Set last_sent_block
[qemu/ar7.git] / block / qcow2-refcount.c
blob6e0e5bd9aebb81028fb3834c76b73bab91b0edec
1 /*
2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu-common.h"
26 #include "block/block_int.h"
27 #include "block/qcow2.h"
28 #include "qemu/range.h"
30 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size);
31 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
32 int64_t offset, int64_t length, uint64_t addend,
33 bool decrease, enum qcow2_discard_type type);
35 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
36 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
37 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
38 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
39 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
40 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
41 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
43 static void set_refcount_ro0(void *refcount_array, uint64_t index,
44 uint64_t value);
45 static void set_refcount_ro1(void *refcount_array, uint64_t index,
46 uint64_t value);
47 static void set_refcount_ro2(void *refcount_array, uint64_t index,
48 uint64_t value);
49 static void set_refcount_ro3(void *refcount_array, uint64_t index,
50 uint64_t value);
51 static void set_refcount_ro4(void *refcount_array, uint64_t index,
52 uint64_t value);
53 static void set_refcount_ro5(void *refcount_array, uint64_t index,
54 uint64_t value);
55 static void set_refcount_ro6(void *refcount_array, uint64_t index,
56 uint64_t value);
59 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
60 &get_refcount_ro0,
61 &get_refcount_ro1,
62 &get_refcount_ro2,
63 &get_refcount_ro3,
64 &get_refcount_ro4,
65 &get_refcount_ro5,
66 &get_refcount_ro6
69 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
70 &set_refcount_ro0,
71 &set_refcount_ro1,
72 &set_refcount_ro2,
73 &set_refcount_ro3,
74 &set_refcount_ro4,
75 &set_refcount_ro5,
76 &set_refcount_ro6
80 /*********************************************************/
81 /* refcount handling */
83 int qcow2_refcount_init(BlockDriverState *bs)
85 BDRVQcow2State *s = bs->opaque;
86 unsigned int refcount_table_size2, i;
87 int ret;
89 assert(s->refcount_order >= 0 && s->refcount_order <= 6);
91 s->get_refcount = get_refcount_funcs[s->refcount_order];
92 s->set_refcount = set_refcount_funcs[s->refcount_order];
94 assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
95 refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
96 s->refcount_table = g_try_malloc(refcount_table_size2);
98 if (s->refcount_table_size > 0) {
99 if (s->refcount_table == NULL) {
100 ret = -ENOMEM;
101 goto fail;
103 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
104 ret = bdrv_pread(bs->file->bs, s->refcount_table_offset,
105 s->refcount_table, refcount_table_size2);
106 if (ret < 0) {
107 goto fail;
109 for(i = 0; i < s->refcount_table_size; i++)
110 be64_to_cpus(&s->refcount_table[i]);
112 return 0;
113 fail:
114 return ret;
117 void qcow2_refcount_close(BlockDriverState *bs)
119 BDRVQcow2State *s = bs->opaque;
120 g_free(s->refcount_table);
124 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
126 return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
129 static void set_refcount_ro0(void *refcount_array, uint64_t index,
130 uint64_t value)
132 assert(!(value >> 1));
133 ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
134 ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
137 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
139 return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
140 & 0x3;
143 static void set_refcount_ro1(void *refcount_array, uint64_t index,
144 uint64_t value)
146 assert(!(value >> 2));
147 ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
148 ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
151 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
153 return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
154 & 0xf;
157 static void set_refcount_ro2(void *refcount_array, uint64_t index,
158 uint64_t value)
160 assert(!(value >> 4));
161 ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
162 ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
165 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
167 return ((const uint8_t *)refcount_array)[index];
170 static void set_refcount_ro3(void *refcount_array, uint64_t index,
171 uint64_t value)
173 assert(!(value >> 8));
174 ((uint8_t *)refcount_array)[index] = value;
177 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
179 return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
182 static void set_refcount_ro4(void *refcount_array, uint64_t index,
183 uint64_t value)
185 assert(!(value >> 16));
186 ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
189 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
191 return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
194 static void set_refcount_ro5(void *refcount_array, uint64_t index,
195 uint64_t value)
197 assert(!(value >> 32));
198 ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
201 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
203 return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
206 static void set_refcount_ro6(void *refcount_array, uint64_t index,
207 uint64_t value)
209 ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
213 static int load_refcount_block(BlockDriverState *bs,
214 int64_t refcount_block_offset,
215 void **refcount_block)
217 BDRVQcow2State *s = bs->opaque;
218 int ret;
220 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
221 ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
222 refcount_block);
224 return ret;
228 * Retrieves the refcount of the cluster given by its index and stores it in
229 * *refcount. Returns 0 on success and -errno on failure.
231 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
232 uint64_t *refcount)
234 BDRVQcow2State *s = bs->opaque;
235 uint64_t refcount_table_index, block_index;
236 int64_t refcount_block_offset;
237 int ret;
238 void *refcount_block;
240 refcount_table_index = cluster_index >> s->refcount_block_bits;
241 if (refcount_table_index >= s->refcount_table_size) {
242 *refcount = 0;
243 return 0;
245 refcount_block_offset =
246 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
247 if (!refcount_block_offset) {
248 *refcount = 0;
249 return 0;
252 if (offset_into_cluster(s, refcount_block_offset)) {
253 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
254 " unaligned (reftable index: %#" PRIx64 ")",
255 refcount_block_offset, refcount_table_index);
256 return -EIO;
259 ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
260 &refcount_block);
261 if (ret < 0) {
262 return ret;
265 block_index = cluster_index & (s->refcount_block_size - 1);
266 *refcount = s->get_refcount(refcount_block, block_index);
268 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
270 return 0;
274 * Rounds the refcount table size up to avoid growing the table for each single
275 * refcount block that is allocated.
277 static unsigned int next_refcount_table_size(BDRVQcow2State *s,
278 unsigned int min_size)
280 unsigned int min_clusters = (min_size >> (s->cluster_bits - 3)) + 1;
281 unsigned int refcount_table_clusters =
282 MAX(1, s->refcount_table_size >> (s->cluster_bits - 3));
284 while (min_clusters > refcount_table_clusters) {
285 refcount_table_clusters = (refcount_table_clusters * 3 + 1) / 2;
288 return refcount_table_clusters << (s->cluster_bits - 3);
292 /* Checks if two offsets are described by the same refcount block */
293 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
294 uint64_t offset_b)
296 uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
297 uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
299 return (block_a == block_b);
303 * Loads a refcount block. If it doesn't exist yet, it is allocated first
304 * (including growing the refcount table if needed).
306 * Returns 0 on success or -errno in error case
308 static int alloc_refcount_block(BlockDriverState *bs,
309 int64_t cluster_index, void **refcount_block)
311 BDRVQcow2State *s = bs->opaque;
312 unsigned int refcount_table_index;
313 int ret;
315 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
317 /* Find the refcount block for the given cluster */
318 refcount_table_index = cluster_index >> s->refcount_block_bits;
320 if (refcount_table_index < s->refcount_table_size) {
322 uint64_t refcount_block_offset =
323 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
325 /* If it's already there, we're done */
326 if (refcount_block_offset) {
327 if (offset_into_cluster(s, refcount_block_offset)) {
328 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
329 PRIx64 " unaligned (reftable index: "
330 "%#x)", refcount_block_offset,
331 refcount_table_index);
332 return -EIO;
335 return load_refcount_block(bs, refcount_block_offset,
336 refcount_block);
341 * If we came here, we need to allocate something. Something is at least
342 * a cluster for the new refcount block. It may also include a new refcount
343 * table if the old refcount table is too small.
345 * Note that allocating clusters here needs some special care:
347 * - We can't use the normal qcow2_alloc_clusters(), it would try to
348 * increase the refcount and very likely we would end up with an endless
349 * recursion. Instead we must place the refcount blocks in a way that
350 * they can describe them themselves.
352 * - We need to consider that at this point we are inside update_refcounts
353 * and potentially doing an initial refcount increase. This means that
354 * some clusters have already been allocated by the caller, but their
355 * refcount isn't accurate yet. If we allocate clusters for metadata, we
356 * need to return -EAGAIN to signal the caller that it needs to restart
357 * the search for free clusters.
359 * - alloc_clusters_noref and qcow2_free_clusters may load a different
360 * refcount block into the cache
363 *refcount_block = NULL;
365 /* We write to the refcount table, so we might depend on L2 tables */
366 ret = qcow2_cache_flush(bs, s->l2_table_cache);
367 if (ret < 0) {
368 return ret;
371 /* Allocate the refcount block itself and mark it as used */
372 int64_t new_block = alloc_clusters_noref(bs, s->cluster_size);
373 if (new_block < 0) {
374 return new_block;
377 #ifdef DEBUG_ALLOC2
378 fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
379 " at %" PRIx64 "\n",
380 refcount_table_index, cluster_index << s->cluster_bits, new_block);
381 #endif
383 if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
384 /* Zero the new refcount block before updating it */
385 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
386 refcount_block);
387 if (ret < 0) {
388 goto fail_block;
391 memset(*refcount_block, 0, s->cluster_size);
393 /* The block describes itself, need to update the cache */
394 int block_index = (new_block >> s->cluster_bits) &
395 (s->refcount_block_size - 1);
396 s->set_refcount(*refcount_block, block_index, 1);
397 } else {
398 /* Described somewhere else. This can recurse at most twice before we
399 * arrive at a block that describes itself. */
400 ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
401 QCOW2_DISCARD_NEVER);
402 if (ret < 0) {
403 goto fail_block;
406 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
407 if (ret < 0) {
408 goto fail_block;
411 /* Initialize the new refcount block only after updating its refcount,
412 * update_refcount uses the refcount cache itself */
413 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
414 refcount_block);
415 if (ret < 0) {
416 goto fail_block;
419 memset(*refcount_block, 0, s->cluster_size);
422 /* Now the new refcount block needs to be written to disk */
423 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
424 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, *refcount_block);
425 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
426 if (ret < 0) {
427 goto fail_block;
430 /* If the refcount table is big enough, just hook the block up there */
431 if (refcount_table_index < s->refcount_table_size) {
432 uint64_t data64 = cpu_to_be64(new_block);
433 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
434 ret = bdrv_pwrite_sync(bs->file->bs,
435 s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
436 &data64, sizeof(data64));
437 if (ret < 0) {
438 goto fail_block;
441 s->refcount_table[refcount_table_index] = new_block;
443 /* The new refcount block may be where the caller intended to put its
444 * data, so let it restart the search. */
445 return -EAGAIN;
448 qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
451 * If we come here, we need to grow the refcount table. Again, a new
452 * refcount table needs some space and we can't simply allocate to avoid
453 * endless recursion.
455 * Therefore let's grab new refcount blocks at the end of the image, which
456 * will describe themselves and the new refcount table. This way we can
457 * reference them only in the new table and do the switch to the new
458 * refcount table at once without producing an inconsistent state in
459 * between.
461 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
463 /* Calculate the number of refcount blocks needed so far; this will be the
464 * basis for calculating the index of the first cluster used for the
465 * self-describing refcount structures which we are about to create.
467 * Because we reached this point, there cannot be any refcount entries for
468 * cluster_index or higher indices yet. However, because new_block has been
469 * allocated to describe that cluster (and it will assume this role later
470 * on), we cannot use that index; also, new_block may actually have a higher
471 * cluster index than cluster_index, so it needs to be taken into account
472 * here (and 1 needs to be added to its value because that cluster is used).
474 uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
475 (new_block >> s->cluster_bits) + 1),
476 s->refcount_block_size);
478 if (blocks_used > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
479 return -EFBIG;
482 /* And now we need at least one block more for the new metadata */
483 uint64_t table_size = next_refcount_table_size(s, blocks_used + 1);
484 uint64_t last_table_size;
485 uint64_t blocks_clusters;
486 do {
487 uint64_t table_clusters =
488 size_to_clusters(s, table_size * sizeof(uint64_t));
489 blocks_clusters = 1 +
490 ((table_clusters + s->refcount_block_size - 1)
491 / s->refcount_block_size);
492 uint64_t meta_clusters = table_clusters + blocks_clusters;
494 last_table_size = table_size;
495 table_size = next_refcount_table_size(s, blocks_used +
496 ((meta_clusters + s->refcount_block_size - 1)
497 / s->refcount_block_size));
499 } while (last_table_size != table_size);
501 #ifdef DEBUG_ALLOC2
502 fprintf(stderr, "qcow2: Grow refcount table %" PRId32 " => %" PRId64 "\n",
503 s->refcount_table_size, table_size);
504 #endif
506 /* Create the new refcount table and blocks */
507 uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
508 s->cluster_size;
509 uint64_t table_offset = meta_offset + blocks_clusters * s->cluster_size;
510 uint64_t *new_table = g_try_new0(uint64_t, table_size);
511 void *new_blocks = g_try_malloc0(blocks_clusters * s->cluster_size);
513 assert(table_size > 0 && blocks_clusters > 0);
514 if (new_table == NULL || new_blocks == NULL) {
515 ret = -ENOMEM;
516 goto fail_table;
519 /* Fill the new refcount table */
520 memcpy(new_table, s->refcount_table,
521 s->refcount_table_size * sizeof(uint64_t));
522 new_table[refcount_table_index] = new_block;
524 int i;
525 for (i = 0; i < blocks_clusters; i++) {
526 new_table[blocks_used + i] = meta_offset + (i * s->cluster_size);
529 /* Fill the refcount blocks */
530 uint64_t table_clusters = size_to_clusters(s, table_size * sizeof(uint64_t));
531 int block = 0;
532 for (i = 0; i < table_clusters + blocks_clusters; i++) {
533 s->set_refcount(new_blocks, block++, 1);
536 /* Write refcount blocks to disk */
537 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
538 ret = bdrv_pwrite_sync(bs->file->bs, meta_offset, new_blocks,
539 blocks_clusters * s->cluster_size);
540 g_free(new_blocks);
541 new_blocks = NULL;
542 if (ret < 0) {
543 goto fail_table;
546 /* Write refcount table to disk */
547 for(i = 0; i < table_size; i++) {
548 cpu_to_be64s(&new_table[i]);
551 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
552 ret = bdrv_pwrite_sync(bs->file->bs, table_offset, new_table,
553 table_size * sizeof(uint64_t));
554 if (ret < 0) {
555 goto fail_table;
558 for(i = 0; i < table_size; i++) {
559 be64_to_cpus(&new_table[i]);
562 /* Hook up the new refcount table in the qcow2 header */
563 struct QEMU_PACKED {
564 uint64_t d64;
565 uint32_t d32;
566 } data;
567 cpu_to_be64w(&data.d64, table_offset);
568 cpu_to_be32w(&data.d32, table_clusters);
569 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
570 ret = bdrv_pwrite_sync(bs->file->bs,
571 offsetof(QCowHeader, refcount_table_offset),
572 &data, sizeof(data));
573 if (ret < 0) {
574 goto fail_table;
577 /* And switch it in memory */
578 uint64_t old_table_offset = s->refcount_table_offset;
579 uint64_t old_table_size = s->refcount_table_size;
581 g_free(s->refcount_table);
582 s->refcount_table = new_table;
583 s->refcount_table_size = table_size;
584 s->refcount_table_offset = table_offset;
586 /* Free old table. */
587 qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
588 QCOW2_DISCARD_OTHER);
590 ret = load_refcount_block(bs, new_block, refcount_block);
591 if (ret < 0) {
592 return ret;
595 /* If we were trying to do the initial refcount update for some cluster
596 * allocation, we might have used the same clusters to store newly
597 * allocated metadata. Make the caller search some new space. */
598 return -EAGAIN;
600 fail_table:
601 g_free(new_blocks);
602 g_free(new_table);
603 fail_block:
604 if (*refcount_block != NULL) {
605 qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
607 return ret;
610 void qcow2_process_discards(BlockDriverState *bs, int ret)
612 BDRVQcow2State *s = bs->opaque;
613 Qcow2DiscardRegion *d, *next;
615 QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
616 QTAILQ_REMOVE(&s->discards, d, next);
618 /* Discard is optional, ignore the return value */
619 if (ret >= 0) {
620 bdrv_discard(bs->file->bs,
621 d->offset >> BDRV_SECTOR_BITS,
622 d->bytes >> BDRV_SECTOR_BITS);
625 g_free(d);
629 static void update_refcount_discard(BlockDriverState *bs,
630 uint64_t offset, uint64_t length)
632 BDRVQcow2State *s = bs->opaque;
633 Qcow2DiscardRegion *d, *p, *next;
635 QTAILQ_FOREACH(d, &s->discards, next) {
636 uint64_t new_start = MIN(offset, d->offset);
637 uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
639 if (new_end - new_start <= length + d->bytes) {
640 /* There can't be any overlap, areas ending up here have no
641 * references any more and therefore shouldn't get freed another
642 * time. */
643 assert(d->bytes + length == new_end - new_start);
644 d->offset = new_start;
645 d->bytes = new_end - new_start;
646 goto found;
650 d = g_malloc(sizeof(*d));
651 *d = (Qcow2DiscardRegion) {
652 .bs = bs,
653 .offset = offset,
654 .bytes = length,
656 QTAILQ_INSERT_TAIL(&s->discards, d, next);
658 found:
659 /* Merge discard requests if they are adjacent now */
660 QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
661 if (p == d
662 || p->offset > d->offset + d->bytes
663 || d->offset > p->offset + p->bytes)
665 continue;
668 /* Still no overlap possible */
669 assert(p->offset == d->offset + d->bytes
670 || d->offset == p->offset + p->bytes);
672 QTAILQ_REMOVE(&s->discards, p, next);
673 d->offset = MIN(d->offset, p->offset);
674 d->bytes += p->bytes;
675 g_free(p);
679 /* XXX: cache several refcount block clusters ? */
680 /* @addend is the absolute value of the addend; if @decrease is set, @addend
681 * will be subtracted from the current refcount, otherwise it will be added */
682 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
683 int64_t offset,
684 int64_t length,
685 uint64_t addend,
686 bool decrease,
687 enum qcow2_discard_type type)
689 BDRVQcow2State *s = bs->opaque;
690 int64_t start, last, cluster_offset;
691 void *refcount_block = NULL;
692 int64_t old_table_index = -1;
693 int ret;
695 #ifdef DEBUG_ALLOC2
696 fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
697 " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
698 addend);
699 #endif
700 if (length < 0) {
701 return -EINVAL;
702 } else if (length == 0) {
703 return 0;
706 if (decrease) {
707 qcow2_cache_set_dependency(bs, s->refcount_block_cache,
708 s->l2_table_cache);
711 start = start_of_cluster(s, offset);
712 last = start_of_cluster(s, offset + length - 1);
713 for(cluster_offset = start; cluster_offset <= last;
714 cluster_offset += s->cluster_size)
716 int block_index;
717 uint64_t refcount;
718 int64_t cluster_index = cluster_offset >> s->cluster_bits;
719 int64_t table_index = cluster_index >> s->refcount_block_bits;
721 /* Load the refcount block and allocate it if needed */
722 if (table_index != old_table_index) {
723 if (refcount_block) {
724 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
726 ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
727 if (ret < 0) {
728 goto fail;
731 old_table_index = table_index;
733 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
734 refcount_block);
736 /* we can update the count and save it */
737 block_index = cluster_index & (s->refcount_block_size - 1);
739 refcount = s->get_refcount(refcount_block, block_index);
740 if (decrease ? (refcount - addend > refcount)
741 : (refcount + addend < refcount ||
742 refcount + addend > s->refcount_max))
744 ret = -EINVAL;
745 goto fail;
747 if (decrease) {
748 refcount -= addend;
749 } else {
750 refcount += addend;
752 if (refcount == 0 && cluster_index < s->free_cluster_index) {
753 s->free_cluster_index = cluster_index;
755 s->set_refcount(refcount_block, block_index, refcount);
757 if (refcount == 0 && s->discard_passthrough[type]) {
758 update_refcount_discard(bs, cluster_offset, s->cluster_size);
762 ret = 0;
763 fail:
764 if (!s->cache_discards) {
765 qcow2_process_discards(bs, ret);
768 /* Write last changed block to disk */
769 if (refcount_block) {
770 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
774 * Try do undo any updates if an error is returned (This may succeed in
775 * some cases like ENOSPC for allocating a new refcount block)
777 if (ret < 0) {
778 int dummy;
779 dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
780 !decrease, QCOW2_DISCARD_NEVER);
781 (void)dummy;
784 return ret;
788 * Increases or decreases the refcount of a given cluster.
790 * @addend is the absolute value of the addend; if @decrease is set, @addend
791 * will be subtracted from the current refcount, otherwise it will be added.
793 * On success 0 is returned; on failure -errno is returned.
795 int qcow2_update_cluster_refcount(BlockDriverState *bs,
796 int64_t cluster_index,
797 uint64_t addend, bool decrease,
798 enum qcow2_discard_type type)
800 BDRVQcow2State *s = bs->opaque;
801 int ret;
803 ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
804 decrease, type);
805 if (ret < 0) {
806 return ret;
809 return 0;
814 /*********************************************************/
815 /* cluster allocation functions */
819 /* return < 0 if error */
820 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size)
822 BDRVQcow2State *s = bs->opaque;
823 uint64_t i, nb_clusters, refcount;
824 int ret;
826 /* We can't allocate clusters if they may still be queued for discard. */
827 if (s->cache_discards) {
828 qcow2_process_discards(bs, 0);
831 nb_clusters = size_to_clusters(s, size);
832 retry:
833 for(i = 0; i < nb_clusters; i++) {
834 uint64_t next_cluster_index = s->free_cluster_index++;
835 ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
837 if (ret < 0) {
838 return ret;
839 } else if (refcount != 0) {
840 goto retry;
844 /* Make sure that all offsets in the "allocated" range are representable
845 * in an int64_t */
846 if (s->free_cluster_index > 0 &&
847 s->free_cluster_index - 1 > (INT64_MAX >> s->cluster_bits))
849 return -EFBIG;
852 #ifdef DEBUG_ALLOC2
853 fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
854 size,
855 (s->free_cluster_index - nb_clusters) << s->cluster_bits);
856 #endif
857 return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
860 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
862 int64_t offset;
863 int ret;
865 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
866 do {
867 offset = alloc_clusters_noref(bs, size);
868 if (offset < 0) {
869 return offset;
872 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
873 } while (ret == -EAGAIN);
875 if (ret < 0) {
876 return ret;
879 return offset;
882 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
883 int64_t nb_clusters)
885 BDRVQcow2State *s = bs->opaque;
886 uint64_t cluster_index, refcount;
887 uint64_t i;
888 int ret;
890 assert(nb_clusters >= 0);
891 if (nb_clusters == 0) {
892 return 0;
895 do {
896 /* Check how many clusters there are free */
897 cluster_index = offset >> s->cluster_bits;
898 for(i = 0; i < nb_clusters; i++) {
899 ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
900 if (ret < 0) {
901 return ret;
902 } else if (refcount != 0) {
903 break;
907 /* And then allocate them */
908 ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
909 QCOW2_DISCARD_NEVER);
910 } while (ret == -EAGAIN);
912 if (ret < 0) {
913 return ret;
916 return i;
919 /* only used to allocate compressed sectors. We try to allocate
920 contiguous sectors. size must be <= cluster_size */
921 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
923 BDRVQcow2State *s = bs->opaque;
924 int64_t offset;
925 size_t free_in_cluster;
926 int ret;
928 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
929 assert(size > 0 && size <= s->cluster_size);
930 assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
932 offset = s->free_byte_offset;
934 if (offset) {
935 uint64_t refcount;
936 ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
937 if (ret < 0) {
938 return ret;
941 if (refcount == s->refcount_max) {
942 offset = 0;
946 free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
947 do {
948 if (!offset || free_in_cluster < size) {
949 int64_t new_cluster = alloc_clusters_noref(bs, s->cluster_size);
950 if (new_cluster < 0) {
951 return new_cluster;
954 if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
955 offset = new_cluster;
956 free_in_cluster = s->cluster_size;
957 } else {
958 free_in_cluster += s->cluster_size;
962 assert(offset);
963 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
964 if (ret < 0) {
965 offset = 0;
967 } while (ret == -EAGAIN);
968 if (ret < 0) {
969 return ret;
972 /* The cluster refcount was incremented; refcount blocks must be flushed
973 * before the caller's L2 table updates. */
974 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
976 s->free_byte_offset = offset + size;
977 if (!offset_into_cluster(s, s->free_byte_offset)) {
978 s->free_byte_offset = 0;
981 return offset;
984 void qcow2_free_clusters(BlockDriverState *bs,
985 int64_t offset, int64_t size,
986 enum qcow2_discard_type type)
988 int ret;
990 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
991 ret = update_refcount(bs, offset, size, 1, true, type);
992 if (ret < 0) {
993 fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
994 /* TODO Remember the clusters to free them later and avoid leaking */
999 * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1000 * normal cluster, compressed cluster, etc.)
1002 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1003 int nb_clusters, enum qcow2_discard_type type)
1005 BDRVQcow2State *s = bs->opaque;
1007 switch (qcow2_get_cluster_type(l2_entry)) {
1008 case QCOW2_CLUSTER_COMPRESSED:
1010 int nb_csectors;
1011 nb_csectors = ((l2_entry >> s->csize_shift) &
1012 s->csize_mask) + 1;
1013 qcow2_free_clusters(bs,
1014 (l2_entry & s->cluster_offset_mask) & ~511,
1015 nb_csectors * 512, type);
1017 break;
1018 case QCOW2_CLUSTER_NORMAL:
1019 case QCOW2_CLUSTER_ZERO:
1020 if (l2_entry & L2E_OFFSET_MASK) {
1021 if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1022 qcow2_signal_corruption(bs, false, -1, -1,
1023 "Cannot free unaligned cluster %#llx",
1024 l2_entry & L2E_OFFSET_MASK);
1025 } else {
1026 qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1027 nb_clusters << s->cluster_bits, type);
1030 break;
1031 case QCOW2_CLUSTER_UNALLOCATED:
1032 break;
1033 default:
1034 abort();
1040 /*********************************************************/
1041 /* snapshots and image creation */
1045 /* update the refcounts of snapshots and the copied flag */
1046 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1047 int64_t l1_table_offset, int l1_size, int addend)
1049 BDRVQcow2State *s = bs->opaque;
1050 uint64_t *l1_table, *l2_table, l2_offset, offset, l1_size2, refcount;
1051 bool l1_allocated = false;
1052 int64_t old_offset, old_l2_offset;
1053 int i, j, l1_modified = 0, nb_csectors;
1054 int ret;
1056 assert(addend >= -1 && addend <= 1);
1058 l2_table = NULL;
1059 l1_table = NULL;
1060 l1_size2 = l1_size * sizeof(uint64_t);
1062 s->cache_discards = true;
1064 /* WARNING: qcow2_snapshot_goto relies on this function not using the
1065 * l1_table_offset when it is the current s->l1_table_offset! Be careful
1066 * when changing this! */
1067 if (l1_table_offset != s->l1_table_offset) {
1068 l1_table = g_try_malloc0(align_offset(l1_size2, 512));
1069 if (l1_size2 && l1_table == NULL) {
1070 ret = -ENOMEM;
1071 goto fail;
1073 l1_allocated = true;
1075 ret = bdrv_pread(bs->file->bs, l1_table_offset, l1_table, l1_size2);
1076 if (ret < 0) {
1077 goto fail;
1080 for(i = 0;i < l1_size; i++)
1081 be64_to_cpus(&l1_table[i]);
1082 } else {
1083 assert(l1_size == s->l1_size);
1084 l1_table = s->l1_table;
1085 l1_allocated = false;
1088 for(i = 0; i < l1_size; i++) {
1089 l2_offset = l1_table[i];
1090 if (l2_offset) {
1091 old_l2_offset = l2_offset;
1092 l2_offset &= L1E_OFFSET_MASK;
1094 if (offset_into_cluster(s, l2_offset)) {
1095 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1096 PRIx64 " unaligned (L1 index: %#x)",
1097 l2_offset, i);
1098 ret = -EIO;
1099 goto fail;
1102 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1103 (void**) &l2_table);
1104 if (ret < 0) {
1105 goto fail;
1108 for(j = 0; j < s->l2_size; j++) {
1109 uint64_t cluster_index;
1111 offset = be64_to_cpu(l2_table[j]);
1112 old_offset = offset;
1113 offset &= ~QCOW_OFLAG_COPIED;
1115 switch (qcow2_get_cluster_type(offset)) {
1116 case QCOW2_CLUSTER_COMPRESSED:
1117 nb_csectors = ((offset >> s->csize_shift) &
1118 s->csize_mask) + 1;
1119 if (addend != 0) {
1120 ret = update_refcount(bs,
1121 (offset & s->cluster_offset_mask) & ~511,
1122 nb_csectors * 512, abs(addend), addend < 0,
1123 QCOW2_DISCARD_SNAPSHOT);
1124 if (ret < 0) {
1125 goto fail;
1128 /* compressed clusters are never modified */
1129 refcount = 2;
1130 break;
1132 case QCOW2_CLUSTER_NORMAL:
1133 case QCOW2_CLUSTER_ZERO:
1134 if (offset_into_cluster(s, offset & L2E_OFFSET_MASK)) {
1135 qcow2_signal_corruption(bs, true, -1, -1, "Data "
1136 "cluster offset %#llx "
1137 "unaligned (L2 offset: %#"
1138 PRIx64 ", L2 index: %#x)",
1139 offset & L2E_OFFSET_MASK,
1140 l2_offset, j);
1141 ret = -EIO;
1142 goto fail;
1145 cluster_index = (offset & L2E_OFFSET_MASK) >> s->cluster_bits;
1146 if (!cluster_index) {
1147 /* unallocated */
1148 refcount = 0;
1149 break;
1151 if (addend != 0) {
1152 ret = qcow2_update_cluster_refcount(bs,
1153 cluster_index, abs(addend), addend < 0,
1154 QCOW2_DISCARD_SNAPSHOT);
1155 if (ret < 0) {
1156 goto fail;
1160 ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1161 if (ret < 0) {
1162 goto fail;
1164 break;
1166 case QCOW2_CLUSTER_UNALLOCATED:
1167 refcount = 0;
1168 break;
1170 default:
1171 abort();
1174 if (refcount == 1) {
1175 offset |= QCOW_OFLAG_COPIED;
1177 if (offset != old_offset) {
1178 if (addend > 0) {
1179 qcow2_cache_set_dependency(bs, s->l2_table_cache,
1180 s->refcount_block_cache);
1182 l2_table[j] = cpu_to_be64(offset);
1183 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache,
1184 l2_table);
1188 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1190 if (addend != 0) {
1191 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1192 s->cluster_bits,
1193 abs(addend), addend < 0,
1194 QCOW2_DISCARD_SNAPSHOT);
1195 if (ret < 0) {
1196 goto fail;
1199 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1200 &refcount);
1201 if (ret < 0) {
1202 goto fail;
1203 } else if (refcount == 1) {
1204 l2_offset |= QCOW_OFLAG_COPIED;
1206 if (l2_offset != old_l2_offset) {
1207 l1_table[i] = l2_offset;
1208 l1_modified = 1;
1213 ret = bdrv_flush(bs);
1214 fail:
1215 if (l2_table) {
1216 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1219 s->cache_discards = false;
1220 qcow2_process_discards(bs, ret);
1222 /* Update L1 only if it isn't deleted anyway (addend = -1) */
1223 if (ret == 0 && addend >= 0 && l1_modified) {
1224 for (i = 0; i < l1_size; i++) {
1225 cpu_to_be64s(&l1_table[i]);
1228 ret = bdrv_pwrite_sync(bs->file->bs, l1_table_offset,
1229 l1_table, l1_size2);
1231 for (i = 0; i < l1_size; i++) {
1232 be64_to_cpus(&l1_table[i]);
1235 if (l1_allocated)
1236 g_free(l1_table);
1237 return ret;
1243 /*********************************************************/
1244 /* refcount checking functions */
1247 static size_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1249 /* This assertion holds because there is no way we can address more than
1250 * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1251 * offsets have to be representable in bytes); due to every cluster
1252 * corresponding to one refcount entry, we are well below that limit */
1253 assert(entries < (UINT64_C(1) << (64 - 9)));
1255 /* Thanks to the assertion this will not overflow, because
1256 * s->refcount_order < 7.
1257 * (note: x << s->refcount_order == x * s->refcount_bits) */
1258 return DIV_ROUND_UP(entries << s->refcount_order, 8);
1262 * Reallocates *array so that it can hold new_size entries. *size must contain
1263 * the current number of entries in *array. If the reallocation fails, *array
1264 * and *size will not be modified and -errno will be returned. If the
1265 * reallocation is successful, *array will be set to the new buffer, *size
1266 * will be set to new_size and 0 will be returned. The size of the reallocated
1267 * refcount array buffer will be aligned to a cluster boundary, and the newly
1268 * allocated area will be zeroed.
1270 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1271 int64_t *size, int64_t new_size)
1273 int64_t old_byte_size, new_byte_size;
1274 void *new_ptr;
1276 /* Round to clusters so the array can be directly written to disk */
1277 old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1278 * s->cluster_size;
1279 new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1280 * s->cluster_size;
1282 if (new_byte_size == old_byte_size) {
1283 *size = new_size;
1284 return 0;
1287 assert(new_byte_size > 0);
1289 if (new_byte_size > SIZE_MAX) {
1290 return -ENOMEM;
1293 new_ptr = g_try_realloc(*array, new_byte_size);
1294 if (!new_ptr) {
1295 return -ENOMEM;
1298 if (new_byte_size > old_byte_size) {
1299 memset((char *)new_ptr + old_byte_size, 0,
1300 new_byte_size - old_byte_size);
1303 *array = new_ptr;
1304 *size = new_size;
1306 return 0;
1310 * Increases the refcount for a range of clusters in a given refcount table.
1311 * This is used to construct a temporary refcount table out of L1 and L2 tables
1312 * which can be compared to the refcount table saved in the image.
1314 * Modifies the number of errors in res.
1316 static int inc_refcounts(BlockDriverState *bs,
1317 BdrvCheckResult *res,
1318 void **refcount_table,
1319 int64_t *refcount_table_size,
1320 int64_t offset, int64_t size)
1322 BDRVQcow2State *s = bs->opaque;
1323 uint64_t start, last, cluster_offset, k, refcount;
1324 int ret;
1326 if (size <= 0) {
1327 return 0;
1330 start = start_of_cluster(s, offset);
1331 last = start_of_cluster(s, offset + size - 1);
1332 for(cluster_offset = start; cluster_offset <= last;
1333 cluster_offset += s->cluster_size) {
1334 k = cluster_offset >> s->cluster_bits;
1335 if (k >= *refcount_table_size) {
1336 ret = realloc_refcount_array(s, refcount_table,
1337 refcount_table_size, k + 1);
1338 if (ret < 0) {
1339 res->check_errors++;
1340 return ret;
1344 refcount = s->get_refcount(*refcount_table, k);
1345 if (refcount == s->refcount_max) {
1346 fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1347 "\n", cluster_offset);
1348 res->corruptions++;
1349 continue;
1351 s->set_refcount(*refcount_table, k, refcount + 1);
1354 return 0;
1357 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1358 enum {
1359 CHECK_FRAG_INFO = 0x2, /* update BlockFragInfo counters */
1363 * Increases the refcount in the given refcount table for the all clusters
1364 * referenced in the L2 table. While doing so, performs some checks on L2
1365 * entries.
1367 * Returns the number of errors found by the checks or -errno if an internal
1368 * error occurred.
1370 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1371 void **refcount_table,
1372 int64_t *refcount_table_size, int64_t l2_offset,
1373 int flags)
1375 BDRVQcow2State *s = bs->opaque;
1376 uint64_t *l2_table, l2_entry;
1377 uint64_t next_contiguous_offset = 0;
1378 int i, l2_size, nb_csectors, ret;
1380 /* Read L2 table from disk */
1381 l2_size = s->l2_size * sizeof(uint64_t);
1382 l2_table = g_malloc(l2_size);
1384 ret = bdrv_pread(bs->file->bs, l2_offset, l2_table, l2_size);
1385 if (ret < 0) {
1386 fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1387 res->check_errors++;
1388 goto fail;
1391 /* Do the actual checks */
1392 for(i = 0; i < s->l2_size; i++) {
1393 l2_entry = be64_to_cpu(l2_table[i]);
1395 switch (qcow2_get_cluster_type(l2_entry)) {
1396 case QCOW2_CLUSTER_COMPRESSED:
1397 /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1398 if (l2_entry & QCOW_OFLAG_COPIED) {
1399 fprintf(stderr, "ERROR: cluster %" PRId64 ": "
1400 "copied flag must never be set for compressed "
1401 "clusters\n", l2_entry >> s->cluster_bits);
1402 l2_entry &= ~QCOW_OFLAG_COPIED;
1403 res->corruptions++;
1406 /* Mark cluster as used */
1407 nb_csectors = ((l2_entry >> s->csize_shift) &
1408 s->csize_mask) + 1;
1409 l2_entry &= s->cluster_offset_mask;
1410 ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1411 l2_entry & ~511, nb_csectors * 512);
1412 if (ret < 0) {
1413 goto fail;
1416 if (flags & CHECK_FRAG_INFO) {
1417 res->bfi.allocated_clusters++;
1418 res->bfi.compressed_clusters++;
1420 /* Compressed clusters are fragmented by nature. Since they
1421 * take up sub-sector space but we only have sector granularity
1422 * I/O we need to re-read the same sectors even for adjacent
1423 * compressed clusters.
1425 res->bfi.fragmented_clusters++;
1427 break;
1429 case QCOW2_CLUSTER_ZERO:
1430 if ((l2_entry & L2E_OFFSET_MASK) == 0) {
1431 break;
1433 /* fall through */
1435 case QCOW2_CLUSTER_NORMAL:
1437 uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1439 if (flags & CHECK_FRAG_INFO) {
1440 res->bfi.allocated_clusters++;
1441 if (next_contiguous_offset &&
1442 offset != next_contiguous_offset) {
1443 res->bfi.fragmented_clusters++;
1445 next_contiguous_offset = offset + s->cluster_size;
1448 /* Mark cluster as used */
1449 ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1450 offset, s->cluster_size);
1451 if (ret < 0) {
1452 goto fail;
1455 /* Correct offsets are cluster aligned */
1456 if (offset_into_cluster(s, offset)) {
1457 fprintf(stderr, "ERROR offset=%" PRIx64 ": Cluster is not "
1458 "properly aligned; L2 entry corrupted.\n", offset);
1459 res->corruptions++;
1461 break;
1464 case QCOW2_CLUSTER_UNALLOCATED:
1465 break;
1467 default:
1468 abort();
1472 g_free(l2_table);
1473 return 0;
1475 fail:
1476 g_free(l2_table);
1477 return ret;
1481 * Increases the refcount for the L1 table, its L2 tables and all referenced
1482 * clusters in the given refcount table. While doing so, performs some checks
1483 * on L1 and L2 entries.
1485 * Returns the number of errors found by the checks or -errno if an internal
1486 * error occurred.
1488 static int check_refcounts_l1(BlockDriverState *bs,
1489 BdrvCheckResult *res,
1490 void **refcount_table,
1491 int64_t *refcount_table_size,
1492 int64_t l1_table_offset, int l1_size,
1493 int flags)
1495 BDRVQcow2State *s = bs->opaque;
1496 uint64_t *l1_table = NULL, l2_offset, l1_size2;
1497 int i, ret;
1499 l1_size2 = l1_size * sizeof(uint64_t);
1501 /* Mark L1 table as used */
1502 ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1503 l1_table_offset, l1_size2);
1504 if (ret < 0) {
1505 goto fail;
1508 /* Read L1 table entries from disk */
1509 if (l1_size2 > 0) {
1510 l1_table = g_try_malloc(l1_size2);
1511 if (l1_table == NULL) {
1512 ret = -ENOMEM;
1513 res->check_errors++;
1514 goto fail;
1516 ret = bdrv_pread(bs->file->bs, l1_table_offset, l1_table, l1_size2);
1517 if (ret < 0) {
1518 fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1519 res->check_errors++;
1520 goto fail;
1522 for(i = 0;i < l1_size; i++)
1523 be64_to_cpus(&l1_table[i]);
1526 /* Do the actual checks */
1527 for(i = 0; i < l1_size; i++) {
1528 l2_offset = l1_table[i];
1529 if (l2_offset) {
1530 /* Mark L2 table as used */
1531 l2_offset &= L1E_OFFSET_MASK;
1532 ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1533 l2_offset, s->cluster_size);
1534 if (ret < 0) {
1535 goto fail;
1538 /* L2 tables are cluster aligned */
1539 if (offset_into_cluster(s, l2_offset)) {
1540 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1541 "cluster aligned; L1 entry corrupted\n", l2_offset);
1542 res->corruptions++;
1545 /* Process and check L2 entries */
1546 ret = check_refcounts_l2(bs, res, refcount_table,
1547 refcount_table_size, l2_offset, flags);
1548 if (ret < 0) {
1549 goto fail;
1553 g_free(l1_table);
1554 return 0;
1556 fail:
1557 g_free(l1_table);
1558 return ret;
1562 * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1564 * This function does not print an error message nor does it increment
1565 * check_errors if qcow2_get_refcount fails (this is because such an error will
1566 * have been already detected and sufficiently signaled by the calling function
1567 * (qcow2_check_refcounts) by the time this function is called).
1569 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1570 BdrvCheckMode fix)
1572 BDRVQcow2State *s = bs->opaque;
1573 uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1574 int ret;
1575 uint64_t refcount;
1576 int i, j;
1578 for (i = 0; i < s->l1_size; i++) {
1579 uint64_t l1_entry = s->l1_table[i];
1580 uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1581 bool l2_dirty = false;
1583 if (!l2_offset) {
1584 continue;
1587 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1588 &refcount);
1589 if (ret < 0) {
1590 /* don't print message nor increment check_errors */
1591 continue;
1593 if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1594 fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1595 "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1596 fix & BDRV_FIX_ERRORS ? "Repairing" :
1597 "ERROR",
1598 i, l1_entry, refcount);
1599 if (fix & BDRV_FIX_ERRORS) {
1600 s->l1_table[i] = refcount == 1
1601 ? l1_entry | QCOW_OFLAG_COPIED
1602 : l1_entry & ~QCOW_OFLAG_COPIED;
1603 ret = qcow2_write_l1_entry(bs, i);
1604 if (ret < 0) {
1605 res->check_errors++;
1606 goto fail;
1608 res->corruptions_fixed++;
1609 } else {
1610 res->corruptions++;
1614 ret = bdrv_pread(bs->file->bs, l2_offset, l2_table,
1615 s->l2_size * sizeof(uint64_t));
1616 if (ret < 0) {
1617 fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1618 strerror(-ret));
1619 res->check_errors++;
1620 goto fail;
1623 for (j = 0; j < s->l2_size; j++) {
1624 uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1625 uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
1626 int cluster_type = qcow2_get_cluster_type(l2_entry);
1628 if ((cluster_type == QCOW2_CLUSTER_NORMAL) ||
1629 ((cluster_type == QCOW2_CLUSTER_ZERO) && (data_offset != 0))) {
1630 ret = qcow2_get_refcount(bs,
1631 data_offset >> s->cluster_bits,
1632 &refcount);
1633 if (ret < 0) {
1634 /* don't print message nor increment check_errors */
1635 continue;
1637 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
1638 fprintf(stderr, "%s OFLAG_COPIED data cluster: "
1639 "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1640 fix & BDRV_FIX_ERRORS ? "Repairing" :
1641 "ERROR",
1642 l2_entry, refcount);
1643 if (fix & BDRV_FIX_ERRORS) {
1644 l2_table[j] = cpu_to_be64(refcount == 1
1645 ? l2_entry | QCOW_OFLAG_COPIED
1646 : l2_entry & ~QCOW_OFLAG_COPIED);
1647 l2_dirty = true;
1648 res->corruptions_fixed++;
1649 } else {
1650 res->corruptions++;
1656 if (l2_dirty) {
1657 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1658 l2_offset, s->cluster_size);
1659 if (ret < 0) {
1660 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1661 "overlap check failed: %s\n", strerror(-ret));
1662 res->check_errors++;
1663 goto fail;
1666 ret = bdrv_pwrite(bs->file->bs, l2_offset, l2_table,
1667 s->cluster_size);
1668 if (ret < 0) {
1669 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1670 strerror(-ret));
1671 res->check_errors++;
1672 goto fail;
1677 ret = 0;
1679 fail:
1680 qemu_vfree(l2_table);
1681 return ret;
1685 * Checks consistency of refblocks and accounts for each refblock in
1686 * *refcount_table.
1688 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
1689 BdrvCheckMode fix, bool *rebuild,
1690 void **refcount_table, int64_t *nb_clusters)
1692 BDRVQcow2State *s = bs->opaque;
1693 int64_t i, size;
1694 int ret;
1696 for(i = 0; i < s->refcount_table_size; i++) {
1697 uint64_t offset, cluster;
1698 offset = s->refcount_table[i];
1699 cluster = offset >> s->cluster_bits;
1701 /* Refcount blocks are cluster aligned */
1702 if (offset_into_cluster(s, offset)) {
1703 fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
1704 "cluster aligned; refcount table entry corrupted\n", i);
1705 res->corruptions++;
1706 *rebuild = true;
1707 continue;
1710 if (cluster >= *nb_clusters) {
1711 fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
1712 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
1714 if (fix & BDRV_FIX_ERRORS) {
1715 int64_t new_nb_clusters;
1717 if (offset > INT64_MAX - s->cluster_size) {
1718 ret = -EINVAL;
1719 goto resize_fail;
1722 ret = bdrv_truncate(bs->file->bs, offset + s->cluster_size);
1723 if (ret < 0) {
1724 goto resize_fail;
1726 size = bdrv_getlength(bs->file->bs);
1727 if (size < 0) {
1728 ret = size;
1729 goto resize_fail;
1732 new_nb_clusters = size_to_clusters(s, size);
1733 assert(new_nb_clusters >= *nb_clusters);
1735 ret = realloc_refcount_array(s, refcount_table,
1736 nb_clusters, new_nb_clusters);
1737 if (ret < 0) {
1738 res->check_errors++;
1739 return ret;
1742 if (cluster >= *nb_clusters) {
1743 ret = -EINVAL;
1744 goto resize_fail;
1747 res->corruptions_fixed++;
1748 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1749 offset, s->cluster_size);
1750 if (ret < 0) {
1751 return ret;
1753 /* No need to check whether the refcount is now greater than 1:
1754 * This area was just allocated and zeroed, so it can only be
1755 * exactly 1 after inc_refcounts() */
1756 continue;
1758 resize_fail:
1759 res->corruptions++;
1760 *rebuild = true;
1761 fprintf(stderr, "ERROR could not resize image: %s\n",
1762 strerror(-ret));
1763 } else {
1764 res->corruptions++;
1766 continue;
1769 if (offset != 0) {
1770 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1771 offset, s->cluster_size);
1772 if (ret < 0) {
1773 return ret;
1775 if (s->get_refcount(*refcount_table, cluster) != 1) {
1776 fprintf(stderr, "ERROR refcount block %" PRId64
1777 " refcount=%" PRIu64 "\n", i,
1778 s->get_refcount(*refcount_table, cluster));
1779 res->corruptions++;
1780 *rebuild = true;
1785 return 0;
1789 * Calculates an in-memory refcount table.
1791 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1792 BdrvCheckMode fix, bool *rebuild,
1793 void **refcount_table, int64_t *nb_clusters)
1795 BDRVQcow2State *s = bs->opaque;
1796 int64_t i;
1797 QCowSnapshot *sn;
1798 int ret;
1800 if (!*refcount_table) {
1801 int64_t old_size = 0;
1802 ret = realloc_refcount_array(s, refcount_table,
1803 &old_size, *nb_clusters);
1804 if (ret < 0) {
1805 res->check_errors++;
1806 return ret;
1810 /* header */
1811 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1812 0, s->cluster_size);
1813 if (ret < 0) {
1814 return ret;
1817 /* current L1 table */
1818 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1819 s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO);
1820 if (ret < 0) {
1821 return ret;
1824 /* snapshots */
1825 for (i = 0; i < s->nb_snapshots; i++) {
1826 sn = s->snapshots + i;
1827 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1828 sn->l1_table_offset, sn->l1_size, 0);
1829 if (ret < 0) {
1830 return ret;
1833 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1834 s->snapshots_offset, s->snapshots_size);
1835 if (ret < 0) {
1836 return ret;
1839 /* refcount data */
1840 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1841 s->refcount_table_offset,
1842 s->refcount_table_size * sizeof(uint64_t));
1843 if (ret < 0) {
1844 return ret;
1847 return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
1851 * Compares the actual reference count for each cluster in the image against the
1852 * refcount as reported by the refcount structures on-disk.
1854 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1855 BdrvCheckMode fix, bool *rebuild,
1856 int64_t *highest_cluster,
1857 void *refcount_table, int64_t nb_clusters)
1859 BDRVQcow2State *s = bs->opaque;
1860 int64_t i;
1861 uint64_t refcount1, refcount2;
1862 int ret;
1864 for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
1865 ret = qcow2_get_refcount(bs, i, &refcount1);
1866 if (ret < 0) {
1867 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
1868 i, strerror(-ret));
1869 res->check_errors++;
1870 continue;
1873 refcount2 = s->get_refcount(refcount_table, i);
1875 if (refcount1 > 0 || refcount2 > 0) {
1876 *highest_cluster = i;
1879 if (refcount1 != refcount2) {
1880 /* Check if we're allowed to fix the mismatch */
1881 int *num_fixed = NULL;
1882 if (refcount1 == 0) {
1883 *rebuild = true;
1884 } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
1885 num_fixed = &res->leaks_fixed;
1886 } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
1887 num_fixed = &res->corruptions_fixed;
1890 fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
1891 " reference=%" PRIu64 "\n",
1892 num_fixed != NULL ? "Repairing" :
1893 refcount1 < refcount2 ? "ERROR" :
1894 "Leaked",
1895 i, refcount1, refcount2);
1897 if (num_fixed) {
1898 ret = update_refcount(bs, i << s->cluster_bits, 1,
1899 refcount_diff(refcount1, refcount2),
1900 refcount1 > refcount2,
1901 QCOW2_DISCARD_ALWAYS);
1902 if (ret >= 0) {
1903 (*num_fixed)++;
1904 continue;
1908 /* And if we couldn't, print an error */
1909 if (refcount1 < refcount2) {
1910 res->corruptions++;
1911 } else {
1912 res->leaks++;
1919 * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
1920 * the on-disk refcount structures.
1922 * On input, *first_free_cluster tells where to start looking, and need not
1923 * actually be a free cluster; the returned offset will not be before that
1924 * cluster. On output, *first_free_cluster points to the first gap found, even
1925 * if that gap was too small to be used as the returned offset.
1927 * Note that *first_free_cluster is a cluster index whereas the return value is
1928 * an offset.
1930 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
1931 int cluster_count,
1932 void **refcount_table,
1933 int64_t *imrt_nb_clusters,
1934 int64_t *first_free_cluster)
1936 BDRVQcow2State *s = bs->opaque;
1937 int64_t cluster = *first_free_cluster, i;
1938 bool first_gap = true;
1939 int contiguous_free_clusters;
1940 int ret;
1942 /* Starting at *first_free_cluster, find a range of at least cluster_count
1943 * continuously free clusters */
1944 for (contiguous_free_clusters = 0;
1945 cluster < *imrt_nb_clusters &&
1946 contiguous_free_clusters < cluster_count;
1947 cluster++)
1949 if (!s->get_refcount(*refcount_table, cluster)) {
1950 contiguous_free_clusters++;
1951 if (first_gap) {
1952 /* If this is the first free cluster found, update
1953 * *first_free_cluster accordingly */
1954 *first_free_cluster = cluster;
1955 first_gap = false;
1957 } else if (contiguous_free_clusters) {
1958 contiguous_free_clusters = 0;
1962 /* If contiguous_free_clusters is greater than zero, it contains the number
1963 * of continuously free clusters until the current cluster; the first free
1964 * cluster in the current "gap" is therefore
1965 * cluster - contiguous_free_clusters */
1967 /* If no such range could be found, grow the in-memory refcount table
1968 * accordingly to append free clusters at the end of the image */
1969 if (contiguous_free_clusters < cluster_count) {
1970 /* contiguous_free_clusters clusters are already empty at the image end;
1971 * we need cluster_count clusters; therefore, we have to allocate
1972 * cluster_count - contiguous_free_clusters new clusters at the end of
1973 * the image (which is the current value of cluster; note that cluster
1974 * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
1975 * the image end) */
1976 ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
1977 cluster + cluster_count
1978 - contiguous_free_clusters);
1979 if (ret < 0) {
1980 return ret;
1984 /* Go back to the first free cluster */
1985 cluster -= contiguous_free_clusters;
1986 for (i = 0; i < cluster_count; i++) {
1987 s->set_refcount(*refcount_table, cluster + i, 1);
1990 return cluster << s->cluster_bits;
1994 * Creates a new refcount structure based solely on the in-memory information
1995 * given through *refcount_table. All necessary allocations will be reflected
1996 * in that array.
1998 * On success, the old refcount structure is leaked (it will be covered by the
1999 * new refcount structure).
2001 static int rebuild_refcount_structure(BlockDriverState *bs,
2002 BdrvCheckResult *res,
2003 void **refcount_table,
2004 int64_t *nb_clusters)
2006 BDRVQcow2State *s = bs->opaque;
2007 int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2008 int64_t refblock_offset, refblock_start, refblock_index;
2009 uint32_t reftable_size = 0;
2010 uint64_t *on_disk_reftable = NULL;
2011 void *on_disk_refblock;
2012 int ret = 0;
2013 struct {
2014 uint64_t reftable_offset;
2015 uint32_t reftable_clusters;
2016 } QEMU_PACKED reftable_offset_and_clusters;
2018 qcow2_cache_empty(bs, s->refcount_block_cache);
2020 write_refblocks:
2021 for (; cluster < *nb_clusters; cluster++) {
2022 if (!s->get_refcount(*refcount_table, cluster)) {
2023 continue;
2026 refblock_index = cluster >> s->refcount_block_bits;
2027 refblock_start = refblock_index << s->refcount_block_bits;
2029 /* Don't allocate a cluster in a refblock already written to disk */
2030 if (first_free_cluster < refblock_start) {
2031 first_free_cluster = refblock_start;
2033 refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2034 nb_clusters, &first_free_cluster);
2035 if (refblock_offset < 0) {
2036 fprintf(stderr, "ERROR allocating refblock: %s\n",
2037 strerror(-refblock_offset));
2038 res->check_errors++;
2039 ret = refblock_offset;
2040 goto fail;
2043 if (reftable_size <= refblock_index) {
2044 uint32_t old_reftable_size = reftable_size;
2045 uint64_t *new_on_disk_reftable;
2047 reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2048 s->cluster_size) / sizeof(uint64_t);
2049 new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2050 reftable_size *
2051 sizeof(uint64_t));
2052 if (!new_on_disk_reftable) {
2053 res->check_errors++;
2054 ret = -ENOMEM;
2055 goto fail;
2057 on_disk_reftable = new_on_disk_reftable;
2059 memset(on_disk_reftable + old_reftable_size, 0,
2060 (reftable_size - old_reftable_size) * sizeof(uint64_t));
2062 /* The offset we have for the reftable is now no longer valid;
2063 * this will leak that range, but we can easily fix that by running
2064 * a leak-fixing check after this rebuild operation */
2065 reftable_offset = -1;
2067 on_disk_reftable[refblock_index] = refblock_offset;
2069 /* If this is apparently the last refblock (for now), try to squeeze the
2070 * reftable in */
2071 if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2072 reftable_offset < 0)
2074 uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2075 sizeof(uint64_t));
2076 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2077 refcount_table, nb_clusters,
2078 &first_free_cluster);
2079 if (reftable_offset < 0) {
2080 fprintf(stderr, "ERROR allocating reftable: %s\n",
2081 strerror(-reftable_offset));
2082 res->check_errors++;
2083 ret = reftable_offset;
2084 goto fail;
2088 ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2089 s->cluster_size);
2090 if (ret < 0) {
2091 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2092 goto fail;
2095 /* The size of *refcount_table is always cluster-aligned, therefore the
2096 * write operation will not overflow */
2097 on_disk_refblock = (void *)((char *) *refcount_table +
2098 refblock_index * s->cluster_size);
2100 ret = bdrv_write(bs->file->bs, refblock_offset / BDRV_SECTOR_SIZE,
2101 on_disk_refblock, s->cluster_sectors);
2102 if (ret < 0) {
2103 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2104 goto fail;
2107 /* Go to the end of this refblock */
2108 cluster = refblock_start + s->refcount_block_size - 1;
2111 if (reftable_offset < 0) {
2112 uint64_t post_refblock_start, reftable_clusters;
2114 post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2115 reftable_clusters = size_to_clusters(s,
2116 reftable_size * sizeof(uint64_t));
2117 /* Not pretty but simple */
2118 if (first_free_cluster < post_refblock_start) {
2119 first_free_cluster = post_refblock_start;
2121 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2122 refcount_table, nb_clusters,
2123 &first_free_cluster);
2124 if (reftable_offset < 0) {
2125 fprintf(stderr, "ERROR allocating reftable: %s\n",
2126 strerror(-reftable_offset));
2127 res->check_errors++;
2128 ret = reftable_offset;
2129 goto fail;
2132 goto write_refblocks;
2135 assert(on_disk_reftable);
2137 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2138 cpu_to_be64s(&on_disk_reftable[refblock_index]);
2141 ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2142 reftable_size * sizeof(uint64_t));
2143 if (ret < 0) {
2144 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2145 goto fail;
2148 assert(reftable_size < INT_MAX / sizeof(uint64_t));
2149 ret = bdrv_pwrite(bs->file->bs, reftable_offset, on_disk_reftable,
2150 reftable_size * sizeof(uint64_t));
2151 if (ret < 0) {
2152 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2153 goto fail;
2156 /* Enter new reftable into the image header */
2157 cpu_to_be64w(&reftable_offset_and_clusters.reftable_offset,
2158 reftable_offset);
2159 cpu_to_be32w(&reftable_offset_and_clusters.reftable_clusters,
2160 size_to_clusters(s, reftable_size * sizeof(uint64_t)));
2161 ret = bdrv_pwrite_sync(bs->file->bs, offsetof(QCowHeader,
2162 refcount_table_offset),
2163 &reftable_offset_and_clusters,
2164 sizeof(reftable_offset_and_clusters));
2165 if (ret < 0) {
2166 fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2167 goto fail;
2170 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2171 be64_to_cpus(&on_disk_reftable[refblock_index]);
2173 s->refcount_table = on_disk_reftable;
2174 s->refcount_table_offset = reftable_offset;
2175 s->refcount_table_size = reftable_size;
2177 return 0;
2179 fail:
2180 g_free(on_disk_reftable);
2181 return ret;
2185 * Checks an image for refcount consistency.
2187 * Returns 0 if no errors are found, the number of errors in case the image is
2188 * detected as corrupted, and -errno when an internal error occurred.
2190 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2191 BdrvCheckMode fix)
2193 BDRVQcow2State *s = bs->opaque;
2194 BdrvCheckResult pre_compare_res;
2195 int64_t size, highest_cluster, nb_clusters;
2196 void *refcount_table = NULL;
2197 bool rebuild = false;
2198 int ret;
2200 size = bdrv_getlength(bs->file->bs);
2201 if (size < 0) {
2202 res->check_errors++;
2203 return size;
2206 nb_clusters = size_to_clusters(s, size);
2207 if (nb_clusters > INT_MAX) {
2208 res->check_errors++;
2209 return -EFBIG;
2212 res->bfi.total_clusters =
2213 size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2215 ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2216 &nb_clusters);
2217 if (ret < 0) {
2218 goto fail;
2221 /* In case we don't need to rebuild the refcount structure (but want to fix
2222 * something), this function is immediately called again, in which case the
2223 * result should be ignored */
2224 pre_compare_res = *res;
2225 compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2226 nb_clusters);
2228 if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2229 BdrvCheckResult old_res = *res;
2230 int fresh_leaks = 0;
2232 fprintf(stderr, "Rebuilding refcount structure\n");
2233 ret = rebuild_refcount_structure(bs, res, &refcount_table,
2234 &nb_clusters);
2235 if (ret < 0) {
2236 goto fail;
2239 res->corruptions = 0;
2240 res->leaks = 0;
2242 /* Because the old reftable has been exchanged for a new one the
2243 * references have to be recalculated */
2244 rebuild = false;
2245 memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2246 ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2247 &nb_clusters);
2248 if (ret < 0) {
2249 goto fail;
2252 if (fix & BDRV_FIX_LEAKS) {
2253 /* The old refcount structures are now leaked, fix it; the result
2254 * can be ignored, aside from leaks which were introduced by
2255 * rebuild_refcount_structure() that could not be fixed */
2256 BdrvCheckResult saved_res = *res;
2257 *res = (BdrvCheckResult){ 0 };
2259 compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2260 &highest_cluster, refcount_table, nb_clusters);
2261 if (rebuild) {
2262 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2263 "broken\n");
2266 /* Any leaks accounted for here were introduced by
2267 * rebuild_refcount_structure() because that function has created a
2268 * new refcount structure from scratch */
2269 fresh_leaks = res->leaks;
2270 *res = saved_res;
2273 if (res->corruptions < old_res.corruptions) {
2274 res->corruptions_fixed += old_res.corruptions - res->corruptions;
2276 if (res->leaks < old_res.leaks) {
2277 res->leaks_fixed += old_res.leaks - res->leaks;
2279 res->leaks += fresh_leaks;
2280 } else if (fix) {
2281 if (rebuild) {
2282 fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2283 res->check_errors++;
2284 ret = -EIO;
2285 goto fail;
2288 if (res->leaks || res->corruptions) {
2289 *res = pre_compare_res;
2290 compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2291 refcount_table, nb_clusters);
2295 /* check OFLAG_COPIED */
2296 ret = check_oflag_copied(bs, res, fix);
2297 if (ret < 0) {
2298 goto fail;
2301 res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2302 ret = 0;
2304 fail:
2305 g_free(refcount_table);
2307 return ret;
2310 #define overlaps_with(ofs, sz) \
2311 ranges_overlap(offset, size, ofs, sz)
2314 * Checks if the given offset into the image file is actually free to use by
2315 * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2316 * i.e. a sanity check without relying on the refcount tables.
2318 * The ign parameter specifies what checks not to perform (being a bitmask of
2319 * QCow2MetadataOverlap values), i.e., what sections to ignore.
2321 * Returns:
2322 * - 0 if writing to this offset will not affect the mentioned metadata
2323 * - a positive QCow2MetadataOverlap value indicating one overlapping section
2324 * - a negative value (-errno) indicating an error while performing a check,
2325 * e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2327 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2328 int64_t size)
2330 BDRVQcow2State *s = bs->opaque;
2331 int chk = s->overlap_check & ~ign;
2332 int i, j;
2334 if (!size) {
2335 return 0;
2338 if (chk & QCOW2_OL_MAIN_HEADER) {
2339 if (offset < s->cluster_size) {
2340 return QCOW2_OL_MAIN_HEADER;
2344 /* align range to test to cluster boundaries */
2345 size = align_offset(offset_into_cluster(s, offset) + size, s->cluster_size);
2346 offset = start_of_cluster(s, offset);
2348 if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2349 if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2350 return QCOW2_OL_ACTIVE_L1;
2354 if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2355 if (overlaps_with(s->refcount_table_offset,
2356 s->refcount_table_size * sizeof(uint64_t))) {
2357 return QCOW2_OL_REFCOUNT_TABLE;
2361 if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2362 if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2363 return QCOW2_OL_SNAPSHOT_TABLE;
2367 if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2368 for (i = 0; i < s->nb_snapshots; i++) {
2369 if (s->snapshots[i].l1_size &&
2370 overlaps_with(s->snapshots[i].l1_table_offset,
2371 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2372 return QCOW2_OL_INACTIVE_L1;
2377 if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2378 for (i = 0; i < s->l1_size; i++) {
2379 if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2380 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2381 s->cluster_size)) {
2382 return QCOW2_OL_ACTIVE_L2;
2387 if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2388 for (i = 0; i < s->refcount_table_size; i++) {
2389 if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2390 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2391 s->cluster_size)) {
2392 return QCOW2_OL_REFCOUNT_BLOCK;
2397 if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2398 for (i = 0; i < s->nb_snapshots; i++) {
2399 uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2400 uint32_t l1_sz = s->snapshots[i].l1_size;
2401 uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
2402 uint64_t *l1 = g_try_malloc(l1_sz2);
2403 int ret;
2405 if (l1_sz2 && l1 == NULL) {
2406 return -ENOMEM;
2409 ret = bdrv_pread(bs->file->bs, l1_ofs, l1, l1_sz2);
2410 if (ret < 0) {
2411 g_free(l1);
2412 return ret;
2415 for (j = 0; j < l1_sz; j++) {
2416 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2417 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
2418 g_free(l1);
2419 return QCOW2_OL_INACTIVE_L2;
2423 g_free(l1);
2427 return 0;
2430 static const char *metadata_ol_names[] = {
2431 [QCOW2_OL_MAIN_HEADER_BITNR] = "qcow2_header",
2432 [QCOW2_OL_ACTIVE_L1_BITNR] = "active L1 table",
2433 [QCOW2_OL_ACTIVE_L2_BITNR] = "active L2 table",
2434 [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table",
2435 [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block",
2436 [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table",
2437 [QCOW2_OL_INACTIVE_L1_BITNR] = "inactive L1 table",
2438 [QCOW2_OL_INACTIVE_L2_BITNR] = "inactive L2 table",
2442 * First performs a check for metadata overlaps (through
2443 * qcow2_check_metadata_overlap); if that fails with a negative value (error
2444 * while performing a check), that value is returned. If an impending overlap
2445 * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2446 * and -EIO returned.
2448 * Returns 0 if there were neither overlaps nor errors while checking for
2449 * overlaps; or a negative value (-errno) on error.
2451 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
2452 int64_t size)
2454 int ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
2456 if (ret < 0) {
2457 return ret;
2458 } else if (ret > 0) {
2459 int metadata_ol_bitnr = ctz32(ret);
2460 assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2462 qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2463 "write on metadata (overlaps with %s)",
2464 metadata_ol_names[metadata_ol_bitnr]);
2465 return -EIO;
2468 return 0;