kvm-all: trace: strerror fixup
[qemu/ar7.git] / block / io.c
blob343ff1f233909a7910d897457c0c59fb49d1d54f
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/block_int.h"
30 #include "block/throttle-groups.h"
31 #include "qemu/error-report.h"
33 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
35 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
36 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
37 BlockCompletionFunc *cb, void *opaque);
38 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
39 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
40 BlockCompletionFunc *cb, void *opaque);
41 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
42 int64_t sector_num, int nb_sectors,
43 QEMUIOVector *iov);
44 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
45 int64_t sector_num, int nb_sectors,
46 QEMUIOVector *iov);
47 static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
48 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
49 BdrvRequestFlags flags);
50 static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
51 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
52 BdrvRequestFlags flags);
53 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
54 int64_t sector_num,
55 QEMUIOVector *qiov,
56 int nb_sectors,
57 BdrvRequestFlags flags,
58 BlockCompletionFunc *cb,
59 void *opaque,
60 bool is_write);
61 static void coroutine_fn bdrv_co_do_rw(void *opaque);
62 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
63 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags);
65 /* throttling disk I/O limits */
66 void bdrv_set_io_limits(BlockDriverState *bs,
67 ThrottleConfig *cfg)
69 int i;
71 throttle_group_config(bs, cfg);
73 for (i = 0; i < 2; i++) {
74 qemu_co_enter_next(&bs->throttled_reqs[i]);
78 /* this function drain all the throttled IOs */
79 static bool bdrv_start_throttled_reqs(BlockDriverState *bs)
81 bool drained = false;
82 bool enabled = bs->io_limits_enabled;
83 int i;
85 bs->io_limits_enabled = false;
87 for (i = 0; i < 2; i++) {
88 while (qemu_co_enter_next(&bs->throttled_reqs[i])) {
89 drained = true;
93 bs->io_limits_enabled = enabled;
95 return drained;
98 void bdrv_io_limits_disable(BlockDriverState *bs)
100 bs->io_limits_enabled = false;
101 bdrv_start_throttled_reqs(bs);
102 throttle_group_unregister_bs(bs);
105 /* should be called before bdrv_set_io_limits if a limit is set */
106 void bdrv_io_limits_enable(BlockDriverState *bs, const char *group)
108 assert(!bs->io_limits_enabled);
109 throttle_group_register_bs(bs, group);
110 bs->io_limits_enabled = true;
113 void bdrv_io_limits_update_group(BlockDriverState *bs, const char *group)
115 /* this bs is not part of any group */
116 if (!bs->throttle_state) {
117 return;
120 /* this bs is a part of the same group than the one we want */
121 if (!g_strcmp0(throttle_group_get_name(bs), group)) {
122 return;
125 /* need to change the group this bs belong to */
126 bdrv_io_limits_disable(bs);
127 bdrv_io_limits_enable(bs, group);
130 void bdrv_setup_io_funcs(BlockDriver *bdrv)
132 /* Block drivers without coroutine functions need emulation */
133 if (!bdrv->bdrv_co_readv) {
134 bdrv->bdrv_co_readv = bdrv_co_readv_em;
135 bdrv->bdrv_co_writev = bdrv_co_writev_em;
137 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
138 * the block driver lacks aio we need to emulate that too.
140 if (!bdrv->bdrv_aio_readv) {
141 /* add AIO emulation layer */
142 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
143 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
148 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
150 BlockDriver *drv = bs->drv;
151 Error *local_err = NULL;
153 memset(&bs->bl, 0, sizeof(bs->bl));
155 if (!drv) {
156 return;
159 /* Take some limits from the children as a default */
160 if (bs->file) {
161 bdrv_refresh_limits(bs->file->bs, &local_err);
162 if (local_err) {
163 error_propagate(errp, local_err);
164 return;
166 bs->bl.opt_transfer_length = bs->file->bs->bl.opt_transfer_length;
167 bs->bl.max_transfer_length = bs->file->bs->bl.max_transfer_length;
168 bs->bl.min_mem_alignment = bs->file->bs->bl.min_mem_alignment;
169 bs->bl.opt_mem_alignment = bs->file->bs->bl.opt_mem_alignment;
170 bs->bl.max_iov = bs->file->bs->bl.max_iov;
171 } else {
172 bs->bl.min_mem_alignment = 512;
173 bs->bl.opt_mem_alignment = getpagesize();
175 /* Safe default since most protocols use readv()/writev()/etc */
176 bs->bl.max_iov = IOV_MAX;
179 if (bs->backing) {
180 bdrv_refresh_limits(bs->backing->bs, &local_err);
181 if (local_err) {
182 error_propagate(errp, local_err);
183 return;
185 bs->bl.opt_transfer_length =
186 MAX(bs->bl.opt_transfer_length,
187 bs->backing->bs->bl.opt_transfer_length);
188 bs->bl.max_transfer_length =
189 MIN_NON_ZERO(bs->bl.max_transfer_length,
190 bs->backing->bs->bl.max_transfer_length);
191 bs->bl.opt_mem_alignment =
192 MAX(bs->bl.opt_mem_alignment,
193 bs->backing->bs->bl.opt_mem_alignment);
194 bs->bl.min_mem_alignment =
195 MAX(bs->bl.min_mem_alignment,
196 bs->backing->bs->bl.min_mem_alignment);
197 bs->bl.max_iov =
198 MIN(bs->bl.max_iov,
199 bs->backing->bs->bl.max_iov);
202 /* Then let the driver override it */
203 if (drv->bdrv_refresh_limits) {
204 drv->bdrv_refresh_limits(bs, errp);
209 * The copy-on-read flag is actually a reference count so multiple users may
210 * use the feature without worrying about clobbering its previous state.
211 * Copy-on-read stays enabled until all users have called to disable it.
213 void bdrv_enable_copy_on_read(BlockDriverState *bs)
215 bs->copy_on_read++;
218 void bdrv_disable_copy_on_read(BlockDriverState *bs)
220 assert(bs->copy_on_read > 0);
221 bs->copy_on_read--;
224 /* Check if any requests are in-flight (including throttled requests) */
225 bool bdrv_requests_pending(BlockDriverState *bs)
227 BdrvChild *child;
229 if (!QLIST_EMPTY(&bs->tracked_requests)) {
230 return true;
232 if (!qemu_co_queue_empty(&bs->throttled_reqs[0])) {
233 return true;
235 if (!qemu_co_queue_empty(&bs->throttled_reqs[1])) {
236 return true;
239 QLIST_FOREACH(child, &bs->children, next) {
240 if (bdrv_requests_pending(child->bs)) {
241 return true;
245 return false;
248 static void bdrv_drain_recurse(BlockDriverState *bs)
250 BdrvChild *child;
252 if (bs->drv && bs->drv->bdrv_drain) {
253 bs->drv->bdrv_drain(bs);
255 QLIST_FOREACH(child, &bs->children, next) {
256 bdrv_drain_recurse(child->bs);
261 * Wait for pending requests to complete on a single BlockDriverState subtree,
262 * and suspend block driver's internal I/O until next request arrives.
264 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
265 * AioContext.
267 * Only this BlockDriverState's AioContext is run, so in-flight requests must
268 * not depend on events in other AioContexts. In that case, use
269 * bdrv_drain_all() instead.
271 void bdrv_drain(BlockDriverState *bs)
273 bool busy = true;
275 bdrv_drain_recurse(bs);
276 while (busy) {
277 /* Keep iterating */
278 bdrv_flush_io_queue(bs);
279 busy = bdrv_requests_pending(bs);
280 busy |= aio_poll(bdrv_get_aio_context(bs), busy);
285 * Wait for pending requests to complete across all BlockDriverStates
287 * This function does not flush data to disk, use bdrv_flush_all() for that
288 * after calling this function.
290 void bdrv_drain_all(void)
292 /* Always run first iteration so any pending completion BHs run */
293 bool busy = true;
294 BlockDriverState *bs = NULL;
295 GSList *aio_ctxs = NULL, *ctx;
297 while ((bs = bdrv_next(bs))) {
298 AioContext *aio_context = bdrv_get_aio_context(bs);
300 aio_context_acquire(aio_context);
301 if (bs->job) {
302 block_job_pause(bs->job);
304 aio_context_release(aio_context);
306 if (!g_slist_find(aio_ctxs, aio_context)) {
307 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
311 /* Note that completion of an asynchronous I/O operation can trigger any
312 * number of other I/O operations on other devices---for example a
313 * coroutine can submit an I/O request to another device in response to
314 * request completion. Therefore we must keep looping until there was no
315 * more activity rather than simply draining each device independently.
317 while (busy) {
318 busy = false;
320 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
321 AioContext *aio_context = ctx->data;
322 bs = NULL;
324 aio_context_acquire(aio_context);
325 while ((bs = bdrv_next(bs))) {
326 if (aio_context == bdrv_get_aio_context(bs)) {
327 bdrv_flush_io_queue(bs);
328 if (bdrv_requests_pending(bs)) {
329 busy = true;
330 aio_poll(aio_context, busy);
334 busy |= aio_poll(aio_context, false);
335 aio_context_release(aio_context);
339 bs = NULL;
340 while ((bs = bdrv_next(bs))) {
341 AioContext *aio_context = bdrv_get_aio_context(bs);
343 aio_context_acquire(aio_context);
344 if (bs->job) {
345 block_job_resume(bs->job);
347 aio_context_release(aio_context);
349 g_slist_free(aio_ctxs);
353 * Remove an active request from the tracked requests list
355 * This function should be called when a tracked request is completing.
357 static void tracked_request_end(BdrvTrackedRequest *req)
359 if (req->serialising) {
360 req->bs->serialising_in_flight--;
363 QLIST_REMOVE(req, list);
364 qemu_co_queue_restart_all(&req->wait_queue);
368 * Add an active request to the tracked requests list
370 static void tracked_request_begin(BdrvTrackedRequest *req,
371 BlockDriverState *bs,
372 int64_t offset,
373 unsigned int bytes,
374 enum BdrvTrackedRequestType type)
376 *req = (BdrvTrackedRequest){
377 .bs = bs,
378 .offset = offset,
379 .bytes = bytes,
380 .type = type,
381 .co = qemu_coroutine_self(),
382 .serialising = false,
383 .overlap_offset = offset,
384 .overlap_bytes = bytes,
387 qemu_co_queue_init(&req->wait_queue);
389 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
392 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
394 int64_t overlap_offset = req->offset & ~(align - 1);
395 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
396 - overlap_offset;
398 if (!req->serialising) {
399 req->bs->serialising_in_flight++;
400 req->serialising = true;
403 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
404 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
408 * Round a region to cluster boundaries
410 void bdrv_round_to_clusters(BlockDriverState *bs,
411 int64_t sector_num, int nb_sectors,
412 int64_t *cluster_sector_num,
413 int *cluster_nb_sectors)
415 BlockDriverInfo bdi;
417 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
418 *cluster_sector_num = sector_num;
419 *cluster_nb_sectors = nb_sectors;
420 } else {
421 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
422 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
423 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
424 nb_sectors, c);
428 static int bdrv_get_cluster_size(BlockDriverState *bs)
430 BlockDriverInfo bdi;
431 int ret;
433 ret = bdrv_get_info(bs, &bdi);
434 if (ret < 0 || bdi.cluster_size == 0) {
435 return bs->request_alignment;
436 } else {
437 return bdi.cluster_size;
441 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
442 int64_t offset, unsigned int bytes)
444 /* aaaa bbbb */
445 if (offset >= req->overlap_offset + req->overlap_bytes) {
446 return false;
448 /* bbbb aaaa */
449 if (req->overlap_offset >= offset + bytes) {
450 return false;
452 return true;
455 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
457 BlockDriverState *bs = self->bs;
458 BdrvTrackedRequest *req;
459 bool retry;
460 bool waited = false;
462 if (!bs->serialising_in_flight) {
463 return false;
466 do {
467 retry = false;
468 QLIST_FOREACH(req, &bs->tracked_requests, list) {
469 if (req == self || (!req->serialising && !self->serialising)) {
470 continue;
472 if (tracked_request_overlaps(req, self->overlap_offset,
473 self->overlap_bytes))
475 /* Hitting this means there was a reentrant request, for
476 * example, a block driver issuing nested requests. This must
477 * never happen since it means deadlock.
479 assert(qemu_coroutine_self() != req->co);
481 /* If the request is already (indirectly) waiting for us, or
482 * will wait for us as soon as it wakes up, then just go on
483 * (instead of producing a deadlock in the former case). */
484 if (!req->waiting_for) {
485 self->waiting_for = req;
486 qemu_co_queue_wait(&req->wait_queue);
487 self->waiting_for = NULL;
488 retry = true;
489 waited = true;
490 break;
494 } while (retry);
496 return waited;
499 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
500 size_t size)
502 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
503 return -EIO;
506 if (!bdrv_is_inserted(bs)) {
507 return -ENOMEDIUM;
510 if (offset < 0) {
511 return -EIO;
514 return 0;
517 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
518 int nb_sectors)
520 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
521 return -EIO;
524 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
525 nb_sectors * BDRV_SECTOR_SIZE);
528 typedef struct RwCo {
529 BlockDriverState *bs;
530 int64_t offset;
531 QEMUIOVector *qiov;
532 bool is_write;
533 int ret;
534 BdrvRequestFlags flags;
535 } RwCo;
537 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
539 RwCo *rwco = opaque;
541 if (!rwco->is_write) {
542 rwco->ret = bdrv_co_do_preadv(rwco->bs, rwco->offset,
543 rwco->qiov->size, rwco->qiov,
544 rwco->flags);
545 } else {
546 rwco->ret = bdrv_co_do_pwritev(rwco->bs, rwco->offset,
547 rwco->qiov->size, rwco->qiov,
548 rwco->flags);
553 * Process a vectored synchronous request using coroutines
555 static int bdrv_prwv_co(BlockDriverState *bs, int64_t offset,
556 QEMUIOVector *qiov, bool is_write,
557 BdrvRequestFlags flags)
559 Coroutine *co;
560 RwCo rwco = {
561 .bs = bs,
562 .offset = offset,
563 .qiov = qiov,
564 .is_write = is_write,
565 .ret = NOT_DONE,
566 .flags = flags,
570 * In sync call context, when the vcpu is blocked, this throttling timer
571 * will not fire; so the I/O throttling function has to be disabled here
572 * if it has been enabled.
574 if (bs->io_limits_enabled) {
575 fprintf(stderr, "Disabling I/O throttling on '%s' due "
576 "to synchronous I/O.\n", bdrv_get_device_name(bs));
577 bdrv_io_limits_disable(bs);
580 if (qemu_in_coroutine()) {
581 /* Fast-path if already in coroutine context */
582 bdrv_rw_co_entry(&rwco);
583 } else {
584 AioContext *aio_context = bdrv_get_aio_context(bs);
586 co = qemu_coroutine_create(bdrv_rw_co_entry);
587 qemu_coroutine_enter(co, &rwco);
588 while (rwco.ret == NOT_DONE) {
589 aio_poll(aio_context, true);
592 return rwco.ret;
596 * Process a synchronous request using coroutines
598 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
599 int nb_sectors, bool is_write, BdrvRequestFlags flags)
601 QEMUIOVector qiov;
602 struct iovec iov = {
603 .iov_base = (void *)buf,
604 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
607 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
608 return -EINVAL;
611 qemu_iovec_init_external(&qiov, &iov, 1);
612 return bdrv_prwv_co(bs, sector_num << BDRV_SECTOR_BITS,
613 &qiov, is_write, flags);
616 /* return < 0 if error. See bdrv_write() for the return codes */
617 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
618 uint8_t *buf, int nb_sectors)
620 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false, 0);
623 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
624 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
625 uint8_t *buf, int nb_sectors)
627 bool enabled;
628 int ret;
630 enabled = bs->io_limits_enabled;
631 bs->io_limits_enabled = false;
632 ret = bdrv_read(bs, sector_num, buf, nb_sectors);
633 bs->io_limits_enabled = enabled;
634 return ret;
637 /* Return < 0 if error. Important errors are:
638 -EIO generic I/O error (may happen for all errors)
639 -ENOMEDIUM No media inserted.
640 -EINVAL Invalid sector number or nb_sectors
641 -EACCES Trying to write a read-only device
643 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
644 const uint8_t *buf, int nb_sectors)
646 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
649 int bdrv_write_zeroes(BlockDriverState *bs, int64_t sector_num,
650 int nb_sectors, BdrvRequestFlags flags)
652 return bdrv_rw_co(bs, sector_num, NULL, nb_sectors, true,
653 BDRV_REQ_ZERO_WRITE | flags);
657 * Completely zero out a block device with the help of bdrv_write_zeroes.
658 * The operation is sped up by checking the block status and only writing
659 * zeroes to the device if they currently do not return zeroes. Optional
660 * flags are passed through to bdrv_write_zeroes (e.g. BDRV_REQ_MAY_UNMAP).
662 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
664 int bdrv_make_zero(BlockDriverState *bs, BdrvRequestFlags flags)
666 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
667 BlockDriverState *file;
668 int n;
670 target_sectors = bdrv_nb_sectors(bs);
671 if (target_sectors < 0) {
672 return target_sectors;
675 for (;;) {
676 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
677 if (nb_sectors <= 0) {
678 return 0;
680 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
681 if (ret < 0) {
682 error_report("error getting block status at sector %" PRId64 ": %s",
683 sector_num, strerror(-ret));
684 return ret;
686 if (ret & BDRV_BLOCK_ZERO) {
687 sector_num += n;
688 continue;
690 ret = bdrv_write_zeroes(bs, sector_num, n, flags);
691 if (ret < 0) {
692 error_report("error writing zeroes at sector %" PRId64 ": %s",
693 sector_num, strerror(-ret));
694 return ret;
696 sector_num += n;
700 int bdrv_pread(BlockDriverState *bs, int64_t offset, void *buf, int bytes)
702 QEMUIOVector qiov;
703 struct iovec iov = {
704 .iov_base = (void *)buf,
705 .iov_len = bytes,
707 int ret;
709 if (bytes < 0) {
710 return -EINVAL;
713 qemu_iovec_init_external(&qiov, &iov, 1);
714 ret = bdrv_prwv_co(bs, offset, &qiov, false, 0);
715 if (ret < 0) {
716 return ret;
719 return bytes;
722 int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov)
724 int ret;
726 ret = bdrv_prwv_co(bs, offset, qiov, true, 0);
727 if (ret < 0) {
728 return ret;
731 return qiov->size;
734 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
735 const void *buf, int bytes)
737 QEMUIOVector qiov;
738 struct iovec iov = {
739 .iov_base = (void *) buf,
740 .iov_len = bytes,
743 if (bytes < 0) {
744 return -EINVAL;
747 qemu_iovec_init_external(&qiov, &iov, 1);
748 return bdrv_pwritev(bs, offset, &qiov);
752 * Writes to the file and ensures that no writes are reordered across this
753 * request (acts as a barrier)
755 * Returns 0 on success, -errno in error cases.
757 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
758 const void *buf, int count)
760 int ret;
762 ret = bdrv_pwrite(bs, offset, buf, count);
763 if (ret < 0) {
764 return ret;
767 /* No flush needed for cache modes that already do it */
768 if (bs->enable_write_cache) {
769 bdrv_flush(bs);
772 return 0;
775 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
776 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
778 /* Perform I/O through a temporary buffer so that users who scribble over
779 * their read buffer while the operation is in progress do not end up
780 * modifying the image file. This is critical for zero-copy guest I/O
781 * where anything might happen inside guest memory.
783 void *bounce_buffer;
785 BlockDriver *drv = bs->drv;
786 struct iovec iov;
787 QEMUIOVector bounce_qiov;
788 int64_t cluster_sector_num;
789 int cluster_nb_sectors;
790 size_t skip_bytes;
791 int ret;
793 /* Cover entire cluster so no additional backing file I/O is required when
794 * allocating cluster in the image file.
796 bdrv_round_to_clusters(bs, sector_num, nb_sectors,
797 &cluster_sector_num, &cluster_nb_sectors);
799 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
800 cluster_sector_num, cluster_nb_sectors);
802 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
803 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
804 if (bounce_buffer == NULL) {
805 ret = -ENOMEM;
806 goto err;
809 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
811 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
812 &bounce_qiov);
813 if (ret < 0) {
814 goto err;
817 if (drv->bdrv_co_write_zeroes &&
818 buffer_is_zero(bounce_buffer, iov.iov_len)) {
819 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
820 cluster_nb_sectors, 0);
821 } else {
822 /* This does not change the data on the disk, it is not necessary
823 * to flush even in cache=writethrough mode.
825 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
826 &bounce_qiov);
829 if (ret < 0) {
830 /* It might be okay to ignore write errors for guest requests. If this
831 * is a deliberate copy-on-read then we don't want to ignore the error.
832 * Simply report it in all cases.
834 goto err;
837 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
838 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
839 nb_sectors * BDRV_SECTOR_SIZE);
841 err:
842 qemu_vfree(bounce_buffer);
843 return ret;
847 * Forwards an already correctly aligned request to the BlockDriver. This
848 * handles copy on read and zeroing after EOF; any other features must be
849 * implemented by the caller.
851 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
852 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
853 int64_t align, QEMUIOVector *qiov, int flags)
855 BlockDriver *drv = bs->drv;
856 int ret;
858 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
859 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
861 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
862 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
863 assert(!qiov || bytes == qiov->size);
865 /* Handle Copy on Read and associated serialisation */
866 if (flags & BDRV_REQ_COPY_ON_READ) {
867 /* If we touch the same cluster it counts as an overlap. This
868 * guarantees that allocating writes will be serialized and not race
869 * with each other for the same cluster. For example, in copy-on-read
870 * it ensures that the CoR read and write operations are atomic and
871 * guest writes cannot interleave between them. */
872 mark_request_serialising(req, bdrv_get_cluster_size(bs));
875 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
876 wait_serialising_requests(req);
879 if (flags & BDRV_REQ_COPY_ON_READ) {
880 int pnum;
882 ret = bdrv_is_allocated(bs, sector_num, nb_sectors, &pnum);
883 if (ret < 0) {
884 goto out;
887 if (!ret || pnum != nb_sectors) {
888 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
889 goto out;
893 /* Forward the request to the BlockDriver */
894 if (!bs->zero_beyond_eof) {
895 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
896 } else {
897 /* Read zeros after EOF */
898 int64_t total_sectors, max_nb_sectors;
900 total_sectors = bdrv_nb_sectors(bs);
901 if (total_sectors < 0) {
902 ret = total_sectors;
903 goto out;
906 max_nb_sectors = ROUND_UP(MAX(0, total_sectors - sector_num),
907 align >> BDRV_SECTOR_BITS);
908 if (nb_sectors < max_nb_sectors) {
909 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
910 } else if (max_nb_sectors > 0) {
911 QEMUIOVector local_qiov;
913 qemu_iovec_init(&local_qiov, qiov->niov);
914 qemu_iovec_concat(&local_qiov, qiov, 0,
915 max_nb_sectors * BDRV_SECTOR_SIZE);
917 ret = drv->bdrv_co_readv(bs, sector_num, max_nb_sectors,
918 &local_qiov);
920 qemu_iovec_destroy(&local_qiov);
921 } else {
922 ret = 0;
925 /* Reading beyond end of file is supposed to produce zeroes */
926 if (ret == 0 && total_sectors < sector_num + nb_sectors) {
927 uint64_t offset = MAX(0, total_sectors - sector_num);
928 uint64_t bytes = (sector_num + nb_sectors - offset) *
929 BDRV_SECTOR_SIZE;
930 qemu_iovec_memset(qiov, offset * BDRV_SECTOR_SIZE, 0, bytes);
934 out:
935 return ret;
939 * Handle a read request in coroutine context
941 static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
942 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
943 BdrvRequestFlags flags)
945 BlockDriver *drv = bs->drv;
946 BdrvTrackedRequest req;
948 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
949 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
950 uint8_t *head_buf = NULL;
951 uint8_t *tail_buf = NULL;
952 QEMUIOVector local_qiov;
953 bool use_local_qiov = false;
954 int ret;
956 if (!drv) {
957 return -ENOMEDIUM;
960 ret = bdrv_check_byte_request(bs, offset, bytes);
961 if (ret < 0) {
962 return ret;
965 /* Don't do copy-on-read if we read data before write operation */
966 if (bs->copy_on_read && !(flags & BDRV_REQ_NO_SERIALISING)) {
967 flags |= BDRV_REQ_COPY_ON_READ;
970 /* throttling disk I/O */
971 if (bs->io_limits_enabled) {
972 throttle_group_co_io_limits_intercept(bs, bytes, false);
975 /* Align read if necessary by padding qiov */
976 if (offset & (align - 1)) {
977 head_buf = qemu_blockalign(bs, align);
978 qemu_iovec_init(&local_qiov, qiov->niov + 2);
979 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
980 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
981 use_local_qiov = true;
983 bytes += offset & (align - 1);
984 offset = offset & ~(align - 1);
987 if ((offset + bytes) & (align - 1)) {
988 if (!use_local_qiov) {
989 qemu_iovec_init(&local_qiov, qiov->niov + 1);
990 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
991 use_local_qiov = true;
993 tail_buf = qemu_blockalign(bs, align);
994 qemu_iovec_add(&local_qiov, tail_buf,
995 align - ((offset + bytes) & (align - 1)));
997 bytes = ROUND_UP(bytes, align);
1000 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1001 ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
1002 use_local_qiov ? &local_qiov : qiov,
1003 flags);
1004 tracked_request_end(&req);
1006 if (use_local_qiov) {
1007 qemu_iovec_destroy(&local_qiov);
1008 qemu_vfree(head_buf);
1009 qemu_vfree(tail_buf);
1012 return ret;
1015 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
1016 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1017 BdrvRequestFlags flags)
1019 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1020 return -EINVAL;
1023 return bdrv_co_do_preadv(bs, sector_num << BDRV_SECTOR_BITS,
1024 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1027 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1028 int nb_sectors, QEMUIOVector *qiov)
1030 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1032 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1035 int coroutine_fn bdrv_co_readv_no_serialising(BlockDriverState *bs,
1036 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1038 trace_bdrv_co_readv_no_serialising(bs, sector_num, nb_sectors);
1040 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1041 BDRV_REQ_NO_SERIALISING);
1044 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1045 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1047 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1049 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1050 BDRV_REQ_COPY_ON_READ);
1053 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER 32768
1055 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1056 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags)
1058 BlockDriver *drv = bs->drv;
1059 QEMUIOVector qiov;
1060 struct iovec iov = {0};
1061 int ret = 0;
1063 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_write_zeroes,
1064 BDRV_REQUEST_MAX_SECTORS);
1066 while (nb_sectors > 0 && !ret) {
1067 int num = nb_sectors;
1069 /* Align request. Block drivers can expect the "bulk" of the request
1070 * to be aligned.
1072 if (bs->bl.write_zeroes_alignment
1073 && num > bs->bl.write_zeroes_alignment) {
1074 if (sector_num % bs->bl.write_zeroes_alignment != 0) {
1075 /* Make a small request up to the first aligned sector. */
1076 num = bs->bl.write_zeroes_alignment;
1077 num -= sector_num % bs->bl.write_zeroes_alignment;
1078 } else if ((sector_num + num) % bs->bl.write_zeroes_alignment != 0) {
1079 /* Shorten the request to the last aligned sector. num cannot
1080 * underflow because num > bs->bl.write_zeroes_alignment.
1082 num -= (sector_num + num) % bs->bl.write_zeroes_alignment;
1086 /* limit request size */
1087 if (num > max_write_zeroes) {
1088 num = max_write_zeroes;
1091 ret = -ENOTSUP;
1092 /* First try the efficient write zeroes operation */
1093 if (drv->bdrv_co_write_zeroes) {
1094 ret = drv->bdrv_co_write_zeroes(bs, sector_num, num, flags);
1097 if (ret == -ENOTSUP) {
1098 /* Fall back to bounce buffer if write zeroes is unsupported */
1099 int max_xfer_len = MIN_NON_ZERO(bs->bl.max_transfer_length,
1100 MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1101 num = MIN(num, max_xfer_len);
1102 iov.iov_len = num * BDRV_SECTOR_SIZE;
1103 if (iov.iov_base == NULL) {
1104 iov.iov_base = qemu_try_blockalign(bs, num * BDRV_SECTOR_SIZE);
1105 if (iov.iov_base == NULL) {
1106 ret = -ENOMEM;
1107 goto fail;
1109 memset(iov.iov_base, 0, num * BDRV_SECTOR_SIZE);
1111 qemu_iovec_init_external(&qiov, &iov, 1);
1113 ret = drv->bdrv_co_writev(bs, sector_num, num, &qiov);
1115 /* Keep bounce buffer around if it is big enough for all
1116 * all future requests.
1118 if (num < max_xfer_len) {
1119 qemu_vfree(iov.iov_base);
1120 iov.iov_base = NULL;
1124 sector_num += num;
1125 nb_sectors -= num;
1128 fail:
1129 qemu_vfree(iov.iov_base);
1130 return ret;
1134 * Forwards an already correctly aligned write request to the BlockDriver.
1136 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
1137 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1138 QEMUIOVector *qiov, int flags)
1140 BlockDriver *drv = bs->drv;
1141 bool waited;
1142 int ret;
1144 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
1145 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
1147 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1148 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1149 assert(!qiov || bytes == qiov->size);
1151 waited = wait_serialising_requests(req);
1152 assert(!waited || !req->serialising);
1153 assert(req->overlap_offset <= offset);
1154 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1156 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1158 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1159 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_write_zeroes &&
1160 qemu_iovec_is_zero(qiov)) {
1161 flags |= BDRV_REQ_ZERO_WRITE;
1162 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1163 flags |= BDRV_REQ_MAY_UNMAP;
1167 if (ret < 0) {
1168 /* Do nothing, write notifier decided to fail this request */
1169 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1170 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1171 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors, flags);
1172 } else {
1173 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1174 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1176 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1178 if (ret == 0 && !bs->enable_write_cache) {
1179 ret = bdrv_co_flush(bs);
1182 bdrv_set_dirty(bs, sector_num, nb_sectors);
1184 if (bs->wr_highest_offset < offset + bytes) {
1185 bs->wr_highest_offset = offset + bytes;
1188 if (ret >= 0) {
1189 bs->total_sectors = MAX(bs->total_sectors, sector_num + nb_sectors);
1192 return ret;
1195 static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs,
1196 int64_t offset,
1197 unsigned int bytes,
1198 BdrvRequestFlags flags,
1199 BdrvTrackedRequest *req)
1201 uint8_t *buf = NULL;
1202 QEMUIOVector local_qiov;
1203 struct iovec iov;
1204 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1205 unsigned int head_padding_bytes, tail_padding_bytes;
1206 int ret = 0;
1208 head_padding_bytes = offset & (align - 1);
1209 tail_padding_bytes = align - ((offset + bytes) & (align - 1));
1212 assert(flags & BDRV_REQ_ZERO_WRITE);
1213 if (head_padding_bytes || tail_padding_bytes) {
1214 buf = qemu_blockalign(bs, align);
1215 iov = (struct iovec) {
1216 .iov_base = buf,
1217 .iov_len = align,
1219 qemu_iovec_init_external(&local_qiov, &iov, 1);
1221 if (head_padding_bytes) {
1222 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1224 /* RMW the unaligned part before head. */
1225 mark_request_serialising(req, align);
1226 wait_serialising_requests(req);
1227 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1228 ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align,
1229 align, &local_qiov, 0);
1230 if (ret < 0) {
1231 goto fail;
1233 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1235 memset(buf + head_padding_bytes, 0, zero_bytes);
1236 ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align,
1237 &local_qiov,
1238 flags & ~BDRV_REQ_ZERO_WRITE);
1239 if (ret < 0) {
1240 goto fail;
1242 offset += zero_bytes;
1243 bytes -= zero_bytes;
1246 assert(!bytes || (offset & (align - 1)) == 0);
1247 if (bytes >= align) {
1248 /* Write the aligned part in the middle. */
1249 uint64_t aligned_bytes = bytes & ~(align - 1);
1250 ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes,
1251 NULL, flags);
1252 if (ret < 0) {
1253 goto fail;
1255 bytes -= aligned_bytes;
1256 offset += aligned_bytes;
1259 assert(!bytes || (offset & (align - 1)) == 0);
1260 if (bytes) {
1261 assert(align == tail_padding_bytes + bytes);
1262 /* RMW the unaligned part after tail. */
1263 mark_request_serialising(req, align);
1264 wait_serialising_requests(req);
1265 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1266 ret = bdrv_aligned_preadv(bs, req, offset, align,
1267 align, &local_qiov, 0);
1268 if (ret < 0) {
1269 goto fail;
1271 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1273 memset(buf, 0, bytes);
1274 ret = bdrv_aligned_pwritev(bs, req, offset, align,
1275 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1277 fail:
1278 qemu_vfree(buf);
1279 return ret;
1284 * Handle a write request in coroutine context
1286 static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
1287 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1288 BdrvRequestFlags flags)
1290 BdrvTrackedRequest req;
1291 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
1292 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1293 uint8_t *head_buf = NULL;
1294 uint8_t *tail_buf = NULL;
1295 QEMUIOVector local_qiov;
1296 bool use_local_qiov = false;
1297 int ret;
1299 if (!bs->drv) {
1300 return -ENOMEDIUM;
1302 if (bs->read_only) {
1303 return -EPERM;
1305 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1307 ret = bdrv_check_byte_request(bs, offset, bytes);
1308 if (ret < 0) {
1309 return ret;
1312 /* throttling disk I/O */
1313 if (bs->io_limits_enabled) {
1314 throttle_group_co_io_limits_intercept(bs, bytes, true);
1318 * Align write if necessary by performing a read-modify-write cycle.
1319 * Pad qiov with the read parts and be sure to have a tracked request not
1320 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1322 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1324 if (!qiov) {
1325 ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req);
1326 goto out;
1329 if (offset & (align - 1)) {
1330 QEMUIOVector head_qiov;
1331 struct iovec head_iov;
1333 mark_request_serialising(&req, align);
1334 wait_serialising_requests(&req);
1336 head_buf = qemu_blockalign(bs, align);
1337 head_iov = (struct iovec) {
1338 .iov_base = head_buf,
1339 .iov_len = align,
1341 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1343 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1344 ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
1345 align, &head_qiov, 0);
1346 if (ret < 0) {
1347 goto fail;
1349 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1351 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1352 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1353 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1354 use_local_qiov = true;
1356 bytes += offset & (align - 1);
1357 offset = offset & ~(align - 1);
1360 if ((offset + bytes) & (align - 1)) {
1361 QEMUIOVector tail_qiov;
1362 struct iovec tail_iov;
1363 size_t tail_bytes;
1364 bool waited;
1366 mark_request_serialising(&req, align);
1367 waited = wait_serialising_requests(&req);
1368 assert(!waited || !use_local_qiov);
1370 tail_buf = qemu_blockalign(bs, align);
1371 tail_iov = (struct iovec) {
1372 .iov_base = tail_buf,
1373 .iov_len = align,
1375 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1377 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1378 ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
1379 align, &tail_qiov, 0);
1380 if (ret < 0) {
1381 goto fail;
1383 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1385 if (!use_local_qiov) {
1386 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1387 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1388 use_local_qiov = true;
1391 tail_bytes = (offset + bytes) & (align - 1);
1392 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1394 bytes = ROUND_UP(bytes, align);
1397 ret = bdrv_aligned_pwritev(bs, &req, offset, bytes,
1398 use_local_qiov ? &local_qiov : qiov,
1399 flags);
1401 fail:
1403 if (use_local_qiov) {
1404 qemu_iovec_destroy(&local_qiov);
1406 qemu_vfree(head_buf);
1407 qemu_vfree(tail_buf);
1408 out:
1409 tracked_request_end(&req);
1410 return ret;
1413 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1414 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1415 BdrvRequestFlags flags)
1417 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1418 return -EINVAL;
1421 return bdrv_co_do_pwritev(bs, sector_num << BDRV_SECTOR_BITS,
1422 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1425 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1426 int nb_sectors, QEMUIOVector *qiov)
1428 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1430 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1433 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
1434 int64_t sector_num, int nb_sectors,
1435 BdrvRequestFlags flags)
1437 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors, flags);
1439 if (!(bs->open_flags & BDRV_O_UNMAP)) {
1440 flags &= ~BDRV_REQ_MAY_UNMAP;
1443 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
1444 BDRV_REQ_ZERO_WRITE | flags);
1447 int bdrv_flush_all(void)
1449 BlockDriverState *bs = NULL;
1450 int result = 0;
1452 while ((bs = bdrv_next(bs))) {
1453 AioContext *aio_context = bdrv_get_aio_context(bs);
1454 int ret;
1456 aio_context_acquire(aio_context);
1457 ret = bdrv_flush(bs);
1458 if (ret < 0 && !result) {
1459 result = ret;
1461 aio_context_release(aio_context);
1464 return result;
1467 typedef struct BdrvCoGetBlockStatusData {
1468 BlockDriverState *bs;
1469 BlockDriverState *base;
1470 BlockDriverState **file;
1471 int64_t sector_num;
1472 int nb_sectors;
1473 int *pnum;
1474 int64_t ret;
1475 bool done;
1476 } BdrvCoGetBlockStatusData;
1479 * Returns the allocation status of the specified sectors.
1480 * Drivers not implementing the functionality are assumed to not support
1481 * backing files, hence all their sectors are reported as allocated.
1483 * If 'sector_num' is beyond the end of the disk image the return value is 0
1484 * and 'pnum' is set to 0.
1486 * 'pnum' is set to the number of sectors (including and immediately following
1487 * the specified sector) that are known to be in the same
1488 * allocated/unallocated state.
1490 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1491 * beyond the end of the disk image it will be clamped.
1493 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1494 * points to the BDS which the sector range is allocated in.
1496 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1497 int64_t sector_num,
1498 int nb_sectors, int *pnum,
1499 BlockDriverState **file)
1501 int64_t total_sectors;
1502 int64_t n;
1503 int64_t ret, ret2;
1505 total_sectors = bdrv_nb_sectors(bs);
1506 if (total_sectors < 0) {
1507 return total_sectors;
1510 if (sector_num >= total_sectors) {
1511 *pnum = 0;
1512 return 0;
1515 n = total_sectors - sector_num;
1516 if (n < nb_sectors) {
1517 nb_sectors = n;
1520 if (!bs->drv->bdrv_co_get_block_status) {
1521 *pnum = nb_sectors;
1522 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1523 if (bs->drv->protocol_name) {
1524 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1526 return ret;
1529 *file = NULL;
1530 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1531 file);
1532 if (ret < 0) {
1533 *pnum = 0;
1534 return ret;
1537 if (ret & BDRV_BLOCK_RAW) {
1538 assert(ret & BDRV_BLOCK_OFFSET_VALID);
1539 return bdrv_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS,
1540 *pnum, pnum, file);
1543 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1544 ret |= BDRV_BLOCK_ALLOCATED;
1545 } else {
1546 if (bdrv_unallocated_blocks_are_zero(bs)) {
1547 ret |= BDRV_BLOCK_ZERO;
1548 } else if (bs->backing) {
1549 BlockDriverState *bs2 = bs->backing->bs;
1550 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1551 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1552 ret |= BDRV_BLOCK_ZERO;
1557 if (*file && *file != bs &&
1558 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1559 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1560 BlockDriverState *file2;
1561 int file_pnum;
1563 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1564 *pnum, &file_pnum, &file2);
1565 if (ret2 >= 0) {
1566 /* Ignore errors. This is just providing extra information, it
1567 * is useful but not necessary.
1569 if (!file_pnum) {
1570 /* !file_pnum indicates an offset at or beyond the EOF; it is
1571 * perfectly valid for the format block driver to point to such
1572 * offsets, so catch it and mark everything as zero */
1573 ret |= BDRV_BLOCK_ZERO;
1574 } else {
1575 /* Limit request to the range reported by the protocol driver */
1576 *pnum = file_pnum;
1577 ret |= (ret2 & BDRV_BLOCK_ZERO);
1582 return ret;
1585 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1586 BlockDriverState *base,
1587 int64_t sector_num,
1588 int nb_sectors,
1589 int *pnum,
1590 BlockDriverState **file)
1592 BlockDriverState *p;
1593 int64_t ret = 0;
1595 assert(bs != base);
1596 for (p = bs; p != base; p = backing_bs(p)) {
1597 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1598 if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) {
1599 break;
1601 /* [sector_num, pnum] unallocated on this layer, which could be only
1602 * the first part of [sector_num, nb_sectors]. */
1603 nb_sectors = MIN(nb_sectors, *pnum);
1605 return ret;
1608 /* Coroutine wrapper for bdrv_get_block_status_above() */
1609 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1611 BdrvCoGetBlockStatusData *data = opaque;
1613 data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1614 data->sector_num,
1615 data->nb_sectors,
1616 data->pnum,
1617 data->file);
1618 data->done = true;
1622 * Synchronous wrapper around bdrv_co_get_block_status_above().
1624 * See bdrv_co_get_block_status_above() for details.
1626 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1627 BlockDriverState *base,
1628 int64_t sector_num,
1629 int nb_sectors, int *pnum,
1630 BlockDriverState **file)
1632 Coroutine *co;
1633 BdrvCoGetBlockStatusData data = {
1634 .bs = bs,
1635 .base = base,
1636 .file = file,
1637 .sector_num = sector_num,
1638 .nb_sectors = nb_sectors,
1639 .pnum = pnum,
1640 .done = false,
1643 if (qemu_in_coroutine()) {
1644 /* Fast-path if already in coroutine context */
1645 bdrv_get_block_status_above_co_entry(&data);
1646 } else {
1647 AioContext *aio_context = bdrv_get_aio_context(bs);
1649 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry);
1650 qemu_coroutine_enter(co, &data);
1651 while (!data.done) {
1652 aio_poll(aio_context, true);
1655 return data.ret;
1658 int64_t bdrv_get_block_status(BlockDriverState *bs,
1659 int64_t sector_num,
1660 int nb_sectors, int *pnum,
1661 BlockDriverState **file)
1663 return bdrv_get_block_status_above(bs, backing_bs(bs),
1664 sector_num, nb_sectors, pnum, file);
1667 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1668 int nb_sectors, int *pnum)
1670 BlockDriverState *file;
1671 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum,
1672 &file);
1673 if (ret < 0) {
1674 return ret;
1676 return !!(ret & BDRV_BLOCK_ALLOCATED);
1680 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1682 * Return true if the given sector is allocated in any image between
1683 * BASE and TOP (inclusive). BASE can be NULL to check if the given
1684 * sector is allocated in any image of the chain. Return false otherwise.
1686 * 'pnum' is set to the number of sectors (including and immediately following
1687 * the specified sector) that are known to be in the same
1688 * allocated/unallocated state.
1691 int bdrv_is_allocated_above(BlockDriverState *top,
1692 BlockDriverState *base,
1693 int64_t sector_num,
1694 int nb_sectors, int *pnum)
1696 BlockDriverState *intermediate;
1697 int ret, n = nb_sectors;
1699 intermediate = top;
1700 while (intermediate && intermediate != base) {
1701 int pnum_inter;
1702 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1703 &pnum_inter);
1704 if (ret < 0) {
1705 return ret;
1706 } else if (ret) {
1707 *pnum = pnum_inter;
1708 return 1;
1712 * [sector_num, nb_sectors] is unallocated on top but intermediate
1713 * might have
1715 * [sector_num+x, nr_sectors] allocated.
1717 if (n > pnum_inter &&
1718 (intermediate == top ||
1719 sector_num + pnum_inter < intermediate->total_sectors)) {
1720 n = pnum_inter;
1723 intermediate = backing_bs(intermediate);
1726 *pnum = n;
1727 return 0;
1730 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
1731 const uint8_t *buf, int nb_sectors)
1733 BlockDriver *drv = bs->drv;
1734 int ret;
1736 if (!drv) {
1737 return -ENOMEDIUM;
1739 if (!drv->bdrv_write_compressed) {
1740 return -ENOTSUP;
1742 ret = bdrv_check_request(bs, sector_num, nb_sectors);
1743 if (ret < 0) {
1744 return ret;
1747 assert(QLIST_EMPTY(&bs->dirty_bitmaps));
1749 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
1752 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
1753 int64_t pos, int size)
1755 QEMUIOVector qiov;
1756 struct iovec iov = {
1757 .iov_base = (void *) buf,
1758 .iov_len = size,
1761 qemu_iovec_init_external(&qiov, &iov, 1);
1762 return bdrv_writev_vmstate(bs, &qiov, pos);
1765 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
1767 BlockDriver *drv = bs->drv;
1769 if (!drv) {
1770 return -ENOMEDIUM;
1771 } else if (drv->bdrv_save_vmstate) {
1772 return drv->bdrv_save_vmstate(bs, qiov, pos);
1773 } else if (bs->file) {
1774 return bdrv_writev_vmstate(bs->file->bs, qiov, pos);
1777 return -ENOTSUP;
1780 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
1781 int64_t pos, int size)
1783 BlockDriver *drv = bs->drv;
1784 if (!drv)
1785 return -ENOMEDIUM;
1786 if (drv->bdrv_load_vmstate)
1787 return drv->bdrv_load_vmstate(bs, buf, pos, size);
1788 if (bs->file)
1789 return bdrv_load_vmstate(bs->file->bs, buf, pos, size);
1790 return -ENOTSUP;
1793 /**************************************************************/
1794 /* async I/Os */
1796 BlockAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
1797 QEMUIOVector *qiov, int nb_sectors,
1798 BlockCompletionFunc *cb, void *opaque)
1800 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
1802 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1803 cb, opaque, false);
1806 BlockAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
1807 QEMUIOVector *qiov, int nb_sectors,
1808 BlockCompletionFunc *cb, void *opaque)
1810 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
1812 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1813 cb, opaque, true);
1816 BlockAIOCB *bdrv_aio_write_zeroes(BlockDriverState *bs,
1817 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags,
1818 BlockCompletionFunc *cb, void *opaque)
1820 trace_bdrv_aio_write_zeroes(bs, sector_num, nb_sectors, flags, opaque);
1822 return bdrv_co_aio_rw_vector(bs, sector_num, NULL, nb_sectors,
1823 BDRV_REQ_ZERO_WRITE | flags,
1824 cb, opaque, true);
1828 typedef struct MultiwriteCB {
1829 int error;
1830 int num_requests;
1831 int num_callbacks;
1832 struct {
1833 BlockCompletionFunc *cb;
1834 void *opaque;
1835 QEMUIOVector *free_qiov;
1836 } callbacks[];
1837 } MultiwriteCB;
1839 static void multiwrite_user_cb(MultiwriteCB *mcb)
1841 int i;
1843 for (i = 0; i < mcb->num_callbacks; i++) {
1844 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
1845 if (mcb->callbacks[i].free_qiov) {
1846 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
1848 g_free(mcb->callbacks[i].free_qiov);
1852 static void multiwrite_cb(void *opaque, int ret)
1854 MultiwriteCB *mcb = opaque;
1856 trace_multiwrite_cb(mcb, ret);
1858 if (ret < 0 && !mcb->error) {
1859 mcb->error = ret;
1862 mcb->num_requests--;
1863 if (mcb->num_requests == 0) {
1864 multiwrite_user_cb(mcb);
1865 g_free(mcb);
1869 static int multiwrite_req_compare(const void *a, const void *b)
1871 const BlockRequest *req1 = a, *req2 = b;
1874 * Note that we can't simply subtract req2->sector from req1->sector
1875 * here as that could overflow the return value.
1877 if (req1->sector > req2->sector) {
1878 return 1;
1879 } else if (req1->sector < req2->sector) {
1880 return -1;
1881 } else {
1882 return 0;
1887 * Takes a bunch of requests and tries to merge them. Returns the number of
1888 * requests that remain after merging.
1890 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
1891 int num_reqs, MultiwriteCB *mcb)
1893 int i, outidx;
1895 // Sort requests by start sector
1896 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
1898 // Check if adjacent requests touch the same clusters. If so, combine them,
1899 // filling up gaps with zero sectors.
1900 outidx = 0;
1901 for (i = 1; i < num_reqs; i++) {
1902 int merge = 0;
1903 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
1905 // Handle exactly sequential writes and overlapping writes.
1906 if (reqs[i].sector <= oldreq_last) {
1907 merge = 1;
1910 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 >
1911 bs->bl.max_iov) {
1912 merge = 0;
1915 if (bs->bl.max_transfer_length && reqs[outidx].nb_sectors +
1916 reqs[i].nb_sectors > bs->bl.max_transfer_length) {
1917 merge = 0;
1920 if (merge) {
1921 size_t size;
1922 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
1923 qemu_iovec_init(qiov,
1924 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
1926 // Add the first request to the merged one. If the requests are
1927 // overlapping, drop the last sectors of the first request.
1928 size = (reqs[i].sector - reqs[outidx].sector) << 9;
1929 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
1931 // We should need to add any zeros between the two requests
1932 assert (reqs[i].sector <= oldreq_last);
1934 // Add the second request
1935 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
1937 // Add tail of first request, if necessary
1938 if (qiov->size < reqs[outidx].qiov->size) {
1939 qemu_iovec_concat(qiov, reqs[outidx].qiov, qiov->size,
1940 reqs[outidx].qiov->size - qiov->size);
1943 reqs[outidx].nb_sectors = qiov->size >> 9;
1944 reqs[outidx].qiov = qiov;
1946 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
1947 } else {
1948 outidx++;
1949 reqs[outidx].sector = reqs[i].sector;
1950 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
1951 reqs[outidx].qiov = reqs[i].qiov;
1955 if (bs->blk) {
1956 block_acct_merge_done(blk_get_stats(bs->blk), BLOCK_ACCT_WRITE,
1957 num_reqs - outidx - 1);
1960 return outidx + 1;
1964 * Submit multiple AIO write requests at once.
1966 * On success, the function returns 0 and all requests in the reqs array have
1967 * been submitted. In error case this function returns -1, and any of the
1968 * requests may or may not be submitted yet. In particular, this means that the
1969 * callback will be called for some of the requests, for others it won't. The
1970 * caller must check the error field of the BlockRequest to wait for the right
1971 * callbacks (if error != 0, no callback will be called).
1973 * The implementation may modify the contents of the reqs array, e.g. to merge
1974 * requests. However, the fields opaque and error are left unmodified as they
1975 * are used to signal failure for a single request to the caller.
1977 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
1979 MultiwriteCB *mcb;
1980 int i;
1982 /* don't submit writes if we don't have a medium */
1983 if (bs->drv == NULL) {
1984 for (i = 0; i < num_reqs; i++) {
1985 reqs[i].error = -ENOMEDIUM;
1987 return -1;
1990 if (num_reqs == 0) {
1991 return 0;
1994 // Create MultiwriteCB structure
1995 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
1996 mcb->num_requests = 0;
1997 mcb->num_callbacks = num_reqs;
1999 for (i = 0; i < num_reqs; i++) {
2000 mcb->callbacks[i].cb = reqs[i].cb;
2001 mcb->callbacks[i].opaque = reqs[i].opaque;
2004 // Check for mergable requests
2005 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
2007 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
2009 /* Run the aio requests. */
2010 mcb->num_requests = num_reqs;
2011 for (i = 0; i < num_reqs; i++) {
2012 bdrv_co_aio_rw_vector(bs, reqs[i].sector, reqs[i].qiov,
2013 reqs[i].nb_sectors, reqs[i].flags,
2014 multiwrite_cb, mcb,
2015 true);
2018 return 0;
2021 void bdrv_aio_cancel(BlockAIOCB *acb)
2023 qemu_aio_ref(acb);
2024 bdrv_aio_cancel_async(acb);
2025 while (acb->refcnt > 1) {
2026 if (acb->aiocb_info->get_aio_context) {
2027 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2028 } else if (acb->bs) {
2029 aio_poll(bdrv_get_aio_context(acb->bs), true);
2030 } else {
2031 abort();
2034 qemu_aio_unref(acb);
2037 /* Async version of aio cancel. The caller is not blocked if the acb implements
2038 * cancel_async, otherwise we do nothing and let the request normally complete.
2039 * In either case the completion callback must be called. */
2040 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2042 if (acb->aiocb_info->cancel_async) {
2043 acb->aiocb_info->cancel_async(acb);
2047 /**************************************************************/
2048 /* async block device emulation */
2050 typedef struct BlockAIOCBSync {
2051 BlockAIOCB common;
2052 QEMUBH *bh;
2053 int ret;
2054 /* vector translation state */
2055 QEMUIOVector *qiov;
2056 uint8_t *bounce;
2057 int is_write;
2058 } BlockAIOCBSync;
2060 static const AIOCBInfo bdrv_em_aiocb_info = {
2061 .aiocb_size = sizeof(BlockAIOCBSync),
2064 static void bdrv_aio_bh_cb(void *opaque)
2066 BlockAIOCBSync *acb = opaque;
2068 if (!acb->is_write && acb->ret >= 0) {
2069 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
2071 qemu_vfree(acb->bounce);
2072 acb->common.cb(acb->common.opaque, acb->ret);
2073 qemu_bh_delete(acb->bh);
2074 acb->bh = NULL;
2075 qemu_aio_unref(acb);
2078 static BlockAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
2079 int64_t sector_num,
2080 QEMUIOVector *qiov,
2081 int nb_sectors,
2082 BlockCompletionFunc *cb,
2083 void *opaque,
2084 int is_write)
2087 BlockAIOCBSync *acb;
2089 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
2090 acb->is_write = is_write;
2091 acb->qiov = qiov;
2092 acb->bounce = qemu_try_blockalign(bs, qiov->size);
2093 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_aio_bh_cb, acb);
2095 if (acb->bounce == NULL) {
2096 acb->ret = -ENOMEM;
2097 } else if (is_write) {
2098 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
2099 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
2100 } else {
2101 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
2104 qemu_bh_schedule(acb->bh);
2106 return &acb->common;
2109 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
2110 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2111 BlockCompletionFunc *cb, void *opaque)
2113 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
2116 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
2117 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2118 BlockCompletionFunc *cb, void *opaque)
2120 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
2124 typedef struct BlockAIOCBCoroutine {
2125 BlockAIOCB common;
2126 BlockRequest req;
2127 bool is_write;
2128 bool need_bh;
2129 bool *done;
2130 QEMUBH* bh;
2131 } BlockAIOCBCoroutine;
2133 static const AIOCBInfo bdrv_em_co_aiocb_info = {
2134 .aiocb_size = sizeof(BlockAIOCBCoroutine),
2137 static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2139 if (!acb->need_bh) {
2140 acb->common.cb(acb->common.opaque, acb->req.error);
2141 qemu_aio_unref(acb);
2145 static void bdrv_co_em_bh(void *opaque)
2147 BlockAIOCBCoroutine *acb = opaque;
2149 assert(!acb->need_bh);
2150 qemu_bh_delete(acb->bh);
2151 bdrv_co_complete(acb);
2154 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2156 acb->need_bh = false;
2157 if (acb->req.error != -EINPROGRESS) {
2158 BlockDriverState *bs = acb->common.bs;
2160 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2161 qemu_bh_schedule(acb->bh);
2165 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2166 static void coroutine_fn bdrv_co_do_rw(void *opaque)
2168 BlockAIOCBCoroutine *acb = opaque;
2169 BlockDriverState *bs = acb->common.bs;
2171 if (!acb->is_write) {
2172 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
2173 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2174 } else {
2175 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
2176 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2179 bdrv_co_complete(acb);
2182 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
2183 int64_t sector_num,
2184 QEMUIOVector *qiov,
2185 int nb_sectors,
2186 BdrvRequestFlags flags,
2187 BlockCompletionFunc *cb,
2188 void *opaque,
2189 bool is_write)
2191 Coroutine *co;
2192 BlockAIOCBCoroutine *acb;
2194 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2195 acb->need_bh = true;
2196 acb->req.error = -EINPROGRESS;
2197 acb->req.sector = sector_num;
2198 acb->req.nb_sectors = nb_sectors;
2199 acb->req.qiov = qiov;
2200 acb->req.flags = flags;
2201 acb->is_write = is_write;
2203 co = qemu_coroutine_create(bdrv_co_do_rw);
2204 qemu_coroutine_enter(co, acb);
2206 bdrv_co_maybe_schedule_bh(acb);
2207 return &acb->common;
2210 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2212 BlockAIOCBCoroutine *acb = opaque;
2213 BlockDriverState *bs = acb->common.bs;
2215 acb->req.error = bdrv_co_flush(bs);
2216 bdrv_co_complete(acb);
2219 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2220 BlockCompletionFunc *cb, void *opaque)
2222 trace_bdrv_aio_flush(bs, opaque);
2224 Coroutine *co;
2225 BlockAIOCBCoroutine *acb;
2227 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2228 acb->need_bh = true;
2229 acb->req.error = -EINPROGRESS;
2231 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
2232 qemu_coroutine_enter(co, acb);
2234 bdrv_co_maybe_schedule_bh(acb);
2235 return &acb->common;
2238 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
2240 BlockAIOCBCoroutine *acb = opaque;
2241 BlockDriverState *bs = acb->common.bs;
2243 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
2244 bdrv_co_complete(acb);
2247 BlockAIOCB *bdrv_aio_discard(BlockDriverState *bs,
2248 int64_t sector_num, int nb_sectors,
2249 BlockCompletionFunc *cb, void *opaque)
2251 Coroutine *co;
2252 BlockAIOCBCoroutine *acb;
2254 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
2256 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2257 acb->need_bh = true;
2258 acb->req.error = -EINPROGRESS;
2259 acb->req.sector = sector_num;
2260 acb->req.nb_sectors = nb_sectors;
2261 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
2262 qemu_coroutine_enter(co, acb);
2264 bdrv_co_maybe_schedule_bh(acb);
2265 return &acb->common;
2268 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
2269 BlockCompletionFunc *cb, void *opaque)
2271 BlockAIOCB *acb;
2273 acb = g_malloc(aiocb_info->aiocb_size);
2274 acb->aiocb_info = aiocb_info;
2275 acb->bs = bs;
2276 acb->cb = cb;
2277 acb->opaque = opaque;
2278 acb->refcnt = 1;
2279 return acb;
2282 void qemu_aio_ref(void *p)
2284 BlockAIOCB *acb = p;
2285 acb->refcnt++;
2288 void qemu_aio_unref(void *p)
2290 BlockAIOCB *acb = p;
2291 assert(acb->refcnt > 0);
2292 if (--acb->refcnt == 0) {
2293 g_free(acb);
2297 /**************************************************************/
2298 /* Coroutine block device emulation */
2300 typedef struct CoroutineIOCompletion {
2301 Coroutine *coroutine;
2302 int ret;
2303 } CoroutineIOCompletion;
2305 static void bdrv_co_io_em_complete(void *opaque, int ret)
2307 CoroutineIOCompletion *co = opaque;
2309 co->ret = ret;
2310 qemu_coroutine_enter(co->coroutine, NULL);
2313 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
2314 int nb_sectors, QEMUIOVector *iov,
2315 bool is_write)
2317 CoroutineIOCompletion co = {
2318 .coroutine = qemu_coroutine_self(),
2320 BlockAIOCB *acb;
2322 if (is_write) {
2323 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
2324 bdrv_co_io_em_complete, &co);
2325 } else {
2326 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
2327 bdrv_co_io_em_complete, &co);
2330 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
2331 if (!acb) {
2332 return -EIO;
2334 qemu_coroutine_yield();
2336 return co.ret;
2339 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
2340 int64_t sector_num, int nb_sectors,
2341 QEMUIOVector *iov)
2343 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
2346 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
2347 int64_t sector_num, int nb_sectors,
2348 QEMUIOVector *iov)
2350 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
2353 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2355 RwCo *rwco = opaque;
2357 rwco->ret = bdrv_co_flush(rwco->bs);
2360 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2362 int ret;
2363 BdrvTrackedRequest req;
2365 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2366 bdrv_is_sg(bs)) {
2367 return 0;
2370 tracked_request_begin(&req, bs, 0, 0, BDRV_TRACKED_FLUSH);
2371 /* Write back cached data to the OS even with cache=unsafe */
2372 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2373 if (bs->drv->bdrv_co_flush_to_os) {
2374 ret = bs->drv->bdrv_co_flush_to_os(bs);
2375 if (ret < 0) {
2376 goto out;
2380 /* But don't actually force it to the disk with cache=unsafe */
2381 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2382 goto flush_parent;
2385 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2386 if (bs->drv->bdrv_co_flush_to_disk) {
2387 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2388 } else if (bs->drv->bdrv_aio_flush) {
2389 BlockAIOCB *acb;
2390 CoroutineIOCompletion co = {
2391 .coroutine = qemu_coroutine_self(),
2394 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2395 if (acb == NULL) {
2396 ret = -EIO;
2397 } else {
2398 qemu_coroutine_yield();
2399 ret = co.ret;
2401 } else {
2403 * Some block drivers always operate in either writethrough or unsafe
2404 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2405 * know how the server works (because the behaviour is hardcoded or
2406 * depends on server-side configuration), so we can't ensure that
2407 * everything is safe on disk. Returning an error doesn't work because
2408 * that would break guests even if the server operates in writethrough
2409 * mode.
2411 * Let's hope the user knows what he's doing.
2413 ret = 0;
2415 if (ret < 0) {
2416 goto out;
2419 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2420 * in the case of cache=unsafe, so there are no useless flushes.
2422 flush_parent:
2423 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2424 out:
2425 tracked_request_end(&req);
2426 return ret;
2429 int bdrv_flush(BlockDriverState *bs)
2431 Coroutine *co;
2432 RwCo rwco = {
2433 .bs = bs,
2434 .ret = NOT_DONE,
2437 if (qemu_in_coroutine()) {
2438 /* Fast-path if already in coroutine context */
2439 bdrv_flush_co_entry(&rwco);
2440 } else {
2441 AioContext *aio_context = bdrv_get_aio_context(bs);
2443 co = qemu_coroutine_create(bdrv_flush_co_entry);
2444 qemu_coroutine_enter(co, &rwco);
2445 while (rwco.ret == NOT_DONE) {
2446 aio_poll(aio_context, true);
2450 return rwco.ret;
2453 typedef struct DiscardCo {
2454 BlockDriverState *bs;
2455 int64_t sector_num;
2456 int nb_sectors;
2457 int ret;
2458 } DiscardCo;
2459 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
2461 DiscardCo *rwco = opaque;
2463 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
2466 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
2467 int nb_sectors)
2469 BdrvTrackedRequest req;
2470 int max_discard, ret;
2472 if (!bs->drv) {
2473 return -ENOMEDIUM;
2476 ret = bdrv_check_request(bs, sector_num, nb_sectors);
2477 if (ret < 0) {
2478 return ret;
2479 } else if (bs->read_only) {
2480 return -EPERM;
2482 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2484 /* Do nothing if disabled. */
2485 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2486 return 0;
2489 if (!bs->drv->bdrv_co_discard && !bs->drv->bdrv_aio_discard) {
2490 return 0;
2493 tracked_request_begin(&req, bs, sector_num, nb_sectors,
2494 BDRV_TRACKED_DISCARD);
2495 bdrv_set_dirty(bs, sector_num, nb_sectors);
2497 max_discard = MIN_NON_ZERO(bs->bl.max_discard, BDRV_REQUEST_MAX_SECTORS);
2498 while (nb_sectors > 0) {
2499 int ret;
2500 int num = nb_sectors;
2502 /* align request */
2503 if (bs->bl.discard_alignment &&
2504 num >= bs->bl.discard_alignment &&
2505 sector_num % bs->bl.discard_alignment) {
2506 if (num > bs->bl.discard_alignment) {
2507 num = bs->bl.discard_alignment;
2509 num -= sector_num % bs->bl.discard_alignment;
2512 /* limit request size */
2513 if (num > max_discard) {
2514 num = max_discard;
2517 if (bs->drv->bdrv_co_discard) {
2518 ret = bs->drv->bdrv_co_discard(bs, sector_num, num);
2519 } else {
2520 BlockAIOCB *acb;
2521 CoroutineIOCompletion co = {
2522 .coroutine = qemu_coroutine_self(),
2525 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
2526 bdrv_co_io_em_complete, &co);
2527 if (acb == NULL) {
2528 ret = -EIO;
2529 goto out;
2530 } else {
2531 qemu_coroutine_yield();
2532 ret = co.ret;
2535 if (ret && ret != -ENOTSUP) {
2536 goto out;
2539 sector_num += num;
2540 nb_sectors -= num;
2542 ret = 0;
2543 out:
2544 tracked_request_end(&req);
2545 return ret;
2548 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
2550 Coroutine *co;
2551 DiscardCo rwco = {
2552 .bs = bs,
2553 .sector_num = sector_num,
2554 .nb_sectors = nb_sectors,
2555 .ret = NOT_DONE,
2558 if (qemu_in_coroutine()) {
2559 /* Fast-path if already in coroutine context */
2560 bdrv_discard_co_entry(&rwco);
2561 } else {
2562 AioContext *aio_context = bdrv_get_aio_context(bs);
2564 co = qemu_coroutine_create(bdrv_discard_co_entry);
2565 qemu_coroutine_enter(co, &rwco);
2566 while (rwco.ret == NOT_DONE) {
2567 aio_poll(aio_context, true);
2571 return rwco.ret;
2574 typedef struct {
2575 CoroutineIOCompletion *co;
2576 QEMUBH *bh;
2577 } BdrvIoctlCompletionData;
2579 static void bdrv_ioctl_bh_cb(void *opaque)
2581 BdrvIoctlCompletionData *data = opaque;
2583 bdrv_co_io_em_complete(data->co, -ENOTSUP);
2584 qemu_bh_delete(data->bh);
2587 static int bdrv_co_do_ioctl(BlockDriverState *bs, int req, void *buf)
2589 BlockDriver *drv = bs->drv;
2590 BdrvTrackedRequest tracked_req;
2591 CoroutineIOCompletion co = {
2592 .coroutine = qemu_coroutine_self(),
2594 BlockAIOCB *acb;
2596 tracked_request_begin(&tracked_req, bs, 0, 0, BDRV_TRACKED_IOCTL);
2597 if (!drv || !drv->bdrv_aio_ioctl) {
2598 co.ret = -ENOTSUP;
2599 goto out;
2602 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2603 if (!acb) {
2604 BdrvIoctlCompletionData *data = g_new(BdrvIoctlCompletionData, 1);
2605 data->bh = aio_bh_new(bdrv_get_aio_context(bs),
2606 bdrv_ioctl_bh_cb, data);
2607 data->co = &co;
2608 qemu_bh_schedule(data->bh);
2610 qemu_coroutine_yield();
2611 out:
2612 tracked_request_end(&tracked_req);
2613 return co.ret;
2616 typedef struct {
2617 BlockDriverState *bs;
2618 int req;
2619 void *buf;
2620 int ret;
2621 } BdrvIoctlCoData;
2623 static void coroutine_fn bdrv_co_ioctl_entry(void *opaque)
2625 BdrvIoctlCoData *data = opaque;
2626 data->ret = bdrv_co_do_ioctl(data->bs, data->req, data->buf);
2629 /* needed for generic scsi interface */
2630 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
2632 BdrvIoctlCoData data = {
2633 .bs = bs,
2634 .req = req,
2635 .buf = buf,
2636 .ret = -EINPROGRESS,
2639 if (qemu_in_coroutine()) {
2640 /* Fast-path if already in coroutine context */
2641 bdrv_co_ioctl_entry(&data);
2642 } else {
2643 Coroutine *co = qemu_coroutine_create(bdrv_co_ioctl_entry);
2645 qemu_coroutine_enter(co, &data);
2646 while (data.ret == -EINPROGRESS) {
2647 aio_poll(bdrv_get_aio_context(bs), true);
2650 return data.ret;
2653 static void coroutine_fn bdrv_co_aio_ioctl_entry(void *opaque)
2655 BlockAIOCBCoroutine *acb = opaque;
2656 acb->req.error = bdrv_co_do_ioctl(acb->common.bs,
2657 acb->req.req, acb->req.buf);
2658 bdrv_co_complete(acb);
2661 BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
2662 unsigned long int req, void *buf,
2663 BlockCompletionFunc *cb, void *opaque)
2665 BlockAIOCBCoroutine *acb = qemu_aio_get(&bdrv_em_co_aiocb_info,
2666 bs, cb, opaque);
2667 Coroutine *co;
2669 acb->need_bh = true;
2670 acb->req.error = -EINPROGRESS;
2671 acb->req.req = req;
2672 acb->req.buf = buf;
2673 co = qemu_coroutine_create(bdrv_co_aio_ioctl_entry);
2674 qemu_coroutine_enter(co, acb);
2676 bdrv_co_maybe_schedule_bh(acb);
2677 return &acb->common;
2680 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2682 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2685 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2687 return memset(qemu_blockalign(bs, size), 0, size);
2690 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2692 size_t align = bdrv_opt_mem_align(bs);
2694 /* Ensure that NULL is never returned on success */
2695 assert(align > 0);
2696 if (size == 0) {
2697 size = align;
2700 return qemu_try_memalign(align, size);
2703 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2705 void *mem = qemu_try_blockalign(bs, size);
2707 if (mem) {
2708 memset(mem, 0, size);
2711 return mem;
2715 * Check if all memory in this vector is sector aligned.
2717 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2719 int i;
2720 size_t alignment = bdrv_min_mem_align(bs);
2722 for (i = 0; i < qiov->niov; i++) {
2723 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2724 return false;
2726 if (qiov->iov[i].iov_len % alignment) {
2727 return false;
2731 return true;
2734 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2735 NotifierWithReturn *notifier)
2737 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2740 void bdrv_io_plug(BlockDriverState *bs)
2742 BlockDriver *drv = bs->drv;
2743 if (drv && drv->bdrv_io_plug) {
2744 drv->bdrv_io_plug(bs);
2745 } else if (bs->file) {
2746 bdrv_io_plug(bs->file->bs);
2750 void bdrv_io_unplug(BlockDriverState *bs)
2752 BlockDriver *drv = bs->drv;
2753 if (drv && drv->bdrv_io_unplug) {
2754 drv->bdrv_io_unplug(bs);
2755 } else if (bs->file) {
2756 bdrv_io_unplug(bs->file->bs);
2760 void bdrv_flush_io_queue(BlockDriverState *bs)
2762 BlockDriver *drv = bs->drv;
2763 if (drv && drv->bdrv_flush_io_queue) {
2764 drv->bdrv_flush_io_queue(bs);
2765 } else if (bs->file) {
2766 bdrv_flush_io_queue(bs->file->bs);
2768 bdrv_start_throttled_reqs(bs);
2771 void bdrv_drained_begin(BlockDriverState *bs)
2773 if (!bs->quiesce_counter++) {
2774 aio_disable_external(bdrv_get_aio_context(bs));
2776 bdrv_drain(bs);
2779 void bdrv_drained_end(BlockDriverState *bs)
2781 assert(bs->quiesce_counter > 0);
2782 if (--bs->quiesce_counter > 0) {
2783 return;
2785 aio_enable_external(bdrv_get_aio_context(bs));