2 * PowerPC memory access emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/host-utils.h"
21 #include "exec/helper-proto.h"
23 #include "helper_regs.h"
24 #include "exec/cpu_ldst.h"
28 static inline bool needs_byteswap(const CPUPPCState
*env
)
30 #if defined(TARGET_WORDS_BIGENDIAN)
37 /*****************************************************************************/
38 /* Memory load and stores */
40 static inline target_ulong
addr_add(CPUPPCState
*env
, target_ulong addr
,
43 #if defined(TARGET_PPC64)
44 if (!msr_is_64bit(env
, env
->msr
)) {
45 return (uint32_t)(addr
+ arg
);
53 void helper_lmw(CPUPPCState
*env
, target_ulong addr
, uint32_t reg
)
55 for (; reg
< 32; reg
++) {
56 if (needs_byteswap(env
)) {
57 env
->gpr
[reg
] = bswap32(cpu_ldl_data(env
, addr
));
59 env
->gpr
[reg
] = cpu_ldl_data(env
, addr
);
61 addr
= addr_add(env
, addr
, 4);
65 void helper_stmw(CPUPPCState
*env
, target_ulong addr
, uint32_t reg
)
67 for (; reg
< 32; reg
++) {
68 if (needs_byteswap(env
)) {
69 cpu_stl_data(env
, addr
, bswap32((uint32_t)env
->gpr
[reg
]));
71 cpu_stl_data(env
, addr
, (uint32_t)env
->gpr
[reg
]);
73 addr
= addr_add(env
, addr
, 4);
77 void helper_lsw(CPUPPCState
*env
, target_ulong addr
, uint32_t nb
, uint32_t reg
)
81 for (; nb
> 3; nb
-= 4) {
82 env
->gpr
[reg
] = cpu_ldl_data(env
, addr
);
84 addr
= addr_add(env
, addr
, 4);
86 if (unlikely(nb
> 0)) {
88 for (sh
= 24; nb
> 0; nb
--, sh
-= 8) {
89 env
->gpr
[reg
] |= cpu_ldub_data(env
, addr
) << sh
;
90 addr
= addr_add(env
, addr
, 1);
94 /* PPC32 specification says we must generate an exception if
95 * rA is in the range of registers to be loaded.
96 * In an other hand, IBM says this is valid, but rA won't be loaded.
97 * For now, I'll follow the spec...
99 void helper_lswx(CPUPPCState
*env
, target_ulong addr
, uint32_t reg
,
100 uint32_t ra
, uint32_t rb
)
102 if (likely(xer_bc
!= 0)) {
103 int num_used_regs
= (xer_bc
+ 3) / 4;
104 if (unlikely((ra
!= 0 && reg
< ra
&& (reg
+ num_used_regs
) > ra
) ||
105 (reg
< rb
&& (reg
+ num_used_regs
) > rb
))) {
106 helper_raise_exception_err(env
, POWERPC_EXCP_PROGRAM
,
108 POWERPC_EXCP_INVAL_LSWX
);
110 helper_lsw(env
, addr
, xer_bc
, reg
);
115 void helper_stsw(CPUPPCState
*env
, target_ulong addr
, uint32_t nb
,
120 for (; nb
> 3; nb
-= 4) {
121 cpu_stl_data(env
, addr
, env
->gpr
[reg
]);
122 reg
= (reg
+ 1) % 32;
123 addr
= addr_add(env
, addr
, 4);
125 if (unlikely(nb
> 0)) {
126 for (sh
= 24; nb
> 0; nb
--, sh
-= 8) {
127 cpu_stb_data(env
, addr
, (env
->gpr
[reg
] >> sh
) & 0xFF);
128 addr
= addr_add(env
, addr
, 1);
133 static void do_dcbz(CPUPPCState
*env
, target_ulong addr
, int dcache_line_size
)
137 addr
&= ~(dcache_line_size
- 1);
138 for (i
= 0; i
< dcache_line_size
; i
+= 4) {
139 cpu_stl_data(env
, addr
+ i
, 0);
141 if (env
->reserve_addr
== addr
) {
142 env
->reserve_addr
= (target_ulong
)-1ULL;
146 void helper_dcbz(CPUPPCState
*env
, target_ulong addr
, uint32_t is_dcbzl
)
148 int dcbz_size
= env
->dcache_line_size
;
150 #if defined(TARGET_PPC64)
152 (env
->excp_model
== POWERPC_EXCP_970
) &&
153 ((env
->spr
[SPR_970_HID5
] >> 7) & 0x3) == 1) {
158 /* XXX add e500mc support */
160 do_dcbz(env
, addr
, dcbz_size
);
163 void helper_icbi(CPUPPCState
*env
, target_ulong addr
)
165 addr
&= ~(env
->dcache_line_size
- 1);
166 /* Invalidate one cache line :
167 * PowerPC specification says this is to be treated like a load
168 * (not a fetch) by the MMU. To be sure it will be so,
169 * do the load "by hand".
171 cpu_ldl_data(env
, addr
);
174 /* XXX: to be tested */
175 target_ulong
helper_lscbx(CPUPPCState
*env
, target_ulong addr
, uint32_t reg
,
176 uint32_t ra
, uint32_t rb
)
181 for (i
= 0; i
< xer_bc
; i
++) {
182 c
= cpu_ldub_data(env
, addr
);
183 addr
= addr_add(env
, addr
, 1);
184 /* ra (if not 0) and rb are never modified */
185 if (likely(reg
!= rb
&& (ra
== 0 || reg
!= ra
))) {
186 env
->gpr
[reg
] = (env
->gpr
[reg
] & ~(0xFF << d
)) | (c
<< d
);
188 if (unlikely(c
== xer_cmp
)) {
191 if (likely(d
!= 0)) {
202 /*****************************************************************************/
203 /* Altivec extension helpers */
204 #if defined(HOST_WORDS_BIGENDIAN)
212 /* We use msr_le to determine index ordering in a vector. However,
213 byteswapping is not simply controlled by msr_le. We also need to take
214 into account endianness of the target. This is done for the little-endian
215 PPC64 user-mode target. */
217 #define LVE(name, access, swap, element) \
218 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
221 size_t n_elems = ARRAY_SIZE(r->element); \
222 int adjust = HI_IDX*(n_elems - 1); \
223 int sh = sizeof(r->element[0]) >> 1; \
224 int index = (addr & 0xf) >> sh; \
226 index = n_elems - index - 1; \
229 if (needs_byteswap(env)) { \
230 r->element[LO_IDX ? index : (adjust - index)] = \
231 swap(access(env, addr)); \
233 r->element[LO_IDX ? index : (adjust - index)] = \
238 LVE(lvebx
, cpu_ldub_data
, I
, u8
)
239 LVE(lvehx
, cpu_lduw_data
, bswap16
, u16
)
240 LVE(lvewx
, cpu_ldl_data
, bswap32
, u32
)
244 #define STVE(name, access, swap, element) \
245 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
248 size_t n_elems = ARRAY_SIZE(r->element); \
249 int adjust = HI_IDX * (n_elems - 1); \
250 int sh = sizeof(r->element[0]) >> 1; \
251 int index = (addr & 0xf) >> sh; \
253 index = n_elems - index - 1; \
256 if (needs_byteswap(env)) { \
257 access(env, addr, swap(r->element[LO_IDX ? index : \
258 (adjust - index)])); \
260 access(env, addr, r->element[LO_IDX ? index : \
261 (adjust - index)]); \
265 STVE(stvebx
, cpu_stb_data
, I
, u8
)
266 STVE(stvehx
, cpu_stw_data
, bswap16
, u16
)
267 STVE(stvewx
, cpu_stl_data
, bswap32
, u32
)
274 void helper_tbegin(CPUPPCState
*env
)
276 /* As a degenerate implementation, always fail tbegin. The reason
277 * given is "Nesting overflow". The "persistent" bit is set,
278 * providing a hint to the error handler to not retry. The TFIAR
279 * captures the address of the failure, which is this tbegin
280 * instruction. Instruction execution will continue with the
281 * next instruction in memory, which is precisely what we want.
284 env
->spr
[SPR_TEXASR
] =
285 (1ULL << TEXASR_FAILURE_PERSISTENT
) |
286 (1ULL << TEXASR_NESTING_OVERFLOW
) |
287 (msr_hv
<< TEXASR_PRIVILEGE_HV
) |
288 (msr_pr
<< TEXASR_PRIVILEGE_PR
) |
289 (1ULL << TEXASR_FAILURE_SUMMARY
) |
290 (1ULL << TEXASR_TFIAR_EXACT
);
291 env
->spr
[SPR_TFIAR
] = env
->nip
| (msr_hv
<< 1) | msr_pr
;
292 env
->spr
[SPR_TFHAR
] = env
->nip
+ 4;
293 env
->crf
[0] = 0xB; /* 0b1010 = transaction failure */