target/arm: adjust program counter for wfi exception in AArch32
[qemu/ar7.git] / target / arm / m_helper.c
blob33d414a684bed3ed3cc32c1bc4e9c317957f4f12
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/semihosting/semihost.h"
25 #include "sysemu/cpus.h"
26 #include "sysemu/kvm.h"
27 #include "qemu/range.h"
28 #include "qapi/qapi-commands-machine-target.h"
29 #include "qapi/error.h"
30 #include "qemu/guest-random.h"
31 #ifdef CONFIG_TCG
32 #include "arm_ldst.h"
33 #include "exec/cpu_ldst.h"
34 #endif
36 static void v7m_msr_xpsr(CPUARMState *env, uint32_t mask,
37 uint32_t reg, uint32_t val)
39 /* Only APSR is actually writable */
40 if (!(reg & 4)) {
41 uint32_t apsrmask = 0;
43 if (mask & 8) {
44 apsrmask |= XPSR_NZCV | XPSR_Q;
46 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
47 apsrmask |= XPSR_GE;
49 xpsr_write(env, val, apsrmask);
53 static uint32_t v7m_mrs_xpsr(CPUARMState *env, uint32_t reg, unsigned el)
55 uint32_t mask = 0;
57 if ((reg & 1) && el) {
58 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
60 if (!(reg & 4)) {
61 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
62 if (arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
63 mask |= XPSR_GE;
66 /* EPSR reads as zero */
67 return xpsr_read(env) & mask;
70 static uint32_t v7m_mrs_control(CPUARMState *env, uint32_t secure)
72 uint32_t value = env->v7m.control[secure];
74 if (!secure) {
75 /* SFPA is RAZ/WI from NS; FPCA is stored in the M_REG_S bank */
76 value |= env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK;
78 return value;
81 #ifdef CONFIG_USER_ONLY
83 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
85 uint32_t mask = extract32(maskreg, 8, 4);
86 uint32_t reg = extract32(maskreg, 0, 8);
88 switch (reg) {
89 case 0 ... 7: /* xPSR sub-fields */
90 v7m_msr_xpsr(env, mask, reg, val);
91 break;
92 case 20: /* CONTROL */
93 /* There are no sub-fields that are actually writable from EL0. */
94 break;
95 default:
96 /* Unprivileged writes to other registers are ignored */
97 break;
101 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
103 switch (reg) {
104 case 0 ... 7: /* xPSR sub-fields */
105 return v7m_mrs_xpsr(env, reg, 0);
106 case 20: /* CONTROL */
107 return v7m_mrs_control(env, 0);
108 default:
109 /* Unprivileged reads others as zero. */
110 return 0;
114 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
116 /* translate.c should never generate calls here in user-only mode */
117 g_assert_not_reached();
120 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
122 /* translate.c should never generate calls here in user-only mode */
123 g_assert_not_reached();
126 void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
128 /* translate.c should never generate calls here in user-only mode */
129 g_assert_not_reached();
132 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
134 /* translate.c should never generate calls here in user-only mode */
135 g_assert_not_reached();
138 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
140 /* translate.c should never generate calls here in user-only mode */
141 g_assert_not_reached();
144 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
147 * The TT instructions can be used by unprivileged code, but in
148 * user-only emulation we don't have the MPU.
149 * Luckily since we know we are NonSecure unprivileged (and that in
150 * turn means that the A flag wasn't specified), all the bits in the
151 * register must be zero:
152 * IREGION: 0 because IRVALID is 0
153 * IRVALID: 0 because NS
154 * S: 0 because NS
155 * NSRW: 0 because NS
156 * NSR: 0 because NS
157 * RW: 0 because unpriv and A flag not set
158 * R: 0 because unpriv and A flag not set
159 * SRVALID: 0 because NS
160 * MRVALID: 0 because unpriv and A flag not set
161 * SREGION: 0 becaus SRVALID is 0
162 * MREGION: 0 because MRVALID is 0
164 return 0;
167 #else
170 * What kind of stack write are we doing? This affects how exceptions
171 * generated during the stacking are treated.
173 typedef enum StackingMode {
174 STACK_NORMAL,
175 STACK_IGNFAULTS,
176 STACK_LAZYFP,
177 } StackingMode;
179 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
180 ARMMMUIdx mmu_idx, StackingMode mode)
182 CPUState *cs = CPU(cpu);
183 CPUARMState *env = &cpu->env;
184 MemTxAttrs attrs = {};
185 MemTxResult txres;
186 target_ulong page_size;
187 hwaddr physaddr;
188 int prot;
189 ARMMMUFaultInfo fi = {};
190 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
191 int exc;
192 bool exc_secure;
194 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
195 &attrs, &prot, &page_size, &fi, NULL)) {
196 /* MPU/SAU lookup failed */
197 if (fi.type == ARMFault_QEMU_SFault) {
198 if (mode == STACK_LAZYFP) {
199 qemu_log_mask(CPU_LOG_INT,
200 "...SecureFault with SFSR.LSPERR "
201 "during lazy stacking\n");
202 env->v7m.sfsr |= R_V7M_SFSR_LSPERR_MASK;
203 } else {
204 qemu_log_mask(CPU_LOG_INT,
205 "...SecureFault with SFSR.AUVIOL "
206 "during stacking\n");
207 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
209 env->v7m.sfsr |= R_V7M_SFSR_SFARVALID_MASK;
210 env->v7m.sfar = addr;
211 exc = ARMV7M_EXCP_SECURE;
212 exc_secure = false;
213 } else {
214 if (mode == STACK_LAZYFP) {
215 qemu_log_mask(CPU_LOG_INT,
216 "...MemManageFault with CFSR.MLSPERR\n");
217 env->v7m.cfsr[secure] |= R_V7M_CFSR_MLSPERR_MASK;
218 } else {
219 qemu_log_mask(CPU_LOG_INT,
220 "...MemManageFault with CFSR.MSTKERR\n");
221 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
223 exc = ARMV7M_EXCP_MEM;
224 exc_secure = secure;
226 goto pend_fault;
228 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
229 attrs, &txres);
230 if (txres != MEMTX_OK) {
231 /* BusFault trying to write the data */
232 if (mode == STACK_LAZYFP) {
233 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.LSPERR\n");
234 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_LSPERR_MASK;
235 } else {
236 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
237 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
239 exc = ARMV7M_EXCP_BUS;
240 exc_secure = false;
241 goto pend_fault;
243 return true;
245 pend_fault:
247 * By pending the exception at this point we are making
248 * the IMPDEF choice "overridden exceptions pended" (see the
249 * MergeExcInfo() pseudocode). The other choice would be to not
250 * pend them now and then make a choice about which to throw away
251 * later if we have two derived exceptions.
252 * The only case when we must not pend the exception but instead
253 * throw it away is if we are doing the push of the callee registers
254 * and we've already generated a derived exception (this is indicated
255 * by the caller passing STACK_IGNFAULTS). Even in this case we will
256 * still update the fault status registers.
258 switch (mode) {
259 case STACK_NORMAL:
260 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
261 break;
262 case STACK_LAZYFP:
263 armv7m_nvic_set_pending_lazyfp(env->nvic, exc, exc_secure);
264 break;
265 case STACK_IGNFAULTS:
266 break;
268 return false;
271 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
272 ARMMMUIdx mmu_idx)
274 CPUState *cs = CPU(cpu);
275 CPUARMState *env = &cpu->env;
276 MemTxAttrs attrs = {};
277 MemTxResult txres;
278 target_ulong page_size;
279 hwaddr physaddr;
280 int prot;
281 ARMMMUFaultInfo fi = {};
282 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
283 int exc;
284 bool exc_secure;
285 uint32_t value;
287 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
288 &attrs, &prot, &page_size, &fi, NULL)) {
289 /* MPU/SAU lookup failed */
290 if (fi.type == ARMFault_QEMU_SFault) {
291 qemu_log_mask(CPU_LOG_INT,
292 "...SecureFault with SFSR.AUVIOL during unstack\n");
293 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
294 env->v7m.sfar = addr;
295 exc = ARMV7M_EXCP_SECURE;
296 exc_secure = false;
297 } else {
298 qemu_log_mask(CPU_LOG_INT,
299 "...MemManageFault with CFSR.MUNSTKERR\n");
300 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
301 exc = ARMV7M_EXCP_MEM;
302 exc_secure = secure;
304 goto pend_fault;
307 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
308 attrs, &txres);
309 if (txres != MEMTX_OK) {
310 /* BusFault trying to read the data */
311 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
312 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
313 exc = ARMV7M_EXCP_BUS;
314 exc_secure = false;
315 goto pend_fault;
318 *dest = value;
319 return true;
321 pend_fault:
323 * By pending the exception at this point we are making
324 * the IMPDEF choice "overridden exceptions pended" (see the
325 * MergeExcInfo() pseudocode). The other choice would be to not
326 * pend them now and then make a choice about which to throw away
327 * later if we have two derived exceptions.
329 armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
330 return false;
333 void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
336 * Preserve FP state (because LSPACT was set and we are about
337 * to execute an FP instruction). This corresponds to the
338 * PreserveFPState() pseudocode.
339 * We may throw an exception if the stacking fails.
341 ARMCPU *cpu = env_archcpu(env);
342 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
343 bool negpri = !(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_HFRDY_MASK);
344 bool is_priv = !(env->v7m.fpccr[is_secure] & R_V7M_FPCCR_USER_MASK);
345 bool splimviol = env->v7m.fpccr[is_secure] & R_V7M_FPCCR_SPLIMVIOL_MASK;
346 uint32_t fpcar = env->v7m.fpcar[is_secure];
347 bool stacked_ok = true;
348 bool ts = is_secure && (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
349 bool take_exception;
351 /* Take the iothread lock as we are going to touch the NVIC */
352 qemu_mutex_lock_iothread();
354 /* Check the background context had access to the FPU */
355 if (!v7m_cpacr_pass(env, is_secure, is_priv)) {
356 armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, is_secure);
357 env->v7m.cfsr[is_secure] |= R_V7M_CFSR_NOCP_MASK;
358 stacked_ok = false;
359 } else if (!is_secure && !extract32(env->v7m.nsacr, 10, 1)) {
360 armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
361 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
362 stacked_ok = false;
365 if (!splimviol && stacked_ok) {
366 /* We only stack if the stack limit wasn't violated */
367 int i;
368 ARMMMUIdx mmu_idx;
370 mmu_idx = arm_v7m_mmu_idx_all(env, is_secure, is_priv, negpri);
371 for (i = 0; i < (ts ? 32 : 16); i += 2) {
372 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
373 uint32_t faddr = fpcar + 4 * i;
374 uint32_t slo = extract64(dn, 0, 32);
375 uint32_t shi = extract64(dn, 32, 32);
377 if (i >= 16) {
378 faddr += 8; /* skip the slot for the FPSCR */
380 stacked_ok = stacked_ok &&
381 v7m_stack_write(cpu, faddr, slo, mmu_idx, STACK_LAZYFP) &&
382 v7m_stack_write(cpu, faddr + 4, shi, mmu_idx, STACK_LAZYFP);
385 stacked_ok = stacked_ok &&
386 v7m_stack_write(cpu, fpcar + 0x40,
387 vfp_get_fpscr(env), mmu_idx, STACK_LAZYFP);
391 * We definitely pended an exception, but it's possible that it
392 * might not be able to be taken now. If its priority permits us
393 * to take it now, then we must not update the LSPACT or FP regs,
394 * but instead jump out to take the exception immediately.
395 * If it's just pending and won't be taken until the current
396 * handler exits, then we do update LSPACT and the FP regs.
398 take_exception = !stacked_ok &&
399 armv7m_nvic_can_take_pending_exception(env->nvic);
401 qemu_mutex_unlock_iothread();
403 if (take_exception) {
404 raise_exception_ra(env, EXCP_LAZYFP, 0, 1, GETPC());
407 env->v7m.fpccr[is_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
409 if (ts) {
410 /* Clear s0 to s31 and the FPSCR */
411 int i;
413 for (i = 0; i < 32; i += 2) {
414 *aa32_vfp_dreg(env, i / 2) = 0;
416 vfp_set_fpscr(env, 0);
419 * Otherwise s0 to s15 and FPSCR are UNKNOWN; we choose to leave them
420 * unchanged.
425 * Write to v7M CONTROL.SPSEL bit for the specified security bank.
426 * This may change the current stack pointer between Main and Process
427 * stack pointers if it is done for the CONTROL register for the current
428 * security state.
430 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
431 bool new_spsel,
432 bool secstate)
434 bool old_is_psp = v7m_using_psp(env);
436 env->v7m.control[secstate] =
437 deposit32(env->v7m.control[secstate],
438 R_V7M_CONTROL_SPSEL_SHIFT,
439 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
441 if (secstate == env->v7m.secure) {
442 bool new_is_psp = v7m_using_psp(env);
443 uint32_t tmp;
445 if (old_is_psp != new_is_psp) {
446 tmp = env->v7m.other_sp;
447 env->v7m.other_sp = env->regs[13];
448 env->regs[13] = tmp;
454 * Write to v7M CONTROL.SPSEL bit. This may change the current
455 * stack pointer between Main and Process stack pointers.
457 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
459 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
462 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
465 * Write a new value to v7m.exception, thus transitioning into or out
466 * of Handler mode; this may result in a change of active stack pointer.
468 bool new_is_psp, old_is_psp = v7m_using_psp(env);
469 uint32_t tmp;
471 env->v7m.exception = new_exc;
473 new_is_psp = v7m_using_psp(env);
475 if (old_is_psp != new_is_psp) {
476 tmp = env->v7m.other_sp;
477 env->v7m.other_sp = env->regs[13];
478 env->regs[13] = tmp;
482 /* Switch M profile security state between NS and S */
483 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
485 uint32_t new_ss_msp, new_ss_psp;
487 if (env->v7m.secure == new_secstate) {
488 return;
492 * All the banked state is accessed by looking at env->v7m.secure
493 * except for the stack pointer; rearrange the SP appropriately.
495 new_ss_msp = env->v7m.other_ss_msp;
496 new_ss_psp = env->v7m.other_ss_psp;
498 if (v7m_using_psp(env)) {
499 env->v7m.other_ss_psp = env->regs[13];
500 env->v7m.other_ss_msp = env->v7m.other_sp;
501 } else {
502 env->v7m.other_ss_msp = env->regs[13];
503 env->v7m.other_ss_psp = env->v7m.other_sp;
506 env->v7m.secure = new_secstate;
508 if (v7m_using_psp(env)) {
509 env->regs[13] = new_ss_psp;
510 env->v7m.other_sp = new_ss_msp;
511 } else {
512 env->regs[13] = new_ss_msp;
513 env->v7m.other_sp = new_ss_psp;
517 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
520 * Handle v7M BXNS:
521 * - if the return value is a magic value, do exception return (like BX)
522 * - otherwise bit 0 of the return value is the target security state
524 uint32_t min_magic;
526 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
527 /* Covers FNC_RETURN and EXC_RETURN magic */
528 min_magic = FNC_RETURN_MIN_MAGIC;
529 } else {
530 /* EXC_RETURN magic only */
531 min_magic = EXC_RETURN_MIN_MAGIC;
534 if (dest >= min_magic) {
536 * This is an exception return magic value; put it where
537 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
538 * Note that if we ever add gen_ss_advance() singlestep support to
539 * M profile this should count as an "instruction execution complete"
540 * event (compare gen_bx_excret_final_code()).
542 env->regs[15] = dest & ~1;
543 env->thumb = dest & 1;
544 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
545 /* notreached */
548 /* translate.c should have made BXNS UNDEF unless we're secure */
549 assert(env->v7m.secure);
551 if (!(dest & 1)) {
552 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
554 switch_v7m_security_state(env, dest & 1);
555 env->thumb = 1;
556 env->regs[15] = dest & ~1;
557 arm_rebuild_hflags(env);
560 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
563 * Handle v7M BLXNS:
564 * - bit 0 of the destination address is the target security state
567 /* At this point regs[15] is the address just after the BLXNS */
568 uint32_t nextinst = env->regs[15] | 1;
569 uint32_t sp = env->regs[13] - 8;
570 uint32_t saved_psr;
572 /* translate.c will have made BLXNS UNDEF unless we're secure */
573 assert(env->v7m.secure);
575 if (dest & 1) {
577 * Target is Secure, so this is just a normal BLX,
578 * except that the low bit doesn't indicate Thumb/not.
580 env->regs[14] = nextinst;
581 env->thumb = 1;
582 env->regs[15] = dest & ~1;
583 return;
586 /* Target is non-secure: first push a stack frame */
587 if (!QEMU_IS_ALIGNED(sp, 8)) {
588 qemu_log_mask(LOG_GUEST_ERROR,
589 "BLXNS with misaligned SP is UNPREDICTABLE\n");
592 if (sp < v7m_sp_limit(env)) {
593 raise_exception(env, EXCP_STKOF, 0, 1);
596 saved_psr = env->v7m.exception;
597 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
598 saved_psr |= XPSR_SFPA;
601 /* Note that these stores can throw exceptions on MPU faults */
602 cpu_stl_data_ra(env, sp, nextinst, GETPC());
603 cpu_stl_data_ra(env, sp + 4, saved_psr, GETPC());
605 env->regs[13] = sp;
606 env->regs[14] = 0xfeffffff;
607 if (arm_v7m_is_handler_mode(env)) {
609 * Write a dummy value to IPSR, to avoid leaking the current secure
610 * exception number to non-secure code. This is guaranteed not
611 * to cause write_v7m_exception() to actually change stacks.
613 write_v7m_exception(env, 1);
615 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
616 switch_v7m_security_state(env, 0);
617 env->thumb = 1;
618 env->regs[15] = dest;
619 arm_rebuild_hflags(env);
622 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
623 bool spsel)
626 * Return a pointer to the location where we currently store the
627 * stack pointer for the requested security state and thread mode.
628 * This pointer will become invalid if the CPU state is updated
629 * such that the stack pointers are switched around (eg changing
630 * the SPSEL control bit).
631 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
632 * Unlike that pseudocode, we require the caller to pass us in the
633 * SPSEL control bit value; this is because we also use this
634 * function in handling of pushing of the callee-saves registers
635 * part of the v8M stack frame (pseudocode PushCalleeStack()),
636 * and in the tailchain codepath the SPSEL bit comes from the exception
637 * return magic LR value from the previous exception. The pseudocode
638 * opencodes the stack-selection in PushCalleeStack(), but we prefer
639 * to make this utility function generic enough to do the job.
641 bool want_psp = threadmode && spsel;
643 if (secure == env->v7m.secure) {
644 if (want_psp == v7m_using_psp(env)) {
645 return &env->regs[13];
646 } else {
647 return &env->v7m.other_sp;
649 } else {
650 if (want_psp) {
651 return &env->v7m.other_ss_psp;
652 } else {
653 return &env->v7m.other_ss_msp;
658 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
659 uint32_t *pvec)
661 CPUState *cs = CPU(cpu);
662 CPUARMState *env = &cpu->env;
663 MemTxResult result;
664 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
665 uint32_t vector_entry;
666 MemTxAttrs attrs = {};
667 ARMMMUIdx mmu_idx;
668 bool exc_secure;
670 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
673 * We don't do a get_phys_addr() here because the rules for vector
674 * loads are special: they always use the default memory map, and
675 * the default memory map permits reads from all addresses.
676 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
677 * that we want this special case which would always say "yes",
678 * we just do the SAU lookup here followed by a direct physical load.
680 attrs.secure = targets_secure;
681 attrs.user = false;
683 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
684 V8M_SAttributes sattrs = {};
686 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
687 if (sattrs.ns) {
688 attrs.secure = false;
689 } else if (!targets_secure) {
691 * NS access to S memory: the underlying exception which we escalate
692 * to HardFault is SecureFault, which always targets Secure.
694 exc_secure = true;
695 goto load_fail;
699 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
700 attrs, &result);
701 if (result != MEMTX_OK) {
703 * Underlying exception is BusFault: its target security state
704 * depends on BFHFNMINS.
706 exc_secure = !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
707 goto load_fail;
709 *pvec = vector_entry;
710 return true;
712 load_fail:
714 * All vector table fetch fails are reported as HardFault, with
715 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
716 * technically the underlying exception is a SecureFault or BusFault
717 * that is escalated to HardFault.) This is a terminal exception,
718 * so we will either take the HardFault immediately or else enter
719 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
720 * The HardFault is Secure if BFHFNMINS is 0 (meaning that all HFs are
721 * secure); otherwise it targets the same security state as the
722 * underlying exception.
724 if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
725 exc_secure = true;
727 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
728 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
729 return false;
732 static uint32_t v7m_integrity_sig(CPUARMState *env, uint32_t lr)
735 * Return the integrity signature value for the callee-saves
736 * stack frame section. @lr is the exception return payload/LR value
737 * whose FType bit forms bit 0 of the signature if FP is present.
739 uint32_t sig = 0xfefa125a;
741 if (!arm_feature(env, ARM_FEATURE_VFP) || (lr & R_V7M_EXCRET_FTYPE_MASK)) {
742 sig |= 1;
744 return sig;
747 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
748 bool ignore_faults)
751 * For v8M, push the callee-saves register part of the stack frame.
752 * Compare the v8M pseudocode PushCalleeStack().
753 * In the tailchaining case this may not be the current stack.
755 CPUARMState *env = &cpu->env;
756 uint32_t *frame_sp_p;
757 uint32_t frameptr;
758 ARMMMUIdx mmu_idx;
759 bool stacked_ok;
760 uint32_t limit;
761 bool want_psp;
762 uint32_t sig;
763 StackingMode smode = ignore_faults ? STACK_IGNFAULTS : STACK_NORMAL;
765 if (dotailchain) {
766 bool mode = lr & R_V7M_EXCRET_MODE_MASK;
767 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
768 !mode;
770 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
771 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
772 lr & R_V7M_EXCRET_SPSEL_MASK);
773 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
774 if (want_psp) {
775 limit = env->v7m.psplim[M_REG_S];
776 } else {
777 limit = env->v7m.msplim[M_REG_S];
779 } else {
780 mmu_idx = arm_mmu_idx(env);
781 frame_sp_p = &env->regs[13];
782 limit = v7m_sp_limit(env);
785 frameptr = *frame_sp_p - 0x28;
786 if (frameptr < limit) {
788 * Stack limit failure: set SP to the limit value, and generate
789 * STKOF UsageFault. Stack pushes below the limit must not be
790 * performed. It is IMPDEF whether pushes above the limit are
791 * performed; we choose not to.
793 qemu_log_mask(CPU_LOG_INT,
794 "...STKOF during callee-saves register stacking\n");
795 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
796 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
797 env->v7m.secure);
798 *frame_sp_p = limit;
799 return true;
803 * Write as much of the stack frame as we can. A write failure may
804 * cause us to pend a derived exception.
806 sig = v7m_integrity_sig(env, lr);
807 stacked_ok =
808 v7m_stack_write(cpu, frameptr, sig, mmu_idx, smode) &&
809 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, smode) &&
810 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, smode) &&
811 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, smode) &&
812 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, smode) &&
813 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, smode) &&
814 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, smode) &&
815 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, smode) &&
816 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, smode);
818 /* Update SP regardless of whether any of the stack accesses failed. */
819 *frame_sp_p = frameptr;
821 return !stacked_ok;
824 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
825 bool ignore_stackfaults)
828 * Do the "take the exception" parts of exception entry,
829 * but not the pushing of state to the stack. This is
830 * similar to the pseudocode ExceptionTaken() function.
832 CPUARMState *env = &cpu->env;
833 uint32_t addr;
834 bool targets_secure;
835 int exc;
836 bool push_failed = false;
838 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
839 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
840 targets_secure ? "secure" : "nonsecure", exc);
842 if (dotailchain) {
843 /* Sanitize LR FType and PREFIX bits */
844 if (!arm_feature(env, ARM_FEATURE_VFP)) {
845 lr |= R_V7M_EXCRET_FTYPE_MASK;
847 lr = deposit32(lr, 24, 8, 0xff);
850 if (arm_feature(env, ARM_FEATURE_V8)) {
851 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
852 (lr & R_V7M_EXCRET_S_MASK)) {
854 * The background code (the owner of the registers in the
855 * exception frame) is Secure. This means it may either already
856 * have or now needs to push callee-saves registers.
858 if (targets_secure) {
859 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
861 * We took an exception from Secure to NonSecure
862 * (which means the callee-saved registers got stacked)
863 * and are now tailchaining to a Secure exception.
864 * Clear DCRS so eventual return from this Secure
865 * exception unstacks the callee-saved registers.
867 lr &= ~R_V7M_EXCRET_DCRS_MASK;
869 } else {
871 * We're going to a non-secure exception; push the
872 * callee-saves registers to the stack now, if they're
873 * not already saved.
875 if (lr & R_V7M_EXCRET_DCRS_MASK &&
876 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
877 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
878 ignore_stackfaults);
880 lr |= R_V7M_EXCRET_DCRS_MASK;
884 lr &= ~R_V7M_EXCRET_ES_MASK;
885 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
886 lr |= R_V7M_EXCRET_ES_MASK;
888 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
889 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
890 lr |= R_V7M_EXCRET_SPSEL_MASK;
894 * Clear registers if necessary to prevent non-secure exception
895 * code being able to see register values from secure code.
896 * Where register values become architecturally UNKNOWN we leave
897 * them with their previous values.
899 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
900 if (!targets_secure) {
902 * Always clear the caller-saved registers (they have been
903 * pushed to the stack earlier in v7m_push_stack()).
904 * Clear callee-saved registers if the background code is
905 * Secure (in which case these regs were saved in
906 * v7m_push_callee_stack()).
908 int i;
910 for (i = 0; i < 13; i++) {
911 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
912 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
913 env->regs[i] = 0;
916 /* Clear EAPSR */
917 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
922 if (push_failed && !ignore_stackfaults) {
924 * Derived exception on callee-saves register stacking:
925 * we might now want to take a different exception which
926 * targets a different security state, so try again from the top.
928 qemu_log_mask(CPU_LOG_INT,
929 "...derived exception on callee-saves register stacking");
930 v7m_exception_taken(cpu, lr, true, true);
931 return;
934 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
935 /* Vector load failed: derived exception */
936 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
937 v7m_exception_taken(cpu, lr, true, true);
938 return;
942 * Now we've done everything that might cause a derived exception
943 * we can go ahead and activate whichever exception we're going to
944 * take (which might now be the derived exception).
946 armv7m_nvic_acknowledge_irq(env->nvic);
948 /* Switch to target security state -- must do this before writing SPSEL */
949 switch_v7m_security_state(env, targets_secure);
950 write_v7m_control_spsel(env, 0);
951 arm_clear_exclusive(env);
952 /* Clear SFPA and FPCA (has no effect if no FPU) */
953 env->v7m.control[M_REG_S] &=
954 ~(R_V7M_CONTROL_FPCA_MASK | R_V7M_CONTROL_SFPA_MASK);
955 /* Clear IT bits */
956 env->condexec_bits = 0;
957 env->regs[14] = lr;
958 env->regs[15] = addr & 0xfffffffe;
959 env->thumb = addr & 1;
960 arm_rebuild_hflags(env);
963 static void v7m_update_fpccr(CPUARMState *env, uint32_t frameptr,
964 bool apply_splim)
967 * Like the pseudocode UpdateFPCCR: save state in FPCAR and FPCCR
968 * that we will need later in order to do lazy FP reg stacking.
970 bool is_secure = env->v7m.secure;
971 void *nvic = env->nvic;
973 * Some bits are unbanked and live always in fpccr[M_REG_S]; some bits
974 * are banked and we want to update the bit in the bank for the
975 * current security state; and in one case we want to specifically
976 * update the NS banked version of a bit even if we are secure.
978 uint32_t *fpccr_s = &env->v7m.fpccr[M_REG_S];
979 uint32_t *fpccr_ns = &env->v7m.fpccr[M_REG_NS];
980 uint32_t *fpccr = &env->v7m.fpccr[is_secure];
981 bool hfrdy, bfrdy, mmrdy, ns_ufrdy, s_ufrdy, sfrdy, monrdy;
983 env->v7m.fpcar[is_secure] = frameptr & ~0x7;
985 if (apply_splim && arm_feature(env, ARM_FEATURE_V8)) {
986 bool splimviol;
987 uint32_t splim = v7m_sp_limit(env);
988 bool ign = armv7m_nvic_neg_prio_requested(nvic, is_secure) &&
989 (env->v7m.ccr[is_secure] & R_V7M_CCR_STKOFHFNMIGN_MASK);
991 splimviol = !ign && frameptr < splim;
992 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, SPLIMVIOL, splimviol);
995 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, LSPACT, 1);
997 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, S, is_secure);
999 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, USER, arm_current_el(env) == 0);
1001 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, THREAD,
1002 !arm_v7m_is_handler_mode(env));
1004 hfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_HARD, false);
1005 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
1007 bfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_BUS, false);
1008 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
1010 mmrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_MEM, is_secure);
1011 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, MMRDY, mmrdy);
1013 ns_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, false);
1014 *fpccr_ns = FIELD_DP32(*fpccr_ns, V7M_FPCCR, UFRDY, ns_ufrdy);
1016 monrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_DEBUG, false);
1017 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, MONRDY, monrdy);
1019 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1020 s_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, true);
1021 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, UFRDY, s_ufrdy);
1023 sfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_SECURE, false);
1024 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, SFRDY, sfrdy);
1028 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
1030 /* fptr is the value of Rn, the frame pointer we store the FP regs to */
1031 bool s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
1032 bool lspact = env->v7m.fpccr[s] & R_V7M_FPCCR_LSPACT_MASK;
1033 uintptr_t ra = GETPC();
1035 assert(env->v7m.secure);
1037 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
1038 return;
1041 /* Check access to the coprocessor is permitted */
1042 if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
1043 raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
1046 if (lspact) {
1047 /* LSPACT should not be active when there is active FP state */
1048 raise_exception_ra(env, EXCP_LSERR, 0, 1, GETPC());
1051 if (fptr & 7) {
1052 raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
1056 * Note that we do not use v7m_stack_write() here, because the
1057 * accesses should not set the FSR bits for stacking errors if they
1058 * fail. (In pseudocode terms, they are AccType_NORMAL, not AccType_STACK
1059 * or AccType_LAZYFP). Faults in cpu_stl_data_ra() will throw exceptions
1060 * and longjmp out.
1062 if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
1063 bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
1064 int i;
1066 for (i = 0; i < (ts ? 32 : 16); i += 2) {
1067 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
1068 uint32_t faddr = fptr + 4 * i;
1069 uint32_t slo = extract64(dn, 0, 32);
1070 uint32_t shi = extract64(dn, 32, 32);
1072 if (i >= 16) {
1073 faddr += 8; /* skip the slot for the FPSCR */
1075 cpu_stl_data_ra(env, faddr, slo, ra);
1076 cpu_stl_data_ra(env, faddr + 4, shi, ra);
1078 cpu_stl_data_ra(env, fptr + 0x40, vfp_get_fpscr(env), ra);
1081 * If TS is 0 then s0 to s15 and FPSCR are UNKNOWN; we choose to
1082 * leave them unchanged, matching our choice in v7m_preserve_fp_state.
1084 if (ts) {
1085 for (i = 0; i < 32; i += 2) {
1086 *aa32_vfp_dreg(env, i / 2) = 0;
1088 vfp_set_fpscr(env, 0);
1090 } else {
1091 v7m_update_fpccr(env, fptr, false);
1094 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
1097 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
1099 uintptr_t ra = GETPC();
1101 /* fptr is the value of Rn, the frame pointer we load the FP regs from */
1102 assert(env->v7m.secure);
1104 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
1105 return;
1108 /* Check access to the coprocessor is permitted */
1109 if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
1110 raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
1113 if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
1114 /* State in FP is still valid */
1115 env->v7m.fpccr[M_REG_S] &= ~R_V7M_FPCCR_LSPACT_MASK;
1116 } else {
1117 bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
1118 int i;
1119 uint32_t fpscr;
1121 if (fptr & 7) {
1122 raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
1125 for (i = 0; i < (ts ? 32 : 16); i += 2) {
1126 uint32_t slo, shi;
1127 uint64_t dn;
1128 uint32_t faddr = fptr + 4 * i;
1130 if (i >= 16) {
1131 faddr += 8; /* skip the slot for the FPSCR */
1134 slo = cpu_ldl_data_ra(env, faddr, ra);
1135 shi = cpu_ldl_data_ra(env, faddr + 4, ra);
1137 dn = (uint64_t) shi << 32 | slo;
1138 *aa32_vfp_dreg(env, i / 2) = dn;
1140 fpscr = cpu_ldl_data_ra(env, fptr + 0x40, ra);
1141 vfp_set_fpscr(env, fpscr);
1144 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
1147 static bool v7m_push_stack(ARMCPU *cpu)
1150 * Do the "set up stack frame" part of exception entry,
1151 * similar to pseudocode PushStack().
1152 * Return true if we generate a derived exception (and so
1153 * should ignore further stack faults trying to process
1154 * that derived exception.)
1156 bool stacked_ok = true, limitviol = false;
1157 CPUARMState *env = &cpu->env;
1158 uint32_t xpsr = xpsr_read(env);
1159 uint32_t frameptr = env->regs[13];
1160 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
1161 uint32_t framesize;
1162 bool nsacr_cp10 = extract32(env->v7m.nsacr, 10, 1);
1164 if ((env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) &&
1165 (env->v7m.secure || nsacr_cp10)) {
1166 if (env->v7m.secure &&
1167 env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK) {
1168 framesize = 0xa8;
1169 } else {
1170 framesize = 0x68;
1172 } else {
1173 framesize = 0x20;
1176 /* Align stack pointer if the guest wants that */
1177 if ((frameptr & 4) &&
1178 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
1179 frameptr -= 4;
1180 xpsr |= XPSR_SPREALIGN;
1183 xpsr &= ~XPSR_SFPA;
1184 if (env->v7m.secure &&
1185 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
1186 xpsr |= XPSR_SFPA;
1189 frameptr -= framesize;
1191 if (arm_feature(env, ARM_FEATURE_V8)) {
1192 uint32_t limit = v7m_sp_limit(env);
1194 if (frameptr < limit) {
1196 * Stack limit failure: set SP to the limit value, and generate
1197 * STKOF UsageFault. Stack pushes below the limit must not be
1198 * performed. It is IMPDEF whether pushes above the limit are
1199 * performed; we choose not to.
1201 qemu_log_mask(CPU_LOG_INT,
1202 "...STKOF during stacking\n");
1203 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
1204 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1205 env->v7m.secure);
1206 env->regs[13] = limit;
1208 * We won't try to perform any further memory accesses but
1209 * we must continue through the following code to check for
1210 * permission faults during FPU state preservation, and we
1211 * must update FPCCR if lazy stacking is enabled.
1213 limitviol = true;
1214 stacked_ok = false;
1219 * Write as much of the stack frame as we can. If we fail a stack
1220 * write this will result in a derived exception being pended
1221 * (which may be taken in preference to the one we started with
1222 * if it has higher priority).
1224 stacked_ok = stacked_ok &&
1225 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, STACK_NORMAL) &&
1226 v7m_stack_write(cpu, frameptr + 4, env->regs[1],
1227 mmu_idx, STACK_NORMAL) &&
1228 v7m_stack_write(cpu, frameptr + 8, env->regs[2],
1229 mmu_idx, STACK_NORMAL) &&
1230 v7m_stack_write(cpu, frameptr + 12, env->regs[3],
1231 mmu_idx, STACK_NORMAL) &&
1232 v7m_stack_write(cpu, frameptr + 16, env->regs[12],
1233 mmu_idx, STACK_NORMAL) &&
1234 v7m_stack_write(cpu, frameptr + 20, env->regs[14],
1235 mmu_idx, STACK_NORMAL) &&
1236 v7m_stack_write(cpu, frameptr + 24, env->regs[15],
1237 mmu_idx, STACK_NORMAL) &&
1238 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, STACK_NORMAL);
1240 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) {
1241 /* FPU is active, try to save its registers */
1242 bool fpccr_s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
1243 bool lspact = env->v7m.fpccr[fpccr_s] & R_V7M_FPCCR_LSPACT_MASK;
1245 if (lspact && arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1246 qemu_log_mask(CPU_LOG_INT,
1247 "...SecureFault because LSPACT and FPCA both set\n");
1248 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
1249 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1250 } else if (!env->v7m.secure && !nsacr_cp10) {
1251 qemu_log_mask(CPU_LOG_INT,
1252 "...Secure UsageFault with CFSR.NOCP because "
1253 "NSACR.CP10 prevents stacking FP regs\n");
1254 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
1255 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
1256 } else {
1257 if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
1258 /* Lazy stacking disabled, save registers now */
1259 int i;
1260 bool cpacr_pass = v7m_cpacr_pass(env, env->v7m.secure,
1261 arm_current_el(env) != 0);
1263 if (stacked_ok && !cpacr_pass) {
1265 * Take UsageFault if CPACR forbids access. The pseudocode
1266 * here does a full CheckCPEnabled() but we know the NSACR
1267 * check can never fail as we have already handled that.
1269 qemu_log_mask(CPU_LOG_INT,
1270 "...UsageFault with CFSR.NOCP because "
1271 "CPACR.CP10 prevents stacking FP regs\n");
1272 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1273 env->v7m.secure);
1274 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
1275 stacked_ok = false;
1278 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
1279 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
1280 uint32_t faddr = frameptr + 0x20 + 4 * i;
1281 uint32_t slo = extract64(dn, 0, 32);
1282 uint32_t shi = extract64(dn, 32, 32);
1284 if (i >= 16) {
1285 faddr += 8; /* skip the slot for the FPSCR */
1287 stacked_ok = stacked_ok &&
1288 v7m_stack_write(cpu, faddr, slo,
1289 mmu_idx, STACK_NORMAL) &&
1290 v7m_stack_write(cpu, faddr + 4, shi,
1291 mmu_idx, STACK_NORMAL);
1293 stacked_ok = stacked_ok &&
1294 v7m_stack_write(cpu, frameptr + 0x60,
1295 vfp_get_fpscr(env), mmu_idx, STACK_NORMAL);
1296 if (cpacr_pass) {
1297 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
1298 *aa32_vfp_dreg(env, i / 2) = 0;
1300 vfp_set_fpscr(env, 0);
1302 } else {
1303 /* Lazy stacking enabled, save necessary info to stack later */
1304 v7m_update_fpccr(env, frameptr + 0x20, true);
1310 * If we broke a stack limit then SP was already updated earlier;
1311 * otherwise we update SP regardless of whether any of the stack
1312 * accesses failed or we took some other kind of fault.
1314 if (!limitviol) {
1315 env->regs[13] = frameptr;
1318 return !stacked_ok;
1321 static void do_v7m_exception_exit(ARMCPU *cpu)
1323 CPUARMState *env = &cpu->env;
1324 uint32_t excret;
1325 uint32_t xpsr, xpsr_mask;
1326 bool ufault = false;
1327 bool sfault = false;
1328 bool return_to_sp_process;
1329 bool return_to_handler;
1330 bool rettobase = false;
1331 bool exc_secure = false;
1332 bool return_to_secure;
1333 bool ftype;
1334 bool restore_s16_s31;
1337 * If we're not in Handler mode then jumps to magic exception-exit
1338 * addresses don't have magic behaviour. However for the v8M
1339 * security extensions the magic secure-function-return has to
1340 * work in thread mode too, so to avoid doing an extra check in
1341 * the generated code we allow exception-exit magic to also cause the
1342 * internal exception and bring us here in thread mode. Correct code
1343 * will never try to do this (the following insn fetch will always
1344 * fault) so we the overhead of having taken an unnecessary exception
1345 * doesn't matter.
1347 if (!arm_v7m_is_handler_mode(env)) {
1348 return;
1352 * In the spec pseudocode ExceptionReturn() is called directly
1353 * from BXWritePC() and gets the full target PC value including
1354 * bit zero. In QEMU's implementation we treat it as a normal
1355 * jump-to-register (which is then caught later on), and so split
1356 * the target value up between env->regs[15] and env->thumb in
1357 * gen_bx(). Reconstitute it.
1359 excret = env->regs[15];
1360 if (env->thumb) {
1361 excret |= 1;
1364 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
1365 " previous exception %d\n",
1366 excret, env->v7m.exception);
1368 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
1369 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
1370 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
1371 excret);
1374 ftype = excret & R_V7M_EXCRET_FTYPE_MASK;
1376 if (!arm_feature(env, ARM_FEATURE_VFP) && !ftype) {
1377 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero FTYPE in exception "
1378 "exit PC value 0x%" PRIx32 " is UNPREDICTABLE "
1379 "if FPU not present\n",
1380 excret);
1381 ftype = true;
1384 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1386 * EXC_RETURN.ES validation check (R_SMFL). We must do this before
1387 * we pick which FAULTMASK to clear.
1389 if (!env->v7m.secure &&
1390 ((excret & R_V7M_EXCRET_ES_MASK) ||
1391 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
1392 sfault = 1;
1393 /* For all other purposes, treat ES as 0 (R_HXSR) */
1394 excret &= ~R_V7M_EXCRET_ES_MASK;
1396 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
1399 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
1401 * Auto-clear FAULTMASK on return from other than NMI.
1402 * If the security extension is implemented then this only
1403 * happens if the raw execution priority is >= 0; the
1404 * value of the ES bit in the exception return value indicates
1405 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
1407 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1408 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
1409 env->v7m.faultmask[exc_secure] = 0;
1411 } else {
1412 env->v7m.faultmask[M_REG_NS] = 0;
1416 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
1417 exc_secure)) {
1418 case -1:
1419 /* attempt to exit an exception that isn't active */
1420 ufault = true;
1421 break;
1422 case 0:
1423 /* still an irq active now */
1424 break;
1425 case 1:
1427 * We returned to base exception level, no nesting.
1428 * (In the pseudocode this is written using "NestedActivation != 1"
1429 * where we have 'rettobase == false'.)
1431 rettobase = true;
1432 break;
1433 default:
1434 g_assert_not_reached();
1437 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
1438 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
1439 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
1440 (excret & R_V7M_EXCRET_S_MASK);
1442 if (arm_feature(env, ARM_FEATURE_V8)) {
1443 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1445 * UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
1446 * we choose to take the UsageFault.
1448 if ((excret & R_V7M_EXCRET_S_MASK) ||
1449 (excret & R_V7M_EXCRET_ES_MASK) ||
1450 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
1451 ufault = true;
1454 if (excret & R_V7M_EXCRET_RES0_MASK) {
1455 ufault = true;
1457 } else {
1458 /* For v7M we only recognize certain combinations of the low bits */
1459 switch (excret & 0xf) {
1460 case 1: /* Return to Handler */
1461 break;
1462 case 13: /* Return to Thread using Process stack */
1463 case 9: /* Return to Thread using Main stack */
1465 * We only need to check NONBASETHRDENA for v7M, because in
1466 * v8M this bit does not exist (it is RES1).
1468 if (!rettobase &&
1469 !(env->v7m.ccr[env->v7m.secure] &
1470 R_V7M_CCR_NONBASETHRDENA_MASK)) {
1471 ufault = true;
1473 break;
1474 default:
1475 ufault = true;
1480 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
1481 * Handler mode (and will be until we write the new XPSR.Interrupt
1482 * field) this does not switch around the current stack pointer.
1483 * We must do this before we do any kind of tailchaining, including
1484 * for the derived exceptions on integrity check failures, or we will
1485 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
1487 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
1490 * Clear scratch FP values left in caller saved registers; this
1491 * must happen before any kind of tail chaining.
1493 if ((env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_CLRONRET_MASK) &&
1494 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
1495 if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
1496 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
1497 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1498 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
1499 "stackframe: error during lazy state deactivation\n");
1500 v7m_exception_taken(cpu, excret, true, false);
1501 return;
1502 } else {
1503 /* Clear s0..s15 and FPSCR */
1504 int i;
1506 for (i = 0; i < 16; i += 2) {
1507 *aa32_vfp_dreg(env, i / 2) = 0;
1509 vfp_set_fpscr(env, 0);
1513 if (sfault) {
1514 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
1515 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1516 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
1517 "stackframe: failed EXC_RETURN.ES validity check\n");
1518 v7m_exception_taken(cpu, excret, true, false);
1519 return;
1522 if (ufault) {
1524 * Bad exception return: instead of popping the exception
1525 * stack, directly take a usage fault on the current stack.
1527 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1528 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
1529 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
1530 "stackframe: failed exception return integrity check\n");
1531 v7m_exception_taken(cpu, excret, true, false);
1532 return;
1536 * Tailchaining: if there is currently a pending exception that
1537 * is high enough priority to preempt execution at the level we're
1538 * about to return to, then just directly take that exception now,
1539 * avoiding an unstack-and-then-stack. Note that now we have
1540 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
1541 * our current execution priority is already the execution priority we are
1542 * returning to -- none of the state we would unstack or set based on
1543 * the EXCRET value affects it.
1545 if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
1546 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
1547 v7m_exception_taken(cpu, excret, true, false);
1548 return;
1551 switch_v7m_security_state(env, return_to_secure);
1555 * The stack pointer we should be reading the exception frame from
1556 * depends on bits in the magic exception return type value (and
1557 * for v8M isn't necessarily the stack pointer we will eventually
1558 * end up resuming execution with). Get a pointer to the location
1559 * in the CPU state struct where the SP we need is currently being
1560 * stored; we will use and modify it in place.
1561 * We use this limited C variable scope so we don't accidentally
1562 * use 'frame_sp_p' after we do something that makes it invalid.
1564 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
1565 return_to_secure,
1566 !return_to_handler,
1567 return_to_sp_process);
1568 uint32_t frameptr = *frame_sp_p;
1569 bool pop_ok = true;
1570 ARMMMUIdx mmu_idx;
1571 bool return_to_priv = return_to_handler ||
1572 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
1574 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
1575 return_to_priv);
1577 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
1578 arm_feature(env, ARM_FEATURE_V8)) {
1579 qemu_log_mask(LOG_GUEST_ERROR,
1580 "M profile exception return with non-8-aligned SP "
1581 "for destination state is UNPREDICTABLE\n");
1584 /* Do we need to pop callee-saved registers? */
1585 if (return_to_secure &&
1586 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
1587 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
1588 uint32_t actual_sig;
1590 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
1592 if (pop_ok && v7m_integrity_sig(env, excret) != actual_sig) {
1593 /* Take a SecureFault on the current stack */
1594 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
1595 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1596 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
1597 "stackframe: failed exception return integrity "
1598 "signature check\n");
1599 v7m_exception_taken(cpu, excret, true, false);
1600 return;
1603 pop_ok = pop_ok &&
1604 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
1605 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
1606 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
1607 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
1608 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
1609 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
1610 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
1611 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
1613 frameptr += 0x28;
1616 /* Pop registers */
1617 pop_ok = pop_ok &&
1618 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
1619 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
1620 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
1621 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
1622 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
1623 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
1624 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
1625 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
1627 if (!pop_ok) {
1629 * v7m_stack_read() pended a fault, so take it (as a tail
1630 * chained exception on the same stack frame)
1632 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
1633 v7m_exception_taken(cpu, excret, true, false);
1634 return;
1638 * Returning from an exception with a PC with bit 0 set is defined
1639 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
1640 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
1641 * the lsbit, and there are several RTOSes out there which incorrectly
1642 * assume the r15 in the stack frame should be a Thumb-style "lsbit
1643 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
1644 * complain about the badly behaved guest.
1646 if (env->regs[15] & 1) {
1647 env->regs[15] &= ~1U;
1648 if (!arm_feature(env, ARM_FEATURE_V8)) {
1649 qemu_log_mask(LOG_GUEST_ERROR,
1650 "M profile return from interrupt with misaligned "
1651 "PC is UNPREDICTABLE on v7M\n");
1655 if (arm_feature(env, ARM_FEATURE_V8)) {
1657 * For v8M we have to check whether the xPSR exception field
1658 * matches the EXCRET value for return to handler/thread
1659 * before we commit to changing the SP and xPSR.
1661 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
1662 if (return_to_handler != will_be_handler) {
1664 * Take an INVPC UsageFault on the current stack.
1665 * By this point we will have switched to the security state
1666 * for the background state, so this UsageFault will target
1667 * that state.
1669 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1670 env->v7m.secure);
1671 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1672 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
1673 "stackframe: failed exception return integrity "
1674 "check\n");
1675 v7m_exception_taken(cpu, excret, true, false);
1676 return;
1680 if (!ftype) {
1681 /* FP present and we need to handle it */
1682 if (!return_to_secure &&
1683 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK)) {
1684 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1685 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
1686 qemu_log_mask(CPU_LOG_INT,
1687 "...taking SecureFault on existing stackframe: "
1688 "Secure LSPACT set but exception return is "
1689 "not to secure state\n");
1690 v7m_exception_taken(cpu, excret, true, false);
1691 return;
1694 restore_s16_s31 = return_to_secure &&
1695 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
1697 if (env->v7m.fpccr[return_to_secure] & R_V7M_FPCCR_LSPACT_MASK) {
1698 /* State in FPU is still valid, just clear LSPACT */
1699 env->v7m.fpccr[return_to_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
1700 } else {
1701 int i;
1702 uint32_t fpscr;
1703 bool cpacr_pass, nsacr_pass;
1705 cpacr_pass = v7m_cpacr_pass(env, return_to_secure,
1706 return_to_priv);
1707 nsacr_pass = return_to_secure ||
1708 extract32(env->v7m.nsacr, 10, 1);
1710 if (!cpacr_pass) {
1711 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1712 return_to_secure);
1713 env->v7m.cfsr[return_to_secure] |= R_V7M_CFSR_NOCP_MASK;
1714 qemu_log_mask(CPU_LOG_INT,
1715 "...taking UsageFault on existing "
1716 "stackframe: CPACR.CP10 prevents unstacking "
1717 "FP regs\n");
1718 v7m_exception_taken(cpu, excret, true, false);
1719 return;
1720 } else if (!nsacr_pass) {
1721 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, true);
1722 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_INVPC_MASK;
1723 qemu_log_mask(CPU_LOG_INT,
1724 "...taking Secure UsageFault on existing "
1725 "stackframe: NSACR.CP10 prevents unstacking "
1726 "FP regs\n");
1727 v7m_exception_taken(cpu, excret, true, false);
1728 return;
1731 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
1732 uint32_t slo, shi;
1733 uint64_t dn;
1734 uint32_t faddr = frameptr + 0x20 + 4 * i;
1736 if (i >= 16) {
1737 faddr += 8; /* Skip the slot for the FPSCR */
1740 pop_ok = pop_ok &&
1741 v7m_stack_read(cpu, &slo, faddr, mmu_idx) &&
1742 v7m_stack_read(cpu, &shi, faddr + 4, mmu_idx);
1744 if (!pop_ok) {
1745 break;
1748 dn = (uint64_t)shi << 32 | slo;
1749 *aa32_vfp_dreg(env, i / 2) = dn;
1751 pop_ok = pop_ok &&
1752 v7m_stack_read(cpu, &fpscr, frameptr + 0x60, mmu_idx);
1753 if (pop_ok) {
1754 vfp_set_fpscr(env, fpscr);
1756 if (!pop_ok) {
1758 * These regs are 0 if security extension present;
1759 * otherwise merely UNKNOWN. We zero always.
1761 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
1762 *aa32_vfp_dreg(env, i / 2) = 0;
1764 vfp_set_fpscr(env, 0);
1768 env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
1769 V7M_CONTROL, FPCA, !ftype);
1771 /* Commit to consuming the stack frame */
1772 frameptr += 0x20;
1773 if (!ftype) {
1774 frameptr += 0x48;
1775 if (restore_s16_s31) {
1776 frameptr += 0x40;
1780 * Undo stack alignment (the SPREALIGN bit indicates that the original
1781 * pre-exception SP was not 8-aligned and we added a padding word to
1782 * align it, so we undo this by ORing in the bit that increases it
1783 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
1784 * would work too but a logical OR is how the pseudocode specifies it.)
1786 if (xpsr & XPSR_SPREALIGN) {
1787 frameptr |= 4;
1789 *frame_sp_p = frameptr;
1792 xpsr_mask = ~(XPSR_SPREALIGN | XPSR_SFPA);
1793 if (!arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
1794 xpsr_mask &= ~XPSR_GE;
1796 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
1797 xpsr_write(env, xpsr, xpsr_mask);
1799 if (env->v7m.secure) {
1800 bool sfpa = xpsr & XPSR_SFPA;
1802 env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
1803 V7M_CONTROL, SFPA, sfpa);
1807 * The restored xPSR exception field will be zero if we're
1808 * resuming in Thread mode. If that doesn't match what the
1809 * exception return excret specified then this is a UsageFault.
1810 * v7M requires we make this check here; v8M did it earlier.
1812 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
1814 * Take an INVPC UsageFault by pushing the stack again;
1815 * we know we're v7M so this is never a Secure UsageFault.
1817 bool ignore_stackfaults;
1819 assert(!arm_feature(env, ARM_FEATURE_V8));
1820 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
1821 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1822 ignore_stackfaults = v7m_push_stack(cpu);
1823 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
1824 "failed exception return integrity check\n");
1825 v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
1826 return;
1829 /* Otherwise, we have a successful exception exit. */
1830 arm_clear_exclusive(env);
1831 arm_rebuild_hflags(env);
1832 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
1835 static bool do_v7m_function_return(ARMCPU *cpu)
1838 * v8M security extensions magic function return.
1839 * We may either:
1840 * (1) throw an exception (longjump)
1841 * (2) return true if we successfully handled the function return
1842 * (3) return false if we failed a consistency check and have
1843 * pended a UsageFault that needs to be taken now
1845 * At this point the magic return value is split between env->regs[15]
1846 * and env->thumb. We don't bother to reconstitute it because we don't
1847 * need it (all values are handled the same way).
1849 CPUARMState *env = &cpu->env;
1850 uint32_t newpc, newpsr, newpsr_exc;
1852 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
1855 bool threadmode, spsel;
1856 TCGMemOpIdx oi;
1857 ARMMMUIdx mmu_idx;
1858 uint32_t *frame_sp_p;
1859 uint32_t frameptr;
1861 /* Pull the return address and IPSR from the Secure stack */
1862 threadmode = !arm_v7m_is_handler_mode(env);
1863 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
1865 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
1866 frameptr = *frame_sp_p;
1869 * These loads may throw an exception (for MPU faults). We want to
1870 * do them as secure, so work out what MMU index that is.
1872 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
1873 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
1874 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
1875 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
1877 /* Consistency checks on new IPSR */
1878 newpsr_exc = newpsr & XPSR_EXCP;
1879 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
1880 (env->v7m.exception == 1 && newpsr_exc != 0))) {
1881 /* Pend the fault and tell our caller to take it */
1882 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1883 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1884 env->v7m.secure);
1885 qemu_log_mask(CPU_LOG_INT,
1886 "...taking INVPC UsageFault: "
1887 "IPSR consistency check failed\n");
1888 return false;
1891 *frame_sp_p = frameptr + 8;
1894 /* This invalidates frame_sp_p */
1895 switch_v7m_security_state(env, true);
1896 env->v7m.exception = newpsr_exc;
1897 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
1898 if (newpsr & XPSR_SFPA) {
1899 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
1901 xpsr_write(env, 0, XPSR_IT);
1902 env->thumb = newpc & 1;
1903 env->regs[15] = newpc & ~1;
1904 arm_rebuild_hflags(env);
1906 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
1907 return true;
1910 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1911 uint32_t addr, uint16_t *insn)
1914 * Load a 16-bit portion of a v7M instruction, returning true on success,
1915 * or false on failure (in which case we will have pended the appropriate
1916 * exception).
1917 * We need to do the instruction fetch's MPU and SAU checks
1918 * like this because there is no MMU index that would allow
1919 * doing the load with a single function call. Instead we must
1920 * first check that the security attributes permit the load
1921 * and that they don't mismatch on the two halves of the instruction,
1922 * and then we do the load as a secure load (ie using the security
1923 * attributes of the address, not the CPU, as architecturally required).
1925 CPUState *cs = CPU(cpu);
1926 CPUARMState *env = &cpu->env;
1927 V8M_SAttributes sattrs = {};
1928 MemTxAttrs attrs = {};
1929 ARMMMUFaultInfo fi = {};
1930 MemTxResult txres;
1931 target_ulong page_size;
1932 hwaddr physaddr;
1933 int prot;
1935 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
1936 if (!sattrs.nsc || sattrs.ns) {
1938 * This must be the second half of the insn, and it straddles a
1939 * region boundary with the second half not being S&NSC.
1941 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
1942 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1943 qemu_log_mask(CPU_LOG_INT,
1944 "...really SecureFault with SFSR.INVEP\n");
1945 return false;
1947 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
1948 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
1949 /* the MPU lookup failed */
1950 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
1951 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
1952 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
1953 return false;
1955 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
1956 attrs, &txres);
1957 if (txres != MEMTX_OK) {
1958 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
1959 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
1960 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
1961 return false;
1963 return true;
1966 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
1969 * Check whether this attempt to execute code in a Secure & NS-Callable
1970 * memory region is for an SG instruction; if so, then emulate the
1971 * effect of the SG instruction and return true. Otherwise pend
1972 * the correct kind of exception and return false.
1974 CPUARMState *env = &cpu->env;
1975 ARMMMUIdx mmu_idx;
1976 uint16_t insn;
1979 * We should never get here unless get_phys_addr_pmsav8() caused
1980 * an exception for NS executing in S&NSC memory.
1982 assert(!env->v7m.secure);
1983 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
1985 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
1986 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
1988 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
1989 return false;
1992 if (!env->thumb) {
1993 goto gen_invep;
1996 if (insn != 0xe97f) {
1998 * Not an SG instruction first half (we choose the IMPDEF
1999 * early-SG-check option).
2001 goto gen_invep;
2004 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
2005 return false;
2008 if (insn != 0xe97f) {
2010 * Not an SG instruction second half (yes, both halves of the SG
2011 * insn have the same hex value)
2013 goto gen_invep;
2017 * OK, we have confirmed that we really have an SG instruction.
2018 * We know we're NS in S memory so don't need to repeat those checks.
2020 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
2021 ", executing it\n", env->regs[15]);
2022 env->regs[14] &= ~1;
2023 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
2024 switch_v7m_security_state(env, true);
2025 xpsr_write(env, 0, XPSR_IT);
2026 env->regs[15] += 4;
2027 arm_rebuild_hflags(env);
2028 return true;
2030 gen_invep:
2031 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
2032 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2033 qemu_log_mask(CPU_LOG_INT,
2034 "...really SecureFault with SFSR.INVEP\n");
2035 return false;
2038 void arm_v7m_cpu_do_interrupt(CPUState *cs)
2040 ARMCPU *cpu = ARM_CPU(cs);
2041 CPUARMState *env = &cpu->env;
2042 uint32_t lr;
2043 bool ignore_stackfaults;
2045 arm_log_exception(cs->exception_index);
2048 * For exceptions we just mark as pending on the NVIC, and let that
2049 * handle it.
2051 switch (cs->exception_index) {
2052 case EXCP_UDEF:
2053 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2054 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
2055 break;
2056 case EXCP_NOCP:
2059 * NOCP might be directed to something other than the current
2060 * security state if this fault is because of NSACR; we indicate
2061 * the target security state using exception.target_el.
2063 int target_secstate;
2065 if (env->exception.target_el == 3) {
2066 target_secstate = M_REG_S;
2067 } else {
2068 target_secstate = env->v7m.secure;
2070 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, target_secstate);
2071 env->v7m.cfsr[target_secstate] |= R_V7M_CFSR_NOCP_MASK;
2072 break;
2074 case EXCP_INVSTATE:
2075 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2076 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
2077 break;
2078 case EXCP_STKOF:
2079 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2080 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
2081 break;
2082 case EXCP_LSERR:
2083 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2084 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
2085 break;
2086 case EXCP_UNALIGNED:
2087 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2088 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNALIGNED_MASK;
2089 break;
2090 case EXCP_SWI:
2091 /* The PC already points to the next instruction. */
2092 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
2093 break;
2094 case EXCP_PREFETCH_ABORT:
2095 case EXCP_DATA_ABORT:
2097 * Note that for M profile we don't have a guest facing FSR, but
2098 * the env->exception.fsr will be populated by the code that
2099 * raises the fault, in the A profile short-descriptor format.
2101 switch (env->exception.fsr & 0xf) {
2102 case M_FAKE_FSR_NSC_EXEC:
2104 * Exception generated when we try to execute code at an address
2105 * which is marked as Secure & Non-Secure Callable and the CPU
2106 * is in the Non-Secure state. The only instruction which can
2107 * be executed like this is SG (and that only if both halves of
2108 * the SG instruction have the same security attributes.)
2109 * Everything else must generate an INVEP SecureFault, so we
2110 * emulate the SG instruction here.
2112 if (v7m_handle_execute_nsc(cpu)) {
2113 return;
2115 break;
2116 case M_FAKE_FSR_SFAULT:
2118 * Various flavours of SecureFault for attempts to execute or
2119 * access data in the wrong security state.
2121 switch (cs->exception_index) {
2122 case EXCP_PREFETCH_ABORT:
2123 if (env->v7m.secure) {
2124 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
2125 qemu_log_mask(CPU_LOG_INT,
2126 "...really SecureFault with SFSR.INVTRAN\n");
2127 } else {
2128 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
2129 qemu_log_mask(CPU_LOG_INT,
2130 "...really SecureFault with SFSR.INVEP\n");
2132 break;
2133 case EXCP_DATA_ABORT:
2134 /* This must be an NS access to S memory */
2135 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
2136 qemu_log_mask(CPU_LOG_INT,
2137 "...really SecureFault with SFSR.AUVIOL\n");
2138 break;
2140 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2141 break;
2142 case 0x8: /* External Abort */
2143 switch (cs->exception_index) {
2144 case EXCP_PREFETCH_ABORT:
2145 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
2146 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
2147 break;
2148 case EXCP_DATA_ABORT:
2149 env->v7m.cfsr[M_REG_NS] |=
2150 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
2151 env->v7m.bfar = env->exception.vaddress;
2152 qemu_log_mask(CPU_LOG_INT,
2153 "...with CFSR.PRECISERR and BFAR 0x%x\n",
2154 env->v7m.bfar);
2155 break;
2157 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
2158 break;
2159 default:
2161 * All other FSR values are either MPU faults or "can't happen
2162 * for M profile" cases.
2164 switch (cs->exception_index) {
2165 case EXCP_PREFETCH_ABORT:
2166 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
2167 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
2168 break;
2169 case EXCP_DATA_ABORT:
2170 env->v7m.cfsr[env->v7m.secure] |=
2171 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
2172 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
2173 qemu_log_mask(CPU_LOG_INT,
2174 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
2175 env->v7m.mmfar[env->v7m.secure]);
2176 break;
2178 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
2179 env->v7m.secure);
2180 break;
2182 break;
2183 case EXCP_SEMIHOST:
2184 qemu_log_mask(CPU_LOG_INT,
2185 "...handling as semihosting call 0x%x\n",
2186 env->regs[0]);
2187 env->regs[0] = do_arm_semihosting(env);
2188 env->regs[15] += env->thumb ? 2 : 4;
2189 return;
2190 case EXCP_BKPT:
2191 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
2192 break;
2193 case EXCP_IRQ:
2194 break;
2195 case EXCP_EXCEPTION_EXIT:
2196 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
2197 /* Must be v8M security extension function return */
2198 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
2199 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
2200 if (do_v7m_function_return(cpu)) {
2201 return;
2203 } else {
2204 do_v7m_exception_exit(cpu);
2205 return;
2207 break;
2208 case EXCP_LAZYFP:
2210 * We already pended the specific exception in the NVIC in the
2211 * v7m_preserve_fp_state() helper function.
2213 break;
2214 default:
2215 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
2216 return; /* Never happens. Keep compiler happy. */
2219 if (arm_feature(env, ARM_FEATURE_V8)) {
2220 lr = R_V7M_EXCRET_RES1_MASK |
2221 R_V7M_EXCRET_DCRS_MASK;
2223 * The S bit indicates whether we should return to Secure
2224 * or NonSecure (ie our current state).
2225 * The ES bit indicates whether we're taking this exception
2226 * to Secure or NonSecure (ie our target state). We set it
2227 * later, in v7m_exception_taken().
2228 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
2229 * This corresponds to the ARM ARM pseudocode for v8M setting
2230 * some LR bits in PushStack() and some in ExceptionTaken();
2231 * the distinction matters for the tailchain cases where we
2232 * can take an exception without pushing the stack.
2234 if (env->v7m.secure) {
2235 lr |= R_V7M_EXCRET_S_MASK;
2237 } else {
2238 lr = R_V7M_EXCRET_RES1_MASK |
2239 R_V7M_EXCRET_S_MASK |
2240 R_V7M_EXCRET_DCRS_MASK |
2241 R_V7M_EXCRET_ES_MASK;
2242 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
2243 lr |= R_V7M_EXCRET_SPSEL_MASK;
2246 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
2247 lr |= R_V7M_EXCRET_FTYPE_MASK;
2249 if (!arm_v7m_is_handler_mode(env)) {
2250 lr |= R_V7M_EXCRET_MODE_MASK;
2253 ignore_stackfaults = v7m_push_stack(cpu);
2254 v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
2257 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2259 unsigned el = arm_current_el(env);
2261 /* First handle registers which unprivileged can read */
2262 switch (reg) {
2263 case 0 ... 7: /* xPSR sub-fields */
2264 return v7m_mrs_xpsr(env, reg, el);
2265 case 20: /* CONTROL */
2266 return v7m_mrs_control(env, env->v7m.secure);
2267 case 0x94: /* CONTROL_NS */
2269 * We have to handle this here because unprivileged Secure code
2270 * can read the NS CONTROL register.
2272 if (!env->v7m.secure) {
2273 return 0;
2275 return env->v7m.control[M_REG_NS] |
2276 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK);
2279 if (el == 0) {
2280 return 0; /* unprivileged reads others as zero */
2283 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2284 switch (reg) {
2285 case 0x88: /* MSP_NS */
2286 if (!env->v7m.secure) {
2287 return 0;
2289 return env->v7m.other_ss_msp;
2290 case 0x89: /* PSP_NS */
2291 if (!env->v7m.secure) {
2292 return 0;
2294 return env->v7m.other_ss_psp;
2295 case 0x8a: /* MSPLIM_NS */
2296 if (!env->v7m.secure) {
2297 return 0;
2299 return env->v7m.msplim[M_REG_NS];
2300 case 0x8b: /* PSPLIM_NS */
2301 if (!env->v7m.secure) {
2302 return 0;
2304 return env->v7m.psplim[M_REG_NS];
2305 case 0x90: /* PRIMASK_NS */
2306 if (!env->v7m.secure) {
2307 return 0;
2309 return env->v7m.primask[M_REG_NS];
2310 case 0x91: /* BASEPRI_NS */
2311 if (!env->v7m.secure) {
2312 return 0;
2314 return env->v7m.basepri[M_REG_NS];
2315 case 0x93: /* FAULTMASK_NS */
2316 if (!env->v7m.secure) {
2317 return 0;
2319 return env->v7m.faultmask[M_REG_NS];
2320 case 0x98: /* SP_NS */
2323 * This gives the non-secure SP selected based on whether we're
2324 * currently in handler mode or not, using the NS CONTROL.SPSEL.
2326 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
2328 if (!env->v7m.secure) {
2329 return 0;
2331 if (!arm_v7m_is_handler_mode(env) && spsel) {
2332 return env->v7m.other_ss_psp;
2333 } else {
2334 return env->v7m.other_ss_msp;
2337 default:
2338 break;
2342 switch (reg) {
2343 case 8: /* MSP */
2344 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
2345 case 9: /* PSP */
2346 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
2347 case 10: /* MSPLIM */
2348 if (!arm_feature(env, ARM_FEATURE_V8)) {
2349 goto bad_reg;
2351 return env->v7m.msplim[env->v7m.secure];
2352 case 11: /* PSPLIM */
2353 if (!arm_feature(env, ARM_FEATURE_V8)) {
2354 goto bad_reg;
2356 return env->v7m.psplim[env->v7m.secure];
2357 case 16: /* PRIMASK */
2358 return env->v7m.primask[env->v7m.secure];
2359 case 17: /* BASEPRI */
2360 case 18: /* BASEPRI_MAX */
2361 return env->v7m.basepri[env->v7m.secure];
2362 case 19: /* FAULTMASK */
2363 return env->v7m.faultmask[env->v7m.secure];
2364 default:
2365 bad_reg:
2366 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
2367 " register %d\n", reg);
2368 return 0;
2372 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
2375 * We're passed bits [11..0] of the instruction; extract
2376 * SYSm and the mask bits.
2377 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
2378 * we choose to treat them as if the mask bits were valid.
2379 * NB that the pseudocode 'mask' variable is bits [11..10],
2380 * whereas ours is [11..8].
2382 uint32_t mask = extract32(maskreg, 8, 4);
2383 uint32_t reg = extract32(maskreg, 0, 8);
2384 int cur_el = arm_current_el(env);
2386 if (cur_el == 0 && reg > 7 && reg != 20) {
2388 * only xPSR sub-fields and CONTROL.SFPA may be written by
2389 * unprivileged code
2391 return;
2394 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2395 switch (reg) {
2396 case 0x88: /* MSP_NS */
2397 if (!env->v7m.secure) {
2398 return;
2400 env->v7m.other_ss_msp = val;
2401 return;
2402 case 0x89: /* PSP_NS */
2403 if (!env->v7m.secure) {
2404 return;
2406 env->v7m.other_ss_psp = val;
2407 return;
2408 case 0x8a: /* MSPLIM_NS */
2409 if (!env->v7m.secure) {
2410 return;
2412 env->v7m.msplim[M_REG_NS] = val & ~7;
2413 return;
2414 case 0x8b: /* PSPLIM_NS */
2415 if (!env->v7m.secure) {
2416 return;
2418 env->v7m.psplim[M_REG_NS] = val & ~7;
2419 return;
2420 case 0x90: /* PRIMASK_NS */
2421 if (!env->v7m.secure) {
2422 return;
2424 env->v7m.primask[M_REG_NS] = val & 1;
2425 return;
2426 case 0x91: /* BASEPRI_NS */
2427 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
2428 return;
2430 env->v7m.basepri[M_REG_NS] = val & 0xff;
2431 return;
2432 case 0x93: /* FAULTMASK_NS */
2433 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
2434 return;
2436 env->v7m.faultmask[M_REG_NS] = val & 1;
2437 return;
2438 case 0x94: /* CONTROL_NS */
2439 if (!env->v7m.secure) {
2440 return;
2442 write_v7m_control_spsel_for_secstate(env,
2443 val & R_V7M_CONTROL_SPSEL_MASK,
2444 M_REG_NS);
2445 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
2446 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
2447 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
2450 * SFPA is RAZ/WI from NS. FPCA is RO if NSACR.CP10 == 0,
2451 * RES0 if the FPU is not present, and is stored in the S bank
2453 if (arm_feature(env, ARM_FEATURE_VFP) &&
2454 extract32(env->v7m.nsacr, 10, 1)) {
2455 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
2456 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
2458 return;
2459 case 0x98: /* SP_NS */
2462 * This gives the non-secure SP selected based on whether we're
2463 * currently in handler mode or not, using the NS CONTROL.SPSEL.
2465 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
2466 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
2467 uint32_t limit;
2469 if (!env->v7m.secure) {
2470 return;
2473 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
2475 if (val < limit) {
2476 CPUState *cs = env_cpu(env);
2478 cpu_restore_state(cs, GETPC(), true);
2479 raise_exception(env, EXCP_STKOF, 0, 1);
2482 if (is_psp) {
2483 env->v7m.other_ss_psp = val;
2484 } else {
2485 env->v7m.other_ss_msp = val;
2487 return;
2489 default:
2490 break;
2494 switch (reg) {
2495 case 0 ... 7: /* xPSR sub-fields */
2496 v7m_msr_xpsr(env, mask, reg, val);
2497 break;
2498 case 8: /* MSP */
2499 if (v7m_using_psp(env)) {
2500 env->v7m.other_sp = val;
2501 } else {
2502 env->regs[13] = val;
2504 break;
2505 case 9: /* PSP */
2506 if (v7m_using_psp(env)) {
2507 env->regs[13] = val;
2508 } else {
2509 env->v7m.other_sp = val;
2511 break;
2512 case 10: /* MSPLIM */
2513 if (!arm_feature(env, ARM_FEATURE_V8)) {
2514 goto bad_reg;
2516 env->v7m.msplim[env->v7m.secure] = val & ~7;
2517 break;
2518 case 11: /* PSPLIM */
2519 if (!arm_feature(env, ARM_FEATURE_V8)) {
2520 goto bad_reg;
2522 env->v7m.psplim[env->v7m.secure] = val & ~7;
2523 break;
2524 case 16: /* PRIMASK */
2525 env->v7m.primask[env->v7m.secure] = val & 1;
2526 break;
2527 case 17: /* BASEPRI */
2528 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
2529 goto bad_reg;
2531 env->v7m.basepri[env->v7m.secure] = val & 0xff;
2532 break;
2533 case 18: /* BASEPRI_MAX */
2534 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
2535 goto bad_reg;
2537 val &= 0xff;
2538 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
2539 || env->v7m.basepri[env->v7m.secure] == 0)) {
2540 env->v7m.basepri[env->v7m.secure] = val;
2542 break;
2543 case 19: /* FAULTMASK */
2544 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
2545 goto bad_reg;
2547 env->v7m.faultmask[env->v7m.secure] = val & 1;
2548 break;
2549 case 20: /* CONTROL */
2551 * Writing to the SPSEL bit only has an effect if we are in
2552 * thread mode; other bits can be updated by any privileged code.
2553 * write_v7m_control_spsel() deals with updating the SPSEL bit in
2554 * env->v7m.control, so we only need update the others.
2555 * For v7M, we must just ignore explicit writes to SPSEL in handler
2556 * mode; for v8M the write is permitted but will have no effect.
2557 * All these bits are writes-ignored from non-privileged code,
2558 * except for SFPA.
2560 if (cur_el > 0 && (arm_feature(env, ARM_FEATURE_V8) ||
2561 !arm_v7m_is_handler_mode(env))) {
2562 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
2564 if (cur_el > 0 && arm_feature(env, ARM_FEATURE_M_MAIN)) {
2565 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
2566 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
2568 if (arm_feature(env, ARM_FEATURE_VFP)) {
2570 * SFPA is RAZ/WI from NS or if no FPU.
2571 * FPCA is RO if NSACR.CP10 == 0, RES0 if the FPU is not present.
2572 * Both are stored in the S bank.
2574 if (env->v7m.secure) {
2575 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
2576 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_SFPA_MASK;
2578 if (cur_el > 0 &&
2579 (env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_SECURITY) ||
2580 extract32(env->v7m.nsacr, 10, 1))) {
2581 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
2582 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
2585 break;
2586 default:
2587 bad_reg:
2588 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
2589 " register %d\n", reg);
2590 return;
2594 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
2596 /* Implement the TT instruction. op is bits [7:6] of the insn. */
2597 bool forceunpriv = op & 1;
2598 bool alt = op & 2;
2599 V8M_SAttributes sattrs = {};
2600 uint32_t tt_resp;
2601 bool r, rw, nsr, nsrw, mrvalid;
2602 int prot;
2603 ARMMMUFaultInfo fi = {};
2604 MemTxAttrs attrs = {};
2605 hwaddr phys_addr;
2606 ARMMMUIdx mmu_idx;
2607 uint32_t mregion;
2608 bool targetpriv;
2609 bool targetsec = env->v7m.secure;
2610 bool is_subpage;
2613 * Work out what the security state and privilege level we're
2614 * interested in is...
2616 if (alt) {
2617 targetsec = !targetsec;
2620 if (forceunpriv) {
2621 targetpriv = false;
2622 } else {
2623 targetpriv = arm_v7m_is_handler_mode(env) ||
2624 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
2627 /* ...and then figure out which MMU index this is */
2628 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
2631 * We know that the MPU and SAU don't care about the access type
2632 * for our purposes beyond that we don't want to claim to be
2633 * an insn fetch, so we arbitrarily call this a read.
2637 * MPU region info only available for privileged or if
2638 * inspecting the other MPU state.
2640 if (arm_current_el(env) != 0 || alt) {
2641 /* We can ignore the return value as prot is always set */
2642 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
2643 &phys_addr, &attrs, &prot, &is_subpage,
2644 &fi, &mregion);
2645 if (mregion == -1) {
2646 mrvalid = false;
2647 mregion = 0;
2648 } else {
2649 mrvalid = true;
2651 r = prot & PAGE_READ;
2652 rw = prot & PAGE_WRITE;
2653 } else {
2654 r = false;
2655 rw = false;
2656 mrvalid = false;
2657 mregion = 0;
2660 if (env->v7m.secure) {
2661 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
2662 nsr = sattrs.ns && r;
2663 nsrw = sattrs.ns && rw;
2664 } else {
2665 sattrs.ns = true;
2666 nsr = false;
2667 nsrw = false;
2670 tt_resp = (sattrs.iregion << 24) |
2671 (sattrs.irvalid << 23) |
2672 ((!sattrs.ns) << 22) |
2673 (nsrw << 21) |
2674 (nsr << 20) |
2675 (rw << 19) |
2676 (r << 18) |
2677 (sattrs.srvalid << 17) |
2678 (mrvalid << 16) |
2679 (sattrs.sregion << 8) |
2680 mregion;
2682 return tt_resp;
2685 #endif /* !CONFIG_USER_ONLY */
2687 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2688 bool secstate, bool priv, bool negpri)
2690 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
2692 if (priv) {
2693 mmu_idx |= ARM_MMU_IDX_M_PRIV;
2696 if (negpri) {
2697 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2700 if (secstate) {
2701 mmu_idx |= ARM_MMU_IDX_M_S;
2704 return mmu_idx;
2707 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2708 bool secstate, bool priv)
2710 bool negpri = armv7m_nvic_neg_prio_requested(env->nvic, secstate);
2712 return arm_v7m_mmu_idx_all(env, secstate, priv, negpri);
2715 /* Return the MMU index for a v7M CPU in the specified security state */
2716 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
2718 bool priv = arm_current_el(env) != 0;
2720 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);