2 * Copyright (c) 2003-2004 Fabrice Bellard
3 * Copyright (c) 2019 Red Hat, Inc.
5 * Permission is hereby granted, free of charge, to any person obtaining a copy
6 * of this software and associated documentation files (the "Software"), to deal
7 * in the Software without restriction, including without limitation the rights
8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 * copies of the Software, and to permit persons to whom the Software is
10 * furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/qmp/qerror.h"
31 #include "qapi/qapi-visit-common.h"
32 #include "qapi/visitor.h"
33 #include "sysemu/qtest.h"
34 #include "sysemu/numa.h"
35 #include "sysemu/replay.h"
36 #include "sysemu/sysemu.h"
39 #include "hw/i386/x86.h"
40 #include "target/i386/cpu.h"
41 #include "hw/i386/topology.h"
42 #include "hw/i386/fw_cfg.h"
43 #include "hw/intc/i8259.h"
45 #include "hw/acpi/cpu_hotplug.h"
48 #include "hw/loader.h"
49 #include "multiboot.h"
51 #include "standard-headers/asm-x86/bootparam.h"
52 #include CONFIG_DEVICES
55 #define BIOS_FILENAME "bios.bin"
57 /* Physical Address of PVH entry point read from kernel ELF NOTE */
58 static size_t pvh_start_addr
;
60 inline void init_topo_info(X86CPUTopoInfo
*topo_info
,
61 const X86MachineState
*x86ms
)
63 MachineState
*ms
= MACHINE(x86ms
);
65 topo_info
->dies_per_pkg
= x86ms
->smp_dies
;
66 topo_info
->cores_per_die
= ms
->smp
.cores
;
67 topo_info
->threads_per_core
= ms
->smp
.threads
;
71 * Calculates initial APIC ID for a specific CPU index
73 * Currently we need to be able to calculate the APIC ID from the CPU index
74 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
75 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
76 * all CPUs up to max_cpus.
78 uint32_t x86_cpu_apic_id_from_index(X86MachineState
*x86ms
,
79 unsigned int cpu_index
)
81 X86MachineClass
*x86mc
= X86_MACHINE_GET_CLASS(x86ms
);
82 X86CPUTopoInfo topo_info
;
86 init_topo_info(&topo_info
, x86ms
);
88 correct_id
= x86_apicid_from_cpu_idx(&topo_info
, cpu_index
);
89 if (x86mc
->compat_apic_id_mode
) {
90 if (cpu_index
!= correct_id
&& !warned
&& !qtest_enabled()) {
91 error_report("APIC IDs set in compatibility mode, "
92 "CPU topology won't match the configuration");
102 void x86_cpu_new(X86MachineState
*x86ms
, int64_t apic_id
, Error
**errp
)
104 Object
*cpu
= object_new(MACHINE(x86ms
)->cpu_type
);
106 if (!object_property_set_uint(cpu
, "apic-id", apic_id
, errp
)) {
109 qdev_realize(DEVICE(cpu
), NULL
, errp
);
115 void x86_cpus_init(X86MachineState
*x86ms
, int default_cpu_version
)
118 const CPUArchIdList
*possible_cpus
;
119 MachineState
*ms
= MACHINE(x86ms
);
120 MachineClass
*mc
= MACHINE_GET_CLASS(x86ms
);
122 x86_cpu_set_default_version(default_cpu_version
);
125 * Calculates the limit to CPU APIC ID values
127 * Limit for the APIC ID value, so that all
128 * CPU APIC IDs are < x86ms->apic_id_limit.
130 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
132 x86ms
->apic_id_limit
= x86_cpu_apic_id_from_index(x86ms
,
133 ms
->smp
.max_cpus
- 1) + 1;
134 possible_cpus
= mc
->possible_cpu_arch_ids(ms
);
135 for (i
= 0; i
< ms
->smp
.cpus
; i
++) {
136 x86_cpu_new(x86ms
, possible_cpus
->cpus
[i
].arch_id
, &error_fatal
);
140 CpuInstanceProperties
141 x86_cpu_index_to_props(MachineState
*ms
, unsigned cpu_index
)
143 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
144 const CPUArchIdList
*possible_cpus
= mc
->possible_cpu_arch_ids(ms
);
146 assert(cpu_index
< possible_cpus
->len
);
147 return possible_cpus
->cpus
[cpu_index
].props
;
150 int64_t x86_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
152 X86CPUTopoIDs topo_ids
;
153 X86MachineState
*x86ms
= X86_MACHINE(ms
);
154 X86CPUTopoInfo topo_info
;
156 init_topo_info(&topo_info
, x86ms
);
158 assert(idx
< ms
->possible_cpus
->len
);
159 x86_topo_ids_from_apicid(ms
->possible_cpus
->cpus
[idx
].arch_id
,
160 &topo_info
, &topo_ids
);
161 return topo_ids
.pkg_id
% ms
->numa_state
->num_nodes
;
164 const CPUArchIdList
*x86_possible_cpu_arch_ids(MachineState
*ms
)
166 X86MachineState
*x86ms
= X86_MACHINE(ms
);
167 unsigned int max_cpus
= ms
->smp
.max_cpus
;
168 X86CPUTopoInfo topo_info
;
171 if (ms
->possible_cpus
) {
173 * make sure that max_cpus hasn't changed since the first use, i.e.
174 * -smp hasn't been parsed after it
176 assert(ms
->possible_cpus
->len
== max_cpus
);
177 return ms
->possible_cpus
;
180 ms
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
181 sizeof(CPUArchId
) * max_cpus
);
182 ms
->possible_cpus
->len
= max_cpus
;
184 init_topo_info(&topo_info
, x86ms
);
186 for (i
= 0; i
< ms
->possible_cpus
->len
; i
++) {
187 X86CPUTopoIDs topo_ids
;
189 ms
->possible_cpus
->cpus
[i
].type
= ms
->cpu_type
;
190 ms
->possible_cpus
->cpus
[i
].vcpus_count
= 1;
191 ms
->possible_cpus
->cpus
[i
].arch_id
=
192 x86_cpu_apic_id_from_index(x86ms
, i
);
193 x86_topo_ids_from_apicid(ms
->possible_cpus
->cpus
[i
].arch_id
,
194 &topo_info
, &topo_ids
);
195 ms
->possible_cpus
->cpus
[i
].props
.has_socket_id
= true;
196 ms
->possible_cpus
->cpus
[i
].props
.socket_id
= topo_ids
.pkg_id
;
197 if (x86ms
->smp_dies
> 1) {
198 ms
->possible_cpus
->cpus
[i
].props
.has_die_id
= true;
199 ms
->possible_cpus
->cpus
[i
].props
.die_id
= topo_ids
.die_id
;
201 ms
->possible_cpus
->cpus
[i
].props
.has_core_id
= true;
202 ms
->possible_cpus
->cpus
[i
].props
.core_id
= topo_ids
.core_id
;
203 ms
->possible_cpus
->cpus
[i
].props
.has_thread_id
= true;
204 ms
->possible_cpus
->cpus
[i
].props
.thread_id
= topo_ids
.smt_id
;
206 return ms
->possible_cpus
;
209 static void x86_nmi(NMIState
*n
, int cpu_index
, Error
**errp
)
211 /* cpu index isn't used */
215 X86CPU
*cpu
= X86_CPU(cs
);
217 if (!cpu
->apic_state
) {
218 cpu_interrupt(cs
, CPU_INTERRUPT_NMI
);
220 apic_deliver_nmi(cpu
->apic_state
);
225 static long get_file_size(FILE *f
)
229 /* XXX: on Unix systems, using fstat() probably makes more sense */
232 fseek(f
, 0, SEEK_END
);
234 fseek(f
, where
, SEEK_SET
);
240 uint64_t cpu_get_tsc(CPUX86State
*env
)
242 return cpu_get_ticks();
246 static void pic_irq_request(void *opaque
, int irq
, int level
)
248 CPUState
*cs
= first_cpu
;
249 X86CPU
*cpu
= X86_CPU(cs
);
251 trace_x86_pic_interrupt(irq
, level
);
252 if (cpu
->apic_state
&& !kvm_irqchip_in_kernel()) {
255 if (apic_accept_pic_intr(cpu
->apic_state
)) {
256 apic_deliver_pic_intr(cpu
->apic_state
, level
);
261 cpu_interrupt(cs
, CPU_INTERRUPT_HARD
);
263 cpu_reset_interrupt(cs
, CPU_INTERRUPT_HARD
);
268 qemu_irq
x86_allocate_cpu_irq(void)
270 return qemu_allocate_irq(pic_irq_request
, NULL
, 0);
273 int cpu_get_pic_interrupt(CPUX86State
*env
)
275 X86CPU
*cpu
= env_archcpu(env
);
278 if (!kvm_irqchip_in_kernel()) {
279 intno
= apic_get_interrupt(cpu
->apic_state
);
283 /* read the irq from the PIC */
284 if (!apic_accept_pic_intr(cpu
->apic_state
)) {
289 intno
= pic_read_irq(isa_pic
);
293 DeviceState
*cpu_get_current_apic(void)
296 X86CPU
*cpu
= X86_CPU(current_cpu
);
297 return cpu
->apic_state
;
303 void gsi_handler(void *opaque
, int n
, int level
)
305 GSIState
*s
= opaque
;
307 trace_x86_gsi_interrupt(n
, level
);
308 if (n
< ISA_NUM_IRQS
) {
309 /* Under KVM, Kernel will forward to both PIC and IOAPIC */
310 qemu_set_irq(s
->i8259_irq
[n
], level
);
312 qemu_set_irq(s
->ioapic_irq
[n
], level
);
315 void ioapic_init_gsi(GSIState
*gsi_state
, const char *parent_name
)
322 if (kvm_ioapic_in_kernel()) {
323 dev
= qdev_new(TYPE_KVM_IOAPIC
);
325 dev
= qdev_new(TYPE_IOAPIC
);
327 object_property_add_child(object_resolve_path(parent_name
, NULL
),
328 "ioapic", OBJECT(dev
));
329 d
= SYS_BUS_DEVICE(dev
);
330 sysbus_realize_and_unref(d
, &error_fatal
);
331 sysbus_mmio_map(d
, 0, IO_APIC_DEFAULT_ADDRESS
);
333 for (i
= 0; i
< IOAPIC_NUM_PINS
; i
++) {
334 gsi_state
->ioapic_irq
[i
] = qdev_get_gpio_in(dev
, i
);
343 } __attribute__((packed
));
347 * The entry point into the kernel for PVH boot is different from
348 * the native entry point. The PVH entry is defined by the x86/HVM
349 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
351 * This function is passed to load_elf() when it is called from
352 * load_elfboot() which then additionally checks for an ELF Note of
353 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
354 * parse the PVH entry address from the ELF Note.
356 * Due to trickery in elf_opts.h, load_elf() is actually available as
357 * load_elf32() or load_elf64() and this routine needs to be able
358 * to deal with being called as 32 or 64 bit.
360 * The address of the PVH entry point is saved to the 'pvh_start_addr'
361 * global variable. (although the entry point is 32-bit, the kernel
362 * binary can be either 32-bit or 64-bit).
364 static uint64_t read_pvh_start_addr(void *arg1
, void *arg2
, bool is64
)
366 size_t *elf_note_data_addr
;
368 /* Check if ELF Note header passed in is valid */
374 struct elf64_note
*nhdr64
= (struct elf64_note
*)arg1
;
375 uint64_t nhdr_size64
= sizeof(struct elf64_note
);
376 uint64_t phdr_align
= *(uint64_t *)arg2
;
377 uint64_t nhdr_namesz
= nhdr64
->n_namesz
;
380 ((void *)nhdr64
) + nhdr_size64
+
381 QEMU_ALIGN_UP(nhdr_namesz
, phdr_align
);
383 struct elf32_note
*nhdr32
= (struct elf32_note
*)arg1
;
384 uint32_t nhdr_size32
= sizeof(struct elf32_note
);
385 uint32_t phdr_align
= *(uint32_t *)arg2
;
386 uint32_t nhdr_namesz
= nhdr32
->n_namesz
;
389 ((void *)nhdr32
) + nhdr_size32
+
390 QEMU_ALIGN_UP(nhdr_namesz
, phdr_align
);
393 pvh_start_addr
= *elf_note_data_addr
;
395 return pvh_start_addr
;
398 static bool load_elfboot(const char *kernel_filename
,
399 int kernel_file_size
,
401 size_t pvh_xen_start_addr
,
405 uint32_t mh_load_addr
= 0;
406 uint32_t elf_kernel_size
= 0;
408 uint64_t elf_low
, elf_high
;
411 if (ldl_p(header
) != 0x464c457f) {
412 return false; /* no elfboot */
415 bool elf_is64
= header
[EI_CLASS
] == ELFCLASS64
;
417 ((Elf64_Ehdr
*)header
)->e_flags
: ((Elf32_Ehdr
*)header
)->e_flags
;
419 if (flags
& 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
420 error_report("elfboot unsupported flags = %x", flags
);
424 uint64_t elf_note_type
= XEN_ELFNOTE_PHYS32_ENTRY
;
425 kernel_size
= load_elf(kernel_filename
, read_pvh_start_addr
,
426 NULL
, &elf_note_type
, &elf_entry
,
427 &elf_low
, &elf_high
, NULL
, 0, I386_ELF_MACHINE
,
430 if (kernel_size
< 0) {
431 error_report("Error while loading elf kernel");
434 mh_load_addr
= elf_low
;
435 elf_kernel_size
= elf_high
- elf_low
;
437 if (pvh_start_addr
== 0) {
438 error_report("Error loading uncompressed kernel without PVH ELF Note");
441 fw_cfg_add_i32(fw_cfg
, FW_CFG_KERNEL_ENTRY
, pvh_start_addr
);
442 fw_cfg_add_i32(fw_cfg
, FW_CFG_KERNEL_ADDR
, mh_load_addr
);
443 fw_cfg_add_i32(fw_cfg
, FW_CFG_KERNEL_SIZE
, elf_kernel_size
);
448 void x86_load_linux(X86MachineState
*x86ms
,
452 bool linuxboot_dma_enabled
)
455 int setup_size
, kernel_size
, cmdline_size
;
456 int dtb_size
, setup_data_offset
;
458 uint8_t header
[8192], *setup
, *kernel
;
459 hwaddr real_addr
, prot_addr
, cmdline_addr
, initrd_addr
= 0;
462 MachineState
*machine
= MACHINE(x86ms
);
463 struct setup_data
*setup_data
;
464 const char *kernel_filename
= machine
->kernel_filename
;
465 const char *initrd_filename
= machine
->initrd_filename
;
466 const char *dtb_filename
= machine
->dtb
;
467 const char *kernel_cmdline
= machine
->kernel_cmdline
;
469 /* Align to 16 bytes as a paranoia measure */
470 cmdline_size
= (strlen(kernel_cmdline
) + 16) & ~15;
472 /* load the kernel header */
473 f
= fopen(kernel_filename
, "rb");
475 fprintf(stderr
, "qemu: could not open kernel file '%s': %s\n",
476 kernel_filename
, strerror(errno
));
480 kernel_size
= get_file_size(f
);
482 fread(header
, 1, MIN(ARRAY_SIZE(header
), kernel_size
), f
) !=
483 MIN(ARRAY_SIZE(header
), kernel_size
)) {
484 fprintf(stderr
, "qemu: could not load kernel '%s': %s\n",
485 kernel_filename
, strerror(errno
));
489 /* kernel protocol version */
490 if (ldl_p(header
+ 0x202) == 0x53726448) {
491 protocol
= lduw_p(header
+ 0x206);
494 * This could be a multiboot kernel. If it is, let's stop treating it
495 * like a Linux kernel.
496 * Note: some multiboot images could be in the ELF format (the same of
497 * PVH), so we try multiboot first since we check the multiboot magic
498 * header before to load it.
500 if (load_multiboot(fw_cfg
, f
, kernel_filename
, initrd_filename
,
501 kernel_cmdline
, kernel_size
, header
)) {
505 * Check if the file is an uncompressed kernel file (ELF) and load it,
506 * saving the PVH entry point used by the x86/HVM direct boot ABI.
507 * If load_elfboot() is successful, populate the fw_cfg info.
510 load_elfboot(kernel_filename
, kernel_size
,
511 header
, pvh_start_addr
, fw_cfg
)) {
514 fw_cfg_add_i32(fw_cfg
, FW_CFG_CMDLINE_SIZE
,
515 strlen(kernel_cmdline
) + 1);
516 fw_cfg_add_string(fw_cfg
, FW_CFG_CMDLINE_DATA
, kernel_cmdline
);
518 fw_cfg_add_i32(fw_cfg
, FW_CFG_SETUP_SIZE
, sizeof(header
));
519 fw_cfg_add_bytes(fw_cfg
, FW_CFG_SETUP_DATA
,
520 header
, sizeof(header
));
523 if (initrd_filename
) {
524 GMappedFile
*mapped_file
;
529 mapped_file
= g_mapped_file_new(initrd_filename
, false, &gerr
);
531 fprintf(stderr
, "qemu: error reading initrd %s: %s\n",
532 initrd_filename
, gerr
->message
);
535 x86ms
->initrd_mapped_file
= mapped_file
;
537 initrd_data
= g_mapped_file_get_contents(mapped_file
);
538 initrd_size
= g_mapped_file_get_length(mapped_file
);
539 initrd_max
= x86ms
->below_4g_mem_size
- acpi_data_size
- 1;
540 if (initrd_size
>= initrd_max
) {
541 fprintf(stderr
, "qemu: initrd is too large, cannot support."
542 "(max: %"PRIu32
", need %"PRId64
")\n",
543 initrd_max
, (uint64_t)initrd_size
);
547 initrd_addr
= (initrd_max
- initrd_size
) & ~4095;
549 fw_cfg_add_i32(fw_cfg
, FW_CFG_INITRD_ADDR
, initrd_addr
);
550 fw_cfg_add_i32(fw_cfg
, FW_CFG_INITRD_SIZE
, initrd_size
);
551 fw_cfg_add_bytes(fw_cfg
, FW_CFG_INITRD_DATA
, initrd_data
,
555 option_rom
[nb_option_roms
].bootindex
= 0;
556 option_rom
[nb_option_roms
].name
= "pvh.bin";
564 if (protocol
< 0x200 || !(header
[0x211] & 0x01)) {
567 cmdline_addr
= 0x9a000 - cmdline_size
;
569 } else if (protocol
< 0x202) {
570 /* High but ancient kernel */
572 cmdline_addr
= 0x9a000 - cmdline_size
;
573 prot_addr
= 0x100000;
575 /* High and recent kernel */
577 cmdline_addr
= 0x20000;
578 prot_addr
= 0x100000;
581 /* highest address for loading the initrd */
582 if (protocol
>= 0x20c &&
583 lduw_p(header
+ 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G
) {
585 * Linux has supported initrd up to 4 GB for a very long time (2007,
586 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
587 * though it only sets initrd_max to 2 GB to "work around bootloader
588 * bugs". Luckily, QEMU firmware(which does something like bootloader)
589 * has supported this.
591 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
592 * be loaded into any address.
594 * In addition, initrd_max is uint32_t simply because QEMU doesn't
595 * support the 64-bit boot protocol (specifically the ext_ramdisk_image
598 * Therefore here just limit initrd_max to UINT32_MAX simply as well.
600 initrd_max
= UINT32_MAX
;
601 } else if (protocol
>= 0x203) {
602 initrd_max
= ldl_p(header
+ 0x22c);
604 initrd_max
= 0x37ffffff;
607 if (initrd_max
>= x86ms
->below_4g_mem_size
- acpi_data_size
) {
608 initrd_max
= x86ms
->below_4g_mem_size
- acpi_data_size
- 1;
611 fw_cfg_add_i32(fw_cfg
, FW_CFG_CMDLINE_ADDR
, cmdline_addr
);
612 fw_cfg_add_i32(fw_cfg
, FW_CFG_CMDLINE_SIZE
, strlen(kernel_cmdline
) + 1);
613 fw_cfg_add_string(fw_cfg
, FW_CFG_CMDLINE_DATA
, kernel_cmdline
);
615 if (protocol
>= 0x202) {
616 stl_p(header
+ 0x228, cmdline_addr
);
618 stw_p(header
+ 0x20, 0xA33F);
619 stw_p(header
+ 0x22, cmdline_addr
- real_addr
);
622 /* handle vga= parameter */
623 vmode
= strstr(kernel_cmdline
, "vga=");
625 unsigned int video_mode
;
630 if (!strncmp(vmode
, "normal", 6)) {
632 } else if (!strncmp(vmode
, "ext", 3)) {
634 } else if (!strncmp(vmode
, "ask", 3)) {
637 ret
= qemu_strtoui(vmode
, &end
, 0, &video_mode
);
638 if (ret
!= 0 || (*end
&& *end
!= ' ')) {
639 fprintf(stderr
, "qemu: invalid 'vga=' kernel parameter.\n");
643 stw_p(header
+ 0x1fa, video_mode
);
648 * High nybble = B reserved for QEMU; low nybble is revision number.
649 * If this code is substantially changed, you may want to consider
650 * incrementing the revision.
652 if (protocol
>= 0x200) {
653 header
[0x210] = 0xB0;
656 if (protocol
>= 0x201) {
657 header
[0x211] |= 0x80; /* CAN_USE_HEAP */
658 stw_p(header
+ 0x224, cmdline_addr
- real_addr
- 0x200);
662 if (initrd_filename
) {
663 GMappedFile
*mapped_file
;
668 if (protocol
< 0x200) {
669 fprintf(stderr
, "qemu: linux kernel too old to load a ram disk\n");
673 mapped_file
= g_mapped_file_new(initrd_filename
, false, &gerr
);
675 fprintf(stderr
, "qemu: error reading initrd %s: %s\n",
676 initrd_filename
, gerr
->message
);
679 x86ms
->initrd_mapped_file
= mapped_file
;
681 initrd_data
= g_mapped_file_get_contents(mapped_file
);
682 initrd_size
= g_mapped_file_get_length(mapped_file
);
683 if (initrd_size
>= initrd_max
) {
684 fprintf(stderr
, "qemu: initrd is too large, cannot support."
685 "(max: %"PRIu32
", need %"PRId64
")\n",
686 initrd_max
, (uint64_t)initrd_size
);
690 initrd_addr
= (initrd_max
- initrd_size
) & ~4095;
692 fw_cfg_add_i32(fw_cfg
, FW_CFG_INITRD_ADDR
, initrd_addr
);
693 fw_cfg_add_i32(fw_cfg
, FW_CFG_INITRD_SIZE
, initrd_size
);
694 fw_cfg_add_bytes(fw_cfg
, FW_CFG_INITRD_DATA
, initrd_data
, initrd_size
);
696 stl_p(header
+ 0x218, initrd_addr
);
697 stl_p(header
+ 0x21c, initrd_size
);
700 /* load kernel and setup */
701 setup_size
= header
[0x1f1];
702 if (setup_size
== 0) {
705 setup_size
= (setup_size
+ 1) * 512;
706 if (setup_size
> kernel_size
) {
707 fprintf(stderr
, "qemu: invalid kernel header\n");
710 kernel_size
-= setup_size
;
712 setup
= g_malloc(setup_size
);
713 kernel
= g_malloc(kernel_size
);
714 fseek(f
, 0, SEEK_SET
);
715 if (fread(setup
, 1, setup_size
, f
) != setup_size
) {
716 fprintf(stderr
, "fread() failed\n");
719 if (fread(kernel
, 1, kernel_size
, f
) != kernel_size
) {
720 fprintf(stderr
, "fread() failed\n");
725 /* append dtb to kernel */
727 if (protocol
< 0x209) {
728 fprintf(stderr
, "qemu: Linux kernel too old to load a dtb\n");
732 dtb_size
= get_image_size(dtb_filename
);
734 fprintf(stderr
, "qemu: error reading dtb %s: %s\n",
735 dtb_filename
, strerror(errno
));
739 setup_data_offset
= QEMU_ALIGN_UP(kernel_size
, 16);
740 kernel_size
= setup_data_offset
+ sizeof(struct setup_data
) + dtb_size
;
741 kernel
= g_realloc(kernel
, kernel_size
);
743 stq_p(header
+ 0x250, prot_addr
+ setup_data_offset
);
745 setup_data
= (struct setup_data
*)(kernel
+ setup_data_offset
);
746 setup_data
->next
= 0;
747 setup_data
->type
= cpu_to_le32(SETUP_DTB
);
748 setup_data
->len
= cpu_to_le32(dtb_size
);
750 load_image_size(dtb_filename
, setup_data
->data
, dtb_size
);
753 memcpy(setup
, header
, MIN(sizeof(header
), setup_size
));
755 fw_cfg_add_i32(fw_cfg
, FW_CFG_KERNEL_ADDR
, prot_addr
);
756 fw_cfg_add_i32(fw_cfg
, FW_CFG_KERNEL_SIZE
, kernel_size
);
757 fw_cfg_add_bytes(fw_cfg
, FW_CFG_KERNEL_DATA
, kernel
, kernel_size
);
759 fw_cfg_add_i32(fw_cfg
, FW_CFG_SETUP_ADDR
, real_addr
);
760 fw_cfg_add_i32(fw_cfg
, FW_CFG_SETUP_SIZE
, setup_size
);
761 fw_cfg_add_bytes(fw_cfg
, FW_CFG_SETUP_DATA
, setup
, setup_size
);
763 option_rom
[nb_option_roms
].bootindex
= 0;
764 option_rom
[nb_option_roms
].name
= "linuxboot.bin";
765 if (linuxboot_dma_enabled
&& fw_cfg_dma_enabled(fw_cfg
)) {
766 option_rom
[nb_option_roms
].name
= "linuxboot_dma.bin";
771 void x86_bios_rom_init(MemoryRegion
*rom_memory
, bool isapc_ram_fw
)
774 MemoryRegion
*bios
, *isa_bios
;
775 int bios_size
, isa_bios_size
;
779 if (bios_name
== NULL
) {
780 bios_name
= BIOS_FILENAME
;
782 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
784 bios_size
= get_image_size(filename
);
788 if (bios_size
<= 0 ||
789 (bios_size
% 65536) != 0) {
792 bios
= g_malloc(sizeof(*bios
));
793 memory_region_init_ram(bios
, NULL
, "pc.bios", bios_size
, &error_fatal
);
795 memory_region_set_readonly(bios
, true);
797 ret
= rom_add_file_fixed(bios_name
, (uint32_t)(-bios_size
), -1);
800 fprintf(stderr
, "qemu: could not load PC BIOS '%s'\n", bios_name
);
805 /* map the last 128KB of the BIOS in ISA space */
806 isa_bios_size
= MIN(bios_size
, 128 * KiB
);
807 isa_bios
= g_malloc(sizeof(*isa_bios
));
808 memory_region_init_alias(isa_bios
, NULL
, "isa-bios", bios
,
809 bios_size
- isa_bios_size
, isa_bios_size
);
810 memory_region_add_subregion_overlap(rom_memory
,
811 0x100000 - isa_bios_size
,
815 memory_region_set_readonly(isa_bios
, true);
818 /* map all the bios at the top of memory */
819 memory_region_add_subregion(rom_memory
,
820 (uint32_t)(-bios_size
),
824 bool x86_machine_is_smm_enabled(X86MachineState
*x86ms
)
826 bool smm_available
= false;
828 if (x86ms
->smm
== ON_OFF_AUTO_OFF
) {
832 if (tcg_enabled() || qtest_enabled()) {
833 smm_available
= true;
834 } else if (kvm_enabled()) {
835 smm_available
= kvm_has_smm();
842 if (x86ms
->smm
== ON_OFF_AUTO_ON
) {
843 error_report("System Management Mode not supported by this hypervisor.");
849 static void x86_machine_get_smm(Object
*obj
, Visitor
*v
, const char *name
,
850 void *opaque
, Error
**errp
)
852 X86MachineState
*x86ms
= X86_MACHINE(obj
);
853 OnOffAuto smm
= x86ms
->smm
;
855 visit_type_OnOffAuto(v
, name
, &smm
, errp
);
858 static void x86_machine_set_smm(Object
*obj
, Visitor
*v
, const char *name
,
859 void *opaque
, Error
**errp
)
861 X86MachineState
*x86ms
= X86_MACHINE(obj
);
863 visit_type_OnOffAuto(v
, name
, &x86ms
->smm
, errp
);
866 bool x86_machine_is_acpi_enabled(X86MachineState
*x86ms
)
868 if (x86ms
->acpi
== ON_OFF_AUTO_OFF
) {
874 static void x86_machine_get_acpi(Object
*obj
, Visitor
*v
, const char *name
,
875 void *opaque
, Error
**errp
)
877 X86MachineState
*x86ms
= X86_MACHINE(obj
);
878 OnOffAuto acpi
= x86ms
->acpi
;
880 visit_type_OnOffAuto(v
, name
, &acpi
, errp
);
883 static void x86_machine_set_acpi(Object
*obj
, Visitor
*v
, const char *name
,
884 void *opaque
, Error
**errp
)
886 X86MachineState
*x86ms
= X86_MACHINE(obj
);
888 visit_type_OnOffAuto(v
, name
, &x86ms
->acpi
, errp
);
891 static void x86_machine_initfn(Object
*obj
)
893 X86MachineState
*x86ms
= X86_MACHINE(obj
);
895 x86ms
->smm
= ON_OFF_AUTO_AUTO
;
896 x86ms
->acpi
= ON_OFF_AUTO_AUTO
;
900 static void x86_machine_class_init(ObjectClass
*oc
, void *data
)
902 MachineClass
*mc
= MACHINE_CLASS(oc
);
903 X86MachineClass
*x86mc
= X86_MACHINE_CLASS(oc
);
904 NMIClass
*nc
= NMI_CLASS(oc
);
906 mc
->cpu_index_to_instance_props
= x86_cpu_index_to_props
;
907 mc
->get_default_cpu_node_id
= x86_get_default_cpu_node_id
;
908 mc
->possible_cpu_arch_ids
= x86_possible_cpu_arch_ids
;
909 x86mc
->compat_apic_id_mode
= false;
910 x86mc
->save_tsc_khz
= true;
911 nc
->nmi_monitor_handler
= x86_nmi
;
913 object_class_property_add(oc
, X86_MACHINE_SMM
, "OnOffAuto",
914 x86_machine_get_smm
, x86_machine_set_smm
,
916 object_class_property_set_description(oc
, X86_MACHINE_SMM
,
919 object_class_property_add(oc
, X86_MACHINE_ACPI
, "OnOffAuto",
920 x86_machine_get_acpi
, x86_machine_set_acpi
,
922 object_class_property_set_description(oc
, X86_MACHINE_ACPI
,
926 static const TypeInfo x86_machine_info
= {
927 .name
= TYPE_X86_MACHINE
,
928 .parent
= TYPE_MACHINE
,
930 .instance_size
= sizeof(X86MachineState
),
931 .instance_init
= x86_machine_initfn
,
932 .class_size
= sizeof(X86MachineClass
),
933 .class_init
= x86_machine_class_init
,
934 .interfaces
= (InterfaceInfo
[]) {
940 static void x86_machine_register_types(void)
942 type_register_static(&x86_machine_info
);
945 type_init(x86_machine_register_types
)