 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
4280 .access = PL1_R, .resetvalue = cpu->midr,
4281 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
4282 .readfn = midr_read,
4283 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4284 .type = ARM_CP_OVERRIDE },
4285 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4286 { .name = "DUMMY",
4287 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
4288 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4289 { .name = "DUMMY",
4290 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
4291 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4292 { .name = "DUMMY",
4293 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
4294 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4295 { .name = "DUMMY",
4296 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
4297 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4298 { .name = "DUMMY",
4299 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
4300 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4301 REGINFO_SENTINEL
4303 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
4304 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
4305 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
4306 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
4307 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4308 .readfn = midr_read },
4309 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4310 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4311 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4312 .access = PL1_R, .resetvalue = cpu->midr },
4313 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4314 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
4315 .access = PL1_R, .resetvalue = cpu->midr },
4316 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
4317 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
4318 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
4319 REGINFO_SENTINEL
4321 ARMCPRegInfo id_cp_reginfo[] = {
4322 /* These are common to v8 and pre-v8 */
4323 { .name = "CTR",
4324 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
4325 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4326 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
4327 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
4328 .access = PL0_R, .accessfn = ctr_el0_access,
4329 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4330 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4331 { .name = "TCMTR",
4332 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
4333 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4334 REGINFO_SENTINEL
4336 /* TLBTR is specific to VMSA */
4337 ARMCPRegInfo id_tlbtr_reginfo = {
4338 .name = "TLBTR",
4339 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
4340 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
4342 /* MPUIR is specific to PMSA V6+ */
4343 ARMCPRegInfo id_mpuir_reginfo = {
4344 .name = "MPUIR",
4345 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4346 .access = PL1_R, .type = ARM_CP_CONST,
4347 .resetvalue = cpu->pmsav7_dregion << 8
4349 ARMCPRegInfo crn0_wi_reginfo = {
4350 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
4351 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
4352 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
4354 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
4355 arm_feature(env, ARM_FEATURE_STRONGARM)) {
4356 ARMCPRegInfo *r;
4357 /* Register the blanket "writes ignored" value first to cover the
4358 * whole space. Then update the specific ID registers to allow write
4359 * access, so that they ignore writes rather than causing them to
4360 * UNDEF.
4362 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
4363 for (r = id_pre_v8_midr_cp_reginfo;
4364 r->type != ARM_CP_SENTINEL; r++) {
4365 r->access = PL1_RW;
4367 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
4368 r->access = PL1_RW;
4370 id_tlbtr_reginfo.access = PL1_RW;
4371 id_tlbtr_reginfo.access = PL1_RW;
4373 if (arm_feature(env, ARM_FEATURE_V8)) {
4374 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
4375 } else {
4376 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
4378 define_arm_cp_regs(cpu, id_cp_reginfo);
4379 if (!arm_feature(env, ARM_FEATURE_MPU)) {
4380 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
4381 } else if (arm_feature(env, ARM_FEATURE_V7)) {
4382 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
4386 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
4387 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
4390 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
4391 ARMCPRegInfo auxcr_reginfo[] = {
4392 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
4393 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
4394 .access = PL1_RW, .type = ARM_CP_CONST,
4395 .resetvalue = cpu->reset_auxcr },
4396 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
4397 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
4398 .access = PL2_RW, .type = ARM_CP_CONST,
4399 .resetvalue = 0 },
4400 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
4401 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
4402 .access = PL3_RW, .type = ARM_CP_CONST,
4403 .resetvalue = 0 },
4404 REGINFO_SENTINEL
4406 define_arm_cp_regs(cpu, auxcr_reginfo);
4409 if (arm_feature(env, ARM_FEATURE_CBAR)) {
4410 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4411 /* 32 bit view is [31:18] 0...0 [43:32]. */
4412 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
4413 | extract64(cpu->reset_cbar, 32, 12);
4414 ARMCPRegInfo cbar_reginfo[] = {
4415 { .name = "CBAR",
4416 .type = ARM_CP_CONST,
4417 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4418 .access = PL1_R, .resetvalue = cpu->reset_cbar },
4419 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
4420 .type = ARM_CP_CONST,
4421 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
4422 .access = PL1_R, .resetvalue = cbar32 },
4423 REGINFO_SENTINEL
4425 /* We don't implement a r/w 64 bit CBAR currently */
4426 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
4427 define_arm_cp_regs(cpu, cbar_reginfo);
4428 } else {
4429 ARMCPRegInfo cbar = {
4430 .name = "CBAR",
4431 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4432 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
4433 .fieldoffset = offsetof(CPUARMState,
4434 cp15.c15_config_base_address)
4436 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
4437 cbar.access = PL1_R;
4438 cbar.fieldoffset = 0;
4439 cbar.type = ARM_CP_CONST;
4441 define_one_arm_cp_reg(cpu, &cbar);
4445 /* Generic registers whose values depend on the implementation */
4447 ARMCPRegInfo sctlr = {
4448 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
4449 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4450 .access = PL1_RW,
4451 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
4452 offsetof(CPUARMState, cp15.sctlr_ns) },
4453 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
4454 .raw_writefn = raw_write,
4456 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4457 /* Normally we would always end the TB on an SCTLR write, but Linux
4458 * arch/arm/mach-pxa/sleep.S expects two instructions following
4459 * an MMU enable to execute from cache. Imitate this behaviour.
4461 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
4463 define_one_arm_cp_reg(cpu, &sctlr);
4467 ARMCPU *cpu_arm_init(const char *cpu_model)
4469 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
4472 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
4474 CPUState *cs = CPU(cpu);
4475 CPUARMState *env = &cpu->env;
4477 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4478 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
4479 aarch64_fpu_gdb_set_reg,
4480 34, "aarch64-fpu.xml", 0);
4481 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
4482 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
4483 51, "arm-neon.xml", 0);
4484 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
4485 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
4486 35, "arm-vfp3.xml", 0);
4487 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
4488 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
4489 19, "arm-vfp.xml", 0);
4493 /* Sort alphabetically by type name, except for "any". */
4494 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
4496 ObjectClass *class_a = (ObjectClass *)a;
4497 ObjectClass *class_b = (ObjectClass *)b;
4498 const char *name_a, *name_b;
4500 name_a = object_class_get_name(class_a);
4501 name_b = object_class_get_name(class_b);
4502 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
4503 return 1;
4504 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
4505 return -1;
4506 } else {
4507 return strcmp(name_a, name_b);
4511 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
4513 ObjectClass *oc = data;
4514 CPUListState *s = user_data;
4515 const char *typename;
4516 char *name;
4518 typename = object_class_get_name(oc);
4519 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
4520 (*s->cpu_fprintf)(s->file, " %s\n",
4521 name);
4522 g_free(name);
4525 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
4527 CPUListState s = {
4528 .file = f,
4529 .cpu_fprintf = cpu_fprintf,
4531 GSList *list;
4533 list = object_class_get_list(TYPE_ARM_CPU, false);
4534 list = g_slist_sort(list, arm_cpu_list_compare);
4535 (*cpu_fprintf)(f, "Available CPUs:\n");
4536 g_slist_foreach(list, arm_cpu_list_entry, &s);
4537 g_slist_free(list);
4538 #ifdef CONFIG_KVM
4539 /* The 'host' CPU type is dynamically registered only if KVM is
4540 * enabled, so we have to special-case it here:
4542 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
4543 #endif
4546 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
4548 ObjectClass *oc = data;
4549 CpuDefinitionInfoList **cpu_list = user_data;
4550 CpuDefinitionInfoList *entry;
4551 CpuDefinitionInfo *info;
4552 const char *typename;
4554 typename = object_class_get_name(oc);
4555 info = g_malloc0(sizeof(*info));
4556 info->name = g_strndup(typename,
4557 strlen(typename) - strlen("-" TYPE_ARM_CPU));
4559 entry = g_malloc0(sizeof(*entry));
4560 entry->value = info;
4561 entry->next = *cpu_list;
4562 *cpu_list = entry;
4565 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
4567 CpuDefinitionInfoList *cpu_list = NULL;
4568 GSList *list;
4570 list = object_class_get_list(TYPE_ARM_CPU, false);
4571 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
4572 g_slist_free(list);
4574 return cpu_list;
4577 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
4578 void *opaque, int state, int secstate,
4579 int crm, int opc1, int opc2)
4581 /* Private utility function for define_one_arm_cp_reg_with_opaque():
4582 * add a single reginfo struct to the hash table.
4584 uint32_t *key = g_new(uint32_t, 1);
4585 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
4586 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
4587 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
4589 /* Reset the secure state to the specific incoming state. This is
4590 * necessary as the register may have been defined with both states.
4592 r2->secure = secstate;
4594 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
4595 /* Register is banked (using both entries in array).
4596 * Overwriting fieldoffset as the array is only used to define
4597 * banked registers but later only fieldoffset is used.
4599 r2->fieldoffset = r->bank_fieldoffsets[ns];
4602 if (state == ARM_CP_STATE_AA32) {
4603 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
4604 /* If the register is banked then we don't need to migrate or
4605 * reset the 32-bit instance in certain cases:
4607 * 1) If the register has both 32-bit and 64-bit instances then we
4608 * can count on the 64-bit instance taking care of the
4609 * non-secure bank.
4610 * 2) If ARMv8 is enabled then we can count on a 64-bit version
4611 * taking care of the secure bank. This requires that separate
4612 * 32 and 64-bit definitions are provided.
4614 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
4615 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
4616 r2->type |= ARM_CP_ALIAS;
4618 } else if ((secstate != r->secure) && !ns) {
4619 /* The register is not banked so we only want to allow migration of
4620 * the non-secure instance.
4622 r2->type |= ARM_CP_ALIAS;
4625 if (r->state == ARM_CP_STATE_BOTH) {
4626 /* We assume it is a cp15 register if the .cp field is left unset.
4628 if (r2->cp == 0) {
4629 r2->cp = 15;
4632 #ifdef HOST_WORDS_BIGENDIAN
4633 if (r2->fieldoffset) {
4634 r2->fieldoffset += sizeof(uint32_t);
4636 #endif
4639 if (state == ARM_CP_STATE_AA64) {
4640 /* To allow abbreviation of ARMCPRegInfo
4641 * definitions, we treat cp == 0 as equivalent to
4642 * the value for "standard guest-visible sysreg".
4643 * STATE_BOTH definitions are also always "standard
4644 * sysreg" in their AArch64 view (the .cp value may
4645 * be non-zero for the benefit of the AArch32 view).
4647 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
4648 r2->cp = CP_REG_ARM64_SYSREG_CP;
4650 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
4651 r2->opc0, opc1, opc2);
4652 } else {
4653 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
4655 if (opaque) {
4656 r2->opaque = opaque;
4658 /* reginfo passed to helpers is correct for the actual access,
4659 * and is never ARM_CP_STATE_BOTH:
4661 r2->state = state;
4662 /* Make sure reginfo passed to helpers for wildcarded regs
4663 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
4665 r2->crm = crm;
4666 r2->opc1 = opc1;
4667 r2->opc2 = opc2;
4668 /* By convention, for wildcarded registers only the first
4669 * entry is used for migration; the others are marked as
4670 * ALIAS so we don't try to transfer the register
4671 * multiple times. Special registers (ie NOP/WFI) are
4672 * never migratable and not even raw-accessible.
4674 if ((r->type & ARM_CP_SPECIAL)) {
4675 r2->type |= ARM_CP_NO_RAW;
4677 if (((r->crm == CP_ANY) && crm != 0) ||
4678 ((r->opc1 == CP_ANY) && opc1 != 0) ||
4679 ((r->opc2 == CP_ANY) && opc2 != 0)) {
4680 r2->type |= ARM_CP_ALIAS;
4683 /* Check that raw accesses are either forbidden or handled. Note that
4684 * we can't assert this earlier because the setup of fieldoffset for
4685 * banked registers has to be done first.
4687 if (!(r2->type & ARM_CP_NO_RAW)) {
4688 assert(!raw_accessors_invalid(r2));
4691 /* Overriding of an existing definition must be explicitly
4692 * requested.
4694 if (!(r->type & ARM_CP_OVERRIDE)) {
4695 ARMCPRegInfo *oldreg;
4696 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
4697 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
4698 fprintf(stderr, "Register redefined: cp=%d %d bit "
4699 "crn=%d crm=%d opc1=%d opc2=%d, "
4700 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
4701 r2->crn, r2->crm, r2->opc1, r2->opc2,
4702 oldreg->name, r2->name);
4703 g_assert_not_reached();
4706 g_hash_table_insert(cpu->cp_regs, key, r2);
4710 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
4711 const ARMCPRegInfo *r, void *opaque)
4713 /* Define implementations of coprocessor registers.
4714 * We store these in a hashtable because typically
4715 * there are less than 150 registers in a space which
4716 * is 16*16*16*8*8 = 262144 in size.
4717 * Wildcarding is supported for the crm, opc1 and opc2 fields.
4718 * If a register is defined twice then the second definition is
4719 * used, so this can be used to define some generic registers and
4720 * then override them with implementation specific variations.
4721 * At least one of the original and the second definition should
4722 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
4723 * against accidental use.
4725 * The state field defines whether the register is to be
4726 * visible in the AArch32 or AArch64 execution state. If the
4727 * state is set to ARM_CP_STATE_BOTH then we synthesise a
4728 * reginfo structure for the AArch32 view, which sees the lower
4729 * 32 bits of the 64 bit register.
4731 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
4732 * be wildcarded. AArch64 registers are always considered to be 64
4733 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
4734 * the register, if any.
4736 int crm, opc1, opc2, state;
4737 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
4738 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
4739 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
4740 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
4741 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
4742 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
4743 /* 64 bit registers have only CRm and Opc1 fields */
4744 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
4745 /* op0 only exists in the AArch64 encodings */
4746 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
4747 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
4748 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
4749 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
4750 * encodes a minimum access level for the register. We roll this
4751 * runtime check into our general permission check code, so check
4752 * here that the reginfo's specified permissions are strict enough
4753 * to encompass the generic architectural permission check.
4755 if (r->state != ARM_CP_STATE_AA32) {
4756 int mask = 0;
4757 switch (r->opc1) {
4758 case 0: case 1: case 2:
4759 /* min_EL EL1 */
4760 mask = PL1_RW;
4761 break;
4762 case 3:
4763 /* min_EL EL0 */
4764 mask = PL0_RW;
4765 break;
4766 case 4:
4767 /* min_EL EL2 */
4768 mask = PL2_RW;
4769 break;
4770 case 5:
4771 /* unallocated encoding, so not possible */
4772 assert(false);
4773 break;
4774 case 6:
4775 /* min_EL EL3 */
4776 mask = PL3_RW;
4777 break;
4778 case 7:
4779 /* min_EL EL1, secure mode only (we don't check the latter) */
4780 mask = PL1_RW;
4781 break;
4782 default:
4783 /* broken reginfo with out-of-range opc1 */
4784 assert(false);
4785 break;
4787 /* assert our permissions are not too lax (stricter is fine) */
4788 assert((r->access & ~mask) == 0);
4791 /* Check that the register definition has enough info to handle
4792 * reads and writes if they are permitted.
4794 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
4795 if (r->access & PL3_R) {
4796 assert((r->fieldoffset ||
4797 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
4798 r->readfn);
4800 if (r->access & PL3_W) {
4801 assert((r->fieldoffset ||
4802 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
4803 r->writefn);
4806 /* Bad type field probably means missing sentinel at end of reg list */
4807 assert(cptype_valid(r->type));
4808 for (crm = crmmin; crm <= crmmax; crm++) {
4809 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
4810 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
4811 for (state = ARM_CP_STATE_AA32;
4812 state <= ARM_CP_STATE_AA64; state++) {
4813 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
4814 continue;
4816 if (state == ARM_CP_STATE_AA32) {
4817 /* Under AArch32 CP registers can be common
4818 * (same for secure and non-secure world) or banked.
4820 switch (r->secure) {
4821 case ARM_CP_SECSTATE_S:
4822 case ARM_CP_SECSTATE_NS:
4823 add_cpreg_to_hashtable(cpu, r, opaque, state,
4824 r->secure, crm, opc1, opc2);
4825 break;
4826 default:
4827 add_cpreg_to_hashtable(cpu, r, opaque, state,
4828 ARM_CP_SECSTATE_S,
4829 crm, opc1, opc2);
4830 add_cpreg_to_hashtable(cpu, r, opaque, state,
4831 ARM_CP_SECSTATE_NS,
4832 crm, opc1, opc2);
4833 break;
4835 } else {
4836 /* AArch64 registers get mapped to non-secure instance
4837 * of AArch32 */
4838 add_cpreg_to_hashtable(cpu, r, opaque, state,
4839 ARM_CP_SECSTATE_NS,
4840 crm, opc1, opc2);
4848 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
4849 const ARMCPRegInfo *regs, void *opaque)
4851 /* Define a whole list of registers */
4852 const ARMCPRegInfo *r;
4853 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
4854 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
4858 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4860 return g_hash_table_lookup(cpregs, &encoded_cp);
4863 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
4864 uint64_t value)
4866 /* Helper coprocessor write function for write-ignore registers */
4869 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4871 /* Helper coprocessor write function for read-as-zero registers */
4872 return 0;
4875 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
4877 /* Helper coprocessor reset function for do-nothing-on-reset registers */
4880 static int bad_mode_switch(CPUARMState *env, int mode)
4882 /* Return true if it is not valid for us to switch to
4883 * this CPU mode (ie all the UNPREDICTABLE cases in
4884 * the ARM ARM CPSRWriteByInstr pseudocode).
4886 switch (mode) {
4887 case ARM_CPU_MODE_USR:
4888 case ARM_CPU_MODE_SYS:
4889 case ARM_CPU_MODE_SVC:
4890 case ARM_CPU_MODE_ABT:
4891 case ARM_CPU_MODE_UND:
4892 case ARM_CPU_MODE_IRQ:
4893 case ARM_CPU_MODE_FIQ:
4894 return 0;
4895 case ARM_CPU_MODE_MON:
4896 return !arm_is_secure(env);
4897 default:
4898 return 1;
4902 uint32_t cpsr_read(CPUARMState *env)
4904 int ZF;
4905 ZF = (env->ZF == 0);
4906 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
4907 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
4908 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
4909 | ((env->condexec_bits & 0xfc) << 8)
4910 | (env->GE << 16) | (env->daif & CPSR_AIF);
4913 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
4915 uint32_t changed_daif;
4917 if (mask & CPSR_NZCV) {
4918 env->ZF = (~val) & CPSR_Z;
4919 env->NF = val;
4920 env->CF = (val >> 29) & 1;
4921 env->VF = (val << 3) & 0x80000000;
4923 if (mask & CPSR_Q)
4924 env->QF = ((val & CPSR_Q) != 0);
4925 if (mask & CPSR_T)
4926 env->thumb = ((val & CPSR_T) != 0);
4927 if (mask & CPSR_IT_0_1) {
4928 env->condexec_bits &= ~3;
4929 env->condexec_bits |= (val >> 25) & 3;
4931 if (mask & CPSR_IT_2_7) {
4932 env->condexec_bits &= 3;
4933 env->condexec_bits |= (val >> 8) & 0xfc;
4935 if (mask & CPSR_GE) {
4936 env->GE = (val >> 16) & 0xf;
4939 /* In a V7 implementation that includes the security extensions but does
4940 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
4941 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
4942 * bits respectively.
4944 * In a V8 implementation, it is permitted for privileged software to
4945 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
4947 if (!arm_feature(env, ARM_FEATURE_V8) &&
4948 arm_feature(env, ARM_FEATURE_EL3) &&
4949 !arm_feature(env, ARM_FEATURE_EL2) &&
4950 !arm_is_secure(env)) {
4952 changed_daif = (env->daif ^ val) & mask;
4954 if (changed_daif & CPSR_A) {
4955 /* Check to see if we are allowed to change the masking of async
4956 * abort exceptions from a non-secure state.
4958 if (!(env->cp15.scr_el3 & SCR_AW)) {
4959 qemu_log_mask(LOG_GUEST_ERROR,
4960 "Ignoring attempt to switch CPSR_A flag from "
4961 "non-secure world with SCR.AW bit clear\n");
4962 mask &= ~CPSR_A;
4966 if (changed_daif & CPSR_F) {
4967 /* Check to see if we are allowed to change the masking of FIQ
4968 * exceptions from a non-secure state.
4970 if (!(env->cp15.scr_el3 & SCR_FW)) {
4971 qemu_log_mask(LOG_GUEST_ERROR,
4972 "Ignoring attempt to switch CPSR_F flag from "
4973 "non-secure world with SCR.FW bit clear\n");
4974 mask &= ~CPSR_F;
4977 /* Check whether non-maskable FIQ (NMFI) support is enabled.
4978 * If this bit is set software is not allowed to mask
4979 * FIQs, but is allowed to set CPSR_F to 0.
4981 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
4982 (val & CPSR_F)) {
4983 qemu_log_mask(LOG_GUEST_ERROR,
4984 "Ignoring attempt to enable CPSR_F flag "
4985 "(non-maskable FIQ [NMFI] support enabled)\n");
4986 mask &= ~CPSR_F;
4991 env->daif &= ~(CPSR_AIF & mask);
4992 env->daif |= val & CPSR_AIF & mask;
4994 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
4995 if (bad_mode_switch(env, val & CPSR_M)) {
4996 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
4997 * We choose to ignore the attempt and leave the CPSR M field
4998 * untouched.
5000 mask &= ~CPSR_M;
5001 } else {
5002 switch_mode(env, val & CPSR_M);
5005 mask &= ~CACHED_CPSR_BITS;
5006 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5009 /* Sign/zero extend */
5010 uint32_t HELPER(sxtb16)(uint32_t x)
5012 uint32_t res;
5013 res = (uint16_t)(int8_t)x;
5014 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5015 return res;
5018 uint32_t HELPER(uxtb16)(uint32_t x)
5020 uint32_t res;
5021 res = (uint16_t)(uint8_t)x;
5022 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5023 return res;
5026 uint32_t HELPER(clz)(uint32_t x)
5028 return clz32(x);
5031 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5033 if (den == 0)
5034 return 0;
5035 if (num == INT_MIN && den == -1)
5036 return INT_MIN;
5037 return num / den;
5040 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5042 if (den == 0)
5043 return 0;
5044 return num / den;
5047 uint32_t HELPER(rbit)(uint32_t x)
5049 return revbit32(x);
5052 #if defined(CONFIG_USER_ONLY)
5054 /* These should probably raise undefined insn exceptions. */
5055 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5057 ARMCPU *cpu = arm_env_get_cpu(env);
5059 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5062 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5064 ARMCPU *cpu = arm_env_get_cpu(env);
5066 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5067 return 0;
5070 void switch_mode(CPUARMState *env, int mode)
5072 ARMCPU *cpu = arm_env_get_cpu(env);
5074 if (mode != ARM_CPU_MODE_USR) {
5075 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5079 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
5081 ARMCPU *cpu = arm_env_get_cpu(env);
5083 cpu_abort(CPU(cpu), "banked r13 write\n");
5086 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
5088 ARMCPU *cpu = arm_env_get_cpu(env);
5090 cpu_abort(CPU(cpu), "banked r13 read\n");
5091 return 0;
5094 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5095 uint32_t cur_el, bool secure)
5097 return 1;
5100 void aarch64_sync_64_to_32(CPUARMState *env)
5102 g_assert_not_reached();
5105 #else
5107 /* Map CPU modes onto saved register banks. */
5108 int bank_number(int mode)
5110 switch (mode) {
5111 case ARM_CPU_MODE_USR:
5112 case ARM_CPU_MODE_SYS:
5113 return 0;
5114 case ARM_CPU_MODE_SVC:
5115 return 1;
5116 case ARM_CPU_MODE_ABT:
5117 return 2;
5118 case ARM_CPU_MODE_UND:
5119 return 3;
5120 case ARM_CPU_MODE_IRQ:
5121 return 4;
5122 case ARM_CPU_MODE_FIQ:
5123 return 5;
5124 case ARM_CPU_MODE_HYP:
5125 return 6;
5126 case ARM_CPU_MODE_MON:
5127 return 7;
5129 g_assert_not_reached();
5132 void switch_mode(CPUARMState *env, int mode)
5134 int old_mode;
5135 int i;
5137 old_mode = env->uncached_cpsr & CPSR_M;
5138 if (mode == old_mode)
5139 return;
5141 if (old_mode == ARM_CPU_MODE_FIQ) {
5142 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5143 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5144 } else if (mode == ARM_CPU_MODE_FIQ) {
5145 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5146 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5149 i = bank_number(old_mode);
5150 env->banked_r13[i] = env->regs[13];
5151 env->banked_r14[i] = env->regs[14];
5152 env->banked_spsr[i] = env->spsr;
5154 i = bank_number(mode);
5155 env->regs[13] = env->banked_r13[i];
5156 env->regs[14] = env->banked_r14[i];
5157 env->spsr = env->banked_spsr[i];
5160 /* Physical Interrupt Target EL Lookup Table
5162 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5164 * The below multi-dimensional table is used for looking up the target
5165 * exception level given numerous condition criteria. Specifically, the
5166 * target EL is based on SCR and HCR routing controls as well as the
5167 * currently executing EL and secure state.
5169 * Dimensions:
5170 * target_el_table[2][2][2][2][2][4]
5171 * | | | | | +--- Current EL
5172 * | | | | +------ Non-secure(0)/Secure(1)
5173 * | | | +--------- HCR mask override
5174 * | | +------------ SCR exec state control
5175 * | +--------------- SCR mask override
5176 * +------------------ 32-bit(0)/64-bit(1) EL3
5178 * The table values are as such:
5179 * 0-3 = EL0-EL3
5180 * -1 = Cannot occur
5182 * The ARM ARM target EL table includes entries indicating that an "exception
5183 * is not taken". The two cases where this is applicable are:
5184 * 1) An exception is taken from EL3 but the SCR does not have the exception
5185 * routed to EL3.
5186 * 2) An exception is taken from EL2 but the HCR does not have the exception
5187 * routed to EL2.
5188 * In these two cases, the below table contain a target of EL1. This value is
5189 * returned as it is expected that the consumer of the table data will check
5190 * for "target EL >= current EL" to ensure the exception is not taken.
5192 * SCR HCR
5193 * 64 EA AMO From
5194 * BIT IRQ IMO Non-secure Secure
5195 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5197 const int8_t target_el_table[2][2][2][2][2][4] = {
5198 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5199 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5200 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5201 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5202 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5203 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5204 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5205 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5206 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5207 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5208 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5209 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5210 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5211 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5212 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5213 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5217 * Determine the target EL for physical exceptions
5219 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5220 uint32_t cur_el, bool secure)
5222 CPUARMState *env = cs->env_ptr;
5223 int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
5224 int scr;
5225 int hcr;
5226 int target_el;
5227 int is64 = arm_el_is_aa64(env, 3);
5229 switch (excp_idx) {
5230 case EXCP_IRQ:
5231 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
5232 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
5233 break;
5234 case EXCP_FIQ:
5235 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
5236 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
5237 break;
5238 default:
5239 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
5240 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
5241 break;
5244 /* If HCR.TGE is set then HCR is treated as being 1 */
5245 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
5247 /* Perform a table-lookup for the target EL given the current state */
5248 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
5250 assert(target_el > 0);
5252 return target_el;
5255 static void v7m_push(CPUARMState *env, uint32_t val)
5257 CPUState *cs = CPU(arm_env_get_cpu(env));
5259 env->regs[13] -= 4;
5260 stl_phys(cs->as, env->regs[13], val);
5263 static uint32_t v7m_pop(CPUARMState *env)
5265 CPUState *cs = CPU(arm_env_get_cpu(env));
5266 uint32_t val;
5268 val = ldl_phys(cs->as, env->regs[13]);
5269 env->regs[13] += 4;
5270 return val;
5273 /* Switch to V7M main or process stack pointer. */
5274 static void switch_v7m_sp(CPUARMState *env, int process)
5276 uint32_t tmp;
5277 if (env->v7m.current_sp != process) {
5278 tmp = env->v7m.other_sp;
5279 env->v7m.other_sp = env->regs[13];
5280 env->regs[13] = tmp;
5281 env->v7m.current_sp = process;
5285 static void do_v7m_exception_exit(CPUARMState *env)
5287 uint32_t type;
5288 uint32_t xpsr;
5290 type = env->regs[15];
5291 if (env->v7m.exception != 0)
5292 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
5294 /* Switch to the target stack. */
5295 switch_v7m_sp(env, (type & 4) != 0);
5296 /* Pop registers. */
5297 env->regs[0] = v7m_pop(env);
5298 env->regs[1] = v7m_pop(env);
5299 env->regs[2] = v7m_pop(env);
5300 env->regs[3] = v7m_pop(env);
5301 env->regs[12] = v7m_pop(env);
5302 env->regs[14] = v7m_pop(env);
5303 env->regs[15] = v7m_pop(env);
5304 if (env->regs[15] & 1) {
5305 qemu_log_mask(LOG_GUEST_ERROR,
5306 "M profile return from interrupt with misaligned "
5307 "PC is UNPREDICTABLE\n");
5308 /* Actual hardware seems to ignore the lsbit, and there are several
5309 * RTOSes out there which incorrectly assume the r15 in the stack
5310 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5312 env->regs[15] &= ~1U;
5314 xpsr = v7m_pop(env);
5315 xpsr_write(env, xpsr, 0xfffffdff);
5316 /* Undo stack alignment. */
5317 if (xpsr & 0x200)
5318 env->regs[13] |= 4;
5319 /* ??? The exception return type specifies Thread/Handler mode. However
5320 this is also implied by the xPSR value. Not sure what to do
5321 if there is a mismatch. */
5322 /* ??? Likewise for mismatches between the CONTROL register and the stack
5323 pointer. */
5326 void arm_v7m_cpu_do_interrupt(CPUState *cs)
5328 ARMCPU *cpu = ARM_CPU(cs);
5329 CPUARMState *env = &cpu->env;
5330 uint32_t xpsr = xpsr_read(env);
5331 uint32_t lr;
5332 uint32_t addr;
5334 arm_log_exception(cs->exception_index);
5336 lr = 0xfffffff1;
5337 if (env->v7m.current_sp)
5338 lr |= 4;
5339 if (env->v7m.exception == 0)
5340 lr |= 8;
5342 /* For exceptions we just mark as pending on the NVIC, and let that
5343 handle it. */
5344 /* TODO: Need to escalate if the current priority is higher than the
5345 one we're raising. */
5346 switch (cs->exception_index) {
5347 case EXCP_UDEF:
5348 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
5349 return;
5350 case EXCP_SWI:
5351 /* The PC already points to the next instruction. */
5352 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
5353 return;
5354 case EXCP_PREFETCH_ABORT:
5355 case EXCP_DATA_ABORT:
5356 /* TODO: if we implemented the MPU registers, this is where we
5357 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
5359 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
5360 return;
5361 case EXCP_BKPT:
5362 if (semihosting_enabled()) {
5363 int nr;
5364 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
5365 if (nr == 0xab) {
5366 env->regs[15] += 2;
5367 qemu_log_mask(CPU_LOG_INT,
5368 "...handling as semihosting call 0x%x\n",
5369 env->regs[0]);
5370 env->regs[0] = do_arm_semihosting(env);
5371 return;
5374 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
5375 return;
5376 case EXCP_IRQ:
5377 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
5378 break;
5379 case EXCP_EXCEPTION_EXIT:
5380 do_v7m_exception_exit(env);
5381 return;
5382 default:
5383 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
5384 return; /* Never happens. Keep compiler happy. */
5387 /* Align stack pointer. */
5388 /* ??? Should only do this if Configuration Control Register
5389 STACKALIGN bit is set. */
5390 if (env->regs[13] & 4) {
5391 env->regs[13] -= 4;
5392 xpsr |= 0x200;
5394 /* Switch to the handler mode. */
5395 v7m_push(env, xpsr);
5396 v7m_push(env, env->regs[15]);
5397 v7m_push(env, env->regs[14]);
5398 v7m_push(env, env->regs[12]);
5399 v7m_push(env, env->regs[3]);
5400 v7m_push(env, env->regs[2]);
5401 v7m_push(env, env->regs[1]);
5402 v7m_push(env, env->regs[0]);
5403 switch_v7m_sp(env, 0);
5404 /* Clear IT bits */
5405 env->condexec_bits = 0;
5406 env->regs[14] = lr;
5407 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
5408 env->regs[15] = addr & 0xfffffffe;
5409 env->thumb = addr & 1;
5412 /* Function used to synchronize QEMU's AArch64 register set with AArch32
5413 * register set. This is necessary when switching between AArch32 and AArch64
5414 * execution state.
5416 void aarch64_sync_32_to_64(CPUARMState *env)
5418 int i;
5419 uint32_t mode = env->uncached_cpsr & CPSR_M;
5421 /* We can blanket copy R[0:7] to X[0:7] */
5422 for (i = 0; i < 8; i++) {
5423 env->xregs[i] = env->regs[i];
5426 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
5427 * Otherwise, they come from the banked user regs.
5429 if (mode == ARM_CPU_MODE_FIQ) {
5430 for (i = 8; i < 13; i++) {
5431 env->xregs[i] = env->usr_regs[i - 8];
5433 } else {
5434 for (i = 8; i < 13; i++) {
5435 env->xregs[i] = env->regs[i];
5439 /* Registers x13-x23 are the various mode SP and FP registers. Registers
5440 * r13 and r14 are only copied if we are in that mode, otherwise we copy
5441 * from the mode banked register.
5443 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
5444 env->xregs[13] = env->regs[13];
5445 env->xregs[14] = env->regs[14];
5446 } else {
5447 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
5448 /* HYP is an exception in that it is copied from r14 */
5449 if (mode == ARM_CPU_MODE_HYP) {
5450 env->xregs[14] = env->regs[14];
5451 } else {
5452 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
5456 if (mode == ARM_CPU_MODE_HYP) {
5457 env->xregs[15] = env->regs[13];
5458 } else {
5459 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
5462 if (mode == ARM_CPU_MODE_IRQ) {
5463 env->xregs[16] = env->regs[14];
5464 env->xregs[17] = env->regs[13];
5465 } else {
5466 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
5467 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
5470 if (mode == ARM_CPU_MODE_SVC) {
5471 env->xregs[18] = env->regs[14];
5472 env->xregs[19] = env->regs[13];
5473 } else {
5474 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
5475 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
5478 if (mode == ARM_CPU_MODE_ABT) {
5479 env->xregs[20] = env->regs[14];
5480 env->xregs[21] = env->regs[13];
5481 } else {
5482 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
5483 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
5486 if (mode == ARM_CPU_MODE_UND) {
5487 env->xregs[22] = env->regs[14];
5488 env->xregs[23] = env->regs[13];
5489 } else {
5490 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
5491 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
5494 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5495 * mode, then we can copy from r8-r14. Otherwise, we copy from the
5496 * FIQ bank for r8-r14.
5498 if (mode == ARM_CPU_MODE_FIQ) {
5499 for (i = 24; i < 31; i++) {
5500 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
5502 } else {
5503 for (i = 24; i < 29; i++) {
5504 env->xregs[i] = env->fiq_regs[i - 24];
5506 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
5507 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
5510 env->pc = env->regs[15];
5513 /* Function used to synchronize QEMU's AArch32 register set with AArch64
5514 * register set. This is necessary when switching between AArch32 and AArch64
5515 * execution state.
5517 void aarch64_sync_64_to_32(CPUARMState *env)
5519 int i;
5520 uint32_t mode = env->uncached_cpsr & CPSR_M;
5522 /* We can blanket copy X[0:7] to R[0:7] */
5523 for (i = 0; i < 8; i++) {
5524 env->regs[i] = env->xregs[i];
5527 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
5528 * Otherwise, we copy x8-x12 into the banked user regs.
5530 if (mode == ARM_CPU_MODE_FIQ) {
5531 for (i = 8; i < 13; i++) {
5532 env->usr_regs[i - 8] = env->xregs[i];
5534 } else {
5535 for (i = 8; i < 13; i++) {
5536 env->regs[i] = env->xregs[i];
5540 /* Registers r13 & r14 depend on the current mode.
5541 * If we are in a given mode, we copy the corresponding x registers to r13
5542 * and r14. Otherwise, we copy the x register to the banked r13 and r14
5543 * for the mode.
5545 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
5546 env->regs[13] = env->xregs[13];
5547 env->regs[14] = env->xregs[14];
5548 } else {
5549 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
5551 /* HYP is an exception in that it does not have its own banked r14 but
5552 * shares the USR r14
5554 if (mode == ARM_CPU_MODE_HYP) {
5555 env->regs[14] = env->xregs[14];
5556 } else {
5557 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
5561 if (mode == ARM_CPU_MODE_HYP) {
5562 env->regs[13] = env->xregs[15];
5563 } else {
5564 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
5567 if (mode == ARM_CPU_MODE_IRQ) {
5568 env->regs[14] = env->xregs[16];
5569 env->regs[13] = env->xregs[17];
5570 } else {
5571 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
5572 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
5575 if (mode == ARM_CPU_MODE_SVC) {
5576 env->regs[14] = env->xregs[18];
5577 env->regs[13] = env->xregs[19];
5578 } else {
5579 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
5580 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
5583 if (mode == ARM_CPU_MODE_ABT) {
5584 env->regs[14] = env->xregs[20];
5585 env->regs[13] = env->xregs[21];
5586 } else {
5587 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
5588 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
5591 if (mode == ARM_CPU_MODE_UND) {
5592 env->regs[14] = env->xregs[22];
5593 env->regs[13] = env->xregs[23];
5594 } else {
5595 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
5596 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
5599 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5600 * mode, then we can copy to r8-r14. Otherwise, we copy to the
5601 * FIQ bank for r8-r14.
5603 if (mode == ARM_CPU_MODE_FIQ) {
5604 for (i = 24; i < 31; i++) {
5605 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
5607 } else {
5608 for (i = 24; i < 29; i++) {
5609 env->fiq_regs[i - 24] = env->xregs[i];
5611 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
5612 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
5615 env->regs[15] = env->pc;
5618 /* Handle a CPU exception. */
5619 void arm_cpu_do_interrupt(CPUState *cs)
5621 ARMCPU *cpu = ARM_CPU(cs);
5622 CPUARMState *env = &cpu->env;
5623 uint32_t addr;
5624 uint32_t mask;
5625 int new_mode;
5626 uint32_t offset;
5627 uint32_t moe;
5629 assert(!IS_M(env));
5631 arm_log_exception(cs->exception_index);
5633 if (arm_is_psci_call(cpu, cs->exception_index)) {
5634 arm_handle_psci_call(cpu);
5635 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
5636 return;
5639 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
5640 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
5641 case EC_BREAKPOINT:
5642 case EC_BREAKPOINT_SAME_EL:
5643 moe = 1;
5644 break;
5645 case EC_WATCHPOINT:
5646 case EC_WATCHPOINT_SAME_EL:
5647 moe = 10;
5648 break;
5649 case EC_AA32_BKPT:
5650 moe = 3;
5651 break;
5652 case EC_VECTORCATCH:
5653 moe = 5;
5654 break;
5655 default:
5656 moe = 0;
5657 break;
5660 if (moe) {
5661 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
5664 /* TODO: Vectored interrupt controller. */
5665 switch (cs->exception_index) {
5666 case EXCP_UDEF:
5667 new_mode = ARM_CPU_MODE_UND;
5668 addr = 0x04;
5669 mask = CPSR_I;
5670 if (env->thumb)
5671 offset = 2;
5672 else
5673 offset = 4;
5674 break;
5675 case EXCP_SWI:
5676 if (semihosting_enabled()) {
5677 /* Check for semihosting interrupt. */
5678 if (env->thumb) {
5679 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
5680 & 0xff;
5681 } else {
5682 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
5683 & 0xffffff;
5685 /* Only intercept calls from privileged modes, to provide some
5686 semblance of security. */
5687 if (((mask == 0x123456 && !env->thumb)
5688 || (mask == 0xab && env->thumb))
5689 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
5690 qemu_log_mask(CPU_LOG_INT,
5691 "...handling as semihosting call 0x%x\n",
5692 env->regs[0]);
5693 env->regs[0] = do_arm_semihosting(env);
5694 return;
5697 new_mode = ARM_CPU_MODE_SVC;
5698 addr = 0x08;
5699 mask = CPSR_I;
5700 /* The PC already points to the next instruction. */
5701 offset = 0;
5702 break;
5703 case EXCP_BKPT:
5704 /* See if this is a semihosting syscall. */
5705 if (env->thumb && semihosting_enabled()) {
5706 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
5707 if (mask == 0xab
5708 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
5709 env->regs[15] += 2;
5710 qemu_log_mask(CPU_LOG_INT,
5711 "...handling as semihosting call 0x%x\n",
5712 env->regs[0]);
5713 env->regs[0] = do_arm_semihosting(env);
5714 return;
5717 env->exception.fsr = 2;
5718 /* Fall through to prefetch abort. */
5719 case EXCP_PREFETCH_ABORT:
5720 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
5721 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
5722 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
5723 env->exception.fsr, (uint32_t)env->exception.vaddress);
5724 new_mode = ARM_CPU_MODE_ABT;
5725 addr = 0x0c;
5726 mask = CPSR_A | CPSR_I;
5727 offset = 4;
5728 break;
5729 case EXCP_DATA_ABORT:
5730 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
5731 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
5732 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
5733 env->exception.fsr,
5734 (uint32_t)env->exception.vaddress);
5735 new_mode = ARM_CPU_MODE_ABT;
5736 addr = 0x10;
5737 mask = CPSR_A | CPSR_I;
5738 offset = 8;
5739 break;
5740 case EXCP_IRQ:
5741 new_mode = ARM_CPU_MODE_IRQ;
5742 addr = 0x18;
5743 /* Disable IRQ and imprecise data aborts. */
5744 mask = CPSR_A | CPSR_I;
5745 offset = 4;
5746 if (env->cp15.scr_el3 & SCR_IRQ) {
5747 /* IRQ routed to monitor mode */
5748 new_mode = ARM_CPU_MODE_MON;
5749 mask |= CPSR_F;
5751 break;
5752 case EXCP_FIQ:
5753 new_mode = ARM_CPU_MODE_FIQ;
5754 addr = 0x1c;
5755 /* Disable FIQ, IRQ and imprecise data aborts. */
5756 mask = CPSR_A | CPSR_I | CPSR_F;
5757 if (env->cp15.scr_el3 & SCR_FIQ) {
5758 /* FIQ routed to monitor mode */
5759 new_mode = ARM_CPU_MODE_MON;
5761 offset = 4;
5762 break;
5763 case EXCP_SMC:
5764 new_mode = ARM_CPU_MODE_MON;
5765 addr = 0x08;
5766 mask = CPSR_A | CPSR_I | CPSR_F;
5767 offset = 0;
5768 break;
5769 default:
5770 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
5771 return; /* Never happens. Keep compiler happy. */
5774 if (new_mode == ARM_CPU_MODE_MON) {
5775 addr += env->cp15.mvbar;
5776 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
5777 /* High vectors. When enabled, base address cannot be remapped. */
5778 addr += 0xffff0000;
5779 } else {
5780 /* ARM v7 architectures provide a vector base address register to remap
5781 * the interrupt vector table.
5782 * This register is only followed in non-monitor mode, and is banked.
5783 * Note: only bits 31:5 are valid.
5785 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
5788 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
5789 env->cp15.scr_el3 &= ~SCR_NS;
5792 switch_mode (env, new_mode);
5793 /* For exceptions taken to AArch32 we must clear the SS bit in both
5794 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
5796 env->uncached_cpsr &= ~PSTATE_SS;
5797 env->spsr = cpsr_read(env);
5798 /* Clear IT bits. */
5799 env->condexec_bits = 0;
5800 /* Switch to the new mode, and to the correct instruction set. */
5801 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
5802 env->daif |= mask;
5803 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
5804 * and we should just guard the thumb mode on V4 */
5805 if (arm_feature(env, ARM_FEATURE_V4T)) {
5806 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
5808 env->regs[14] = env->regs[15] + offset;
5809 env->regs[15] = addr;
5810 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
5814 /* Return the exception level which controls this address translation regime */
5815 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
5817 switch (mmu_idx) {
5818 case ARMMMUIdx_S2NS:
5819 case ARMMMUIdx_S1E2:
5820 return 2;
5821 case ARMMMUIdx_S1E3:
5822 return 3;
5823 case ARMMMUIdx_S1SE0:
5824 return arm_el_is_aa64(env, 3) ? 1 : 3;
5825 case ARMMMUIdx_S1SE1:
5826 case ARMMMUIdx_S1NSE0:
5827 case ARMMMUIdx_S1NSE1:
5828 return 1;
5829 default:
5830 g_assert_not_reached();
5834 /* Return true if this address translation regime is secure */
5835 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
5837 switch (mmu_idx) {
5838 case ARMMMUIdx_S12NSE0:
5839 case ARMMMUIdx_S12NSE1:
5840 case ARMMMUIdx_S1NSE0:
5841 case ARMMMUIdx_S1NSE1:
5842 case ARMMMUIdx_S1E2:
5843 case ARMMMUIdx_S2NS:
5844 return false;
5845 case ARMMMUIdx_S1E3:
5846 case ARMMMUIdx_S1SE0:
5847 case ARMMMUIdx_S1SE1:
5848 return true;
5849 default:
5850 g_assert_not_reached();
5854 /* Return the SCTLR value which controls this address translation regime */
5855 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
5857 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
5860 /* Return true if the specified stage of address translation is disabled */
5861 static inline bool regime_translation_disabled(CPUARMState *env,
5862 ARMMMUIdx mmu_idx)
5864 if (mmu_idx == ARMMMUIdx_S2NS) {
5865 return (env->cp15.hcr_el2 & HCR_VM) == 0;
5867 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
5870 /* Return the TCR controlling this translation regime */
5871 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
5873 if (mmu_idx == ARMMMUIdx_S2NS) {
5874 return &env->cp15.vtcr_el2;
5876 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
5879 /* Return the TTBR associated with this translation regime */
5880 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
5881 int ttbrn)
5883 if (mmu_idx == ARMMMUIdx_S2NS) {
5884 return env->cp15.vttbr_el2;
5886 if (ttbrn == 0) {
5887 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
5888 } else {
5889 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
5893 /* Return true if the translation regime is using LPAE format page tables */
5894 static inline bool regime_using_lpae_format(CPUARMState *env,
5895 ARMMMUIdx mmu_idx)
5897 int el = regime_el(env, mmu_idx);
5898 if (el == 2 || arm_el_is_aa64(env, el)) {
5899 return true;
5901 if (arm_feature(env, ARM_FEATURE_LPAE)
5902 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
5903 return true;
5905 return false;
5908 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
5910 switch (mmu_idx) {
5911 case ARMMMUIdx_S1SE0:
5912 case ARMMMUIdx_S1NSE0:
5913 return true;
5914 default:
5915 return false;
5916 case ARMMMUIdx_S12NSE0:
5917 case ARMMMUIdx_S12NSE1:
5918 g_assert_not_reached();
5922 /* Translate section/page access permissions to page
5923 * R/W protection flags
5925 * @env: CPUARMState
5926 * @mmu_idx: MMU index indicating required translation regime
5927 * @ap: The 3-bit access permissions (AP[2:0])
5928 * @domain_prot: The 2-bit domain access permissions
5930 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
5931 int ap, int domain_prot)
5933 bool is_user = regime_is_user(env, mmu_idx);
5935 if (domain_prot == 3) {
5936 return PAGE_READ | PAGE_WRITE;
5939 switch (ap) {
5940 case 0:
5941 if (arm_feature(env, ARM_FEATURE_V7)) {
5942 return 0;
5944 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
5945 case SCTLR_S:
5946 return is_user ? 0 : PAGE_READ;
5947 case SCTLR_R:
5948 return PAGE_READ;
5949 default:
5950 return 0;
5952 case 1:
5953 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
5954 case 2:
5955 if (is_user) {
5956 return PAGE_READ;
5957 } else {
5958 return PAGE_READ | PAGE_WRITE;
5960 case 3:
5961 return PAGE_READ | PAGE_WRITE;
5962 case 4: /* Reserved. */
5963 return 0;
5964 case 5:
5965 return is_user ? 0 : PAGE_READ;
5966 case 6:
5967 return PAGE_READ;
5968 case 7:
5969 if (!arm_feature(env, ARM_FEATURE_V6K)) {
5970 return 0;
5972 return PAGE_READ;
5973 default:
5974 g_assert_not_reached();
5978 /* Translate section/page access permissions to page
5979 * R/W protection flags.
5981 * @ap: The 2-bit simple AP (AP[2:1])
5982 * @is_user: TRUE if accessing from PL0
5984 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
5986 switch (ap) {
5987 case 0:
5988 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
5989 case 1:
5990 return PAGE_READ | PAGE_WRITE;
5991 case 2:
5992 return is_user ? 0 : PAGE_READ;
5993 case 3:
5994 return PAGE_READ;
5995 default:
5996 g_assert_not_reached();
6000 static inline int
6001 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
6003 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
6006 /* Translate section/page access permissions to protection flags
6008 * @env: CPUARMState
6009 * @mmu_idx: MMU index indicating required translation regime
6010 * @is_aa64: TRUE if AArch64
6011 * @ap: The 2-bit simple AP (AP[2:1])
6012 * @ns: NS (non-secure) bit
6013 * @xn: XN (execute-never) bit
6014 * @pxn: PXN (privileged execute-never) bit
6016 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
6017 int ap, int ns, int xn, int pxn)
6019 bool is_user = regime_is_user(env, mmu_idx);
6020 int prot_rw, user_rw;
6021 bool have_wxn;
6022 int wxn = 0;
6024 assert(mmu_idx != ARMMMUIdx_S2NS);
6026 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
6027 if (is_user) {
6028 prot_rw = user_rw;
6029 } else {
6030 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
6033 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
6034 return prot_rw;
6037 /* TODO have_wxn should be replaced with
6038 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
6039 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
6040 * compatible processors have EL2, which is required for [U]WXN.
6042 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
6044 if (have_wxn) {
6045 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
6048 if (is_aa64) {
6049 switch (regime_el(env, mmu_idx)) {
6050 case 1:
6051 if (!is_user) {
6052 xn = pxn || (user_rw & PAGE_WRITE);
6054 break;
6055 case 2:
6056 case 3:
6057 break;
6059 } else if (arm_feature(env, ARM_FEATURE_V7)) {
6060 switch (regime_el(env, mmu_idx)) {
6061 case 1:
6062 case 3:
6063 if (is_user) {
6064 xn = xn || !(user_rw & PAGE_READ);
6065 } else {
6066 int uwxn = 0;
6067 if (have_wxn) {
6068 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
6070 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
6071 (uwxn && (user_rw & PAGE_WRITE));
6073 break;
6074 case 2:
6075 break;
6077 } else {
6078 xn = wxn = 0;
6081 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
6082 return prot_rw;
6084 return prot_rw | PAGE_EXEC;
6087 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
6088 uint32_t *table, uint32_t address)
6090 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
6091 TCR *tcr = regime_tcr(env, mmu_idx);
6093 if (address & tcr->mask) {
6094 if (tcr->raw_tcr & TTBCR_PD1) {
6095 /* Translation table walk disabled for TTBR1 */
6096 return false;
6098 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
6099 } else {
6100 if (tcr->raw_tcr & TTBCR_PD0) {
6101 /* Translation table walk disabled for TTBR0 */
6102 return false;
6104 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
6106 *table |= (address >> 18) & 0x3ffc;
6107 return true;
6110 /* All loads done in the course of a page table walk go through here.
6111 * TODO: rather than ignoring errors from physical memory reads (which
6112 * are external aborts in ARM terminology) we should propagate this
6113 * error out so that we can turn it into a Data Abort if this walk
6114 * was being done for a CPU load/store or an address translation instruction
6115 * (but not if it was for a debug access).
6117 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure)
6119 MemTxAttrs attrs = {};
6121 attrs.secure = is_secure;
6122 return address_space_ldl(cs->as, addr, attrs, NULL);
6125 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure)
6127 MemTxAttrs attrs = {};
6129 attrs.secure = is_secure;
6130 return address_space_ldq(cs->as, addr, attrs, NULL);
6133 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
6134 int access_type, ARMMMUIdx mmu_idx,
6135 hwaddr *phys_ptr, int *prot,
6136 target_ulong *page_size, uint32_t *fsr)
6138 CPUState *cs = CPU(arm_env_get_cpu(env));
6139 int code;
6140 uint32_t table;
6141 uint32_t desc;
6142 int type;
6143 int ap;
6144 int domain = 0;
6145 int domain_prot;
6146 hwaddr phys_addr;
6147 uint32_t dacr;
6149 /* Pagetable walk. */
6150 /* Lookup l1 descriptor. */
6151 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
6152 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6153 code = 5;
6154 goto do_fault;
6156 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
6157 type = (desc & 3);
6158 domain = (desc >> 5) & 0x0f;
6159 if (regime_el(env, mmu_idx) == 1) {
6160 dacr = env->cp15.dacr_ns;
6161 } else {
6162 dacr = env->cp15.dacr_s;
6164 domain_prot = (dacr >> (domain * 2)) & 3;
6165 if (type == 0) {
6166 /* Section translation fault. */
6167 code = 5;
6168 goto do_fault;
6170 if (domain_prot == 0 || domain_prot == 2) {
6171 if (type == 2)
6172 code = 9; /* Section domain fault. */
6173 else
6174 code = 11; /* Page domain fault. */
6175 goto do_fault;
6177 if (type == 2) {
6178 /* 1Mb section. */
6179 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
6180 ap = (desc >> 10) & 3;
6181 code = 13;
6182 *page_size = 1024 * 1024;
6183 } else {
6184 /* Lookup l2 entry. */
6185 if (type == 1) {
6186 /* Coarse pagetable. */
6187 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
6188 } else {
6189 /* Fine pagetable. */
6190 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
6192 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
6193 switch (desc & 3) {
6194 case 0: /* Page translation fault. */
6195 code = 7;
6196 goto do_fault;
6197 case 1: /* 64k page. */
6198 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
6199 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
6200 *page_size = 0x10000;
6201 break;
6202 case 2: /* 4k page. */
6203 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
6204 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
6205 *page_size = 0x1000;
6206 break;
6207 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
6208 if (type == 1) {
6209 /* ARMv6/XScale extended small page format */
6210 if (arm_feature(env, ARM_FEATURE_XSCALE)
6211 || arm_feature(env, ARM_FEATURE_V6)) {
6212 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
6213 *page_size = 0x1000;
6214 } else {
6215 /* UNPREDICTABLE in ARMv5; we choose to take a
6216 * page translation fault.
6218 code = 7;
6219 goto do_fault;
6221 } else {
6222 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
6223 *page_size = 0x400;
6225 ap = (desc >> 4) & 3;
6226 break;
6227 default:
6228 /* Never happens, but compiler isn't smart enough to tell. */
6229 abort();
6231 code = 15;
6233 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
6234 *prot |= *prot ? PAGE_EXEC : 0;
6235 if (!(*prot & (1 << access_type))) {
6236 /* Access permission fault. */
6237 goto do_fault;
6239 *phys_ptr = phys_addr;
6240 return false;
6241 do_fault:
6242 *fsr = code | (domain << 4);
6243 return true;
6246 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
6247 int access_type, ARMMMUIdx mmu_idx,
6248 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
6249 target_ulong *page_size, uint32_t *fsr)
6251 CPUState *cs = CPU(arm_env_get_cpu(env));
6252 int code;
6253 uint32_t table;
6254 uint32_t desc;
6255 uint32_t xn;
6256 uint32_t pxn = 0;
6257 int type;
6258 int ap;
6259 int domain = 0;
6260 int domain_prot;
6261 hwaddr phys_addr;
6262 uint32_t dacr;
6263 bool ns;
6265 /* Pagetable walk. */
6266 /* Lookup l1 descriptor. */
6267 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
6268 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6269 code = 5;
6270 goto do_fault;
6272 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
6273 type = (desc & 3);
6274 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
6275 /* Section translation fault, or attempt to use the encoding
6276 * which is Reserved on implementations without PXN.
6278 code = 5;
6279 goto do_fault;
6281 if ((type == 1) || !(desc & (1 << 18))) {
6282 /* Page or Section. */
6283 domain = (desc >> 5) & 0x0f;
6285 if (regime_el(env, mmu_idx) == 1) {
6286 dacr = env->cp15.dacr_ns;
6287 } else {
6288 dacr = env->cp15.dacr_s;
6290 domain_prot = (dacr >> (domain * 2)) & 3;
6291 if (domain_prot == 0 || domain_prot == 2) {
6292 if (type != 1) {
6293 code = 9; /* Section domain fault. */
6294 } else {
6295 code = 11; /* Page domain fault. */
6297 goto do_fault;
6299 if (type != 1) {
6300 if (desc & (1 << 18)) {
6301 /* Supersection. */
6302 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
6303 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
6304 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
6305 *page_size = 0x1000000;
6306 } else {
6307 /* Section. */
6308 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
6309 *page_size = 0x100000;
6311 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
6312 xn = desc & (1 << 4);
6313 pxn = desc & 1;
6314 code = 13;
6315 ns = extract32(desc, 19, 1);
6316 } else {
6317 if (arm_feature(env, ARM_FEATURE_PXN)) {
6318 pxn = (desc >> 2) & 1;
6320 ns = extract32(desc, 3, 1);
6321 /* Lookup l2 entry. */
6322 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
6323 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
6324 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
6325 switch (desc & 3) {
6326 case 0: /* Page translation fault. */
6327 code = 7;
6328 goto do_fault;
6329 case 1: /* 64k page. */
6330 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
6331 xn = desc & (1 << 15);
6332 *page_size = 0x10000;
6333 break;
6334 case 2: case 3: /* 4k page. */
6335 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
6336 xn = desc & 1;
6337 *page_size = 0x1000;
6338 break;
6339 default:
6340 /* Never happens, but compiler isn't smart enough to tell. */
6341 abort();
6343 code = 15;
6345 if (domain_prot == 3) {
6346 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
6347 } else {
6348 if (pxn && !regime_is_user(env, mmu_idx)) {
6349 xn = 1;
6351 if (xn && access_type == 2)
6352 goto do_fault;
6354 if (arm_feature(env, ARM_FEATURE_V6K) &&
6355 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
6356 /* The simplified model uses AP[0] as an access control bit. */
6357 if ((ap & 1) == 0) {
6358 /* Access flag fault. */
6359 code = (code == 15) ? 6 : 3;
6360 goto do_fault;
6362 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
6363 } else {
6364 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
6366 if (*prot && !xn) {
6367 *prot |= PAGE_EXEC;
6369 if (!(*prot & (1 << access_type))) {
6370 /* Access permission fault. */
6371 goto do_fault;
6374 if (ns) {
6375 /* The NS bit will (as required by the architecture) have no effect if
6376 * the CPU doesn't support TZ or this is a non-secure translation
6377 * regime, because the attribute will already be non-secure.
6379 attrs->secure = false;
6381 *phys_ptr = phys_addr;
6382 return false;
6383 do_fault:
6384 *fsr = code | (domain << 4);
6385 return true;
6388 /* Fault type for long-descriptor MMU fault reporting; this corresponds
6389 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
6391 typedef enum {
6392 translation_fault = 1,
6393 access_fault = 2,
6394 permission_fault = 3,
6395 } MMUFaultType;
6397 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
6398 int access_type, ARMMMUIdx mmu_idx,
6399 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
6400 target_ulong *page_size_ptr, uint32_t *fsr)
6402 CPUState *cs = CPU(arm_env_get_cpu(env));
6403 /* Read an LPAE long-descriptor translation table. */
6404 MMUFaultType fault_type = translation_fault;
6405 uint32_t level = 1;
6406 uint32_t epd = 0;
6407 int32_t tsz;
6408 uint32_t tg;
6409 uint64_t ttbr;
6410 int ttbr_select;
6411 hwaddr descaddr, descmask;
6412 uint32_t tableattrs;
6413 target_ulong page_size;
6414 uint32_t attrs;
6415 int32_t granule_sz = 9;
6416 int32_t va_size = 32;
6417 int32_t tbi = 0;
6418 TCR *tcr = regime_tcr(env, mmu_idx);
6419 int ap, ns, xn, pxn;
6420 uint32_t el = regime_el(env, mmu_idx);
6421 bool ttbr1_valid = true;
6423 /* TODO:
6424 * This code does not handle the different format TCR for VTCR_EL2.
6425 * This code also does not support shareability levels.
6426 * Attribute and permission bit handling should also be checked when adding
6427 * support for those page table walks.
6429 if (arm_el_is_aa64(env, el)) {
6430 va_size = 64;
6431 if (el > 1) {
6432 if (mmu_idx != ARMMMUIdx_S2NS) {
6433 tbi = extract64(tcr->raw_tcr, 20, 1);
6435 } else {
6436 if (extract64(address, 55, 1)) {
6437 tbi = extract64(tcr->raw_tcr, 38, 1);
6438 } else {
6439 tbi = extract64(tcr->raw_tcr, 37, 1);
6442 tbi *= 8;
6444 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
6445 * invalid.
6447 if (el > 1) {
6448 ttbr1_valid = false;
6450 } else {
6451 /* There is no TTBR1 for EL2 */
6452 if (el == 2) {
6453 ttbr1_valid = false;
6457 /* Determine whether this address is in the region controlled by
6458 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
6459 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
6460 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
6462 uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6);
6463 if (va_size == 64) {
6464 t0sz = MIN(t0sz, 39);
6465 t0sz = MAX(t0sz, 16);
6467 uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6);
6468 if (va_size == 64) {
6469 t1sz = MIN(t1sz, 39);
6470 t1sz = MAX(t1sz, 16);
6472 if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
6473 /* there is a ttbr0 region and we are in it (high bits all zero) */
6474 ttbr_select = 0;
6475 } else if (ttbr1_valid && t1sz &&
6476 !extract64(~address, va_size - t1sz, t1sz - tbi)) {
6477 /* there is a ttbr1 region and we are in it (high bits all one) */
6478 ttbr_select = 1;
6479 } else if (!t0sz) {
6480 /* ttbr0 region is "everything not in the ttbr1 region" */
6481 ttbr_select = 0;
6482 } else if (!t1sz && ttbr1_valid) {
6483 /* ttbr1 region is "everything not in the ttbr0 region" */
6484 ttbr_select = 1;
6485 } else {
6486 /* in the gap between the two regions, this is a Translation fault */
6487 fault_type = translation_fault;
6488 goto do_fault;
6491 /* Note that QEMU ignores shareability and cacheability attributes,
6492 * so we don't need to do anything with the SH, ORGN, IRGN fields
6493 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
6494 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
6495 * implement any ASID-like capability so we can ignore it (instead
6496 * we will always flush the TLB any time the ASID is changed).
6498 if (ttbr_select == 0) {
6499 ttbr = regime_ttbr(env, mmu_idx, 0);
6500 if (el < 2) {
6501 epd = extract32(tcr->raw_tcr, 7, 1);
6503 tsz = t0sz;
6505 tg = extract32(tcr->raw_tcr, 14, 2);
6506 if (tg == 1) { /* 64KB pages */
6507 granule_sz = 13;
6509 if (tg == 2) { /* 16KB pages */
6510 granule_sz = 11;
6512 } else {
6513 /* We should only be here if TTBR1 is valid */
6514 assert(ttbr1_valid);
6516 ttbr = regime_ttbr(env, mmu_idx, 1);
6517 epd = extract32(tcr->raw_tcr, 23, 1);
6518 tsz = t1sz;
6520 tg = extract32(tcr->raw_tcr, 30, 2);
6521 if (tg == 3) { /* 64KB pages */
6522 granule_sz = 13;
6524 if (tg == 1) { /* 16KB pages */
6525 granule_sz = 11;
6529 /* Here we should have set up all the parameters for the translation:
6530 * va_size, ttbr, epd, tsz, granule_sz, tbi
6533 if (epd) {
6534 /* Translation table walk disabled => Translation fault on TLB miss
6535 * Note: This is always 0 on 64-bit EL2 and EL3.
6537 goto do_fault;
6540 /* The starting level depends on the virtual address size (which can be
6541 * up to 48 bits) and the translation granule size. It indicates the number
6542 * of strides (granule_sz bits at a time) needed to consume the bits
6543 * of the input address. In the pseudocode this is:
6544 * level = 4 - RoundUp((inputsize - grainsize) / stride)
6545 * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
6546 * our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
6547 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
6548 * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
6549 * = 4 - (va_size - tsz - 4) / granule_sz;
6551 level = 4 - (va_size - tsz - 4) / granule_sz;
6553 /* Clear the vaddr bits which aren't part of the within-region address,
6554 * so that we don't have to special case things when calculating the
6555 * first descriptor address.
6557 if (tsz) {
6558 address &= (1ULL << (va_size - tsz)) - 1;
6561 descmask = (1ULL << (granule_sz + 3)) - 1;
6563 /* Now we can extract the actual base address from the TTBR */
6564 descaddr = extract64(ttbr, 0, 48);
6565 descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
6567 /* Secure accesses start with the page table in secure memory and
6568 * can be downgraded to non-secure at any step. Non-secure accesses
6569 * remain non-secure. We implement this by just ORing in the NSTable/NS
6570 * bits at each step.
6572 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
6573 for (;;) {
6574 uint64_t descriptor;
6575 bool nstable;
6577 descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
6578 descaddr &= ~7ULL;
6579 nstable = extract32(tableattrs, 4, 1);
6580 descriptor = arm_ldq_ptw(cs, descaddr, !nstable);
6581 if (!(descriptor & 1) ||
6582 (!(descriptor & 2) && (level == 3))) {
6583 /* Invalid, or the Reserved level 3 encoding */
6584 goto do_fault;
6586 descaddr = descriptor & 0xfffffff000ULL;
6588 if ((descriptor & 2) && (level < 3)) {
6589 /* Table entry. The top five bits are attributes which may
6590 * propagate down through lower levels of the table (and
6591 * which are all arranged so that 0 means "no effect", so
6592 * we can gather them up by ORing in the bits at each level).
6594 tableattrs |= extract64(descriptor, 59, 5);
6595 level++;
6596 continue;
6598 /* Block entry at level 1 or 2, or page entry at level 3.
6599 * These are basically the same thing, although the number
6600 * of bits we pull in from the vaddr varies.
6602 page_size = (1ULL << ((granule_sz * (4 - level)) + 3));
6603 descaddr |= (address & (page_size - 1));
6604 /* Extract attributes from the descriptor and merge with table attrs */
6605 attrs = extract64(descriptor, 2, 10)
6606 | (extract64(descriptor, 52, 12) << 10);
6607 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
6608 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
6609 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
6610 * means "force PL1 access only", which means forcing AP[1] to 0.
6612 if (extract32(tableattrs, 2, 1)) {
6613 attrs &= ~(1 << 4);
6615 attrs |= nstable << 3; /* NS */
6616 break;
6618 /* Here descaddr is the final physical address, and attributes
6619 * are all in attrs.
6621 fault_type = access_fault;
6622 if ((attrs & (1 << 8)) == 0) {
6623 /* Access flag */
6624 goto do_fault;
6627 ap = extract32(attrs, 4, 2);
6628 ns = extract32(attrs, 3, 1);
6629 xn = extract32(attrs, 12, 1);
6630 pxn = extract32(attrs, 11, 1);
6632 *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn);
6634 fault_type = permission_fault;
6635 if (!(*prot & (1 << access_type))) {
6636 goto do_fault;
6639 if (ns) {
6640 /* The NS bit will (as required by the architecture) have no effect if
6641 * the CPU doesn't support TZ or this is a non-secure translation
6642 * regime, because the attribute will already be non-secure.
6644 txattrs->secure = false;
6646 *phys_ptr = descaddr;
6647 *page_size_ptr = page_size;
6648 return false;
6650 do_fault:
6651 /* Long-descriptor format IFSR/DFSR value */
6652 *fsr = (1 << 9) | (fault_type << 2) | level;
6653 return true;
6656 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
6657 ARMMMUIdx mmu_idx,
6658 int32_t address, int *prot)
6660 *prot = PAGE_READ | PAGE_WRITE;
6661 switch (address) {
6662 case 0xF0000000 ... 0xFFFFFFFF:
6663 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
6664 *prot |= PAGE_EXEC;
6666 break;
6667 case 0x00000000 ... 0x7FFFFFFF:
6668 *prot |= PAGE_EXEC;
6669 break;
6674 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
6675 int access_type, ARMMMUIdx mmu_idx,
6676 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
6678 ARMCPU *cpu = arm_env_get_cpu(env);
6679 int n;
6680 bool is_user = regime_is_user(env, mmu_idx);
6682 *phys_ptr = address;
6683 *prot = 0;
6685 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
6686 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
6687 } else { /* MPU enabled */
6688 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
6689 /* region search */
6690 uint32_t base = env->pmsav7.drbar[n];
6691 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
6692 uint32_t rmask;
6693 bool srdis = false;
6695 if (!(env->pmsav7.drsr[n] & 0x1)) {
6696 continue;
6699 if (!rsize) {
6700 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
6701 continue;
6703 rsize++;
6704 rmask = (1ull << rsize) - 1;
6706 if (base & rmask) {
6707 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
6708 "to DRSR region size, mask = %" PRIx32,
6709 base, rmask);
6710 continue;
6713 if (address < base || address > base + rmask) {
6714 continue;
6717 /* Region matched */
6719 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
6720 int i, snd;
6721 uint32_t srdis_mask;
6723 rsize -= 3; /* sub region size (power of 2) */
6724 snd = ((address - base) >> rsize) & 0x7;
6725 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
6727 srdis_mask = srdis ? 0x3 : 0x0;
6728 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
6729 /* This will check in groups of 2, 4 and then 8, whether
6730 * the subregion bits are consistent. rsize is incremented
6731 * back up to give the region size, considering consistent
6732 * adjacent subregions as one region. Stop testing if rsize
6733 * is already big enough for an entire QEMU page.
6735 int snd_rounded = snd & ~(i - 1);
6736 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
6737 snd_rounded + 8, i);
6738 if (srdis_mask ^ srdis_multi) {
6739 break;
6741 srdis_mask = (srdis_mask << i) | srdis_mask;
6742 rsize++;
6745 if (rsize < TARGET_PAGE_BITS) {
6746 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
6747 "alignment of %" PRIu32 " bits. Minimum is %d\n",
6748 rsize, TARGET_PAGE_BITS);
6749 continue;
6751 if (srdis) {
6752 continue;
6754 break;
6757 if (n == -1) { /* no hits */
6758 if (cpu->pmsav7_dregion &&
6759 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
6760 /* background fault */
6761 *fsr = 0;
6762 return true;
6764 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
6765 } else { /* a MPU hit! */
6766 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
6768 if (is_user) { /* User mode AP bit decoding */
6769 switch (ap) {
6770 case 0:
6771 case 1:
6772 case 5:
6773 break; /* no access */
6774 case 3:
6775 *prot |= PAGE_WRITE;
6776 /* fall through */
6777 case 2:
6778 case 6:
6779 *prot |= PAGE_READ | PAGE_EXEC;
6780 break;
6781 default:
6782 qemu_log_mask(LOG_GUEST_ERROR,
6783 "Bad value for AP bits in DRACR %"
6784 PRIx32 "\n", ap);
6786 } else { /* Priv. mode AP bits decoding */
6787 switch (ap) {
6788 case 0:
6789 break; /* no access */
6790 case 1:
6791 case 2:
6792 case 3:
6793 *prot |= PAGE_WRITE;
6794 /* fall through */
6795 case 5:
6796 case 6:
6797 *prot |= PAGE_READ | PAGE_EXEC;
6798 break;
6799 default:
6800 qemu_log_mask(LOG_GUEST_ERROR,
6801 "Bad value for AP bits in DRACR %"
6802 PRIx32 "\n", ap);
6806 /* execute never */
6807 if (env->pmsav7.dracr[n] & (1 << 12)) {
6808 *prot &= ~PAGE_EXEC;
6813 *fsr = 0x00d; /* Permission fault */
6814 return !(*prot & (1 << access_type));
6817 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
6818 int access_type, ARMMMUIdx mmu_idx,
6819 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
6821 int n;
6822 uint32_t mask;
6823 uint32_t base;
6824 bool is_user = regime_is_user(env, mmu_idx);
6826 *phys_ptr = address;
6827 for (n = 7; n >= 0; n--) {
6828 base = env->cp15.c6_region[n];
6829 if ((base & 1) == 0) {
6830 continue;
6832 mask = 1 << ((base >> 1) & 0x1f);
6833 /* Keep this shift separate from the above to avoid an
6834 (undefined) << 32. */
6835 mask = (mask << 1) - 1;
6836 if (((base ^ address) & ~mask) == 0) {
6837 break;
6840 if (n < 0) {
6841 *fsr = 2;
6842 return true;
6845 if (access_type == 2) {
6846 mask = env->cp15.pmsav5_insn_ap;
6847 } else {
6848 mask = env->cp15.pmsav5_data_ap;
6850 mask = (mask >> (n * 4)) & 0xf;
6851 switch (mask) {
6852 case 0:
6853 *fsr = 1;
6854 return true;
6855 case 1:
6856 if (is_user) {
6857 *fsr = 1;
6858 return true;
6860 *prot = PAGE_READ | PAGE_WRITE;
6861 break;
6862 case 2:
6863 *prot = PAGE_READ;
6864 if (!is_user) {
6865 *prot |= PAGE_WRITE;
6867 break;
6868 case 3:
6869 *prot = PAGE_READ | PAGE_WRITE;
6870 break;
6871 case 5:
6872 if (is_user) {
6873 *fsr = 1;
6874 return true;
6876 *prot = PAGE_READ;
6877 break;
6878 case 6:
6879 *prot = PAGE_READ;
6880 break;
6881 default:
6882 /* Bad permission. */
6883 *fsr = 1;
6884 return true;
6886 *prot |= PAGE_EXEC;
6887 return false;
6890 /* get_phys_addr - get the physical address for this virtual address
6892 * Find the physical address corresponding to the given virtual address,
6893 * by doing a translation table walk on MMU based systems or using the
6894 * MPU state on MPU based systems.
6896 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
6897 * prot and page_size may not be filled in, and the populated fsr value provides
6898 * information on why the translation aborted, in the format of a
6899 * DFSR/IFSR fault register, with the following caveats:
6900 * * we honour the short vs long DFSR format differences.
6901 * * the WnR bit is never set (the caller must do this).
6902 * * for PSMAv5 based systems we don't bother to return a full FSR format
6903 * value.
6905 * @env: CPUARMState
6906 * @address: virtual address to get physical address for
6907 * @access_type: 0 for read, 1 for write, 2 for execute
6908 * @mmu_idx: MMU index indicating required translation regime
6909 * @phys_ptr: set to the physical address corresponding to the virtual address
6910 * @attrs: set to the memory transaction attributes to use
6911 * @prot: set to the permissions for the page containing phys_ptr
6912 * @page_size: set to the size of the page containing phys_ptr
6913 * @fsr: set to the DFSR/IFSR value on failure
6915 static inline bool get_phys_addr(CPUARMState *env, target_ulong address,
6916 int access_type, ARMMMUIdx mmu_idx,
6917 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
6918 target_ulong *page_size, uint32_t *fsr)
6920 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6921 /* TODO: when we support EL2 we should here call ourselves recursively
6922 * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw
6923 * functions will also need changing to perform ARMMMUIdx_S2NS loads
6924 * rather than direct physical memory loads when appropriate.
6925 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
6927 assert(!arm_feature(env, ARM_FEATURE_EL2));
6928 mmu_idx += ARMMMUIdx_S1NSE0;
6931 /* The page table entries may downgrade secure to non-secure, but
6932 * cannot upgrade an non-secure translation regime's attributes
6933 * to secure.
6935 attrs->secure = regime_is_secure(env, mmu_idx);
6936 attrs->user = regime_is_user(env, mmu_idx);
6938 /* Fast Context Switch Extension. This doesn't exist at all in v8.
6939 * In v7 and earlier it affects all stage 1 translations.
6941 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
6942 && !arm_feature(env, ARM_FEATURE_V8)) {
6943 if (regime_el(env, mmu_idx) == 3) {
6944 address += env->cp15.fcseidr_s;
6945 } else {
6946 address += env->cp15.fcseidr_ns;
6950 /* pmsav7 has special handling for when MPU is disabled so call it before
6951 * the common MMU/MPU disabled check below.
6953 if (arm_feature(env, ARM_FEATURE_MPU) &&
6954 arm_feature(env, ARM_FEATURE_V7)) {
6955 *page_size = TARGET_PAGE_SIZE;
6956 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
6957 phys_ptr, prot, fsr);
6960 if (regime_translation_disabled(env, mmu_idx)) {
6961 /* MMU/MPU disabled. */
6962 *phys_ptr = address;
6963 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
6964 *page_size = TARGET_PAGE_SIZE;
6965 return 0;
6968 if (arm_feature(env, ARM_FEATURE_MPU)) {
6969 /* Pre-v7 MPU */
6970 *page_size = TARGET_PAGE_SIZE;
6971 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
6972 phys_ptr, prot, fsr);
6975 if (regime_using_lpae_format(env, mmu_idx)) {
6976 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
6977 attrs, prot, page_size, fsr);
6978 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
6979 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
6980 attrs, prot, page_size, fsr);
6981 } else {
6982 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
6983 prot, page_size, fsr);
6987 /* Walk the page table and (if the mapping exists) add the page
6988 * to the TLB. Return false on success, or true on failure. Populate
6989 * fsr with ARM DFSR/IFSR fault register format value on failure.
6991 bool arm_tlb_fill(CPUState *cs, vaddr address,
6992 int access_type, int mmu_idx, uint32_t *fsr)
6994 ARMCPU *cpu = ARM_CPU(cs);
6995 CPUARMState *env = &cpu->env;
6996 hwaddr phys_addr;
6997 target_ulong page_size;
6998 int prot;
6999 int ret;
7000 MemTxAttrs attrs = {};
7002 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
7003 &attrs, &prot, &page_size, fsr);
7004 if (!ret) {
7005 /* Map a single [sub]page. */
7006 phys_addr &= TARGET_PAGE_MASK;
7007 address &= TARGET_PAGE_MASK;
7008 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
7009 prot, mmu_idx, page_size);
7010 return 0;
7013 return ret;
7016 hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
7018 ARMCPU *cpu = ARM_CPU(cs);
7019 CPUARMState *env = &cpu->env;
7020 hwaddr phys_addr;
7021 target_ulong page_size;
7022 int prot;
7023 bool ret;
7024 uint32_t fsr;
7025 MemTxAttrs attrs = {};
7027 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr,
7028 &attrs, &prot, &page_size, &fsr);
7030 if (ret) {
7031 return -1;
7034 return phys_addr;
7037 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
7039 if ((env->uncached_cpsr & CPSR_M) == mode) {
7040 env->regs[13] = val;
7041 } else {
7042 env->banked_r13[bank_number(mode)] = val;
7046 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
7048 if ((env->uncached_cpsr & CPSR_M) == mode) {
7049 return env->regs[13];
7050 } else {
7051 return env->banked_r13[bank_number(mode)];
7055 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
7057 ARMCPU *cpu = arm_env_get_cpu(env);
7059 switch (reg) {
7060 case 0: /* APSR */
7061 return xpsr_read(env) & 0xf8000000;
7062 case 1: /* IAPSR */
7063 return xpsr_read(env) & 0xf80001ff;
7064 case 2: /* EAPSR */
7065 return xpsr_read(env) & 0xff00fc00;
7066 case 3: /* xPSR */
7067 return xpsr_read(env) & 0xff00fdff;
7068 case 5: /* IPSR */
7069 return xpsr_read(env) & 0x000001ff;
7070 case 6: /* EPSR */
7071 return xpsr_read(env) & 0x0700fc00;
7072 case 7: /* IEPSR */
7073 return xpsr_read(env) & 0x0700edff;
7074 case 8: /* MSP */
7075 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
7076 case 9: /* PSP */
7077 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
7078 case 16: /* PRIMASK */
7079 return (env->daif & PSTATE_I) != 0;
7080 case 17: /* BASEPRI */
7081 case 18: /* BASEPRI_MAX */
7082 return env->v7m.basepri;
7083 case 19: /* FAULTMASK */
7084 return (env->daif & PSTATE_F) != 0;
7085 case 20: /* CONTROL */
7086 return env->v7m.control;
7087 default:
7088 /* ??? For debugging only. */
7089 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
7090 return 0;
7094 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
7096 ARMCPU *cpu = arm_env_get_cpu(env);
7098 switch (reg) {
7099 case 0: /* APSR */
7100 xpsr_write(env, val, 0xf8000000);
7101 break;
7102 case 1: /* IAPSR */
7103 xpsr_write(env, val, 0xf8000000);
7104 break;
7105 case 2: /* EAPSR */
7106 xpsr_write(env, val, 0xfe00fc00);
7107 break;
7108 case 3: /* xPSR */
7109 xpsr_write(env, val, 0xfe00fc00);
7110 break;
7111 case 5: /* IPSR */
7112 /* IPSR bits are readonly. */
7113 break;
7114 case 6: /* EPSR */
7115 xpsr_write(env, val, 0x0600fc00);
7116 break;
7117 case 7: /* IEPSR */
7118 xpsr_write(env, val, 0x0600fc00);
7119 break;
7120 case 8: /* MSP */
7121 if (env->v7m.current_sp)
7122 env->v7m.other_sp = val;
7123 else
7124 env->regs[13] = val;
7125 break;
7126 case 9: /* PSP */
7127 if (env->v7m.current_sp)
7128 env->regs[13] = val;
7129 else
7130 env->v7m.other_sp = val;
7131 break;
7132 case 16: /* PRIMASK */
7133 if (val & 1) {
7134 env->daif |= PSTATE_I;
7135 } else {
7136 env->daif &= ~PSTATE_I;
7138 break;
7139 case 17: /* BASEPRI */
7140 env->v7m.basepri = val & 0xff;
7141 break;
7142 case 18: /* BASEPRI_MAX */
7143 val &= 0xff;
7144 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
7145 env->v7m.basepri = val;
7146 break;
7147 case 19: /* FAULTMASK */
7148 if (val & 1) {
7149 env->daif |= PSTATE_F;
7150 } else {
7151 env->daif &= ~PSTATE_F;
7153 break;
7154 case 20: /* CONTROL */
7155 env->v7m.control = val & 3;
7156 switch_v7m_sp(env, (val & 2) != 0);
7157 break;
7158 default:
7159 /* ??? For debugging only. */
7160 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
7161 return;
7165 #endif
7167 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
7169 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
7170 * Note that we do not implement the (architecturally mandated)
7171 * alignment fault for attempts to use this on Device memory
7172 * (which matches the usual QEMU behaviour of not implementing either
7173 * alignment faults or any memory attribute handling).
7176 ARMCPU *cpu = arm_env_get_cpu(env);
7177 uint64_t blocklen = 4 << cpu->dcz_blocksize;
7178 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
7180 #ifndef CONFIG_USER_ONLY
7182 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
7183 * the block size so we might have to do more than one TLB lookup.
7184 * We know that in fact for any v8 CPU the page size is at least 4K
7185 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
7186 * 1K as an artefact of legacy v5 subpage support being present in the
7187 * same QEMU executable.
7189 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
7190 void *hostaddr[maxidx];
7191 int try, i;
7192 unsigned mmu_idx = cpu_mmu_index(env, false);
7193 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
7195 for (try = 0; try < 2; try++) {
7197 for (i = 0; i < maxidx; i++) {
7198 hostaddr[i] = tlb_vaddr_to_host(env,
7199 vaddr + TARGET_PAGE_SIZE * i,
7200 1, mmu_idx);
7201 if (!hostaddr[i]) {
7202 break;
7205 if (i == maxidx) {
7206 /* If it's all in the TLB it's fair game for just writing to;
7207 * we know we don't need to update dirty status, etc.
7209 for (i = 0; i < maxidx - 1; i++) {
7210 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
7212 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
7213 return;
7215 /* OK, try a store and see if we can populate the tlb. This
7216 * might cause an exception if the memory isn't writable,
7217 * in which case we will longjmp out of here. We must for
7218 * this purpose use the actual register value passed to us
7219 * so that we get the fault address right.
7221 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
7222 /* Now we can populate the other TLB entries, if any */
7223 for (i = 0; i < maxidx; i++) {
7224 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
7225 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
7226 helper_ret_stb_mmu(env, va, 0, oi, GETRA());
7231 /* Slow path (probably attempt to do this to an I/O device or
7232 * similar, or clearing of a block of code we have translations
7233 * cached for). Just do a series of byte writes as the architecture
7234 * demands. It's not worth trying to use a cpu_physical_memory_map(),
7235 * memset(), unmap() sequence here because:
7236 * + we'd need to account for the blocksize being larger than a page
7237 * + the direct-RAM access case is almost always going to be dealt
7238 * with in the fastpath code above, so there's no speed benefit
7239 * + we would have to deal with the map returning NULL because the
7240 * bounce buffer was in use
7242 for (i = 0; i < blocklen; i++) {
7243 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
7246 #else
7247 memset(g2h(vaddr), 0, blocklen);
7248 #endif
7251 /* Note that signed overflow is undefined in C. The following routines are
7252 careful to use unsigned types where modulo arithmetic is required.
7253 Failure to do so _will_ break on newer gcc. */
7255 /* Signed saturating arithmetic. */
7257 /* Perform 16-bit signed saturating addition. */
7258 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
7260 uint16_t res;
7262 res = a + b;
7263 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
7264 if (a & 0x8000)
7265 res = 0x8000;
7266 else
7267 res = 0x7fff;
7269 return res;
7272 /* Perform 8-bit signed saturating addition. */
7273 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
7275 uint8_t res;
7277 res = a + b;
7278 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
7279 if (a & 0x80)
7280 res = 0x80;
7281 else
7282 res = 0x7f;
7284 return res;
7287 /* Perform 16-bit signed saturating subtraction. */
7288 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
7290 uint16_t res;
7292 res = a - b;
7293 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
7294 if (a & 0x8000)
7295 res = 0x8000;
7296 else
7297 res = 0x7fff;
7299 return res;
7302 /* Perform 8-bit signed saturating subtraction. */
7303 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
7305 uint8_t res;
7307 res = a - b;
7308 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
7309 if (a & 0x80)
7310 res = 0x80;
7311 else
7312 res = 0x7f;
7314 return res;
7317 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
7318 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
7319 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
7320 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
7321 #define PFX q
7323 #include "op_addsub.h"
7325 /* Unsigned saturating arithmetic. */
7326 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
7328 uint16_t res;
7329 res = a + b;
7330 if (res < a)
7331 res = 0xffff;
7332 return res;
7335 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
7337 if (a > b)
7338 return a - b;
7339 else
7340 return 0;
7343 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
7345 uint8_t res;
7346 res = a + b;
7347 if (res < a)
7348 res = 0xff;
7349 return res;
7352 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
7354 if (a > b)
7355 return a - b;
7356 else
7357 return 0;
7360 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
7361 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
7362 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
7363 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
7364 #define PFX uq
7366 #include "op_addsub.h"
7368 /* Signed modulo arithmetic. */
7369 #define SARITH16(a, b, n, op) do { \
7370 int32_t sum; \
7371 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
7372 RESULT(sum, n, 16); \
7373 if (sum >= 0) \
7374 ge |= 3 << (n * 2); \
7375 } while(0)
7377 #define SARITH8(a, b, n, op) do { \
7378 int32_t sum; \
7379 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
7380 RESULT(sum, n, 8); \
7381 if (sum >= 0) \
7382 ge |= 1 << n; \
7383 } while(0)
7386 #define ADD16(a, b, n) SARITH16(a, b, n, +)
7387 #define SUB16(a, b, n) SARITH16(a, b, n, -)
7388 #define ADD8(a, b, n) SARITH8(a, b, n, +)
7389 #define SUB8(a, b, n) SARITH8(a, b, n, -)
7390 #define PFX s
7391 #define ARITH_GE
7393 #include "op_addsub.h"
7395 /* Unsigned modulo arithmetic. */
7396 #define ADD16(a, b, n) do { \
7397 uint32_t sum; \
7398 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
7399 RESULT(sum, n, 16); \
7400 if ((sum >> 16) == 1) \
7401 ge |= 3 << (n * 2); \
7402 } while(0)
7404 #define ADD8(a, b, n) do { \
7405 uint32_t sum; \
7406 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
7407 RESULT(sum, n, 8); \
7408 if ((sum >> 8) == 1) \
7409 ge |= 1 << n; \
7410 } while(0)
7412 #define SUB16(a, b, n) do { \
7413 uint32_t sum; \
7414 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
7415 RESULT(sum, n, 16); \
7416 if ((sum >> 16) == 0) \
7417 ge |= 3 << (n * 2); \
7418 } while(0)
7420 #define SUB8(a, b, n) do { \
7421 uint32_t sum; \
7422 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
7423 RESULT(sum, n, 8); \
7424 if ((sum >> 8) == 0) \
7425 ge |= 1 << n; \
7426 } while(0)
7428 #define PFX u
7429 #define ARITH_GE
7431 #include "op_addsub.h"
7433 /* Halved signed arithmetic. */
7434 #define ADD16(a, b, n) \
7435 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
7436 #define SUB16(a, b, n) \
7437 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
7438 #define ADD8(a, b, n) \
7439 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
7440 #define SUB8(a, b, n) \
7441 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
7442 #define PFX sh
7444 #include "op_addsub.h"
7446 /* Halved unsigned arithmetic. */
7447 #define ADD16(a, b, n) \
7448 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7449 #define SUB16(a, b, n) \
7450 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7451 #define ADD8(a, b, n) \
7452 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7453 #define SUB8(a, b, n) \
7454 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7455 #define PFX uh
7457 #include "op_addsub.h"
7459 static inline uint8_t do_usad(uint8_t a, uint8_t b)
7461 if (a > b)
7462 return a - b;
7463 else
7464 return b - a;
7467 /* Unsigned sum of absolute byte differences. */
7468 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
7470 uint32_t sum;
7471 sum = do_usad(a, b);
7472 sum += do_usad(a >> 8, b >> 8);
7473 sum += do_usad(a >> 16, b >>16);
7474 sum += do_usad(a >> 24, b >> 24);
7475 return sum;
7478 /* For ARMv6 SEL instruction. */
7479 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
7481 uint32_t mask;
7483 mask = 0;
7484 if (flags & 1)
7485 mask |= 0xff;
7486 if (flags & 2)
7487 mask |= 0xff00;
7488 if (flags & 4)
7489 mask |= 0xff0000;
7490 if (flags & 8)
7491 mask |= 0xff000000;
7492 return (a & mask) | (b & ~mask);
7495 /* VFP support. We follow the convention used for VFP instructions:
7496 Single precision routines have a "s" suffix, double precision a
7497 "d" suffix. */
7499 /* Convert host exception flags to vfp form. */
7500 static inline int vfp_exceptbits_from_host(int host_bits)
7502 int target_bits = 0;
7504 if (host_bits & float_flag_invalid)
7505 target_bits |= 1;
7506 if (host_bits & float_flag_divbyzero)
7507 target_bits |= 2;
7508 if (host_bits & float_flag_overflow)
7509 target_bits |= 4;
7510 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
7511 target_bits |= 8;
7512 if (host_bits & float_flag_inexact)
7513 target_bits |= 0x10;
7514 if (host_bits & float_flag_input_denormal)
7515 target_bits |= 0x80;
7516 return target_bits;
7519 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
7521 int i;
7522 uint32_t fpscr;
7524 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
7525 | (env->vfp.vec_len << 16)
7526 | (env->vfp.vec_stride << 20);
7527 i = get_float_exception_flags(&env->vfp.fp_status);
7528 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
7529 fpscr |= vfp_exceptbits_from_host(i);
7530 return fpscr;
7533 uint32_t vfp_get_fpscr(CPUARMState *env)
7535 return HELPER(vfp_get_fpscr)(env);
7538 /* Convert vfp exception flags to target form. */
7539 static inline int vfp_exceptbits_to_host(int target_bits)
7541 int host_bits = 0;
7543 if (target_bits & 1)
7544 host_bits |= float_flag_invalid;
7545 if (target_bits & 2)
7546 host_bits |= float_flag_divbyzero;
7547 if (target_bits & 4)
7548 host_bits |= float_flag_overflow;
7549 if (target_bits & 8)
7550 host_bits |= float_flag_underflow;
7551 if (target_bits & 0x10)
7552 host_bits |= float_flag_inexact;
7553 if (target_bits & 0x80)
7554 host_bits |= float_flag_input_denormal;
7555 return host_bits;
7558 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
7560 int i;
7561 uint32_t changed;
7563 changed = env->vfp.xregs[ARM_VFP_FPSCR];
7564 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
7565 env->vfp.vec_len = (val >> 16) & 7;
7566 env->vfp.vec_stride = (val >> 20) & 3;
7568 changed ^= val;
7569 if (changed & (3 << 22)) {
7570 i = (val >> 22) & 3;
7571 switch (i) {
7572 case FPROUNDING_TIEEVEN:
7573 i = float_round_nearest_even;
7574 break;
7575 case FPROUNDING_POSINF:
7576 i = float_round_up;
7577 break;
7578 case FPROUNDING_NEGINF:
7579 i = float_round_down;
7580 break;
7581 case FPROUNDING_ZERO:
7582 i = float_round_to_zero;
7583 break;
7585 set_float_rounding_mode(i, &env->vfp.fp_status);
7587 if (changed & (1 << 24)) {
7588 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
7589 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
7591 if (changed & (1 << 25))
7592 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
7594 i = vfp_exceptbits_to_host(val);
7595 set_float_exception_flags(i, &env->vfp.fp_status);
7596 set_float_exception_flags(0, &env->vfp.standard_fp_status);
7599 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
7601 HELPER(vfp_set_fpscr)(env, val);
7604 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
7606 #define VFP_BINOP(name) \
7607 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
7609 float_status *fpst = fpstp; \
7610 return float32_ ## name(a, b, fpst); \
7612 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
7614 float_status *fpst = fpstp; \
7615 return float64_ ## name(a, b, fpst); \
7617 VFP_BINOP(add)
7618 VFP_BINOP(sub)
7619 VFP_BINOP(mul)
7620 VFP_BINOP(div)
7621 VFP_BINOP(min)
7622 VFP_BINOP(max)
7623 VFP_BINOP(minnum)
7624 VFP_BINOP(maxnum)
7625 #undef VFP_BINOP
7627 float32 VFP_HELPER(neg, s)(float32 a)
7629 return float32_chs(a);
7632 float64 VFP_HELPER(neg, d)(float64 a)
7634 return float64_chs(a);
7637 float32 VFP_HELPER(abs, s)(float32 a)
7639 return float32_abs(a);
7642 float64 VFP_HELPER(abs, d)(float64 a)
7644 return float64_abs(a);
7647 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
7649 return float32_sqrt(a, &env->vfp.fp_status);
7652 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
7654 return float64_sqrt(a, &env->vfp.fp_status);
7657 /* XXX: check quiet/signaling case */
7658 #define DO_VFP_cmp(p, type) \
7659 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
7661 uint32_t flags; \
7662 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
7663 case 0: flags = 0x6; break; \
7664 case -1: flags = 0x8; break; \
7665 case 1: flags = 0x2; break; \
7666 default: case 2: flags = 0x3; break; \
7668 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
7669 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
7671 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
7673 uint32_t flags; \
7674 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
7675 case 0: flags = 0x6; break; \
7676 case -1: flags = 0x8; break; \
7677 case 1: flags = 0x2; break; \
7678 default: case 2: flags = 0x3; break; \
7680 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
7681 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
7683 DO_VFP_cmp(s, float32)
7684 DO_VFP_cmp(d, float64)
7685 #undef DO_VFP_cmp
7687 /* Integer to float and float to integer conversions */
7689 #define CONV_ITOF(name, fsz, sign) \
7690 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
7692 float_status *fpst = fpstp; \
7693 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
7696 #define CONV_FTOI(name, fsz, sign, round) \
7697 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
7699 float_status *fpst = fpstp; \
7700 if (float##fsz##_is_any_nan(x)) { \
7701 float_raise(float_flag_invalid, fpst); \
7702 return 0; \
7704 return float##fsz##_to_##sign##int32##round(x, fpst); \
7707 #define FLOAT_CONVS(name, p, fsz, sign) \
7708 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
7709 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
7710 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
7712 FLOAT_CONVS(si, s, 32, )
7713 FLOAT_CONVS(si, d, 64, )
7714 FLOAT_CONVS(ui, s, 32, u)
7715 FLOAT_CONVS(ui, d, 64, u)
7717 #undef CONV_ITOF
7718 #undef CONV_FTOI
7719 #undef FLOAT_CONVS
7721 /* floating point conversion */
7722 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
7724 float64 r = float32_to_float64(x, &env->vfp.fp_status);
7725 /* ARM requires that S<->D conversion of any kind of NaN generates
7726 * a quiet NaN by forcing the most significant frac bit to 1.
7728 return float64_maybe_silence_nan(r);
7731 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
7733 float32 r = float64_to_float32(x, &env->vfp.fp_status);
7734 /* ARM requires that S<->D conversion of any kind of NaN generates
7735 * a quiet NaN by forcing the most significant frac bit to 1.
7737 return float32_maybe_silence_nan(r);
7740 /* VFP3 fixed point conversion. */
7741 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
7742 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
7743 void *fpstp) \
7745 float_status *fpst = fpstp; \
7746 float##fsz tmp; \
7747 tmp = itype##_to_##float##fsz(x, fpst); \
7748 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
7751 /* Notice that we want only input-denormal exception flags from the
7752 * scalbn operation: the other possible flags (overflow+inexact if
7753 * we overflow to infinity, output-denormal) aren't correct for the
7754 * complete scale-and-convert operation.
7756 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
7757 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
7758 uint32_t shift, \
7759 void *fpstp) \
7761 float_status *fpst = fpstp; \
7762 int old_exc_flags = get_float_exception_flags(fpst); \
7763 float##fsz tmp; \
7764 if (float##fsz##_is_any_nan(x)) { \
7765 float_raise(float_flag_invalid, fpst); \
7766 return 0; \
7768 tmp = float##fsz##_scalbn(x, shift, fpst); \
7769 old_exc_flags |= get_float_exception_flags(fpst) \
7770 & float_flag_input_denormal; \
7771 set_float_exception_flags(old_exc_flags, fpst); \
7772 return float##fsz##_to_##itype##round(tmp, fpst); \
7775 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
7776 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
7777 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
7778 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
7780 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
7781 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
7782 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
7784 VFP_CONV_FIX(sh, d, 64, 64, int16)
7785 VFP_CONV_FIX(sl, d, 64, 64, int32)
7786 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
7787 VFP_CONV_FIX(uh, d, 64, 64, uint16)
7788 VFP_CONV_FIX(ul, d, 64, 64, uint32)
7789 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
7790 VFP_CONV_FIX(sh, s, 32, 32, int16)
7791 VFP_CONV_FIX(sl, s, 32, 32, int32)
7792 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
7793 VFP_CONV_FIX(uh, s, 32, 32, uint16)
7794 VFP_CONV_FIX(ul, s, 32, 32, uint32)
7795 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
7796 #undef VFP_CONV_FIX
7797 #undef VFP_CONV_FIX_FLOAT
7798 #undef VFP_CONV_FLOAT_FIX_ROUND
7800 /* Set the current fp rounding mode and return the old one.
7801 * The argument is a softfloat float_round_ value.
7803 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
7805 float_status *fp_status = &env->vfp.fp_status;
7807 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
7808 set_float_rounding_mode(rmode, fp_status);
7810 return prev_rmode;
7813 /* Set the current fp rounding mode in the standard fp status and return
7814 * the old one. This is for NEON instructions that need to change the
7815 * rounding mode but wish to use the standard FPSCR values for everything
7816 * else. Always set the rounding mode back to the correct value after
7817 * modifying it.
7818 * The argument is a softfloat float_round_ value.
7820 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
7822 float_status *fp_status = &env->vfp.standard_fp_status;
7824 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
7825 set_float_rounding_mode(rmode, fp_status);
7827 return prev_rmode;
7830 /* Half precision conversions. */
7831 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
7833 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7834 float32 r = float16_to_float32(make_float16(a), ieee, s);
7835 if (ieee) {
7836 return float32_maybe_silence_nan(r);
7838 return r;
7841 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
7843 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7844 float16 r = float32_to_float16(a, ieee, s);
7845 if (ieee) {
7846 r = float16_maybe_silence_nan(r);
7848 return float16_val(r);
7851 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
7853 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
7856 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
7858 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
7861 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
7863 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
7866 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
7868 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
7871 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
7873 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7874 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
7875 if (ieee) {
7876 return float64_maybe_silence_nan(r);
7878 return r;
7881 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
7883 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7884 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
7885 if (ieee) {
7886 r = float16_maybe_silence_nan(r);
7888 return float16_val(r);
7891 #define float32_two make_float32(0x40000000)
7892 #define float32_three make_float32(0x40400000)
7893 #define float32_one_point_five make_float32(0x3fc00000)
7895 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
7897 float_status *s = &env->vfp.standard_fp_status;
7898 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
7899 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
7900 if (!(float32_is_zero(a) || float32_is_zero(b))) {
7901 float_raise(float_flag_input_denormal, s);
7903 return float32_two;
7905 return float32_sub(float32_two, float32_mul(a, b, s), s);
7908 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
7910 float_status *s = &env->vfp.standard_fp_status;
7911 float32 product;
7912 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
7913 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
7914 if (!(float32_is_zero(a) || float32_is_zero(b))) {
7915 float_raise(float_flag_input_denormal, s);
7917 return float32_one_point_five;
7919 product = float32_mul(a, b, s);
7920 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
7923 /* NEON helpers. */
7925 /* Constants 256 and 512 are used in some helpers; we avoid relying on
7926 * int->float conversions at run-time. */
7927 #define float64_256 make_float64(0x4070000000000000LL)
7928 #define float64_512 make_float64(0x4080000000000000LL)
7929 #define float32_maxnorm make_float32(0x7f7fffff)
7930 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
7932 /* Reciprocal functions
7934 * The algorithm that must be used to calculate the estimate
7935 * is specified by the ARM ARM, see FPRecipEstimate()
7938 static float64 recip_estimate(float64 a, float_status *real_fp_status)
7940 /* These calculations mustn't set any fp exception flags,
7941 * so we use a local copy of the fp_status.
7943 float_status dummy_status = *real_fp_status;
7944 float_status *s = &dummy_status;
7945 /* q = (int)(a * 512.0) */
7946 float64 q = float64_mul(float64_512, a, s);
7947 int64_t q_int = float64_to_int64_round_to_zero(q, s);
7949 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
7950 q = int64_to_float64(q_int, s);
7951 q = float64_add(q, float64_half, s);
7952 q = float64_div(q, float64_512, s);
7953 q = float64_div(float64_one, q, s);
7955 /* s = (int)(256.0 * r + 0.5) */
7956 q = float64_mul(q, float64_256, s);
7957 q = float64_add(q, float64_half, s);
7958 q_int = float64_to_int64_round_to_zero(q, s);
7960 /* return (double)s / 256.0 */
7961 return float64_div(int64_to_float64(q_int, s), float64_256, s);
7964 /* Common wrapper to call recip_estimate */
7965 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
7967 uint64_t val64 = float64_val(num);
7968 uint64_t frac = extract64(val64, 0, 52);
7969 int64_t exp = extract64(val64, 52, 11);
7970 uint64_t sbit;
7971 float64 scaled, estimate;
7973 /* Generate the scaled number for the estimate function */
7974 if (exp == 0) {
7975 if (extract64(frac, 51, 1) == 0) {
7976 exp = -1;
7977 frac = extract64(frac, 0, 50) << 2;
7978 } else {
7979 frac = extract64(frac, 0, 51) << 1;
7983 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
7984 scaled = make_float64((0x3feULL << 52)
7985 | extract64(frac, 44, 8) << 44);
7987 estimate = recip_estimate(scaled, fpst);
7989 /* Build new result */
7990 val64 = float64_val(estimate);
7991 sbit = 0x8000000000000000ULL & val64;
7992 exp = off - exp;
7993 frac = extract64(val64, 0, 52);
7995 if (exp == 0) {
7996 frac = 1ULL << 51 | extract64(frac, 1, 51);
7997 } else if (exp == -1) {
7998 frac = 1ULL << 50 | extract64(frac, 2, 50);
7999 exp = 0;
8002 return make_float64(sbit | (exp << 52) | frac);
8005 static bool round_to_inf(float_status *fpst, bool sign_bit)
8007 switch (fpst->float_rounding_mode) {
8008 case float_round_nearest_even: /* Round to Nearest */
8009 return true;
8010 case float_round_up: /* Round to +Inf */
8011 return !sign_bit;
8012 case float_round_down: /* Round to -Inf */
8013 return sign_bit;
8014 case float_round_to_zero: /* Round to Zero */
8015 return false;
8018 g_assert_not_reached();
8021 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
8023 float_status *fpst = fpstp;
8024 float32 f32 = float32_squash_input_denormal(input, fpst);
8025 uint32_t f32_val = float32_val(f32);
8026 uint32_t f32_sbit = 0x80000000ULL & f32_val;
8027 int32_t f32_exp = extract32(f32_val, 23, 8);
8028 uint32_t f32_frac = extract32(f32_val, 0, 23);
8029 float64 f64, r64;
8030 uint64_t r64_val;
8031 int64_t r64_exp;
8032 uint64_t r64_frac;
8034 if (float32_is_any_nan(f32)) {
8035 float32 nan = f32;
8036 if (float32_is_signaling_nan(f32)) {
8037 float_raise(float_flag_invalid, fpst);
8038 nan = float32_maybe_silence_nan(f32);
8040 if (fpst->default_nan_mode) {
8041 nan = float32_default_nan;
8043 return nan;
8044 } else if (float32_is_infinity(f32)) {
8045 return float32_set_sign(float32_zero, float32_is_neg(f32));
8046 } else if (float32_is_zero(f32)) {
8047 float_raise(float_flag_divbyzero, fpst);
8048 return float32_set_sign(float32_infinity, float32_is_neg(f32));
8049 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
8050 /* Abs(value) < 2.0^-128 */
8051 float_raise(float_flag_overflow | float_flag_inexact, fpst);
8052 if (round_to_inf(fpst, f32_sbit)) {
8053 return float32_set_sign(float32_infinity, float32_is_neg(f32));
8054 } else {
8055 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
8057 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
8058 float_raise(float_flag_underflow, fpst);
8059 return float32_set_sign(float32_zero, float32_is_neg(f32));
8063 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
8064 r64 = call_recip_estimate(f64, 253, fpst);
8065 r64_val = float64_val(r64);
8066 r64_exp = extract64(r64_val, 52, 11);
8067 r64_frac = extract64(r64_val, 0, 52);
8069 /* result = sign : result_exp<7:0> : fraction<51:29>; */
8070 return make_float32(f32_sbit |
8071 (r64_exp & 0xff) << 23 |
8072 extract64(r64_frac, 29, 24));
8075 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
8077 float_status *fpst = fpstp;
8078 float64 f64 = float64_squash_input_denormal(input, fpst);
8079 uint64_t f64_val = float64_val(f64);
8080 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
8081 int64_t f64_exp = extract64(f64_val, 52, 11);
8082 float64 r64;
8083 uint64_t r64_val;
8084 int64_t r64_exp;
8085 uint64_t r64_frac;
8087 /* Deal with any special cases */
8088 if (float64_is_any_nan(f64)) {
8089 float64 nan = f64;
8090 if (float64_is_signaling_nan(f64)) {
8091 float_raise(float_flag_invalid, fpst);
8092 nan = float64_maybe_silence_nan(f64);
8094 if (fpst->default_nan_mode) {
8095 nan = float64_default_nan;
8097 return nan;
8098 } else if (float64_is_infinity(f64)) {
8099 return float64_set_sign(float64_zero, float64_is_neg(f64));
8100 } else if (float64_is_zero(f64)) {
8101 float_raise(float_flag_divbyzero, fpst);
8102 return float64_set_sign(float64_infinity, float64_is_neg(f64));
8103 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
8104 /* Abs(value) < 2.0^-1024 */
8105 float_raise(float_flag_overflow | float_flag_inexact, fpst);
8106 if (round_to_inf(fpst, f64_sbit)) {
8107 return float64_set_sign(float64_infinity, float64_is_neg(f64));
8108 } else {
8109 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
8111 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
8112 float_raise(float_flag_underflow, fpst);
8113 return float64_set_sign(float64_zero, float64_is_neg(f64));
8116 r64 = call_recip_estimate(f64, 2045, fpst);
8117 r64_val = float64_val(r64);
8118 r64_exp = extract64(r64_val, 52, 11);
8119 r64_frac = extract64(r64_val, 0, 52);
8121 /* result = sign : result_exp<10:0> : fraction<51:0> */
8122 return make_float64(f64_sbit |
8123 ((r64_exp & 0x7ff) << 52) |
8124 r64_frac);
8127 /* The algorithm that must be used to calculate the estimate
8128 * is specified by the ARM ARM.
8130 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
8132 /* These calculations mustn't set any fp exception flags,
8133 * so we use a local copy of the fp_status.
8135 float_status dummy_status = *real_fp_status;
8136 float_status *s = &dummy_status;
8137 float64 q;
8138 int64_t q_int;
8140 if (float64_lt(a, float64_half, s)) {
8141 /* range 0.25 <= a < 0.5 */
8143 /* a in units of 1/512 rounded down */
8144 /* q0 = (int)(a * 512.0); */
8145 q = float64_mul(float64_512, a, s);
8146 q_int = float64_to_int64_round_to_zero(q, s);
8148 /* reciprocal root r */
8149 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
8150 q = int64_to_float64(q_int, s);
8151 q = float64_add(q, float64_half, s);
8152 q = float64_div(q, float64_512, s);
8153 q = float64_sqrt(q, s);
8154 q = float64_div(float64_one, q, s);
8155 } else {
8156 /* range 0.5 <= a < 1.0 */
8158 /* a in units of 1/256 rounded down */
8159 /* q1 = (int)(a * 256.0); */
8160 q = float64_mul(float64_256, a, s);
8161 int64_t q_int = float64_to_int64_round_to_zero(q, s);
8163 /* reciprocal root r */
8164 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
8165 q = int64_to_float64(q_int, s);
8166 q = float64_add(q, float64_half, s);
8167 q = float64_div(q, float64_256, s);
8168 q = float64_sqrt(q, s);
8169 q = float64_div(float64_one, q, s);
8171 /* r in units of 1/256 rounded to nearest */
8172 /* s = (int)(256.0 * r + 0.5); */
8174 q = float64_mul(q, float64_256,s );
8175 q = float64_add(q, float64_half, s);
8176 q_int = float64_to_int64_round_to_zero(q, s);
8178 /* return (double)s / 256.0;*/
8179 return float64_div(int64_to_float64(q_int, s), float64_256, s);
8182 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
8184 float_status *s = fpstp;
8185 float32 f32 = float32_squash_input_denormal(input, s);
8186 uint32_t val = float32_val(f32);
8187 uint32_t f32_sbit = 0x80000000 & val;
8188 int32_t f32_exp = extract32(val, 23, 8);
8189 uint32_t f32_frac = extract32(val, 0, 23);
8190 uint64_t f64_frac;
8191 uint64_t val64;
8192 int result_exp;
8193 float64 f64;
8195 if (float32_is_any_nan(f32)) {
8196 float32 nan = f32;
8197 if (float32_is_signaling_nan(f32)) {
8198 float_raise(float_flag_invalid, s);
8199 nan = float32_maybe_silence_nan(f32);
8201 if (s->default_nan_mode) {
8202 nan = float32_default_nan;
8204 return nan;
8205 } else if (float32_is_zero(f32)) {
8206 float_raise(float_flag_divbyzero, s);
8207 return float32_set_sign(float32_infinity, float32_is_neg(f32));
8208 } else if (float32_is_neg(f32)) {
8209 float_raise(float_flag_invalid, s);
8210 return float32_default_nan;
8211 } else if (float32_is_infinity(f32)) {
8212 return float32_zero;
8215 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8216 * preserving the parity of the exponent. */
8218 f64_frac = ((uint64_t) f32_frac) << 29;
8219 if (f32_exp == 0) {
8220 while (extract64(f64_frac, 51, 1) == 0) {
8221 f64_frac = f64_frac << 1;
8222 f32_exp = f32_exp-1;
8224 f64_frac = extract64(f64_frac, 0, 51) << 1;
8227 if (extract64(f32_exp, 0, 1) == 0) {
8228 f64 = make_float64(((uint64_t) f32_sbit) << 32
8229 | (0x3feULL << 52)
8230 | f64_frac);
8231 } else {
8232 f64 = make_float64(((uint64_t) f32_sbit) << 32
8233 | (0x3fdULL << 52)
8234 | f64_frac);
8237 result_exp = (380 - f32_exp) / 2;
8239 f64 = recip_sqrt_estimate(f64, s);
8241 val64 = float64_val(f64);
8243 val = ((result_exp & 0xff) << 23)
8244 | ((val64 >> 29) & 0x7fffff);
8245 return make_float32(val);
8248 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
8250 float_status *s = fpstp;
8251 float64 f64 = float64_squash_input_denormal(input, s);
8252 uint64_t val = float64_val(f64);
8253 uint64_t f64_sbit = 0x8000000000000000ULL & val;
8254 int64_t f64_exp = extract64(val, 52, 11);
8255 uint64_t f64_frac = extract64(val, 0, 52);
8256 int64_t result_exp;
8257 uint64_t result_frac;
8259 if (float64_is_any_nan(f64)) {
8260 float64 nan = f64;
8261 if (float64_is_signaling_nan(f64)) {
8262 float_raise(float_flag_invalid, s);
8263 nan = float64_maybe_silence_nan(f64);
8265 if (s->default_nan_mode) {
8266 nan = float64_default_nan;
8268 return nan;
8269 } else if (float64_is_zero(f64)) {
8270 float_raise(float_flag_divbyzero, s);
8271 return float64_set_sign(float64_infinity, float64_is_neg(f64));
8272 } else if (float64_is_neg(f64)) {
8273 float_raise(float_flag_invalid, s);
8274 return float64_default_nan;
8275 } else if (float64_is_infinity(f64)) {
8276 return float64_zero;
8279 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8280 * preserving the parity of the exponent. */
8282 if (f64_exp == 0) {
8283 while (extract64(f64_frac, 51, 1) == 0) {
8284 f64_frac = f64_frac << 1;
8285 f64_exp = f64_exp - 1;
8287 f64_frac = extract64(f64_frac, 0, 51) << 1;
8290 if (extract64(f64_exp, 0, 1) == 0) {
8291 f64 = make_float64(f64_sbit
8292 | (0x3feULL << 52)
8293 | f64_frac);
8294 } else {
8295 f64 = make_float64(f64_sbit
8296 | (0x3fdULL << 52)
8297 | f64_frac);
8300 result_exp = (3068 - f64_exp) / 2;
8302 f64 = recip_sqrt_estimate(f64, s);
8304 result_frac = extract64(float64_val(f64), 0, 52);
8306 return make_float64(f64_sbit |
8307 ((result_exp & 0x7ff) << 52) |
8308 result_frac);
8311 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
8313 float_status *s = fpstp;
8314 float64 f64;
8316 if ((a & 0x80000000) == 0) {
8317 return 0xffffffff;
8320 f64 = make_float64((0x3feULL << 52)
8321 | ((int64_t)(a & 0x7fffffff) << 21));
8323 f64 = recip_estimate(f64, s);
8325 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
8328 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
8330 float_status *fpst = fpstp;
8331 float64 f64;
8333 if ((a & 0xc0000000) == 0) {
8334 return 0xffffffff;
8337 if (a & 0x80000000) {
8338 f64 = make_float64((0x3feULL << 52)
8339 | ((uint64_t)(a & 0x7fffffff) << 21));
8340 } else { /* bits 31-30 == '01' */
8341 f64 = make_float64((0x3fdULL << 52)
8342 | ((uint64_t)(a & 0x3fffffff) << 22));
8345 f64 = recip_sqrt_estimate(f64, fpst);
8347 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
8350 /* VFPv4 fused multiply-accumulate */
8351 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
8353 float_status *fpst = fpstp;
8354 return float32_muladd(a, b, c, 0, fpst);
8357 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
8359 float_status *fpst = fpstp;
8360 return float64_muladd(a, b, c, 0, fpst);
8363 /* ARMv8 round to integral */
8364 float32 HELPER(rints_exact)(float32 x, void *fp_status)
8366 return float32_round_to_int(x, fp_status);
8369 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
8371 return float64_round_to_int(x, fp_status);
8374 float32 HELPER(rints)(float32 x, void *fp_status)
8376 int old_flags = get_float_exception_flags(fp_status), new_flags;
8377 float32 ret;
8379 ret = float32_round_to_int(x, fp_status);
8381 /* Suppress any inexact exceptions the conversion produced */
8382 if (!(old_flags & float_flag_inexact)) {
8383 new_flags = get_float_exception_flags(fp_status);
8384 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
8387 return ret;
8390 float64 HELPER(rintd)(float64 x, void *fp_status)
8392 int old_flags = get_float_exception_flags(fp_status), new_flags;
8393 float64 ret;
8395 ret = float64_round_to_int(x, fp_status);
8397 new_flags = get_float_exception_flags(fp_status);
8399 /* Suppress any inexact exceptions the conversion produced */
8400 if (!(old_flags & float_flag_inexact)) {
8401 new_flags = get_float_exception_flags(fp_status);
8402 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
8405 return ret;
8408 /* Convert ARM rounding mode to softfloat */
8409 int arm_rmode_to_sf(int rmode)
8411 switch (rmode) {
8412 case FPROUNDING_TIEAWAY:
8413 rmode = float_round_ties_away;
8414 break;
8415 case FPROUNDING_ODD:
8416 /* FIXME: add support for TIEAWAY and ODD */
8417 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
8418 rmode);
8419 case FPROUNDING_TIEEVEN:
8420 default:
8421 rmode = float_round_nearest_even;
8422 break;
8423 case FPROUNDING_POSINF:
8424 rmode = float_round_up;
8425 break;
8426 case FPROUNDING_NEGINF:
8427 rmode = float_round_down;
8428 break;
8429 case FPROUNDING_ZERO:
8430 rmode = float_round_to_zero;
8431 break;
8433 return rmode;
8436 /* CRC helpers.
8437 * The upper bytes of val (above the number specified by 'bytes') must have
8438 * been zeroed out by the caller.
8440 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
8442 uint8_t buf[4];
8444 stl_le_p(buf, val);
8446 /* zlib crc32 converts the accumulator and output to one's complement. */
8447 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
8450 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
8452 uint8_t buf[4];
8454 stl_le_p(buf, val);
8456 /* Linux crc32c converts the output to one's complement. */
8457 return crc32c(acc, buf, bytes) ^ 0xffffffff;