2 * Core code for QEMU e1000e emulation
4 * Software developer's manuals:
5 * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
7 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
8 * Developed by Daynix Computing LTD (http://www.daynix.com)
11 * Dmitry Fleytman <dmitry@daynix.com>
12 * Leonid Bloch <leonid@daynix.com>
13 * Yan Vugenfirer <yan@daynix.com>
15 * Based on work done by:
16 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
17 * Copyright (c) 2008 Qumranet
18 * Based on work done by:
19 * Copyright (c) 2007 Dan Aloni
20 * Copyright (c) 2004 Antony T Curtis
22 * This library is free software; you can redistribute it and/or
23 * modify it under the terms of the GNU Lesser General Public
24 * License as published by the Free Software Foundation; either
25 * version 2 of the License, or (at your option) any later version.
27 * This library is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
30 * Lesser General Public License for more details.
32 * You should have received a copy of the GNU Lesser General Public
33 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
36 #include "qemu/osdep.h"
40 #include "hw/pci/msi.h"
41 #include "hw/pci/msix.h"
42 #include "sysemu/runstate.h"
44 #include "net_tx_pkt.h"
45 #include "net_rx_pkt.h"
47 #include "e1000x_common.h"
48 #include "e1000e_core.h"
52 #define E1000E_MIN_XITR (500) /* No more then 7813 interrupts per
53 second according to spec 10.2.4.2 */
54 #define E1000E_MAX_TX_FRAGS (64)
57 e1000e_set_interrupt_cause(E1000ECore
*core
, uint32_t val
);
60 e1000e_process_ts_option(E1000ECore
*core
, struct e1000_tx_desc
*dp
)
62 if (le32_to_cpu(dp
->upper
.data
) & E1000_TXD_EXTCMD_TSTAMP
) {
63 trace_e1000e_wrn_no_ts_support();
68 e1000e_process_snap_option(E1000ECore
*core
, uint32_t cmd_and_length
)
70 if (cmd_and_length
& E1000_TXD_CMD_SNAP
) {
71 trace_e1000e_wrn_no_snap_support();
76 e1000e_raise_legacy_irq(E1000ECore
*core
)
78 trace_e1000e_irq_legacy_notify(true);
79 e1000x_inc_reg_if_not_full(core
->mac
, IAC
);
80 pci_set_irq(core
->owner
, 1);
84 e1000e_lower_legacy_irq(E1000ECore
*core
)
86 trace_e1000e_irq_legacy_notify(false);
87 pci_set_irq(core
->owner
, 0);
91 e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer
*timer
)
93 int64_t delay_ns
= (int64_t) timer
->core
->mac
[timer
->delay_reg
] *
94 timer
->delay_resolution_ns
;
96 trace_e1000e_irq_rearm_timer(timer
->delay_reg
<< 2, delay_ns
);
98 timer_mod(timer
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + delay_ns
);
100 timer
->running
= true;
104 e1000e_intmgr_timer_resume(E1000IntrDelayTimer
*timer
)
106 if (timer
->running
) {
107 e1000e_intrmgr_rearm_timer(timer
);
112 e1000e_intmgr_timer_pause(E1000IntrDelayTimer
*timer
)
114 if (timer
->running
) {
115 timer_del(timer
->timer
);
120 e1000e_intrmgr_stop_timer(E1000IntrDelayTimer
*timer
)
122 if (timer
->running
) {
123 timer_del(timer
->timer
);
124 timer
->running
= false;
129 e1000e_intrmgr_fire_delayed_interrupts(E1000ECore
*core
)
131 trace_e1000e_irq_fire_delayed_interrupts();
132 e1000e_set_interrupt_cause(core
, 0);
136 e1000e_intrmgr_on_timer(void *opaque
)
138 E1000IntrDelayTimer
*timer
= opaque
;
140 trace_e1000e_irq_throttling_timer(timer
->delay_reg
<< 2);
142 timer
->running
= false;
143 e1000e_intrmgr_fire_delayed_interrupts(timer
->core
);
147 e1000e_intrmgr_on_throttling_timer(void *opaque
)
149 E1000IntrDelayTimer
*timer
= opaque
;
151 assert(!msix_enabled(timer
->core
->owner
));
153 timer
->running
= false;
155 if (!timer
->core
->itr_intr_pending
) {
156 trace_e1000e_irq_throttling_no_pending_interrupts();
160 if (msi_enabled(timer
->core
->owner
)) {
161 trace_e1000e_irq_msi_notify_postponed();
162 e1000e_set_interrupt_cause(timer
->core
, 0);
164 trace_e1000e_irq_legacy_notify_postponed();
165 e1000e_set_interrupt_cause(timer
->core
, 0);
170 e1000e_intrmgr_on_msix_throttling_timer(void *opaque
)
172 E1000IntrDelayTimer
*timer
= opaque
;
173 int idx
= timer
- &timer
->core
->eitr
[0];
175 assert(msix_enabled(timer
->core
->owner
));
177 timer
->running
= false;
179 if (!timer
->core
->eitr_intr_pending
[idx
]) {
180 trace_e1000e_irq_throttling_no_pending_vec(idx
);
184 trace_e1000e_irq_msix_notify_postponed_vec(idx
);
185 msix_notify(timer
->core
->owner
, idx
);
189 e1000e_intrmgr_initialize_all_timers(E1000ECore
*core
, bool create
)
193 core
->radv
.delay_reg
= RADV
;
194 core
->rdtr
.delay_reg
= RDTR
;
195 core
->raid
.delay_reg
= RAID
;
196 core
->tadv
.delay_reg
= TADV
;
197 core
->tidv
.delay_reg
= TIDV
;
199 core
->radv
.delay_resolution_ns
= E1000_INTR_DELAY_NS_RES
;
200 core
->rdtr
.delay_resolution_ns
= E1000_INTR_DELAY_NS_RES
;
201 core
->raid
.delay_resolution_ns
= E1000_INTR_DELAY_NS_RES
;
202 core
->tadv
.delay_resolution_ns
= E1000_INTR_DELAY_NS_RES
;
203 core
->tidv
.delay_resolution_ns
= E1000_INTR_DELAY_NS_RES
;
205 core
->radv
.core
= core
;
206 core
->rdtr
.core
= core
;
207 core
->raid
.core
= core
;
208 core
->tadv
.core
= core
;
209 core
->tidv
.core
= core
;
211 core
->itr
.core
= core
;
212 core
->itr
.delay_reg
= ITR
;
213 core
->itr
.delay_resolution_ns
= E1000_INTR_THROTTLING_NS_RES
;
215 for (i
= 0; i
< E1000E_MSIX_VEC_NUM
; i
++) {
216 core
->eitr
[i
].core
= core
;
217 core
->eitr
[i
].delay_reg
= EITR
+ i
;
218 core
->eitr
[i
].delay_resolution_ns
= E1000_INTR_THROTTLING_NS_RES
;
226 timer_new_ns(QEMU_CLOCK_VIRTUAL
, e1000e_intrmgr_on_timer
, &core
->radv
);
228 timer_new_ns(QEMU_CLOCK_VIRTUAL
, e1000e_intrmgr_on_timer
, &core
->rdtr
);
230 timer_new_ns(QEMU_CLOCK_VIRTUAL
, e1000e_intrmgr_on_timer
, &core
->raid
);
233 timer_new_ns(QEMU_CLOCK_VIRTUAL
, e1000e_intrmgr_on_timer
, &core
->tadv
);
235 timer_new_ns(QEMU_CLOCK_VIRTUAL
, e1000e_intrmgr_on_timer
, &core
->tidv
);
237 core
->itr
.timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
,
238 e1000e_intrmgr_on_throttling_timer
,
241 for (i
= 0; i
< E1000E_MSIX_VEC_NUM
; i
++) {
242 core
->eitr
[i
].timer
=
243 timer_new_ns(QEMU_CLOCK_VIRTUAL
,
244 e1000e_intrmgr_on_msix_throttling_timer
,
250 e1000e_intrmgr_stop_delay_timers(E1000ECore
*core
)
252 e1000e_intrmgr_stop_timer(&core
->radv
);
253 e1000e_intrmgr_stop_timer(&core
->rdtr
);
254 e1000e_intrmgr_stop_timer(&core
->raid
);
255 e1000e_intrmgr_stop_timer(&core
->tidv
);
256 e1000e_intrmgr_stop_timer(&core
->tadv
);
260 e1000e_intrmgr_delay_rx_causes(E1000ECore
*core
, uint32_t *causes
)
262 uint32_t delayable_causes
;
263 uint32_t rdtr
= core
->mac
[RDTR
];
264 uint32_t radv
= core
->mac
[RADV
];
265 uint32_t raid
= core
->mac
[RAID
];
267 if (msix_enabled(core
->owner
)) {
271 delayable_causes
= E1000_ICR_RXQ0
|
275 if (!(core
->mac
[RFCTL
] & E1000_RFCTL_ACK_DIS
)) {
276 delayable_causes
|= E1000_ICR_ACK
;
279 /* Clean up all causes that may be delayed */
280 core
->delayed_causes
|= *causes
& delayable_causes
;
281 *causes
&= ~delayable_causes
;
283 /* Check if delayed RX interrupts disabled by client
284 or if there are causes that cannot be delayed */
285 if ((rdtr
== 0) || (*causes
!= 0)) {
289 /* Check if delayed RX ACK interrupts disabled by client
290 and there is an ACK packet received */
291 if ((raid
== 0) && (core
->delayed_causes
& E1000_ICR_ACK
)) {
295 /* All causes delayed */
296 e1000e_intrmgr_rearm_timer(&core
->rdtr
);
298 if (!core
->radv
.running
&& (radv
!= 0)) {
299 e1000e_intrmgr_rearm_timer(&core
->radv
);
302 if (!core
->raid
.running
&& (core
->delayed_causes
& E1000_ICR_ACK
)) {
303 e1000e_intrmgr_rearm_timer(&core
->raid
);
310 e1000e_intrmgr_delay_tx_causes(E1000ECore
*core
, uint32_t *causes
)
312 static const uint32_t delayable_causes
= E1000_ICR_TXQ0
|
317 if (msix_enabled(core
->owner
)) {
321 /* Clean up all causes that may be delayed */
322 core
->delayed_causes
|= *causes
& delayable_causes
;
323 *causes
&= ~delayable_causes
;
325 /* If there are causes that cannot be delayed */
330 /* All causes delayed */
331 e1000e_intrmgr_rearm_timer(&core
->tidv
);
333 if (!core
->tadv
.running
&& (core
->mac
[TADV
] != 0)) {
334 e1000e_intrmgr_rearm_timer(&core
->tadv
);
341 e1000e_intmgr_collect_delayed_causes(E1000ECore
*core
)
345 if (msix_enabled(core
->owner
)) {
346 assert(core
->delayed_causes
== 0);
350 res
= core
->delayed_causes
;
351 core
->delayed_causes
= 0;
353 e1000e_intrmgr_stop_delay_timers(core
);
359 e1000e_intrmgr_fire_all_timers(E1000ECore
*core
)
362 uint32_t val
= e1000e_intmgr_collect_delayed_causes(core
);
364 trace_e1000e_irq_adding_delayed_causes(val
, core
->mac
[ICR
]);
365 core
->mac
[ICR
] |= val
;
367 if (core
->itr
.running
) {
368 timer_del(core
->itr
.timer
);
369 e1000e_intrmgr_on_throttling_timer(&core
->itr
);
372 for (i
= 0; i
< E1000E_MSIX_VEC_NUM
; i
++) {
373 if (core
->eitr
[i
].running
) {
374 timer_del(core
->eitr
[i
].timer
);
375 e1000e_intrmgr_on_msix_throttling_timer(&core
->eitr
[i
]);
381 e1000e_intrmgr_resume(E1000ECore
*core
)
385 e1000e_intmgr_timer_resume(&core
->radv
);
386 e1000e_intmgr_timer_resume(&core
->rdtr
);
387 e1000e_intmgr_timer_resume(&core
->raid
);
388 e1000e_intmgr_timer_resume(&core
->tidv
);
389 e1000e_intmgr_timer_resume(&core
->tadv
);
391 e1000e_intmgr_timer_resume(&core
->itr
);
393 for (i
= 0; i
< E1000E_MSIX_VEC_NUM
; i
++) {
394 e1000e_intmgr_timer_resume(&core
->eitr
[i
]);
399 e1000e_intrmgr_pause(E1000ECore
*core
)
403 e1000e_intmgr_timer_pause(&core
->radv
);
404 e1000e_intmgr_timer_pause(&core
->rdtr
);
405 e1000e_intmgr_timer_pause(&core
->raid
);
406 e1000e_intmgr_timer_pause(&core
->tidv
);
407 e1000e_intmgr_timer_pause(&core
->tadv
);
409 e1000e_intmgr_timer_pause(&core
->itr
);
411 for (i
= 0; i
< E1000E_MSIX_VEC_NUM
; i
++) {
412 e1000e_intmgr_timer_pause(&core
->eitr
[i
]);
417 e1000e_intrmgr_reset(E1000ECore
*core
)
421 core
->delayed_causes
= 0;
423 e1000e_intrmgr_stop_delay_timers(core
);
425 e1000e_intrmgr_stop_timer(&core
->itr
);
427 for (i
= 0; i
< E1000E_MSIX_VEC_NUM
; i
++) {
428 e1000e_intrmgr_stop_timer(&core
->eitr
[i
]);
433 e1000e_intrmgr_pci_unint(E1000ECore
*core
)
437 timer_del(core
->radv
.timer
);
438 timer_free(core
->radv
.timer
);
439 timer_del(core
->rdtr
.timer
);
440 timer_free(core
->rdtr
.timer
);
441 timer_del(core
->raid
.timer
);
442 timer_free(core
->raid
.timer
);
444 timer_del(core
->tadv
.timer
);
445 timer_free(core
->tadv
.timer
);
446 timer_del(core
->tidv
.timer
);
447 timer_free(core
->tidv
.timer
);
449 timer_del(core
->itr
.timer
);
450 timer_free(core
->itr
.timer
);
452 for (i
= 0; i
< E1000E_MSIX_VEC_NUM
; i
++) {
453 timer_del(core
->eitr
[i
].timer
);
454 timer_free(core
->eitr
[i
].timer
);
459 e1000e_intrmgr_pci_realize(E1000ECore
*core
)
461 e1000e_intrmgr_initialize_all_timers(core
, true);
465 e1000e_rx_csum_enabled(E1000ECore
*core
)
467 return (core
->mac
[RXCSUM
] & E1000_RXCSUM_PCSD
) ? false : true;
471 e1000e_rx_use_legacy_descriptor(E1000ECore
*core
)
473 return (core
->mac
[RFCTL
] & E1000_RFCTL_EXTEN
) ? false : true;
477 e1000e_rx_use_ps_descriptor(E1000ECore
*core
)
479 return !e1000e_rx_use_legacy_descriptor(core
) &&
480 (core
->mac
[RCTL
] & E1000_RCTL_DTYP_PS
);
484 e1000e_rss_enabled(E1000ECore
*core
)
486 return E1000_MRQC_ENABLED(core
->mac
[MRQC
]) &&
487 !e1000e_rx_csum_enabled(core
) &&
488 !e1000e_rx_use_legacy_descriptor(core
);
491 typedef struct E1000E_RSSInfo_st
{
499 e1000e_rss_get_hash_type(E1000ECore
*core
, struct NetRxPkt
*pkt
)
501 bool isip4
, isip6
, isudp
, istcp
;
503 assert(e1000e_rss_enabled(core
));
505 net_rx_pkt_get_protocols(pkt
, &isip4
, &isip6
, &isudp
, &istcp
);
508 bool fragment
= net_rx_pkt_get_ip4_info(pkt
)->fragment
;
510 trace_e1000e_rx_rss_ip4(fragment
, istcp
, core
->mac
[MRQC
],
511 E1000_MRQC_EN_TCPIPV4(core
->mac
[MRQC
]),
512 E1000_MRQC_EN_IPV4(core
->mac
[MRQC
]));
514 if (!fragment
&& istcp
&& E1000_MRQC_EN_TCPIPV4(core
->mac
[MRQC
])) {
515 return E1000_MRQ_RSS_TYPE_IPV4TCP
;
518 if (E1000_MRQC_EN_IPV4(core
->mac
[MRQC
])) {
519 return E1000_MRQ_RSS_TYPE_IPV4
;
522 eth_ip6_hdr_info
*ip6info
= net_rx_pkt_get_ip6_info(pkt
);
524 bool ex_dis
= core
->mac
[RFCTL
] & E1000_RFCTL_IPV6_EX_DIS
;
525 bool new_ex_dis
= core
->mac
[RFCTL
] & E1000_RFCTL_NEW_IPV6_EXT_DIS
;
528 * Following two traces must not be combined because resulting
529 * event will have 11 arguments totally and some trace backends
530 * (at least "ust") have limitation of maximum 10 arguments per
531 * event. Events with more arguments fail to compile for
532 * backends like these.
534 trace_e1000e_rx_rss_ip6_rfctl(core
->mac
[RFCTL
]);
535 trace_e1000e_rx_rss_ip6(ex_dis
, new_ex_dis
, istcp
,
536 ip6info
->has_ext_hdrs
,
537 ip6info
->rss_ex_dst_valid
,
538 ip6info
->rss_ex_src_valid
,
540 E1000_MRQC_EN_TCPIPV6(core
->mac
[MRQC
]),
541 E1000_MRQC_EN_IPV6EX(core
->mac
[MRQC
]),
542 E1000_MRQC_EN_IPV6(core
->mac
[MRQC
]));
544 if ((!ex_dis
|| !ip6info
->has_ext_hdrs
) &&
545 (!new_ex_dis
|| !(ip6info
->rss_ex_dst_valid
||
546 ip6info
->rss_ex_src_valid
))) {
548 if (istcp
&& !ip6info
->fragment
&&
549 E1000_MRQC_EN_TCPIPV6(core
->mac
[MRQC
])) {
550 return E1000_MRQ_RSS_TYPE_IPV6TCP
;
553 if (E1000_MRQC_EN_IPV6EX(core
->mac
[MRQC
])) {
554 return E1000_MRQ_RSS_TYPE_IPV6EX
;
559 if (E1000_MRQC_EN_IPV6(core
->mac
[MRQC
])) {
560 return E1000_MRQ_RSS_TYPE_IPV6
;
565 return E1000_MRQ_RSS_TYPE_NONE
;
569 e1000e_rss_calc_hash(E1000ECore
*core
,
570 struct NetRxPkt
*pkt
,
571 E1000E_RSSInfo
*info
)
573 NetRxPktRssType type
;
575 assert(e1000e_rss_enabled(core
));
577 switch (info
->type
) {
578 case E1000_MRQ_RSS_TYPE_IPV4
:
579 type
= NetPktRssIpV4
;
581 case E1000_MRQ_RSS_TYPE_IPV4TCP
:
582 type
= NetPktRssIpV4Tcp
;
584 case E1000_MRQ_RSS_TYPE_IPV6TCP
:
585 type
= NetPktRssIpV6TcpEx
;
587 case E1000_MRQ_RSS_TYPE_IPV6
:
588 type
= NetPktRssIpV6
;
590 case E1000_MRQ_RSS_TYPE_IPV6EX
:
591 type
= NetPktRssIpV6Ex
;
598 return net_rx_pkt_calc_rss_hash(pkt
, type
, (uint8_t *) &core
->mac
[RSSRK
]);
602 e1000e_rss_parse_packet(E1000ECore
*core
,
603 struct NetRxPkt
*pkt
,
604 E1000E_RSSInfo
*info
)
606 trace_e1000e_rx_rss_started();
608 if (!e1000e_rss_enabled(core
)) {
609 info
->enabled
= false;
613 trace_e1000e_rx_rss_disabled();
617 info
->enabled
= true;
619 info
->type
= e1000e_rss_get_hash_type(core
, pkt
);
621 trace_e1000e_rx_rss_type(info
->type
);
623 if (info
->type
== E1000_MRQ_RSS_TYPE_NONE
) {
629 info
->hash
= e1000e_rss_calc_hash(core
, pkt
, info
);
630 info
->queue
= E1000_RSS_QUEUE(&core
->mac
[RETA
], info
->hash
);
634 e1000e_setup_tx_offloads(E1000ECore
*core
, struct e1000e_tx
*tx
)
636 if (tx
->props
.tse
&& tx
->cptse
) {
637 net_tx_pkt_build_vheader(tx
->tx_pkt
, true, true, tx
->props
.mss
);
638 net_tx_pkt_update_ip_checksums(tx
->tx_pkt
);
639 e1000x_inc_reg_if_not_full(core
->mac
, TSCTC
);
643 if (tx
->sum_needed
& E1000_TXD_POPTS_TXSM
) {
644 net_tx_pkt_build_vheader(tx
->tx_pkt
, false, true, 0);
647 if (tx
->sum_needed
& E1000_TXD_POPTS_IXSM
) {
648 net_tx_pkt_update_ip_hdr_checksum(tx
->tx_pkt
);
653 e1000e_tx_pkt_send(E1000ECore
*core
, struct e1000e_tx
*tx
, int queue_index
)
655 int target_queue
= MIN(core
->max_queue_num
, queue_index
);
656 NetClientState
*queue
= qemu_get_subqueue(core
->owner_nic
, target_queue
);
658 e1000e_setup_tx_offloads(core
, tx
);
660 net_tx_pkt_dump(tx
->tx_pkt
);
662 if ((core
->phy
[0][PHY_CTRL
] & MII_CR_LOOPBACK
) ||
663 ((core
->mac
[RCTL
] & E1000_RCTL_LBM_MAC
) == E1000_RCTL_LBM_MAC
)) {
664 return net_tx_pkt_send_loopback(tx
->tx_pkt
, queue
);
666 return net_tx_pkt_send(tx
->tx_pkt
, queue
);
671 e1000e_on_tx_done_update_stats(E1000ECore
*core
, struct NetTxPkt
*tx_pkt
)
673 static const int PTCregs
[6] = { PTC64
, PTC127
, PTC255
, PTC511
,
676 size_t tot_len
= net_tx_pkt_get_total_len(tx_pkt
);
678 e1000x_increase_size_stats(core
->mac
, PTCregs
, tot_len
);
679 e1000x_inc_reg_if_not_full(core
->mac
, TPT
);
680 e1000x_grow_8reg_if_not_full(core
->mac
, TOTL
, tot_len
);
682 switch (net_tx_pkt_get_packet_type(tx_pkt
)) {
684 e1000x_inc_reg_if_not_full(core
->mac
, BPTC
);
687 e1000x_inc_reg_if_not_full(core
->mac
, MPTC
);
692 g_assert_not_reached();
695 core
->mac
[GPTC
] = core
->mac
[TPT
];
696 core
->mac
[GOTCL
] = core
->mac
[TOTL
];
697 core
->mac
[GOTCH
] = core
->mac
[TOTH
];
701 e1000e_process_tx_desc(E1000ECore
*core
,
702 struct e1000e_tx
*tx
,
703 struct e1000_tx_desc
*dp
,
706 uint32_t txd_lower
= le32_to_cpu(dp
->lower
.data
);
707 uint32_t dtype
= txd_lower
& (E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
);
708 unsigned int split_size
= txd_lower
& 0xffff;
710 struct e1000_context_desc
*xp
= (struct e1000_context_desc
*)dp
;
711 bool eop
= txd_lower
& E1000_TXD_CMD_EOP
;
713 if (dtype
== E1000_TXD_CMD_DEXT
) { /* context descriptor */
714 e1000x_read_tx_ctx_descr(xp
, &tx
->props
);
715 e1000e_process_snap_option(core
, le32_to_cpu(xp
->cmd_and_length
));
717 } else if (dtype
== (E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
)) {
718 /* data descriptor */
719 tx
->sum_needed
= le32_to_cpu(dp
->upper
.data
) >> 8;
720 tx
->cptse
= (txd_lower
& E1000_TXD_CMD_TSE
) ? 1 : 0;
721 e1000e_process_ts_option(core
, dp
);
723 /* legacy descriptor */
724 e1000e_process_ts_option(core
, dp
);
728 addr
= le64_to_cpu(dp
->buffer_addr
);
731 if (!net_tx_pkt_add_raw_fragment(tx
->tx_pkt
, addr
, split_size
)) {
737 if (!tx
->skip_cp
&& net_tx_pkt_parse(tx
->tx_pkt
)) {
738 if (e1000x_vlan_enabled(core
->mac
) &&
739 e1000x_is_vlan_txd(txd_lower
)) {
740 net_tx_pkt_setup_vlan_header_ex(tx
->tx_pkt
,
741 le16_to_cpu(dp
->upper
.fields
.special
), core
->vet
);
743 if (e1000e_tx_pkt_send(core
, tx
, queue_index
)) {
744 e1000e_on_tx_done_update_stats(core
, tx
->tx_pkt
);
749 net_tx_pkt_reset(tx
->tx_pkt
);
756 static inline uint32_t
757 e1000e_tx_wb_interrupt_cause(E1000ECore
*core
, int queue_idx
)
759 if (!msix_enabled(core
->owner
)) {
760 return E1000_ICR_TXDW
;
763 return (queue_idx
== 0) ? E1000_ICR_TXQ0
: E1000_ICR_TXQ1
;
766 static inline uint32_t
767 e1000e_rx_wb_interrupt_cause(E1000ECore
*core
, int queue_idx
,
768 bool min_threshold_hit
)
770 if (!msix_enabled(core
->owner
)) {
771 return E1000_ICS_RXT0
| (min_threshold_hit
? E1000_ICS_RXDMT0
: 0);
774 return (queue_idx
== 0) ? E1000_ICR_RXQ0
: E1000_ICR_RXQ1
;
778 e1000e_txdesc_writeback(E1000ECore
*core
, dma_addr_t base
,
779 struct e1000_tx_desc
*dp
, bool *ide
, int queue_idx
)
781 uint32_t txd_upper
, txd_lower
= le32_to_cpu(dp
->lower
.data
);
783 if (!(txd_lower
& E1000_TXD_CMD_RS
) &&
784 !(core
->mac
[IVAR
] & E1000_IVAR_TX_INT_EVERY_WB
)) {
788 *ide
= (txd_lower
& E1000_TXD_CMD_IDE
) ? true : false;
790 txd_upper
= le32_to_cpu(dp
->upper
.data
) | E1000_TXD_STAT_DD
;
792 dp
->upper
.data
= cpu_to_le32(txd_upper
);
793 pci_dma_write(core
->owner
, base
+ ((char *)&dp
->upper
- (char *)dp
),
794 &dp
->upper
, sizeof(dp
->upper
));
795 return e1000e_tx_wb_interrupt_cause(core
, queue_idx
);
798 typedef struct E1000E_RingInfo_st
{
808 e1000e_ring_empty(E1000ECore
*core
, const E1000E_RingInfo
*r
)
810 return core
->mac
[r
->dh
] == core
->mac
[r
->dt
] ||
811 core
->mac
[r
->dt
] >= core
->mac
[r
->dlen
] / E1000_RING_DESC_LEN
;
814 static inline uint64_t
815 e1000e_ring_base(E1000ECore
*core
, const E1000E_RingInfo
*r
)
817 uint64_t bah
= core
->mac
[r
->dbah
];
818 uint64_t bal
= core
->mac
[r
->dbal
];
820 return (bah
<< 32) + bal
;
823 static inline uint64_t
824 e1000e_ring_head_descr(E1000ECore
*core
, const E1000E_RingInfo
*r
)
826 return e1000e_ring_base(core
, r
) + E1000_RING_DESC_LEN
* core
->mac
[r
->dh
];
830 e1000e_ring_advance(E1000ECore
*core
, const E1000E_RingInfo
*r
, uint32_t count
)
832 core
->mac
[r
->dh
] += count
;
834 if (core
->mac
[r
->dh
] * E1000_RING_DESC_LEN
>= core
->mac
[r
->dlen
]) {
835 core
->mac
[r
->dh
] = 0;
839 static inline uint32_t
840 e1000e_ring_free_descr_num(E1000ECore
*core
, const E1000E_RingInfo
*r
)
842 trace_e1000e_ring_free_space(r
->idx
, core
->mac
[r
->dlen
],
843 core
->mac
[r
->dh
], core
->mac
[r
->dt
]);
845 if (core
->mac
[r
->dh
] <= core
->mac
[r
->dt
]) {
846 return core
->mac
[r
->dt
] - core
->mac
[r
->dh
];
849 if (core
->mac
[r
->dh
] > core
->mac
[r
->dt
]) {
850 return core
->mac
[r
->dlen
] / E1000_RING_DESC_LEN
+
851 core
->mac
[r
->dt
] - core
->mac
[r
->dh
];
854 g_assert_not_reached();
859 e1000e_ring_enabled(E1000ECore
*core
, const E1000E_RingInfo
*r
)
861 return core
->mac
[r
->dlen
] > 0;
864 static inline uint32_t
865 e1000e_ring_len(E1000ECore
*core
, const E1000E_RingInfo
*r
)
867 return core
->mac
[r
->dlen
];
870 typedef struct E1000E_TxRing_st
{
871 const E1000E_RingInfo
*i
;
872 struct e1000e_tx
*tx
;
876 e1000e_mq_queue_idx(int base_reg_idx
, int reg_idx
)
878 return (reg_idx
- base_reg_idx
) / (0x100 >> 2);
882 e1000e_tx_ring_init(E1000ECore
*core
, E1000E_TxRing
*txr
, int idx
)
884 static const E1000E_RingInfo i
[E1000E_NUM_QUEUES
] = {
885 { TDBAH
, TDBAL
, TDLEN
, TDH
, TDT
, 0 },
886 { TDBAH1
, TDBAL1
, TDLEN1
, TDH1
, TDT1
, 1 }
889 assert(idx
< ARRAY_SIZE(i
));
892 txr
->tx
= &core
->tx
[idx
];
895 typedef struct E1000E_RxRing_st
{
896 const E1000E_RingInfo
*i
;
900 e1000e_rx_ring_init(E1000ECore
*core
, E1000E_RxRing
*rxr
, int idx
)
902 static const E1000E_RingInfo i
[E1000E_NUM_QUEUES
] = {
903 { RDBAH0
, RDBAL0
, RDLEN0
, RDH0
, RDT0
, 0 },
904 { RDBAH1
, RDBAL1
, RDLEN1
, RDH1
, RDT1
, 1 }
907 assert(idx
< ARRAY_SIZE(i
));
913 e1000e_start_xmit(E1000ECore
*core
, const E1000E_TxRing
*txr
)
916 struct e1000_tx_desc desc
;
918 const E1000E_RingInfo
*txi
= txr
->i
;
919 uint32_t cause
= E1000_ICS_TXQE
;
921 if (!(core
->mac
[TCTL
] & E1000_TCTL_EN
)) {
922 trace_e1000e_tx_disabled();
926 while (!e1000e_ring_empty(core
, txi
)) {
927 base
= e1000e_ring_head_descr(core
, txi
);
929 pci_dma_read(core
->owner
, base
, &desc
, sizeof(desc
));
931 trace_e1000e_tx_descr((void *)(intptr_t)desc
.buffer_addr
,
932 desc
.lower
.data
, desc
.upper
.data
);
934 e1000e_process_tx_desc(core
, txr
->tx
, &desc
, txi
->idx
);
935 cause
|= e1000e_txdesc_writeback(core
, base
, &desc
, &ide
, txi
->idx
);
937 e1000e_ring_advance(core
, txi
, 1);
940 if (!ide
|| !e1000e_intrmgr_delay_tx_causes(core
, &cause
)) {
941 e1000e_set_interrupt_cause(core
, cause
);
946 e1000e_has_rxbufs(E1000ECore
*core
, const E1000E_RingInfo
*r
,
949 uint32_t bufs
= e1000e_ring_free_descr_num(core
, r
);
951 trace_e1000e_rx_has_buffers(r
->idx
, bufs
, total_size
,
952 core
->rx_desc_buf_size
);
954 return total_size
<= bufs
/ (core
->rx_desc_len
/ E1000_MIN_RX_DESC_LEN
) *
955 core
->rx_desc_buf_size
;
959 e1000e_start_recv(E1000ECore
*core
)
963 trace_e1000e_rx_start_recv();
965 for (i
= 0; i
<= core
->max_queue_num
; i
++) {
966 qemu_flush_queued_packets(qemu_get_subqueue(core
->owner_nic
, i
));
971 e1000e_can_receive(E1000ECore
*core
)
975 if (!e1000x_rx_ready(core
->owner
, core
->mac
)) {
979 for (i
= 0; i
< E1000E_NUM_QUEUES
; i
++) {
982 e1000e_rx_ring_init(core
, &rxr
, i
);
983 if (e1000e_ring_enabled(core
, rxr
.i
) &&
984 e1000e_has_rxbufs(core
, rxr
.i
, 1)) {
985 trace_e1000e_rx_can_recv();
990 trace_e1000e_rx_can_recv_rings_full();
995 e1000e_receive(E1000ECore
*core
, const uint8_t *buf
, size_t size
)
997 const struct iovec iov
= {
998 .iov_base
= (uint8_t *)buf
,
1002 return e1000e_receive_iov(core
, &iov
, 1);
1006 e1000e_rx_l3_cso_enabled(E1000ECore
*core
)
1008 return !!(core
->mac
[RXCSUM
] & E1000_RXCSUM_IPOFLD
);
1012 e1000e_rx_l4_cso_enabled(E1000ECore
*core
)
1014 return !!(core
->mac
[RXCSUM
] & E1000_RXCSUM_TUOFLD
);
1018 e1000e_receive_filter(E1000ECore
*core
, const uint8_t *buf
, int size
)
1020 uint32_t rctl
= core
->mac
[RCTL
];
1022 if (e1000x_is_vlan_packet(buf
, core
->vet
) &&
1023 e1000x_vlan_rx_filter_enabled(core
->mac
)) {
1024 uint16_t vid
= lduw_be_p(buf
+ 14);
1025 uint32_t vfta
= ldl_le_p((uint32_t *)(core
->mac
+ VFTA
) +
1026 ((vid
>> 5) & 0x7f));
1027 if ((vfta
& (1 << (vid
& 0x1f))) == 0) {
1028 trace_e1000e_rx_flt_vlan_mismatch(vid
);
1031 trace_e1000e_rx_flt_vlan_match(vid
);
1035 switch (net_rx_pkt_get_packet_type(core
->rx_pkt
)) {
1037 if (rctl
& E1000_RCTL_UPE
) {
1038 return true; /* promiscuous ucast */
1043 if (rctl
& E1000_RCTL_BAM
) {
1044 return true; /* broadcast enabled */
1049 if (rctl
& E1000_RCTL_MPE
) {
1050 return true; /* promiscuous mcast */
1055 g_assert_not_reached();
1058 return e1000x_rx_group_filter(core
->mac
, buf
);
1062 e1000e_read_lgcy_rx_descr(E1000ECore
*core
, uint8_t *desc
, hwaddr
*buff_addr
)
1064 struct e1000_rx_desc
*d
= (struct e1000_rx_desc
*) desc
;
1065 *buff_addr
= le64_to_cpu(d
->buffer_addr
);
1069 e1000e_read_ext_rx_descr(E1000ECore
*core
, uint8_t *desc
, hwaddr
*buff_addr
)
1071 union e1000_rx_desc_extended
*d
= (union e1000_rx_desc_extended
*) desc
;
1072 *buff_addr
= le64_to_cpu(d
->read
.buffer_addr
);
1076 e1000e_read_ps_rx_descr(E1000ECore
*core
, uint8_t *desc
,
1077 hwaddr (*buff_addr
)[MAX_PS_BUFFERS
])
1080 union e1000_rx_desc_packet_split
*d
=
1081 (union e1000_rx_desc_packet_split
*) desc
;
1083 for (i
= 0; i
< MAX_PS_BUFFERS
; i
++) {
1084 (*buff_addr
)[i
] = le64_to_cpu(d
->read
.buffer_addr
[i
]);
1087 trace_e1000e_rx_desc_ps_read((*buff_addr
)[0], (*buff_addr
)[1],
1088 (*buff_addr
)[2], (*buff_addr
)[3]);
1092 e1000e_read_rx_descr(E1000ECore
*core
, uint8_t *desc
,
1093 hwaddr (*buff_addr
)[MAX_PS_BUFFERS
])
1095 if (e1000e_rx_use_legacy_descriptor(core
)) {
1096 e1000e_read_lgcy_rx_descr(core
, desc
, &(*buff_addr
)[0]);
1097 (*buff_addr
)[1] = (*buff_addr
)[2] = (*buff_addr
)[3] = 0;
1099 if (core
->mac
[RCTL
] & E1000_RCTL_DTYP_PS
) {
1100 e1000e_read_ps_rx_descr(core
, desc
, buff_addr
);
1102 e1000e_read_ext_rx_descr(core
, desc
, &(*buff_addr
)[0]);
1103 (*buff_addr
)[1] = (*buff_addr
)[2] = (*buff_addr
)[3] = 0;
1109 e1000e_verify_csum_in_sw(E1000ECore
*core
,
1110 struct NetRxPkt
*pkt
,
1111 uint32_t *status_flags
,
1112 bool istcp
, bool isudp
)
1115 uint32_t csum_error
;
1117 if (e1000e_rx_l3_cso_enabled(core
)) {
1118 if (!net_rx_pkt_validate_l3_csum(pkt
, &csum_valid
)) {
1119 trace_e1000e_rx_metadata_l3_csum_validation_failed();
1121 csum_error
= csum_valid
? 0 : E1000_RXDEXT_STATERR_IPE
;
1122 *status_flags
|= E1000_RXD_STAT_IPCS
| csum_error
;
1125 trace_e1000e_rx_metadata_l3_cso_disabled();
1128 if (!e1000e_rx_l4_cso_enabled(core
)) {
1129 trace_e1000e_rx_metadata_l4_cso_disabled();
1133 if (!net_rx_pkt_validate_l4_csum(pkt
, &csum_valid
)) {
1134 trace_e1000e_rx_metadata_l4_csum_validation_failed();
1138 csum_error
= csum_valid
? 0 : E1000_RXDEXT_STATERR_TCPE
;
1141 *status_flags
|= E1000_RXD_STAT_TCPCS
|
1144 *status_flags
|= E1000_RXD_STAT_TCPCS
|
1145 E1000_RXD_STAT_UDPCS
|
1151 e1000e_is_tcp_ack(E1000ECore
*core
, struct NetRxPkt
*rx_pkt
)
1153 if (!net_rx_pkt_is_tcp_ack(rx_pkt
)) {
1157 if (core
->mac
[RFCTL
] & E1000_RFCTL_ACK_DATA_DIS
) {
1158 return !net_rx_pkt_has_tcp_data(rx_pkt
);
1165 e1000e_build_rx_metadata(E1000ECore
*core
,
1166 struct NetRxPkt
*pkt
,
1168 const E1000E_RSSInfo
*rss_info
,
1169 uint32_t *rss
, uint32_t *mrq
,
1170 uint32_t *status_flags
,
1174 struct virtio_net_hdr
*vhdr
;
1175 bool isip4
, isip6
, istcp
, isudp
;
1178 *status_flags
= E1000_RXD_STAT_DD
;
1180 /* No additional metadata needed for non-EOP descriptors */
1185 *status_flags
|= E1000_RXD_STAT_EOP
;
1187 net_rx_pkt_get_protocols(pkt
, &isip4
, &isip6
, &isudp
, &istcp
);
1188 trace_e1000e_rx_metadata_protocols(isip4
, isip6
, isudp
, istcp
);
1191 if (net_rx_pkt_is_vlan_stripped(pkt
)) {
1192 *status_flags
|= E1000_RXD_STAT_VP
;
1193 *vlan_tag
= cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt
));
1194 trace_e1000e_rx_metadata_vlan(*vlan_tag
);
1197 /* Packet parsing results */
1198 if ((core
->mac
[RXCSUM
] & E1000_RXCSUM_PCSD
) != 0) {
1199 if (rss_info
->enabled
) {
1200 *rss
= cpu_to_le32(rss_info
->hash
);
1201 *mrq
= cpu_to_le32(rss_info
->type
| (rss_info
->queue
<< 8));
1202 trace_e1000e_rx_metadata_rss(*rss
, *mrq
);
1205 *status_flags
|= E1000_RXD_STAT_IPIDV
;
1206 *ip_id
= cpu_to_le16(net_rx_pkt_get_ip_id(pkt
));
1207 trace_e1000e_rx_metadata_ip_id(*ip_id
);
1210 if (istcp
&& e1000e_is_tcp_ack(core
, pkt
)) {
1211 *status_flags
|= E1000_RXD_STAT_ACK
;
1212 trace_e1000e_rx_metadata_ack();
1215 if (isip6
&& (core
->mac
[RFCTL
] & E1000_RFCTL_IPV6_DIS
)) {
1216 trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1217 pkt_type
= E1000_RXD_PKT_MAC
;
1218 } else if (istcp
|| isudp
) {
1219 pkt_type
= isip4
? E1000_RXD_PKT_IP4_XDP
: E1000_RXD_PKT_IP6_XDP
;
1220 } else if (isip4
|| isip6
) {
1221 pkt_type
= isip4
? E1000_RXD_PKT_IP4
: E1000_RXD_PKT_IP6
;
1223 pkt_type
= E1000_RXD_PKT_MAC
;
1226 *status_flags
|= E1000_RXD_PKT_TYPE(pkt_type
);
1227 trace_e1000e_rx_metadata_pkt_type(pkt_type
);
1229 /* RX CSO information */
1230 if (isip6
&& (core
->mac
[RFCTL
] & E1000_RFCTL_IPV6_XSUM_DIS
)) {
1231 trace_e1000e_rx_metadata_ipv6_sum_disabled();
1235 if (!net_rx_pkt_has_virt_hdr(pkt
)) {
1236 trace_e1000e_rx_metadata_no_virthdr();
1237 e1000e_verify_csum_in_sw(core
, pkt
, status_flags
, istcp
, isudp
);
1241 vhdr
= net_rx_pkt_get_vhdr(pkt
);
1243 if (!(vhdr
->flags
& VIRTIO_NET_HDR_F_DATA_VALID
) &&
1244 !(vhdr
->flags
& VIRTIO_NET_HDR_F_NEEDS_CSUM
)) {
1245 trace_e1000e_rx_metadata_virthdr_no_csum_info();
1246 e1000e_verify_csum_in_sw(core
, pkt
, status_flags
, istcp
, isudp
);
1250 if (e1000e_rx_l3_cso_enabled(core
)) {
1251 *status_flags
|= isip4
? E1000_RXD_STAT_IPCS
: 0;
1253 trace_e1000e_rx_metadata_l3_cso_disabled();
1256 if (e1000e_rx_l4_cso_enabled(core
)) {
1258 *status_flags
|= E1000_RXD_STAT_TCPCS
;
1260 *status_flags
|= E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
;
1263 trace_e1000e_rx_metadata_l4_cso_disabled();
1266 trace_e1000e_rx_metadata_status_flags(*status_flags
);
1269 *status_flags
= cpu_to_le32(*status_flags
);
1273 e1000e_write_lgcy_rx_descr(E1000ECore
*core
, uint8_t *desc
,
1274 struct NetRxPkt
*pkt
,
1275 const E1000E_RSSInfo
*rss_info
,
1278 uint32_t status_flags
, rss
, mrq
;
1281 struct e1000_rx_desc
*d
= (struct e1000_rx_desc
*) desc
;
1283 assert(!rss_info
->enabled
);
1285 d
->length
= cpu_to_le16(length
);
1288 e1000e_build_rx_metadata(core
, pkt
, pkt
!= NULL
,
1291 &status_flags
, &ip_id
,
1293 d
->errors
= (uint8_t) (le32_to_cpu(status_flags
) >> 24);
1294 d
->status
= (uint8_t) le32_to_cpu(status_flags
);
1299 e1000e_write_ext_rx_descr(E1000ECore
*core
, uint8_t *desc
,
1300 struct NetRxPkt
*pkt
,
1301 const E1000E_RSSInfo
*rss_info
,
1304 union e1000_rx_desc_extended
*d
= (union e1000_rx_desc_extended
*) desc
;
1306 memset(&d
->wb
, 0, sizeof(d
->wb
));
1308 d
->wb
.upper
.length
= cpu_to_le16(length
);
1310 e1000e_build_rx_metadata(core
, pkt
, pkt
!= NULL
,
1312 &d
->wb
.lower
.hi_dword
.rss
,
1314 &d
->wb
.upper
.status_error
,
1315 &d
->wb
.lower
.hi_dword
.csum_ip
.ip_id
,
1320 e1000e_write_ps_rx_descr(E1000ECore
*core
, uint8_t *desc
,
1321 struct NetRxPkt
*pkt
,
1322 const E1000E_RSSInfo
*rss_info
,
1324 uint16_t(*written
)[MAX_PS_BUFFERS
])
1327 union e1000_rx_desc_packet_split
*d
=
1328 (union e1000_rx_desc_packet_split
*) desc
;
1330 memset(&d
->wb
, 0, sizeof(d
->wb
));
1332 d
->wb
.middle
.length0
= cpu_to_le16((*written
)[0]);
1334 for (i
= 0; i
< PS_PAGE_BUFFERS
; i
++) {
1335 d
->wb
.upper
.length
[i
] = cpu_to_le16((*written
)[i
+ 1]);
1338 e1000e_build_rx_metadata(core
, pkt
, pkt
!= NULL
,
1340 &d
->wb
.lower
.hi_dword
.rss
,
1342 &d
->wb
.middle
.status_error
,
1343 &d
->wb
.lower
.hi_dword
.csum_ip
.ip_id
,
1344 &d
->wb
.middle
.vlan
);
1346 d
->wb
.upper
.header_status
=
1347 cpu_to_le16(ps_hdr_len
| (ps_hdr_len
? E1000_RXDPS_HDRSTAT_HDRSP
: 0));
1349 trace_e1000e_rx_desc_ps_write((*written
)[0], (*written
)[1],
1350 (*written
)[2], (*written
)[3]);
1354 e1000e_write_rx_descr(E1000ECore
*core
, uint8_t *desc
,
1355 struct NetRxPkt
*pkt
, const E1000E_RSSInfo
*rss_info
,
1356 size_t ps_hdr_len
, uint16_t(*written
)[MAX_PS_BUFFERS
])
1358 if (e1000e_rx_use_legacy_descriptor(core
)) {
1359 assert(ps_hdr_len
== 0);
1360 e1000e_write_lgcy_rx_descr(core
, desc
, pkt
, rss_info
, (*written
)[0]);
1362 if (core
->mac
[RCTL
] & E1000_RCTL_DTYP_PS
) {
1363 e1000e_write_ps_rx_descr(core
, desc
, pkt
, rss_info
,
1364 ps_hdr_len
, written
);
1366 assert(ps_hdr_len
== 0);
1367 e1000e_write_ext_rx_descr(core
, desc
, pkt
, rss_info
,
1373 typedef struct e1000e_ba_state_st
{
1374 uint16_t written
[MAX_PS_BUFFERS
];
1379 e1000e_write_hdr_to_rx_buffers(E1000ECore
*core
,
1380 hwaddr (*ba
)[MAX_PS_BUFFERS
],
1381 e1000e_ba_state
*bastate
,
1383 dma_addr_t data_len
)
1385 assert(data_len
<= core
->rxbuf_sizes
[0] - bastate
->written
[0]);
1387 pci_dma_write(core
->owner
, (*ba
)[0] + bastate
->written
[0], data
, data_len
);
1388 bastate
->written
[0] += data_len
;
1390 bastate
->cur_idx
= 1;
1394 e1000e_write_to_rx_buffers(E1000ECore
*core
,
1395 hwaddr (*ba
)[MAX_PS_BUFFERS
],
1396 e1000e_ba_state
*bastate
,
1398 dma_addr_t data_len
)
1400 while (data_len
> 0) {
1401 uint32_t cur_buf_len
= core
->rxbuf_sizes
[bastate
->cur_idx
];
1402 uint32_t cur_buf_bytes_left
= cur_buf_len
-
1403 bastate
->written
[bastate
->cur_idx
];
1404 uint32_t bytes_to_write
= MIN(data_len
, cur_buf_bytes_left
);
1406 trace_e1000e_rx_desc_buff_write(bastate
->cur_idx
,
1407 (*ba
)[bastate
->cur_idx
],
1408 bastate
->written
[bastate
->cur_idx
],
1412 pci_dma_write(core
->owner
,
1413 (*ba
)[bastate
->cur_idx
] + bastate
->written
[bastate
->cur_idx
],
1414 data
, bytes_to_write
);
1416 bastate
->written
[bastate
->cur_idx
] += bytes_to_write
;
1417 data
+= bytes_to_write
;
1418 data_len
-= bytes_to_write
;
1420 if (bastate
->written
[bastate
->cur_idx
] == cur_buf_len
) {
1424 assert(bastate
->cur_idx
< MAX_PS_BUFFERS
);
1429 e1000e_update_rx_stats(E1000ECore
*core
,
1431 size_t data_fcs_size
)
1433 e1000x_update_rx_total_stats(core
->mac
, data_size
, data_fcs_size
);
1435 switch (net_rx_pkt_get_packet_type(core
->rx_pkt
)) {
1437 e1000x_inc_reg_if_not_full(core
->mac
, BPRC
);
1441 e1000x_inc_reg_if_not_full(core
->mac
, MPRC
);
1450 e1000e_rx_descr_threshold_hit(E1000ECore
*core
, const E1000E_RingInfo
*rxi
)
1452 return e1000e_ring_free_descr_num(core
, rxi
) ==
1453 e1000e_ring_len(core
, rxi
) >> core
->rxbuf_min_shift
;
1457 e1000e_do_ps(E1000ECore
*core
, struct NetRxPkt
*pkt
, size_t *hdr_len
)
1459 bool isip4
, isip6
, isudp
, istcp
;
1462 if (!e1000e_rx_use_ps_descriptor(core
)) {
1466 net_rx_pkt_get_protocols(pkt
, &isip4
, &isip6
, &isudp
, &istcp
);
1469 fragment
= net_rx_pkt_get_ip4_info(pkt
)->fragment
;
1471 fragment
= net_rx_pkt_get_ip6_info(pkt
)->fragment
;
1476 if (fragment
&& (core
->mac
[RFCTL
] & E1000_RFCTL_IPFRSP_DIS
)) {
1480 if (!fragment
&& (isudp
|| istcp
)) {
1481 *hdr_len
= net_rx_pkt_get_l5_hdr_offset(pkt
);
1483 *hdr_len
= net_rx_pkt_get_l4_hdr_offset(pkt
);
1486 if ((*hdr_len
> core
->rxbuf_sizes
[0]) ||
1487 (*hdr_len
> net_rx_pkt_get_total_len(pkt
))) {
1495 e1000e_write_packet_to_guest(E1000ECore
*core
, struct NetRxPkt
*pkt
,
1496 const E1000E_RxRing
*rxr
,
1497 const E1000E_RSSInfo
*rss_info
)
1499 PCIDevice
*d
= core
->owner
;
1501 uint8_t desc
[E1000_MAX_RX_DESC_LEN
];
1503 size_t desc_offset
= 0;
1506 struct iovec
*iov
= net_rx_pkt_get_iovec(pkt
);
1507 size_t size
= net_rx_pkt_get_total_len(pkt
);
1508 size_t total_size
= size
+ e1000x_fcs_len(core
->mac
);
1509 const E1000E_RingInfo
*rxi
;
1510 size_t ps_hdr_len
= 0;
1511 bool do_ps
= e1000e_do_ps(core
, pkt
, &ps_hdr_len
);
1512 bool is_first
= true;
1517 hwaddr ba
[MAX_PS_BUFFERS
];
1518 e1000e_ba_state bastate
= { { 0 } };
1519 bool is_last
= false;
1521 desc_size
= total_size
- desc_offset
;
1523 if (desc_size
> core
->rx_desc_buf_size
) {
1524 desc_size
= core
->rx_desc_buf_size
;
1527 if (e1000e_ring_empty(core
, rxi
)) {
1531 base
= e1000e_ring_head_descr(core
, rxi
);
1533 pci_dma_read(d
, base
, &desc
, core
->rx_desc_len
);
1535 trace_e1000e_rx_descr(rxi
->idx
, base
, core
->rx_desc_len
);
1537 e1000e_read_rx_descr(core
, desc
, &ba
);
1540 if (desc_offset
< size
) {
1541 static const uint32_t fcs_pad
;
1543 size_t copy_size
= size
- desc_offset
;
1544 if (copy_size
> core
->rx_desc_buf_size
) {
1545 copy_size
= core
->rx_desc_buf_size
;
1548 /* For PS mode copy the packet header first */
1551 size_t ps_hdr_copied
= 0;
1553 iov_copy
= MIN(ps_hdr_len
- ps_hdr_copied
,
1554 iov
->iov_len
- iov_ofs
);
1556 e1000e_write_hdr_to_rx_buffers(core
, &ba
, &bastate
,
1557 iov
->iov_base
, iov_copy
);
1559 copy_size
-= iov_copy
;
1560 ps_hdr_copied
+= iov_copy
;
1562 iov_ofs
+= iov_copy
;
1563 if (iov_ofs
== iov
->iov_len
) {
1567 } while (ps_hdr_copied
< ps_hdr_len
);
1571 /* Leave buffer 0 of each descriptor except first */
1572 /* empty as per spec 7.1.5.1 */
1573 e1000e_write_hdr_to_rx_buffers(core
, &ba
, &bastate
,
1578 /* Copy packet payload */
1580 iov_copy
= MIN(copy_size
, iov
->iov_len
- iov_ofs
);
1582 e1000e_write_to_rx_buffers(core
, &ba
, &bastate
,
1583 iov
->iov_base
+ iov_ofs
, iov_copy
);
1585 copy_size
-= iov_copy
;
1586 iov_ofs
+= iov_copy
;
1587 if (iov_ofs
== iov
->iov_len
) {
1593 if (desc_offset
+ desc_size
>= total_size
) {
1594 /* Simulate FCS checksum presence in the last descriptor */
1595 e1000e_write_to_rx_buffers(core
, &ba
, &bastate
,
1596 (const char *) &fcs_pad
, e1000x_fcs_len(core
->mac
));
1599 desc_offset
+= desc_size
;
1600 if (desc_offset
>= total_size
) {
1603 } else { /* as per intel docs; skip descriptors with null buf addr */
1604 trace_e1000e_rx_null_descriptor();
1607 e1000e_write_rx_descr(core
, desc
, is_last
? core
->rx_pkt
: NULL
,
1608 rss_info
, do_ps
? ps_hdr_len
: 0, &bastate
.written
);
1609 pci_dma_write(d
, base
, &desc
, core
->rx_desc_len
);
1611 e1000e_ring_advance(core
, rxi
,
1612 core
->rx_desc_len
/ E1000_MIN_RX_DESC_LEN
);
1614 } while (desc_offset
< total_size
);
1616 e1000e_update_rx_stats(core
, size
, total_size
);
1620 e1000e_rx_fix_l4_csum(E1000ECore
*core
, struct NetRxPkt
*pkt
)
1622 if (net_rx_pkt_has_virt_hdr(pkt
)) {
1623 struct virtio_net_hdr
*vhdr
= net_rx_pkt_get_vhdr(pkt
);
1625 if (vhdr
->flags
& VIRTIO_NET_HDR_F_NEEDS_CSUM
) {
1626 net_rx_pkt_fix_l4_csum(pkt
);
1632 e1000e_receive_iov(E1000ECore
*core
, const struct iovec
*iov
, int iovcnt
)
1634 static const int maximum_ethernet_hdr_len
= (14 + 4);
1635 /* Min. octets in an ethernet frame sans FCS */
1636 static const int min_buf_size
= 60;
1639 uint8_t min_buf
[min_buf_size
];
1640 struct iovec min_iov
;
1641 uint8_t *filter_buf
;
1642 size_t size
, orig_size
;
1645 E1000E_RSSInfo rss_info
;
1650 trace_e1000e_rx_receive_iov(iovcnt
);
1652 if (!e1000x_hw_rx_enabled(core
->mac
)) {
1656 /* Pull virtio header in */
1657 if (core
->has_vnet
) {
1658 net_rx_pkt_set_vhdr_iovec(core
->rx_pkt
, iov
, iovcnt
);
1659 iov_ofs
= sizeof(struct virtio_net_hdr
);
1662 filter_buf
= iov
->iov_base
+ iov_ofs
;
1663 orig_size
= iov_size(iov
, iovcnt
);
1664 size
= orig_size
- iov_ofs
;
1666 /* Pad to minimum Ethernet frame length */
1667 if (size
< sizeof(min_buf
)) {
1668 iov_to_buf(iov
, iovcnt
, iov_ofs
, min_buf
, size
);
1669 memset(&min_buf
[size
], 0, sizeof(min_buf
) - size
);
1670 e1000x_inc_reg_if_not_full(core
->mac
, RUC
);
1671 min_iov
.iov_base
= filter_buf
= min_buf
;
1672 min_iov
.iov_len
= size
= sizeof(min_buf
);
1676 } else if (iov
->iov_len
< maximum_ethernet_hdr_len
) {
1677 /* This is very unlikely, but may happen. */
1678 iov_to_buf(iov
, iovcnt
, iov_ofs
, min_buf
, maximum_ethernet_hdr_len
);
1679 filter_buf
= min_buf
;
1682 /* Discard oversized packets if !LPE and !SBP. */
1683 if (e1000x_is_oversized(core
->mac
, size
)) {
1687 net_rx_pkt_set_packet_type(core
->rx_pkt
,
1688 get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf
)));
1690 if (!e1000e_receive_filter(core
, filter_buf
, size
)) {
1691 trace_e1000e_rx_flt_dropped();
1695 net_rx_pkt_attach_iovec_ex(core
->rx_pkt
, iov
, iovcnt
, iov_ofs
,
1696 e1000x_vlan_enabled(core
->mac
), core
->vet
);
1698 e1000e_rss_parse_packet(core
, core
->rx_pkt
, &rss_info
);
1699 e1000e_rx_ring_init(core
, &rxr
, rss_info
.queue
);
1701 trace_e1000e_rx_rss_dispatched_to_queue(rxr
.i
->idx
);
1703 total_size
= net_rx_pkt_get_total_len(core
->rx_pkt
) +
1704 e1000x_fcs_len(core
->mac
);
1706 if (e1000e_has_rxbufs(core
, rxr
.i
, total_size
)) {
1707 e1000e_rx_fix_l4_csum(core
, core
->rx_pkt
);
1709 e1000e_write_packet_to_guest(core
, core
->rx_pkt
, &rxr
, &rss_info
);
1713 /* Perform small receive detection (RSRPD) */
1714 if (total_size
< core
->mac
[RSRPD
]) {
1715 n
|= E1000_ICS_SRPD
;
1718 /* Perform ACK receive detection */
1719 if (!(core
->mac
[RFCTL
] & E1000_RFCTL_ACK_DIS
) &&
1720 (e1000e_is_tcp_ack(core
, core
->rx_pkt
))) {
1724 /* Check if receive descriptor minimum threshold hit */
1725 rdmts_hit
= e1000e_rx_descr_threshold_hit(core
, rxr
.i
);
1726 n
|= e1000e_rx_wb_interrupt_cause(core
, rxr
.i
->idx
, rdmts_hit
);
1728 trace_e1000e_rx_written_to_guest(n
);
1733 trace_e1000e_rx_not_written_to_guest(n
);
1736 if (!e1000e_intrmgr_delay_rx_causes(core
, &n
)) {
1737 trace_e1000e_rx_interrupt_set(n
);
1738 e1000e_set_interrupt_cause(core
, n
);
1740 trace_e1000e_rx_interrupt_delayed(n
);
1747 e1000e_have_autoneg(E1000ECore
*core
)
1749 return core
->phy
[0][PHY_CTRL
] & MII_CR_AUTO_NEG_EN
;
1752 static void e1000e_update_flowctl_status(E1000ECore
*core
)
1754 if (e1000e_have_autoneg(core
) &&
1755 core
->phy
[0][PHY_STATUS
] & MII_SR_AUTONEG_COMPLETE
) {
1756 trace_e1000e_link_autoneg_flowctl(true);
1757 core
->mac
[CTRL
] |= E1000_CTRL_TFCE
| E1000_CTRL_RFCE
;
1759 trace_e1000e_link_autoneg_flowctl(false);
1764 e1000e_link_down(E1000ECore
*core
)
1766 e1000x_update_regs_on_link_down(core
->mac
, core
->phy
[0]);
1767 e1000e_update_flowctl_status(core
);
1771 e1000e_set_phy_ctrl(E1000ECore
*core
, int index
, uint16_t val
)
1773 /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */
1774 core
->phy
[0][PHY_CTRL
] = val
& ~(0x3f |
1776 MII_CR_RESTART_AUTO_NEG
);
1778 if ((val
& MII_CR_RESTART_AUTO_NEG
) &&
1779 e1000e_have_autoneg(core
)) {
1780 e1000x_restart_autoneg(core
->mac
, core
->phy
[0], core
->autoneg_timer
);
1785 e1000e_set_phy_oem_bits(E1000ECore
*core
, int index
, uint16_t val
)
1787 core
->phy
[0][PHY_OEM_BITS
] = val
& ~BIT(10);
1789 if (val
& BIT(10)) {
1790 e1000x_restart_autoneg(core
->mac
, core
->phy
[0], core
->autoneg_timer
);
1795 e1000e_set_phy_page(E1000ECore
*core
, int index
, uint16_t val
)
1797 core
->phy
[0][PHY_PAGE
] = val
& PHY_PAGE_RW_MASK
;
1801 e1000e_core_set_link_status(E1000ECore
*core
)
1803 NetClientState
*nc
= qemu_get_queue(core
->owner_nic
);
1804 uint32_t old_status
= core
->mac
[STATUS
];
1806 trace_e1000e_link_status_changed(nc
->link_down
? false : true);
1808 if (nc
->link_down
) {
1809 e1000x_update_regs_on_link_down(core
->mac
, core
->phy
[0]);
1811 if (e1000e_have_autoneg(core
) &&
1812 !(core
->phy
[0][PHY_STATUS
] & MII_SR_AUTONEG_COMPLETE
)) {
1813 e1000x_restart_autoneg(core
->mac
, core
->phy
[0],
1814 core
->autoneg_timer
);
1816 e1000x_update_regs_on_link_up(core
->mac
, core
->phy
[0]);
1817 e1000e_start_recv(core
);
1821 if (core
->mac
[STATUS
] != old_status
) {
1822 e1000e_set_interrupt_cause(core
, E1000_ICR_LSC
);
1827 e1000e_set_ctrl(E1000ECore
*core
, int index
, uint32_t val
)
1829 trace_e1000e_core_ctrl_write(index
, val
);
1831 /* RST is self clearing */
1832 core
->mac
[CTRL
] = val
& ~E1000_CTRL_RST
;
1833 core
->mac
[CTRL_DUP
] = core
->mac
[CTRL
];
1835 trace_e1000e_link_set_params(
1836 !!(val
& E1000_CTRL_ASDE
),
1837 (val
& E1000_CTRL_SPD_SEL
) >> E1000_CTRL_SPD_SHIFT
,
1838 !!(val
& E1000_CTRL_FRCSPD
),
1839 !!(val
& E1000_CTRL_FRCDPX
),
1840 !!(val
& E1000_CTRL_RFCE
),
1841 !!(val
& E1000_CTRL_TFCE
));
1843 if (val
& E1000_CTRL_RST
) {
1844 trace_e1000e_core_ctrl_sw_reset();
1845 e1000x_reset_mac_addr(core
->owner_nic
, core
->mac
, core
->permanent_mac
);
1848 if (val
& E1000_CTRL_PHY_RST
) {
1849 trace_e1000e_core_ctrl_phy_reset();
1850 core
->mac
[STATUS
] |= E1000_STATUS_PHYRA
;
1855 e1000e_set_rfctl(E1000ECore
*core
, int index
, uint32_t val
)
1857 trace_e1000e_rx_set_rfctl(val
);
1859 if (!(val
& E1000_RFCTL_ISCSI_DIS
)) {
1860 trace_e1000e_wrn_iscsi_filtering_not_supported();
1863 if (!(val
& E1000_RFCTL_NFSW_DIS
)) {
1864 trace_e1000e_wrn_nfsw_filtering_not_supported();
1867 if (!(val
& E1000_RFCTL_NFSR_DIS
)) {
1868 trace_e1000e_wrn_nfsr_filtering_not_supported();
1871 core
->mac
[RFCTL
] = val
;
1875 e1000e_calc_per_desc_buf_size(E1000ECore
*core
)
1878 core
->rx_desc_buf_size
= 0;
1880 for (i
= 0; i
< ARRAY_SIZE(core
->rxbuf_sizes
); i
++) {
1881 core
->rx_desc_buf_size
+= core
->rxbuf_sizes
[i
];
1886 e1000e_parse_rxbufsize(E1000ECore
*core
)
1888 uint32_t rctl
= core
->mac
[RCTL
];
1890 memset(core
->rxbuf_sizes
, 0, sizeof(core
->rxbuf_sizes
));
1892 if (rctl
& E1000_RCTL_DTYP_MASK
) {
1895 bsize
= core
->mac
[PSRCTL
] & E1000_PSRCTL_BSIZE0_MASK
;
1896 core
->rxbuf_sizes
[0] = (bsize
>> E1000_PSRCTL_BSIZE0_SHIFT
) * 128;
1898 bsize
= core
->mac
[PSRCTL
] & E1000_PSRCTL_BSIZE1_MASK
;
1899 core
->rxbuf_sizes
[1] = (bsize
>> E1000_PSRCTL_BSIZE1_SHIFT
) * 1024;
1901 bsize
= core
->mac
[PSRCTL
] & E1000_PSRCTL_BSIZE2_MASK
;
1902 core
->rxbuf_sizes
[2] = (bsize
>> E1000_PSRCTL_BSIZE2_SHIFT
) * 1024;
1904 bsize
= core
->mac
[PSRCTL
] & E1000_PSRCTL_BSIZE3_MASK
;
1905 core
->rxbuf_sizes
[3] = (bsize
>> E1000_PSRCTL_BSIZE3_SHIFT
) * 1024;
1906 } else if (rctl
& E1000_RCTL_FLXBUF_MASK
) {
1907 int flxbuf
= rctl
& E1000_RCTL_FLXBUF_MASK
;
1908 core
->rxbuf_sizes
[0] = (flxbuf
>> E1000_RCTL_FLXBUF_SHIFT
) * 1024;
1910 core
->rxbuf_sizes
[0] = e1000x_rxbufsize(rctl
);
1913 trace_e1000e_rx_desc_buff_sizes(core
->rxbuf_sizes
[0], core
->rxbuf_sizes
[1],
1914 core
->rxbuf_sizes
[2], core
->rxbuf_sizes
[3]);
1916 e1000e_calc_per_desc_buf_size(core
);
1920 e1000e_calc_rxdesclen(E1000ECore
*core
)
1922 if (e1000e_rx_use_legacy_descriptor(core
)) {
1923 core
->rx_desc_len
= sizeof(struct e1000_rx_desc
);
1925 if (core
->mac
[RCTL
] & E1000_RCTL_DTYP_PS
) {
1926 core
->rx_desc_len
= sizeof(union e1000_rx_desc_packet_split
);
1928 core
->rx_desc_len
= sizeof(union e1000_rx_desc_extended
);
1931 trace_e1000e_rx_desc_len(core
->rx_desc_len
);
1935 e1000e_set_rx_control(E1000ECore
*core
, int index
, uint32_t val
)
1937 core
->mac
[RCTL
] = val
;
1938 trace_e1000e_rx_set_rctl(core
->mac
[RCTL
]);
1940 if (val
& E1000_RCTL_EN
) {
1941 e1000e_parse_rxbufsize(core
);
1942 e1000e_calc_rxdesclen(core
);
1943 core
->rxbuf_min_shift
= ((val
/ E1000_RCTL_RDMTS_QUAT
) & 3) + 1 +
1944 E1000_RING_DESC_LEN_SHIFT
;
1946 e1000e_start_recv(core
);
1951 void(*e1000e_phyreg_writeops
[E1000E_PHY_PAGES
][E1000E_PHY_PAGE_SIZE
])
1952 (E1000ECore
*, int, uint16_t) = {
1954 [PHY_CTRL
] = e1000e_set_phy_ctrl
,
1955 [PHY_PAGE
] = e1000e_set_phy_page
,
1956 [PHY_OEM_BITS
] = e1000e_set_phy_oem_bits
1961 e1000e_clear_ims_bits(E1000ECore
*core
, uint32_t bits
)
1963 trace_e1000e_irq_clear_ims(bits
, core
->mac
[IMS
], core
->mac
[IMS
] & ~bits
);
1964 core
->mac
[IMS
] &= ~bits
;
1968 e1000e_postpone_interrupt(bool *interrupt_pending
,
1969 E1000IntrDelayTimer
*timer
)
1971 if (timer
->running
) {
1972 trace_e1000e_irq_postponed_by_xitr(timer
->delay_reg
<< 2);
1974 *interrupt_pending
= true;
1978 if (timer
->core
->mac
[timer
->delay_reg
] != 0) {
1979 e1000e_intrmgr_rearm_timer(timer
);
1986 e1000e_itr_should_postpone(E1000ECore
*core
)
1988 return e1000e_postpone_interrupt(&core
->itr_intr_pending
, &core
->itr
);
1992 e1000e_eitr_should_postpone(E1000ECore
*core
, int idx
)
1994 return e1000e_postpone_interrupt(&core
->eitr_intr_pending
[idx
],
1999 e1000e_msix_notify_one(E1000ECore
*core
, uint32_t cause
, uint32_t int_cfg
)
2001 uint32_t effective_eiac
;
2003 if (E1000_IVAR_ENTRY_VALID(int_cfg
)) {
2004 uint32_t vec
= E1000_IVAR_ENTRY_VEC(int_cfg
);
2005 if (vec
< E1000E_MSIX_VEC_NUM
) {
2006 if (!e1000e_eitr_should_postpone(core
, vec
)) {
2007 trace_e1000e_irq_msix_notify_vec(vec
);
2008 msix_notify(core
->owner
, vec
);
2011 trace_e1000e_wrn_msix_vec_wrong(cause
, int_cfg
);
2014 trace_e1000e_wrn_msix_invalid(cause
, int_cfg
);
2017 if (core
->mac
[CTRL_EXT
] & E1000_CTRL_EXT_EIAME
) {
2018 trace_e1000e_irq_iam_clear_eiame(core
->mac
[IAM
], cause
);
2019 core
->mac
[IAM
] &= ~cause
;
2022 trace_e1000e_irq_icr_clear_eiac(core
->mac
[ICR
], core
->mac
[EIAC
]);
2024 effective_eiac
= core
->mac
[EIAC
] & cause
;
2026 core
->mac
[ICR
] &= ~effective_eiac
;
2027 core
->msi_causes_pending
&= ~effective_eiac
;
2029 if (!(core
->mac
[CTRL_EXT
] & E1000_CTRL_EXT_IAME
)) {
2030 core
->mac
[IMS
] &= ~effective_eiac
;
2035 e1000e_msix_notify(E1000ECore
*core
, uint32_t causes
)
2037 if (causes
& E1000_ICR_RXQ0
) {
2038 e1000e_msix_notify_one(core
, E1000_ICR_RXQ0
,
2039 E1000_IVAR_RXQ0(core
->mac
[IVAR
]));
2042 if (causes
& E1000_ICR_RXQ1
) {
2043 e1000e_msix_notify_one(core
, E1000_ICR_RXQ1
,
2044 E1000_IVAR_RXQ1(core
->mac
[IVAR
]));
2047 if (causes
& E1000_ICR_TXQ0
) {
2048 e1000e_msix_notify_one(core
, E1000_ICR_TXQ0
,
2049 E1000_IVAR_TXQ0(core
->mac
[IVAR
]));
2052 if (causes
& E1000_ICR_TXQ1
) {
2053 e1000e_msix_notify_one(core
, E1000_ICR_TXQ1
,
2054 E1000_IVAR_TXQ1(core
->mac
[IVAR
]));
2057 if (causes
& E1000_ICR_OTHER
) {
2058 e1000e_msix_notify_one(core
, E1000_ICR_OTHER
,
2059 E1000_IVAR_OTHER(core
->mac
[IVAR
]));
2064 e1000e_msix_clear_one(E1000ECore
*core
, uint32_t cause
, uint32_t int_cfg
)
2066 if (E1000_IVAR_ENTRY_VALID(int_cfg
)) {
2067 uint32_t vec
= E1000_IVAR_ENTRY_VEC(int_cfg
);
2068 if (vec
< E1000E_MSIX_VEC_NUM
) {
2069 trace_e1000e_irq_msix_pending_clearing(cause
, int_cfg
, vec
);
2070 msix_clr_pending(core
->owner
, vec
);
2072 trace_e1000e_wrn_msix_vec_wrong(cause
, int_cfg
);
2075 trace_e1000e_wrn_msix_invalid(cause
, int_cfg
);
2080 e1000e_msix_clear(E1000ECore
*core
, uint32_t causes
)
2082 if (causes
& E1000_ICR_RXQ0
) {
2083 e1000e_msix_clear_one(core
, E1000_ICR_RXQ0
,
2084 E1000_IVAR_RXQ0(core
->mac
[IVAR
]));
2087 if (causes
& E1000_ICR_RXQ1
) {
2088 e1000e_msix_clear_one(core
, E1000_ICR_RXQ1
,
2089 E1000_IVAR_RXQ1(core
->mac
[IVAR
]));
2092 if (causes
& E1000_ICR_TXQ0
) {
2093 e1000e_msix_clear_one(core
, E1000_ICR_TXQ0
,
2094 E1000_IVAR_TXQ0(core
->mac
[IVAR
]));
2097 if (causes
& E1000_ICR_TXQ1
) {
2098 e1000e_msix_clear_one(core
, E1000_ICR_TXQ1
,
2099 E1000_IVAR_TXQ1(core
->mac
[IVAR
]));
2102 if (causes
& E1000_ICR_OTHER
) {
2103 e1000e_msix_clear_one(core
, E1000_ICR_OTHER
,
2104 E1000_IVAR_OTHER(core
->mac
[IVAR
]));
2109 e1000e_fix_icr_asserted(E1000ECore
*core
)
2111 core
->mac
[ICR
] &= ~E1000_ICR_ASSERTED
;
2112 if (core
->mac
[ICR
]) {
2113 core
->mac
[ICR
] |= E1000_ICR_ASSERTED
;
2116 trace_e1000e_irq_fix_icr_asserted(core
->mac
[ICR
]);
2120 e1000e_send_msi(E1000ECore
*core
, bool msix
)
2122 uint32_t causes
= core
->mac
[ICR
] & core
->mac
[IMS
] & ~E1000_ICR_ASSERTED
;
2124 core
->msi_causes_pending
&= causes
;
2125 causes
^= core
->msi_causes_pending
;
2129 core
->msi_causes_pending
|= causes
;
2132 e1000e_msix_notify(core
, causes
);
2134 if (!e1000e_itr_should_postpone(core
)) {
2135 trace_e1000e_irq_msi_notify(causes
);
2136 msi_notify(core
->owner
, 0);
2142 e1000e_update_interrupt_state(E1000ECore
*core
)
2144 bool interrupts_pending
;
2145 bool is_msix
= msix_enabled(core
->owner
);
2147 /* Set ICR[OTHER] for MSI-X */
2149 if (core
->mac
[ICR
] & E1000_ICR_OTHER_CAUSES
) {
2150 core
->mac
[ICR
] |= E1000_ICR_OTHER
;
2151 trace_e1000e_irq_add_msi_other(core
->mac
[ICR
]);
2155 e1000e_fix_icr_asserted(core
);
2158 * Make sure ICR and ICS registers have the same value.
2159 * The spec says that the ICS register is write-only. However in practice,
2160 * on real hardware ICS is readable, and for reads it has the same value as
2161 * ICR (except that ICS does not have the clear on read behaviour of ICR).
2163 * The VxWorks PRO/1000 driver uses this behaviour.
2165 core
->mac
[ICS
] = core
->mac
[ICR
];
2167 interrupts_pending
= (core
->mac
[IMS
] & core
->mac
[ICR
]) ? true : false;
2168 if (!interrupts_pending
) {
2169 core
->msi_causes_pending
= 0;
2172 trace_e1000e_irq_pending_interrupts(core
->mac
[ICR
] & core
->mac
[IMS
],
2173 core
->mac
[ICR
], core
->mac
[IMS
]);
2175 if (is_msix
|| msi_enabled(core
->owner
)) {
2176 if (interrupts_pending
) {
2177 e1000e_send_msi(core
, is_msix
);
2180 if (interrupts_pending
) {
2181 if (!e1000e_itr_should_postpone(core
)) {
2182 e1000e_raise_legacy_irq(core
);
2185 e1000e_lower_legacy_irq(core
);
2191 e1000e_set_interrupt_cause(E1000ECore
*core
, uint32_t val
)
2193 trace_e1000e_irq_set_cause_entry(val
, core
->mac
[ICR
]);
2195 val
|= e1000e_intmgr_collect_delayed_causes(core
);
2196 core
->mac
[ICR
] |= val
;
2198 trace_e1000e_irq_set_cause_exit(val
, core
->mac
[ICR
]);
2200 e1000e_update_interrupt_state(core
);
2204 e1000e_autoneg_timer(void *opaque
)
2206 E1000ECore
*core
= opaque
;
2207 if (!qemu_get_queue(core
->owner_nic
)->link_down
) {
2208 e1000x_update_regs_on_autoneg_done(core
->mac
, core
->phy
[0]);
2209 e1000e_start_recv(core
);
2211 e1000e_update_flowctl_status(core
);
2212 /* signal link status change to the guest */
2213 e1000e_set_interrupt_cause(core
, E1000_ICR_LSC
);
2217 static inline uint16_t
2218 e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access
, hwaddr addr
)
2220 uint16_t index
= (addr
& 0x1ffff) >> 2;
2221 return index
+ (mac_reg_access
[index
] & 0xfffe);
2224 static const char e1000e_phy_regcap
[E1000E_PHY_PAGES
][0x20] = {
2226 [PHY_CTRL
] = PHY_ANYPAGE
| PHY_RW
,
2227 [PHY_STATUS
] = PHY_ANYPAGE
| PHY_R
,
2228 [PHY_ID1
] = PHY_ANYPAGE
| PHY_R
,
2229 [PHY_ID2
] = PHY_ANYPAGE
| PHY_R
,
2230 [PHY_AUTONEG_ADV
] = PHY_ANYPAGE
| PHY_RW
,
2231 [PHY_LP_ABILITY
] = PHY_ANYPAGE
| PHY_R
,
2232 [PHY_AUTONEG_EXP
] = PHY_ANYPAGE
| PHY_R
,
2233 [PHY_NEXT_PAGE_TX
] = PHY_ANYPAGE
| PHY_RW
,
2234 [PHY_LP_NEXT_PAGE
] = PHY_ANYPAGE
| PHY_R
,
2235 [PHY_1000T_CTRL
] = PHY_ANYPAGE
| PHY_RW
,
2236 [PHY_1000T_STATUS
] = PHY_ANYPAGE
| PHY_R
,
2237 [PHY_EXT_STATUS
] = PHY_ANYPAGE
| PHY_R
,
2238 [PHY_PAGE
] = PHY_ANYPAGE
| PHY_RW
,
2240 [PHY_COPPER_CTRL1
] = PHY_RW
,
2241 [PHY_COPPER_STAT1
] = PHY_R
,
2242 [PHY_COPPER_CTRL3
] = PHY_RW
,
2243 [PHY_RX_ERR_CNTR
] = PHY_R
,
2244 [PHY_OEM_BITS
] = PHY_RW
,
2245 [PHY_BIAS_1
] = PHY_RW
,
2246 [PHY_BIAS_2
] = PHY_RW
,
2247 [PHY_COPPER_INT_ENABLE
] = PHY_RW
,
2248 [PHY_COPPER_STAT2
] = PHY_R
,
2249 [PHY_COPPER_CTRL2
] = PHY_RW
2252 [PHY_MAC_CTRL1
] = PHY_RW
,
2253 [PHY_MAC_INT_ENABLE
] = PHY_RW
,
2254 [PHY_MAC_STAT
] = PHY_R
,
2255 [PHY_MAC_CTRL2
] = PHY_RW
2258 [PHY_LED_03_FUNC_CTRL1
] = PHY_RW
,
2259 [PHY_LED_03_POL_CTRL
] = PHY_RW
,
2260 [PHY_LED_TIMER_CTRL
] = PHY_RW
,
2261 [PHY_LED_45_CTRL
] = PHY_RW
2264 [PHY_1000T_SKEW
] = PHY_R
,
2265 [PHY_1000T_SWAP
] = PHY_R
2268 [PHY_CRC_COUNTERS
] = PHY_R
2273 e1000e_phy_reg_check_cap(E1000ECore
*core
, uint32_t addr
,
2274 char cap
, uint8_t *page
)
2277 (e1000e_phy_regcap
[0][addr
] & PHY_ANYPAGE
) ? 0
2278 : core
->phy
[0][PHY_PAGE
];
2280 if (*page
>= E1000E_PHY_PAGES
) {
2284 return e1000e_phy_regcap
[*page
][addr
] & cap
;
2288 e1000e_phy_reg_write(E1000ECore
*core
, uint8_t page
,
2289 uint32_t addr
, uint16_t data
)
2291 assert(page
< E1000E_PHY_PAGES
);
2292 assert(addr
< E1000E_PHY_PAGE_SIZE
);
2294 if (e1000e_phyreg_writeops
[page
][addr
]) {
2295 e1000e_phyreg_writeops
[page
][addr
](core
, addr
, data
);
2297 core
->phy
[page
][addr
] = data
;
2302 e1000e_set_mdic(E1000ECore
*core
, int index
, uint32_t val
)
2304 uint32_t data
= val
& E1000_MDIC_DATA_MASK
;
2305 uint32_t addr
= ((val
& E1000_MDIC_REG_MASK
) >> E1000_MDIC_REG_SHIFT
);
2308 if ((val
& E1000_MDIC_PHY_MASK
) >> E1000_MDIC_PHY_SHIFT
!= 1) { /* phy # */
2309 val
= core
->mac
[MDIC
] | E1000_MDIC_ERROR
;
2310 } else if (val
& E1000_MDIC_OP_READ
) {
2311 if (!e1000e_phy_reg_check_cap(core
, addr
, PHY_R
, &page
)) {
2312 trace_e1000e_core_mdic_read_unhandled(page
, addr
);
2313 val
|= E1000_MDIC_ERROR
;
2315 val
= (val
^ data
) | core
->phy
[page
][addr
];
2316 trace_e1000e_core_mdic_read(page
, addr
, val
);
2318 } else if (val
& E1000_MDIC_OP_WRITE
) {
2319 if (!e1000e_phy_reg_check_cap(core
, addr
, PHY_W
, &page
)) {
2320 trace_e1000e_core_mdic_write_unhandled(page
, addr
);
2321 val
|= E1000_MDIC_ERROR
;
2323 trace_e1000e_core_mdic_write(page
, addr
, data
);
2324 e1000e_phy_reg_write(core
, page
, addr
, data
);
2327 core
->mac
[MDIC
] = val
| E1000_MDIC_READY
;
2329 if (val
& E1000_MDIC_INT_EN
) {
2330 e1000e_set_interrupt_cause(core
, E1000_ICR_MDAC
);
2335 e1000e_set_rdt(E1000ECore
*core
, int index
, uint32_t val
)
2337 core
->mac
[index
] = val
& 0xffff;
2338 trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0
, index
), val
);
2339 e1000e_start_recv(core
);
2343 e1000e_set_status(E1000ECore
*core
, int index
, uint32_t val
)
2345 if ((val
& E1000_STATUS_PHYRA
) == 0) {
2346 core
->mac
[index
] &= ~E1000_STATUS_PHYRA
;
2351 e1000e_set_ctrlext(E1000ECore
*core
, int index
, uint32_t val
)
2353 trace_e1000e_link_set_ext_params(!!(val
& E1000_CTRL_EXT_ASDCHK
),
2354 !!(val
& E1000_CTRL_EXT_SPD_BYPS
));
2356 /* Zero self-clearing bits */
2357 val
&= ~(E1000_CTRL_EXT_ASDCHK
| E1000_CTRL_EXT_EE_RST
);
2358 core
->mac
[CTRL_EXT
] = val
;
2362 e1000e_set_pbaclr(E1000ECore
*core
, int index
, uint32_t val
)
2366 core
->mac
[PBACLR
] = val
& E1000_PBACLR_VALID_MASK
;
2368 if (!msix_enabled(core
->owner
)) {
2372 for (i
= 0; i
< E1000E_MSIX_VEC_NUM
; i
++) {
2373 if (core
->mac
[PBACLR
] & BIT(i
)) {
2374 msix_clr_pending(core
->owner
, i
);
2380 e1000e_set_fcrth(E1000ECore
*core
, int index
, uint32_t val
)
2382 core
->mac
[FCRTH
] = val
& 0xFFF8;
2386 e1000e_set_fcrtl(E1000ECore
*core
, int index
, uint32_t val
)
2388 core
->mac
[FCRTL
] = val
& 0x8000FFF8;
2392 e1000e_set_16bit(E1000ECore
*core
, int index
, uint32_t val
)
2394 core
->mac
[index
] = val
& 0xffff;
2398 e1000e_set_12bit(E1000ECore
*core
, int index
, uint32_t val
)
2400 core
->mac
[index
] = val
& 0xfff;
2404 e1000e_set_vet(E1000ECore
*core
, int index
, uint32_t val
)
2406 core
->mac
[VET
] = val
& 0xffff;
2407 core
->vet
= le16_to_cpu(core
->mac
[VET
]);
2408 trace_e1000e_vlan_vet(core
->vet
);
2412 e1000e_set_dlen(E1000ECore
*core
, int index
, uint32_t val
)
2414 core
->mac
[index
] = val
& E1000_XDLEN_MASK
;
2418 e1000e_set_dbal(E1000ECore
*core
, int index
, uint32_t val
)
2420 core
->mac
[index
] = val
& E1000_XDBAL_MASK
;
2424 e1000e_set_tctl(E1000ECore
*core
, int index
, uint32_t val
)
2427 core
->mac
[index
] = val
;
2429 if (core
->mac
[TARC0
] & E1000_TARC_ENABLE
) {
2430 e1000e_tx_ring_init(core
, &txr
, 0);
2431 e1000e_start_xmit(core
, &txr
);
2434 if (core
->mac
[TARC1
] & E1000_TARC_ENABLE
) {
2435 e1000e_tx_ring_init(core
, &txr
, 1);
2436 e1000e_start_xmit(core
, &txr
);
2441 e1000e_set_tdt(E1000ECore
*core
, int index
, uint32_t val
)
2444 int qidx
= e1000e_mq_queue_idx(TDT
, index
);
2445 uint32_t tarc_reg
= (qidx
== 0) ? TARC0
: TARC1
;
2447 core
->mac
[index
] = val
& 0xffff;
2449 if (core
->mac
[tarc_reg
] & E1000_TARC_ENABLE
) {
2450 e1000e_tx_ring_init(core
, &txr
, qidx
);
2451 e1000e_start_xmit(core
, &txr
);
2456 e1000e_set_ics(E1000ECore
*core
, int index
, uint32_t val
)
2458 trace_e1000e_irq_write_ics(val
);
2459 e1000e_set_interrupt_cause(core
, val
);
2463 e1000e_set_icr(E1000ECore
*core
, int index
, uint32_t val
)
2466 if ((core
->mac
[ICR
] & E1000_ICR_ASSERTED
) &&
2467 (core
->mac
[CTRL_EXT
] & E1000_CTRL_EXT_IAME
)) {
2468 trace_e1000e_irq_icr_process_iame();
2469 e1000e_clear_ims_bits(core
, core
->mac
[IAM
]);
2472 icr
= core
->mac
[ICR
] & ~val
;
2473 /* Windows driver expects that the "receive overrun" bit and other
2474 * ones to be cleared when the "Other" bit (#24) is cleared.
2476 icr
= (val
& E1000_ICR_OTHER
) ? (icr
& ~E1000_ICR_OTHER_CAUSES
) : icr
;
2477 trace_e1000e_irq_icr_write(val
, core
->mac
[ICR
], icr
);
2478 core
->mac
[ICR
] = icr
;
2479 e1000e_update_interrupt_state(core
);
2483 e1000e_set_imc(E1000ECore
*core
, int index
, uint32_t val
)
2485 trace_e1000e_irq_ims_clear_set_imc(val
);
2486 e1000e_clear_ims_bits(core
, val
);
2487 e1000e_update_interrupt_state(core
);
2491 e1000e_set_ims(E1000ECore
*core
, int index
, uint32_t val
)
2493 static const uint32_t ims_ext_mask
=
2494 E1000_IMS_RXQ0
| E1000_IMS_RXQ1
|
2495 E1000_IMS_TXQ0
| E1000_IMS_TXQ1
|
2498 static const uint32_t ims_valid_mask
=
2499 E1000_IMS_TXDW
| E1000_IMS_TXQE
| E1000_IMS_LSC
|
2500 E1000_IMS_RXDMT0
| E1000_IMS_RXO
| E1000_IMS_RXT0
|
2501 E1000_IMS_MDAC
| E1000_IMS_TXD_LOW
| E1000_IMS_SRPD
|
2502 E1000_IMS_ACK
| E1000_IMS_MNG
| E1000_IMS_RXQ0
|
2503 E1000_IMS_RXQ1
| E1000_IMS_TXQ0
| E1000_IMS_TXQ1
|
2506 uint32_t valid_val
= val
& ims_valid_mask
;
2508 trace_e1000e_irq_set_ims(val
, core
->mac
[IMS
], core
->mac
[IMS
] | valid_val
);
2509 core
->mac
[IMS
] |= valid_val
;
2511 if ((valid_val
& ims_ext_mask
) &&
2512 (core
->mac
[CTRL_EXT
] & E1000_CTRL_EXT_PBA_CLR
) &&
2513 msix_enabled(core
->owner
)) {
2514 e1000e_msix_clear(core
, valid_val
);
2517 if ((valid_val
== ims_valid_mask
) &&
2518 (core
->mac
[CTRL_EXT
] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA
)) {
2519 trace_e1000e_irq_fire_all_timers(val
);
2520 e1000e_intrmgr_fire_all_timers(core
);
2523 e1000e_update_interrupt_state(core
);
2527 e1000e_set_rdtr(E1000ECore
*core
, int index
, uint32_t val
)
2529 e1000e_set_16bit(core
, index
, val
);
2531 if ((val
& E1000_RDTR_FPD
) && (core
->rdtr
.running
)) {
2532 trace_e1000e_irq_rdtr_fpd_running();
2533 e1000e_intrmgr_fire_delayed_interrupts(core
);
2535 trace_e1000e_irq_rdtr_fpd_not_running();
2540 e1000e_set_tidv(E1000ECore
*core
, int index
, uint32_t val
)
2542 e1000e_set_16bit(core
, index
, val
);
2544 if ((val
& E1000_TIDV_FPD
) && (core
->tidv
.running
)) {
2545 trace_e1000e_irq_tidv_fpd_running();
2546 e1000e_intrmgr_fire_delayed_interrupts(core
);
2548 trace_e1000e_irq_tidv_fpd_not_running();
2553 e1000e_mac_readreg(E1000ECore
*core
, int index
)
2555 return core
->mac
[index
];
2559 e1000e_mac_ics_read(E1000ECore
*core
, int index
)
2561 trace_e1000e_irq_read_ics(core
->mac
[ICS
]);
2562 return core
->mac
[ICS
];
2566 e1000e_mac_ims_read(E1000ECore
*core
, int index
)
2568 trace_e1000e_irq_read_ims(core
->mac
[IMS
]);
2569 return core
->mac
[IMS
];
2572 #define E1000E_LOW_BITS_READ_FUNC(num) \
2574 e1000e_mac_low##num##_read(E1000ECore *core, int index) \
2576 return core->mac[index] & (BIT(num) - 1); \
2579 #define E1000E_LOW_BITS_READ(num) \
2580 e1000e_mac_low##num##_read
2582 E1000E_LOW_BITS_READ_FUNC(4);
2583 E1000E_LOW_BITS_READ_FUNC(6);
2584 E1000E_LOW_BITS_READ_FUNC(11);
2585 E1000E_LOW_BITS_READ_FUNC(13);
2586 E1000E_LOW_BITS_READ_FUNC(16);
2589 e1000e_mac_swsm_read(E1000ECore
*core
, int index
)
2591 uint32_t val
= core
->mac
[SWSM
];
2592 core
->mac
[SWSM
] = val
| 1;
2597 e1000e_mac_itr_read(E1000ECore
*core
, int index
)
2599 return core
->itr_guest_value
;
2603 e1000e_mac_eitr_read(E1000ECore
*core
, int index
)
2605 return core
->eitr_guest_value
[index
- EITR
];
2609 e1000e_mac_icr_read(E1000ECore
*core
, int index
)
2611 uint32_t ret
= core
->mac
[ICR
];
2612 trace_e1000e_irq_icr_read_entry(ret
);
2614 if (core
->mac
[IMS
] == 0) {
2615 trace_e1000e_irq_icr_clear_zero_ims();
2619 if ((core
->mac
[ICR
] & E1000_ICR_ASSERTED
) &&
2620 (core
->mac
[CTRL_EXT
] & E1000_CTRL_EXT_IAME
)) {
2621 trace_e1000e_irq_icr_clear_iame();
2623 trace_e1000e_irq_icr_process_iame();
2624 e1000e_clear_ims_bits(core
, core
->mac
[IAM
]);
2627 trace_e1000e_irq_icr_read_exit(core
->mac
[ICR
]);
2628 e1000e_update_interrupt_state(core
);
2633 e1000e_mac_read_clr4(E1000ECore
*core
, int index
)
2635 uint32_t ret
= core
->mac
[index
];
2637 core
->mac
[index
] = 0;
2642 e1000e_mac_read_clr8(E1000ECore
*core
, int index
)
2644 uint32_t ret
= core
->mac
[index
];
2646 core
->mac
[index
] = 0;
2647 core
->mac
[index
- 1] = 0;
2652 e1000e_get_ctrl(E1000ECore
*core
, int index
)
2654 uint32_t val
= core
->mac
[CTRL
];
2656 trace_e1000e_link_read_params(
2657 !!(val
& E1000_CTRL_ASDE
),
2658 (val
& E1000_CTRL_SPD_SEL
) >> E1000_CTRL_SPD_SHIFT
,
2659 !!(val
& E1000_CTRL_FRCSPD
),
2660 !!(val
& E1000_CTRL_FRCDPX
),
2661 !!(val
& E1000_CTRL_RFCE
),
2662 !!(val
& E1000_CTRL_TFCE
));
2668 e1000e_get_status(E1000ECore
*core
, int index
)
2670 uint32_t res
= core
->mac
[STATUS
];
2672 if (!(core
->mac
[CTRL
] & E1000_CTRL_GIO_MASTER_DISABLE
)) {
2673 res
|= E1000_STATUS_GIO_MASTER_ENABLE
;
2676 if (core
->mac
[CTRL
] & E1000_CTRL_FRCDPX
) {
2677 res
|= (core
->mac
[CTRL
] & E1000_CTRL_FD
) ? E1000_STATUS_FD
: 0;
2679 res
|= E1000_STATUS_FD
;
2682 if ((core
->mac
[CTRL
] & E1000_CTRL_FRCSPD
) ||
2683 (core
->mac
[CTRL_EXT
] & E1000_CTRL_EXT_SPD_BYPS
)) {
2684 switch (core
->mac
[CTRL
] & E1000_CTRL_SPD_SEL
) {
2685 case E1000_CTRL_SPD_10
:
2686 res
|= E1000_STATUS_SPEED_10
;
2688 case E1000_CTRL_SPD_100
:
2689 res
|= E1000_STATUS_SPEED_100
;
2691 case E1000_CTRL_SPD_1000
:
2693 res
|= E1000_STATUS_SPEED_1000
;
2697 res
|= E1000_STATUS_SPEED_1000
;
2700 trace_e1000e_link_status(
2701 !!(res
& E1000_STATUS_LU
),
2702 !!(res
& E1000_STATUS_FD
),
2703 (res
& E1000_STATUS_SPEED_MASK
) >> E1000_STATUS_SPEED_SHIFT
,
2704 (res
& E1000_STATUS_ASDV
) >> E1000_STATUS_ASDV_SHIFT
);
2710 e1000e_get_tarc(E1000ECore
*core
, int index
)
2712 return core
->mac
[index
] & ((BIT(11) - 1) |
2720 e1000e_mac_writereg(E1000ECore
*core
, int index
, uint32_t val
)
2722 core
->mac
[index
] = val
;
2726 e1000e_mac_setmacaddr(E1000ECore
*core
, int index
, uint32_t val
)
2728 uint32_t macaddr
[2];
2730 core
->mac
[index
] = val
;
2732 macaddr
[0] = cpu_to_le32(core
->mac
[RA
]);
2733 macaddr
[1] = cpu_to_le32(core
->mac
[RA
+ 1]);
2734 qemu_format_nic_info_str(qemu_get_queue(core
->owner_nic
),
2735 (uint8_t *) macaddr
);
2737 trace_e1000e_mac_set_sw(MAC_ARG(macaddr
));
2741 e1000e_set_eecd(E1000ECore
*core
, int index
, uint32_t val
)
2743 static const uint32_t ro_bits
= E1000_EECD_PRES
|
2744 E1000_EECD_AUTO_RD
|
2745 E1000_EECD_SIZE_EX_MASK
;
2747 core
->mac
[EECD
] = (core
->mac
[EECD
] & ro_bits
) | (val
& ~ro_bits
);
2751 e1000e_set_eerd(E1000ECore
*core
, int index
, uint32_t val
)
2753 uint32_t addr
= (val
>> E1000_EERW_ADDR_SHIFT
) & E1000_EERW_ADDR_MASK
;
2757 if ((addr
< E1000E_EEPROM_SIZE
) && (val
& E1000_EERW_START
)) {
2758 data
= core
->eeprom
[addr
];
2759 flags
= E1000_EERW_DONE
;
2762 core
->mac
[EERD
] = flags
|
2763 (addr
<< E1000_EERW_ADDR_SHIFT
) |
2764 (data
<< E1000_EERW_DATA_SHIFT
);
2768 e1000e_set_eewr(E1000ECore
*core
, int index
, uint32_t val
)
2770 uint32_t addr
= (val
>> E1000_EERW_ADDR_SHIFT
) & E1000_EERW_ADDR_MASK
;
2771 uint32_t data
= (val
>> E1000_EERW_DATA_SHIFT
) & E1000_EERW_DATA_MASK
;
2774 if ((addr
< E1000E_EEPROM_SIZE
) && (val
& E1000_EERW_START
)) {
2775 core
->eeprom
[addr
] = data
;
2776 flags
= E1000_EERW_DONE
;
2779 core
->mac
[EERD
] = flags
|
2780 (addr
<< E1000_EERW_ADDR_SHIFT
) |
2781 (data
<< E1000_EERW_DATA_SHIFT
);
2785 e1000e_set_rxdctl(E1000ECore
*core
, int index
, uint32_t val
)
2787 core
->mac
[RXDCTL
] = core
->mac
[RXDCTL1
] = val
;
2791 e1000e_set_itr(E1000ECore
*core
, int index
, uint32_t val
)
2793 uint32_t interval
= val
& 0xffff;
2795 trace_e1000e_irq_itr_set(val
);
2797 core
->itr_guest_value
= interval
;
2798 core
->mac
[index
] = MAX(interval
, E1000E_MIN_XITR
);
2802 e1000e_set_eitr(E1000ECore
*core
, int index
, uint32_t val
)
2804 uint32_t interval
= val
& 0xffff;
2805 uint32_t eitr_num
= index
- EITR
;
2807 trace_e1000e_irq_eitr_set(eitr_num
, val
);
2809 core
->eitr_guest_value
[eitr_num
] = interval
;
2810 core
->mac
[index
] = MAX(interval
, E1000E_MIN_XITR
);
2814 e1000e_set_psrctl(E1000ECore
*core
, int index
, uint32_t val
)
2816 if (core
->mac
[RCTL
] & E1000_RCTL_DTYP_MASK
) {
2818 if ((val
& E1000_PSRCTL_BSIZE0_MASK
) == 0) {
2819 qemu_log_mask(LOG_GUEST_ERROR
,
2820 "e1000e: PSRCTL.BSIZE0 cannot be zero");
2824 if ((val
& E1000_PSRCTL_BSIZE1_MASK
) == 0) {
2825 qemu_log_mask(LOG_GUEST_ERROR
,
2826 "e1000e: PSRCTL.BSIZE1 cannot be zero");
2831 core
->mac
[PSRCTL
] = val
;
2835 e1000e_update_rx_offloads(E1000ECore
*core
)
2837 int cso_state
= e1000e_rx_l4_cso_enabled(core
);
2839 trace_e1000e_rx_set_cso(cso_state
);
2841 if (core
->has_vnet
) {
2842 qemu_set_offload(qemu_get_queue(core
->owner_nic
)->peer
,
2843 cso_state
, 0, 0, 0, 0);
2848 e1000e_set_rxcsum(E1000ECore
*core
, int index
, uint32_t val
)
2850 core
->mac
[RXCSUM
] = val
;
2851 e1000e_update_rx_offloads(core
);
2855 e1000e_set_gcr(E1000ECore
*core
, int index
, uint32_t val
)
2857 uint32_t ro_bits
= core
->mac
[GCR
] & E1000_GCR_RO_BITS
;
2858 core
->mac
[GCR
] = (val
& ~E1000_GCR_RO_BITS
) | ro_bits
;
2861 #define e1000e_getreg(x) [x] = e1000e_mac_readreg
2862 typedef uint32_t (*readops
)(E1000ECore
*, int);
2863 static const readops e1000e_macreg_readops
[] = {
2865 e1000e_getreg(WUFC
),
2866 e1000e_getreg(MANC
),
2867 e1000e_getreg(TOTL
),
2868 e1000e_getreg(RDT0
),
2869 e1000e_getreg(RDBAH0
),
2870 e1000e_getreg(TDBAL1
),
2871 e1000e_getreg(RDLEN0
),
2872 e1000e_getreg(RDH1
),
2873 e1000e_getreg(LATECOL
),
2874 e1000e_getreg(SEQEC
),
2875 e1000e_getreg(XONTXC
),
2877 e1000e_getreg(GORCL
),
2878 e1000e_getreg(MGTPRC
),
2879 e1000e_getreg(EERD
),
2880 e1000e_getreg(EIAC
),
2881 e1000e_getreg(PSRCTL
),
2882 e1000e_getreg(MANC2H
),
2883 e1000e_getreg(RXCSUM
),
2884 e1000e_getreg(GSCL_3
),
2885 e1000e_getreg(GSCN_2
),
2886 e1000e_getreg(RSRPD
),
2887 e1000e_getreg(RDBAL1
),
2888 e1000e_getreg(FCAH
),
2889 e1000e_getreg(FCRTH
),
2890 e1000e_getreg(FLOP
),
2891 e1000e_getreg(FLASHT
),
2892 e1000e_getreg(RXSTMPH
),
2893 e1000e_getreg(TXSTMPL
),
2894 e1000e_getreg(TIMADJL
),
2895 e1000e_getreg(TXDCTL
),
2896 e1000e_getreg(RDH0
),
2897 e1000e_getreg(TDT1
),
2898 e1000e_getreg(TNCRS
),
2901 e1000e_getreg(GSCL_2
),
2902 e1000e_getreg(RDBAH1
),
2903 e1000e_getreg(FLSWDATA
),
2904 e1000e_getreg(RXSATRH
),
2905 e1000e_getreg(TIPG
),
2906 e1000e_getreg(FLMNGCTL
),
2907 e1000e_getreg(FLMNGCNT
),
2908 e1000e_getreg(TSYNCTXCTL
),
2909 e1000e_getreg(EXTCNF_SIZE
),
2910 e1000e_getreg(EXTCNF_CTRL
),
2911 e1000e_getreg(EEMNGDATA
),
2912 e1000e_getreg(CTRL_EXT
),
2913 e1000e_getreg(SYSTIMH
),
2914 e1000e_getreg(EEMNGCTL
),
2915 e1000e_getreg(FLMNGDATA
),
2916 e1000e_getreg(TSYNCRXCTL
),
2918 e1000e_getreg(LEDCTL
),
2919 e1000e_getreg(STATUS
),
2920 e1000e_getreg(TCTL
),
2921 e1000e_getreg(TDBAL
),
2922 e1000e_getreg(TDLEN
),
2923 e1000e_getreg(TDH1
),
2924 e1000e_getreg(RADV
),
2925 e1000e_getreg(ECOL
),
2927 e1000e_getreg(RLEC
),
2928 e1000e_getreg(XOFFTXC
),
2930 e1000e_getreg(RNBC
),
2931 e1000e_getreg(MGTPTC
),
2932 e1000e_getreg(TIMINCA
),
2933 e1000e_getreg(RXCFGL
),
2934 e1000e_getreg(MFUTP01
),
2935 e1000e_getreg(FACTPS
),
2936 e1000e_getreg(GSCL_1
),
2937 e1000e_getreg(GSCN_0
),
2938 e1000e_getreg(GCR2
),
2939 e1000e_getreg(RDT1
),
2940 e1000e_getreg(PBACLR
),
2941 e1000e_getreg(FCTTV
),
2942 e1000e_getreg(EEWR
),
2943 e1000e_getreg(FLSWCTL
),
2944 e1000e_getreg(RXDCTL1
),
2945 e1000e_getreg(RXSATRL
),
2946 e1000e_getreg(SYSTIML
),
2947 e1000e_getreg(RXUDP
),
2948 e1000e_getreg(TORL
),
2949 e1000e_getreg(TDLEN1
),
2952 e1000e_getreg(EECD
),
2953 e1000e_getreg(MFUTP23
),
2954 e1000e_getreg(RAID
),
2955 e1000e_getreg(FCRTV
),
2956 e1000e_getreg(TXDCTL1
),
2957 e1000e_getreg(RCTL
),
2959 e1000e_getreg(MDIC
),
2960 e1000e_getreg(FCRUC
),
2962 e1000e_getreg(RDBAL0
),
2963 e1000e_getreg(TDBAH1
),
2964 e1000e_getreg(RDTR
),
2966 e1000e_getreg(COLC
),
2967 e1000e_getreg(CEXTERR
),
2968 e1000e_getreg(XOFFRXC
),
2969 e1000e_getreg(IPAV
),
2970 e1000e_getreg(GOTCL
),
2971 e1000e_getreg(MGTPDC
),
2973 e1000e_getreg(IVAR
),
2974 e1000e_getreg(POEMB
),
2975 e1000e_getreg(MFVAL
),
2976 e1000e_getreg(FUNCTAG
),
2977 e1000e_getreg(GSCL_4
),
2978 e1000e_getreg(GSCN_3
),
2979 e1000e_getreg(MRQC
),
2980 e1000e_getreg(RDLEN1
),
2983 e1000e_getreg(FLOL
),
2984 e1000e_getreg(RXDCTL
),
2985 e1000e_getreg(RXSTMPL
),
2986 e1000e_getreg(TXSTMPH
),
2987 e1000e_getreg(TIMADJH
),
2988 e1000e_getreg(FCRTL
),
2989 e1000e_getreg(TDBAH
),
2990 e1000e_getreg(TADV
),
2991 e1000e_getreg(XONRXC
),
2992 e1000e_getreg(TSCTFC
),
2993 e1000e_getreg(RFCTL
),
2994 e1000e_getreg(GSCN_1
),
2995 e1000e_getreg(FCAL
),
2996 e1000e_getreg(FLSWCNT
),
2998 [TOTH
] = e1000e_mac_read_clr8
,
2999 [GOTCH
] = e1000e_mac_read_clr8
,
3000 [PRC64
] = e1000e_mac_read_clr4
,
3001 [PRC255
] = e1000e_mac_read_clr4
,
3002 [PRC1023
] = e1000e_mac_read_clr4
,
3003 [PTC64
] = e1000e_mac_read_clr4
,
3004 [PTC255
] = e1000e_mac_read_clr4
,
3005 [PTC1023
] = e1000e_mac_read_clr4
,
3006 [GPRC
] = e1000e_mac_read_clr4
,
3007 [TPT
] = e1000e_mac_read_clr4
,
3008 [RUC
] = e1000e_mac_read_clr4
,
3009 [BPRC
] = e1000e_mac_read_clr4
,
3010 [MPTC
] = e1000e_mac_read_clr4
,
3011 [IAC
] = e1000e_mac_read_clr4
,
3012 [ICR
] = e1000e_mac_icr_read
,
3013 [RDFH
] = E1000E_LOW_BITS_READ(13),
3014 [RDFHS
] = E1000E_LOW_BITS_READ(13),
3015 [RDFPC
] = E1000E_LOW_BITS_READ(13),
3016 [TDFH
] = E1000E_LOW_BITS_READ(13),
3017 [TDFHS
] = E1000E_LOW_BITS_READ(13),
3018 [STATUS
] = e1000e_get_status
,
3019 [TARC0
] = e1000e_get_tarc
,
3020 [PBS
] = E1000E_LOW_BITS_READ(6),
3021 [ICS
] = e1000e_mac_ics_read
,
3022 [AIT
] = E1000E_LOW_BITS_READ(16),
3023 [TORH
] = e1000e_mac_read_clr8
,
3024 [GORCH
] = e1000e_mac_read_clr8
,
3025 [PRC127
] = e1000e_mac_read_clr4
,
3026 [PRC511
] = e1000e_mac_read_clr4
,
3027 [PRC1522
] = e1000e_mac_read_clr4
,
3028 [PTC127
] = e1000e_mac_read_clr4
,
3029 [PTC511
] = e1000e_mac_read_clr4
,
3030 [PTC1522
] = e1000e_mac_read_clr4
,
3031 [GPTC
] = e1000e_mac_read_clr4
,
3032 [TPR
] = e1000e_mac_read_clr4
,
3033 [ROC
] = e1000e_mac_read_clr4
,
3034 [MPRC
] = e1000e_mac_read_clr4
,
3035 [BPTC
] = e1000e_mac_read_clr4
,
3036 [TSCTC
] = e1000e_mac_read_clr4
,
3037 [ITR
] = e1000e_mac_itr_read
,
3038 [RDFT
] = E1000E_LOW_BITS_READ(13),
3039 [RDFTS
] = E1000E_LOW_BITS_READ(13),
3040 [TDFPC
] = E1000E_LOW_BITS_READ(13),
3041 [TDFT
] = E1000E_LOW_BITS_READ(13),
3042 [TDFTS
] = E1000E_LOW_BITS_READ(13),
3043 [CTRL
] = e1000e_get_ctrl
,
3044 [TARC1
] = e1000e_get_tarc
,
3045 [SWSM
] = e1000e_mac_swsm_read
,
3046 [IMS
] = e1000e_mac_ims_read
,
3048 [CRCERRS
... MPC
] = e1000e_mac_readreg
,
3049 [IP6AT
... IP6AT
+ 3] = e1000e_mac_readreg
,
3050 [IP4AT
... IP4AT
+ 6] = e1000e_mac_readreg
,
3051 [RA
... RA
+ 31] = e1000e_mac_readreg
,
3052 [WUPM
... WUPM
+ 31] = e1000e_mac_readreg
,
3053 [MTA
... MTA
+ 127] = e1000e_mac_readreg
,
3054 [VFTA
... VFTA
+ 127] = e1000e_mac_readreg
,
3055 [FFMT
... FFMT
+ 254] = E1000E_LOW_BITS_READ(4),
3056 [FFVT
... FFVT
+ 254] = e1000e_mac_readreg
,
3057 [MDEF
... MDEF
+ 7] = e1000e_mac_readreg
,
3058 [FFLT
... FFLT
+ 10] = E1000E_LOW_BITS_READ(11),
3059 [FTFT
... FTFT
+ 254] = e1000e_mac_readreg
,
3060 [PBM
... PBM
+ 10239] = e1000e_mac_readreg
,
3061 [RETA
... RETA
+ 31] = e1000e_mac_readreg
,
3062 [RSSRK
... RSSRK
+ 31] = e1000e_mac_readreg
,
3063 [MAVTV0
... MAVTV3
] = e1000e_mac_readreg
,
3064 [EITR
...EITR
+ E1000E_MSIX_VEC_NUM
- 1] = e1000e_mac_eitr_read
3066 enum { E1000E_NREADOPS
= ARRAY_SIZE(e1000e_macreg_readops
) };
3068 #define e1000e_putreg(x) [x] = e1000e_mac_writereg
3069 typedef void (*writeops
)(E1000ECore
*, int, uint32_t);
3070 static const writeops e1000e_macreg_writeops
[] = {
3072 e1000e_putreg(SWSM
),
3073 e1000e_putreg(WUFC
),
3074 e1000e_putreg(RDBAH1
),
3075 e1000e_putreg(TDBAH
),
3076 e1000e_putreg(TXDCTL
),
3077 e1000e_putreg(RDBAH0
),
3078 e1000e_putreg(LEDCTL
),
3079 e1000e_putreg(FCAL
),
3080 e1000e_putreg(FCRUC
),
3082 e1000e_putreg(TDFH
),
3083 e1000e_putreg(TDFT
),
3084 e1000e_putreg(TDFHS
),
3085 e1000e_putreg(TDFTS
),
3086 e1000e_putreg(TDFPC
),
3089 e1000e_putreg(RDFH
),
3090 e1000e_putreg(RDFT
),
3091 e1000e_putreg(RDFHS
),
3092 e1000e_putreg(RDFTS
),
3093 e1000e_putreg(RDFPC
),
3094 e1000e_putreg(IPAV
),
3095 e1000e_putreg(TDBAH1
),
3096 e1000e_putreg(TIMINCA
),
3098 e1000e_putreg(EIAC
),
3099 e1000e_putreg(IVAR
),
3100 e1000e_putreg(TARC0
),
3101 e1000e_putreg(TARC1
),
3102 e1000e_putreg(FLSWDATA
),
3103 e1000e_putreg(POEMB
),
3105 e1000e_putreg(MFUTP01
),
3106 e1000e_putreg(MFUTP23
),
3107 e1000e_putreg(MANC
),
3108 e1000e_putreg(MANC2H
),
3109 e1000e_putreg(MFVAL
),
3110 e1000e_putreg(EXTCNF_CTRL
),
3111 e1000e_putreg(FACTPS
),
3112 e1000e_putreg(FUNCTAG
),
3113 e1000e_putreg(GSCL_1
),
3114 e1000e_putreg(GSCL_2
),
3115 e1000e_putreg(GSCL_3
),
3116 e1000e_putreg(GSCL_4
),
3117 e1000e_putreg(GSCN_0
),
3118 e1000e_putreg(GSCN_1
),
3119 e1000e_putreg(GSCN_2
),
3120 e1000e_putreg(GSCN_3
),
3121 e1000e_putreg(GCR2
),
3122 e1000e_putreg(MRQC
),
3123 e1000e_putreg(FLOP
),
3124 e1000e_putreg(FLOL
),
3125 e1000e_putreg(FLSWCTL
),
3126 e1000e_putreg(FLSWCNT
),
3128 e1000e_putreg(RXDCTL1
),
3129 e1000e_putreg(TXDCTL1
),
3130 e1000e_putreg(TIPG
),
3131 e1000e_putreg(RXSTMPH
),
3132 e1000e_putreg(RXSTMPL
),
3133 e1000e_putreg(RXSATRL
),
3134 e1000e_putreg(RXSATRH
),
3135 e1000e_putreg(TXSTMPL
),
3136 e1000e_putreg(TXSTMPH
),
3137 e1000e_putreg(SYSTIML
),
3138 e1000e_putreg(SYSTIMH
),
3139 e1000e_putreg(TIMADJL
),
3140 e1000e_putreg(TIMADJH
),
3141 e1000e_putreg(RXUDP
),
3142 e1000e_putreg(RXCFGL
),
3143 e1000e_putreg(TSYNCRXCTL
),
3144 e1000e_putreg(TSYNCTXCTL
),
3145 e1000e_putreg(FLSWDATA
),
3146 e1000e_putreg(EXTCNF_SIZE
),
3147 e1000e_putreg(EEMNGCTL
),
3150 [TDH1
] = e1000e_set_16bit
,
3151 [TDT1
] = e1000e_set_tdt
,
3152 [TCTL
] = e1000e_set_tctl
,
3153 [TDT
] = e1000e_set_tdt
,
3154 [MDIC
] = e1000e_set_mdic
,
3155 [ICS
] = e1000e_set_ics
,
3156 [TDH
] = e1000e_set_16bit
,
3157 [RDH0
] = e1000e_set_16bit
,
3158 [RDT0
] = e1000e_set_rdt
,
3159 [IMC
] = e1000e_set_imc
,
3160 [IMS
] = e1000e_set_ims
,
3161 [ICR
] = e1000e_set_icr
,
3162 [EECD
] = e1000e_set_eecd
,
3163 [RCTL
] = e1000e_set_rx_control
,
3164 [CTRL
] = e1000e_set_ctrl
,
3165 [RDTR
] = e1000e_set_rdtr
,
3166 [RADV
] = e1000e_set_16bit
,
3167 [TADV
] = e1000e_set_16bit
,
3168 [ITR
] = e1000e_set_itr
,
3169 [EERD
] = e1000e_set_eerd
,
3170 [GCR
] = e1000e_set_gcr
,
3171 [PSRCTL
] = e1000e_set_psrctl
,
3172 [RXCSUM
] = e1000e_set_rxcsum
,
3173 [RAID
] = e1000e_set_16bit
,
3174 [RSRPD
] = e1000e_set_12bit
,
3175 [TIDV
] = e1000e_set_tidv
,
3176 [TDLEN1
] = e1000e_set_dlen
,
3177 [TDLEN
] = e1000e_set_dlen
,
3178 [RDLEN0
] = e1000e_set_dlen
,
3179 [RDLEN1
] = e1000e_set_dlen
,
3180 [TDBAL
] = e1000e_set_dbal
,
3181 [TDBAL1
] = e1000e_set_dbal
,
3182 [RDBAL0
] = e1000e_set_dbal
,
3183 [RDBAL1
] = e1000e_set_dbal
,
3184 [RDH1
] = e1000e_set_16bit
,
3185 [RDT1
] = e1000e_set_rdt
,
3186 [STATUS
] = e1000e_set_status
,
3187 [PBACLR
] = e1000e_set_pbaclr
,
3188 [CTRL_EXT
] = e1000e_set_ctrlext
,
3189 [FCAH
] = e1000e_set_16bit
,
3190 [FCT
] = e1000e_set_16bit
,
3191 [FCTTV
] = e1000e_set_16bit
,
3192 [FCRTV
] = e1000e_set_16bit
,
3193 [FCRTH
] = e1000e_set_fcrth
,
3194 [FCRTL
] = e1000e_set_fcrtl
,
3195 [VET
] = e1000e_set_vet
,
3196 [RXDCTL
] = e1000e_set_rxdctl
,
3197 [FLASHT
] = e1000e_set_16bit
,
3198 [EEWR
] = e1000e_set_eewr
,
3199 [CTRL_DUP
] = e1000e_set_ctrl
,
3200 [RFCTL
] = e1000e_set_rfctl
,
3201 [RA
+ 1] = e1000e_mac_setmacaddr
,
3203 [IP6AT
... IP6AT
+ 3] = e1000e_mac_writereg
,
3204 [IP4AT
... IP4AT
+ 6] = e1000e_mac_writereg
,
3205 [RA
+ 2 ... RA
+ 31] = e1000e_mac_writereg
,
3206 [WUPM
... WUPM
+ 31] = e1000e_mac_writereg
,
3207 [MTA
... MTA
+ 127] = e1000e_mac_writereg
,
3208 [VFTA
... VFTA
+ 127] = e1000e_mac_writereg
,
3209 [FFMT
... FFMT
+ 254] = e1000e_mac_writereg
,
3210 [FFVT
... FFVT
+ 254] = e1000e_mac_writereg
,
3211 [PBM
... PBM
+ 10239] = e1000e_mac_writereg
,
3212 [MDEF
... MDEF
+ 7] = e1000e_mac_writereg
,
3213 [FFLT
... FFLT
+ 10] = e1000e_mac_writereg
,
3214 [FTFT
... FTFT
+ 254] = e1000e_mac_writereg
,
3215 [RETA
... RETA
+ 31] = e1000e_mac_writereg
,
3216 [RSSRK
... RSSRK
+ 31] = e1000e_mac_writereg
,
3217 [MAVTV0
... MAVTV3
] = e1000e_mac_writereg
,
3218 [EITR
...EITR
+ E1000E_MSIX_VEC_NUM
- 1] = e1000e_set_eitr
3220 enum { E1000E_NWRITEOPS
= ARRAY_SIZE(e1000e_macreg_writeops
) };
3222 enum { MAC_ACCESS_PARTIAL
= 1 };
3224 /* The array below combines alias offsets of the index values for the
3225 * MAC registers that have aliases, with the indication of not fully
3226 * implemented registers (lowest bit). This combination is possible
3227 * because all of the offsets are even. */
3228 static const uint16_t mac_reg_access
[E1000E_MAC_SIZE
] = {
3229 /* Alias index offsets */
3230 [FCRTL_A
] = 0x07fe, [FCRTH_A
] = 0x0802,
3231 [RDH0_A
] = 0x09bc, [RDT0_A
] = 0x09bc, [RDTR_A
] = 0x09c6,
3232 [RDFH_A
] = 0xe904, [RDFT_A
] = 0xe904,
3233 [TDH_A
] = 0x0cf8, [TDT_A
] = 0x0cf8, [TIDV_A
] = 0x0cf8,
3234 [TDFH_A
] = 0xed00, [TDFT_A
] = 0xed00,
3235 [RA_A
... RA_A
+ 31] = 0x14f0,
3236 [VFTA_A
... VFTA_A
+ 127] = 0x1400,
3237 [RDBAL0_A
... RDLEN0_A
] = 0x09bc,
3238 [TDBAL_A
... TDLEN_A
] = 0x0cf8,
3239 /* Access options */
3240 [RDFH
] = MAC_ACCESS_PARTIAL
, [RDFT
] = MAC_ACCESS_PARTIAL
,
3241 [RDFHS
] = MAC_ACCESS_PARTIAL
, [RDFTS
] = MAC_ACCESS_PARTIAL
,
3242 [RDFPC
] = MAC_ACCESS_PARTIAL
,
3243 [TDFH
] = MAC_ACCESS_PARTIAL
, [TDFT
] = MAC_ACCESS_PARTIAL
,
3244 [TDFHS
] = MAC_ACCESS_PARTIAL
, [TDFTS
] = MAC_ACCESS_PARTIAL
,
3245 [TDFPC
] = MAC_ACCESS_PARTIAL
, [EECD
] = MAC_ACCESS_PARTIAL
,
3246 [PBM
] = MAC_ACCESS_PARTIAL
, [FLA
] = MAC_ACCESS_PARTIAL
,
3247 [FCAL
] = MAC_ACCESS_PARTIAL
, [FCAH
] = MAC_ACCESS_PARTIAL
,
3248 [FCT
] = MAC_ACCESS_PARTIAL
, [FCTTV
] = MAC_ACCESS_PARTIAL
,
3249 [FCRTV
] = MAC_ACCESS_PARTIAL
, [FCRTL
] = MAC_ACCESS_PARTIAL
,
3250 [FCRTH
] = MAC_ACCESS_PARTIAL
, [TXDCTL
] = MAC_ACCESS_PARTIAL
,
3251 [TXDCTL1
] = MAC_ACCESS_PARTIAL
,
3252 [MAVTV0
... MAVTV3
] = MAC_ACCESS_PARTIAL
3256 e1000e_core_write(E1000ECore
*core
, hwaddr addr
, uint64_t val
, unsigned size
)
3258 uint16_t index
= e1000e_get_reg_index_with_offset(mac_reg_access
, addr
);
3260 if (index
< E1000E_NWRITEOPS
&& e1000e_macreg_writeops
[index
]) {
3261 if (mac_reg_access
[index
] & MAC_ACCESS_PARTIAL
) {
3262 trace_e1000e_wrn_regs_write_trivial(index
<< 2);
3264 trace_e1000e_core_write(index
<< 2, size
, val
);
3265 e1000e_macreg_writeops
[index
](core
, index
, val
);
3266 } else if (index
< E1000E_NREADOPS
&& e1000e_macreg_readops
[index
]) {
3267 trace_e1000e_wrn_regs_write_ro(index
<< 2, size
, val
);
3269 trace_e1000e_wrn_regs_write_unknown(index
<< 2, size
, val
);
3274 e1000e_core_read(E1000ECore
*core
, hwaddr addr
, unsigned size
)
3277 uint16_t index
= e1000e_get_reg_index_with_offset(mac_reg_access
, addr
);
3279 if (index
< E1000E_NREADOPS
&& e1000e_macreg_readops
[index
]) {
3280 if (mac_reg_access
[index
] & MAC_ACCESS_PARTIAL
) {
3281 trace_e1000e_wrn_regs_read_trivial(index
<< 2);
3283 val
= e1000e_macreg_readops
[index
](core
, index
);
3284 trace_e1000e_core_read(index
<< 2, size
, val
);
3287 trace_e1000e_wrn_regs_read_unknown(index
<< 2, size
);
3293 e1000e_autoneg_pause(E1000ECore
*core
)
3295 timer_del(core
->autoneg_timer
);
3299 e1000e_autoneg_resume(E1000ECore
*core
)
3301 if (e1000e_have_autoneg(core
) &&
3302 !(core
->phy
[0][PHY_STATUS
] & MII_SR_AUTONEG_COMPLETE
)) {
3303 qemu_get_queue(core
->owner_nic
)->link_down
= false;
3304 timer_mod(core
->autoneg_timer
,
3305 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL
) + 500);
3310 e1000e_vm_state_change(void *opaque
, int running
, RunState state
)
3312 E1000ECore
*core
= opaque
;
3315 trace_e1000e_vm_state_running();
3316 e1000e_intrmgr_resume(core
);
3317 e1000e_autoneg_resume(core
);
3319 trace_e1000e_vm_state_stopped();
3320 e1000e_autoneg_pause(core
);
3321 e1000e_intrmgr_pause(core
);
3326 e1000e_core_pci_realize(E1000ECore
*core
,
3327 const uint16_t *eeprom_templ
,
3328 uint32_t eeprom_size
,
3329 const uint8_t *macaddr
)
3333 core
->autoneg_timer
= timer_new_ms(QEMU_CLOCK_VIRTUAL
,
3334 e1000e_autoneg_timer
, core
);
3335 e1000e_intrmgr_pci_realize(core
);
3338 qemu_add_vm_change_state_handler(e1000e_vm_state_change
, core
);
3340 for (i
= 0; i
< E1000E_NUM_QUEUES
; i
++) {
3341 net_tx_pkt_init(&core
->tx
[i
].tx_pkt
, core
->owner
,
3342 E1000E_MAX_TX_FRAGS
, core
->has_vnet
);
3345 net_rx_pkt_init(&core
->rx_pkt
, core
->has_vnet
);
3347 e1000x_core_prepare_eeprom(core
->eeprom
,
3350 PCI_DEVICE_GET_CLASS(core
->owner
)->device_id
,
3352 e1000e_update_rx_offloads(core
);
3356 e1000e_core_pci_uninit(E1000ECore
*core
)
3360 timer_del(core
->autoneg_timer
);
3361 timer_free(core
->autoneg_timer
);
3363 e1000e_intrmgr_pci_unint(core
);
3365 qemu_del_vm_change_state_handler(core
->vmstate
);
3367 for (i
= 0; i
< E1000E_NUM_QUEUES
; i
++) {
3368 net_tx_pkt_reset(core
->tx
[i
].tx_pkt
);
3369 net_tx_pkt_uninit(core
->tx
[i
].tx_pkt
);
3372 net_rx_pkt_uninit(core
->rx_pkt
);
3375 static const uint16_t
3376 e1000e_phy_reg_init
[E1000E_PHY_PAGES
][E1000E_PHY_PAGE_SIZE
] = {
3378 [PHY_CTRL
] = MII_CR_SPEED_SELECT_MSB
|
3379 MII_CR_FULL_DUPLEX
|
3382 [PHY_STATUS
] = MII_SR_EXTENDED_CAPS
|
3383 MII_SR_LINK_STATUS
|
3384 MII_SR_AUTONEG_CAPS
|
3385 MII_SR_PREAMBLE_SUPPRESS
|
3386 MII_SR_EXTENDED_STATUS
|
3387 MII_SR_10T_HD_CAPS
|
3388 MII_SR_10T_FD_CAPS
|
3389 MII_SR_100X_HD_CAPS
|
3390 MII_SR_100X_FD_CAPS
,
3393 [PHY_ID2
] = E1000_PHY_ID2_82574x
,
3394 [PHY_AUTONEG_ADV
] = 0xde1,
3395 [PHY_LP_ABILITY
] = 0x7e0,
3396 [PHY_AUTONEG_EXP
] = BIT(2),
3397 [PHY_NEXT_PAGE_TX
] = BIT(0) | BIT(13),
3398 [PHY_1000T_CTRL
] = BIT(8) | BIT(9) | BIT(10) | BIT(11),
3399 [PHY_1000T_STATUS
] = 0x3c00,
3400 [PHY_EXT_STATUS
] = BIT(12) | BIT(13),
3402 [PHY_COPPER_CTRL1
] = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
3404 [PHY_COPPER_STAT1
] = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
3407 [PHY_MAC_CTRL1
] = BIT(3) | BIT(7),
3408 [PHY_MAC_CTRL2
] = BIT(1) | BIT(2) | BIT(6) | BIT(12)
3411 [PHY_LED_TIMER_CTRL
] = BIT(0) | BIT(2) | BIT(14)
3415 static const uint32_t e1000e_mac_reg_init
[] = {
3417 [LEDCTL
] = BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
3418 [EXTCNF_CTRL
] = BIT(3),
3419 [EEMNGCTL
] = BIT(31),
3421 [FLSWCTL
] = BIT(30) | BIT(31),
3424 [RXDCTL1
] = BIT(16),
3425 [TIPG
] = 0x8 | (0x8 << 10) | (0x6 << 20),
3428 [CTRL
] = E1000_CTRL_FD
| E1000_CTRL_SWDPIN2
| E1000_CTRL_SWDPIN0
|
3429 E1000_CTRL_SPD_1000
| E1000_CTRL_SLU
|
3430 E1000_CTRL_ADVD3WUC
,
3431 [STATUS
] = E1000_STATUS_ASDV_1000
| E1000_STATUS_LU
,
3432 [PSRCTL
] = (2 << E1000_PSRCTL_BSIZE0_SHIFT
) |
3433 (4 << E1000_PSRCTL_BSIZE1_SHIFT
) |
3434 (4 << E1000_PSRCTL_BSIZE2_SHIFT
),
3435 [TARC0
] = 0x3 | E1000_TARC_ENABLE
,
3436 [TARC1
] = 0x3 | E1000_TARC_ENABLE
,
3437 [EECD
] = E1000_EECD_AUTO_RD
| E1000_EECD_PRES
,
3438 [EERD
] = E1000_EERW_DONE
,
3439 [EEWR
] = E1000_EERW_DONE
,
3440 [GCR
] = E1000_L0S_ADJUST
|
3441 E1000_L1_ENTRY_LATENCY_MSB
|
3442 E1000_L1_ENTRY_LATENCY_LSB
,
3449 [MANC
] = E1000_MANC_DIS_IP_CHK_ARP
,
3450 [FACTPS
] = E1000_FACTPS_LAN0_ON
| 0x20000000,
3452 [RXCSUM
] = E1000_RXCSUM_IPOFLD
| E1000_RXCSUM_TUOFLD
,
3453 [ITR
] = E1000E_MIN_XITR
,
3454 [EITR
...EITR
+ E1000E_MSIX_VEC_NUM
- 1] = E1000E_MIN_XITR
,
3458 e1000e_core_reset(E1000ECore
*core
)
3462 timer_del(core
->autoneg_timer
);
3464 e1000e_intrmgr_reset(core
);
3466 memset(core
->phy
, 0, sizeof core
->phy
);
3467 memmove(core
->phy
, e1000e_phy_reg_init
, sizeof e1000e_phy_reg_init
);
3468 memset(core
->mac
, 0, sizeof core
->mac
);
3469 memmove(core
->mac
, e1000e_mac_reg_init
, sizeof e1000e_mac_reg_init
);
3471 core
->rxbuf_min_shift
= 1 + E1000_RING_DESC_LEN_SHIFT
;
3473 if (qemu_get_queue(core
->owner_nic
)->link_down
) {
3474 e1000e_link_down(core
);
3477 e1000x_reset_mac_addr(core
->owner_nic
, core
->mac
, core
->permanent_mac
);
3479 for (i
= 0; i
< ARRAY_SIZE(core
->tx
); i
++) {
3480 net_tx_pkt_reset(core
->tx
[i
].tx_pkt
);
3481 memset(&core
->tx
[i
].props
, 0, sizeof(core
->tx
[i
].props
));
3482 core
->tx
[i
].skip_cp
= false;
3486 void e1000e_core_pre_save(E1000ECore
*core
)
3489 NetClientState
*nc
= qemu_get_queue(core
->owner_nic
);
3492 * If link is down and auto-negotiation is supported and ongoing,
3493 * complete auto-negotiation immediately. This allows us to look
3494 * at MII_SR_AUTONEG_COMPLETE to infer link status on load.
3496 if (nc
->link_down
&& e1000e_have_autoneg(core
)) {
3497 core
->phy
[0][PHY_STATUS
] |= MII_SR_AUTONEG_COMPLETE
;
3498 e1000e_update_flowctl_status(core
);
3501 for (i
= 0; i
< ARRAY_SIZE(core
->tx
); i
++) {
3502 if (net_tx_pkt_has_fragments(core
->tx
[i
].tx_pkt
)) {
3503 core
->tx
[i
].skip_cp
= true;
3509 e1000e_core_post_load(E1000ECore
*core
)
3511 NetClientState
*nc
= qemu_get_queue(core
->owner_nic
);
3513 /* nc.link_down can't be migrated, so infer link_down according
3514 * to link status bit in core.mac[STATUS].
3516 nc
->link_down
= (core
->mac
[STATUS
] & E1000_STATUS_LU
) == 0;