2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
32 int qcow2_grow_l1_table(BlockDriverState
*bs
, int min_size
, bool exact_size
)
34 BDRVQcowState
*s
= bs
->opaque
;
35 int new_l1_size
, new_l1_size2
, ret
, i
;
36 uint64_t *new_l1_table
;
37 int64_t new_l1_table_offset
;
40 if (min_size
<= s
->l1_size
)
44 new_l1_size
= min_size
;
46 /* Bump size up to reduce the number of times we have to grow */
47 new_l1_size
= s
->l1_size
;
48 if (new_l1_size
== 0) {
51 while (min_size
> new_l1_size
) {
52 new_l1_size
= (new_l1_size
* 3 + 1) / 2;
57 fprintf(stderr
, "grow l1_table from %d to %d\n", s
->l1_size
, new_l1_size
);
60 new_l1_size2
= sizeof(uint64_t) * new_l1_size
;
61 new_l1_table
= g_malloc0(align_offset(new_l1_size2
, 512));
62 memcpy(new_l1_table
, s
->l1_table
, s
->l1_size
* sizeof(uint64_t));
64 /* write new table (align to cluster) */
65 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ALLOC_TABLE
);
66 new_l1_table_offset
= qcow2_alloc_clusters(bs
, new_l1_size2
);
67 if (new_l1_table_offset
< 0) {
69 return new_l1_table_offset
;
72 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
77 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_WRITE_TABLE
);
78 for(i
= 0; i
< s
->l1_size
; i
++)
79 new_l1_table
[i
] = cpu_to_be64(new_l1_table
[i
]);
80 ret
= bdrv_pwrite_sync(bs
->file
, new_l1_table_offset
, new_l1_table
, new_l1_size2
);
83 for(i
= 0; i
< s
->l1_size
; i
++)
84 new_l1_table
[i
] = be64_to_cpu(new_l1_table
[i
]);
87 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ACTIVATE_TABLE
);
88 cpu_to_be32w((uint32_t*)data
, new_l1_size
);
89 cpu_to_be64wu((uint64_t*)(data
+ 4), new_l1_table_offset
);
90 ret
= bdrv_pwrite_sync(bs
->file
, offsetof(QCowHeader
, l1_size
), data
,sizeof(data
));
95 qcow2_free_clusters(bs
, s
->l1_table_offset
, s
->l1_size
* sizeof(uint64_t));
96 s
->l1_table_offset
= new_l1_table_offset
;
97 s
->l1_table
= new_l1_table
;
98 s
->l1_size
= new_l1_size
;
101 g_free(new_l1_table
);
102 qcow2_free_clusters(bs
, new_l1_table_offset
, new_l1_size2
);
109 * Loads a L2 table into memory. If the table is in the cache, the cache
110 * is used; otherwise the L2 table is loaded from the image file.
112 * Returns a pointer to the L2 table on success, or NULL if the read from
113 * the image file failed.
116 static int l2_load(BlockDriverState
*bs
, uint64_t l2_offset
,
119 BDRVQcowState
*s
= bs
->opaque
;
122 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
, (void**) l2_table
);
128 * Writes one sector of the L1 table to the disk (can't update single entries
129 * and we really don't want bdrv_pread to perform a read-modify-write)
131 #define L1_ENTRIES_PER_SECTOR (512 / 8)
132 static int write_l1_entry(BlockDriverState
*bs
, int l1_index
)
134 BDRVQcowState
*s
= bs
->opaque
;
135 uint64_t buf
[L1_ENTRIES_PER_SECTOR
];
139 l1_start_index
= l1_index
& ~(L1_ENTRIES_PER_SECTOR
- 1);
140 for (i
= 0; i
< L1_ENTRIES_PER_SECTOR
; i
++) {
141 buf
[i
] = cpu_to_be64(s
->l1_table
[l1_start_index
+ i
]);
144 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_UPDATE
);
145 ret
= bdrv_pwrite_sync(bs
->file
, s
->l1_table_offset
+ 8 * l1_start_index
,
157 * Allocate a new l2 entry in the file. If l1_index points to an already
158 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
159 * table) copy the contents of the old L2 table into the newly allocated one.
160 * Otherwise the new table is initialized with zeros.
164 static int l2_allocate(BlockDriverState
*bs
, int l1_index
, uint64_t **table
)
166 BDRVQcowState
*s
= bs
->opaque
;
167 uint64_t old_l2_offset
;
172 old_l2_offset
= s
->l1_table
[l1_index
];
174 trace_qcow2_l2_allocate(bs
, l1_index
);
176 /* allocate a new l2 entry */
178 l2_offset
= qcow2_alloc_clusters(bs
, s
->l2_size
* sizeof(uint64_t));
183 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
188 /* allocate a new entry in the l2 cache */
190 trace_qcow2_l2_allocate_get_empty(bs
, l1_index
);
191 ret
= qcow2_cache_get_empty(bs
, s
->l2_table_cache
, l2_offset
, (void**) table
);
198 if ((old_l2_offset
& L1E_OFFSET_MASK
) == 0) {
199 /* if there was no old l2 table, clear the new table */
200 memset(l2_table
, 0, s
->l2_size
* sizeof(uint64_t));
204 /* if there was an old l2 table, read it from the disk */
205 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_COW_READ
);
206 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
,
207 old_l2_offset
& L1E_OFFSET_MASK
,
208 (void**) &old_table
);
213 memcpy(l2_table
, old_table
, s
->cluster_size
);
215 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &old_table
);
221 /* write the l2 table to the file */
222 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_WRITE
);
224 trace_qcow2_l2_allocate_write_l2(bs
, l1_index
);
225 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
226 ret
= qcow2_cache_flush(bs
, s
->l2_table_cache
);
231 /* update the L1 entry */
232 trace_qcow2_l2_allocate_write_l1(bs
, l1_index
);
233 s
->l1_table
[l1_index
] = l2_offset
| QCOW_OFLAG_COPIED
;
234 ret
= write_l1_entry(bs
, l1_index
);
240 trace_qcow2_l2_allocate_done(bs
, l1_index
, 0);
244 trace_qcow2_l2_allocate_done(bs
, l1_index
, ret
);
245 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) table
);
246 s
->l1_table
[l1_index
] = old_l2_offset
;
251 * Checks how many clusters in a given L2 table are contiguous in the image
252 * file. As soon as one of the flags in the bitmask stop_flags changes compared
253 * to the first cluster, the search is stopped and the cluster is not counted
254 * as contiguous. (This allows it, for example, to stop at the first compressed
255 * cluster which may require a different handling)
257 static int count_contiguous_clusters(uint64_t nb_clusters
, int cluster_size
,
258 uint64_t *l2_table
, uint64_t start
, uint64_t stop_flags
)
261 uint64_t mask
= stop_flags
| L2E_OFFSET_MASK
;
262 uint64_t offset
= be64_to_cpu(l2_table
[0]) & mask
;
267 for (i
= start
; i
< start
+ nb_clusters
; i
++) {
268 uint64_t l2_entry
= be64_to_cpu(l2_table
[i
]) & mask
;
269 if (offset
+ (uint64_t) i
* cluster_size
!= l2_entry
) {
277 static int count_contiguous_free_clusters(uint64_t nb_clusters
, uint64_t *l2_table
)
281 for (i
= 0; i
< nb_clusters
; i
++) {
282 int type
= qcow2_get_cluster_type(be64_to_cpu(l2_table
[i
]));
284 if (type
!= QCOW2_CLUSTER_UNALLOCATED
) {
292 /* The crypt function is compatible with the linux cryptoloop
293 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
295 void qcow2_encrypt_sectors(BDRVQcowState
*s
, int64_t sector_num
,
296 uint8_t *out_buf
, const uint8_t *in_buf
,
297 int nb_sectors
, int enc
,
306 for(i
= 0; i
< nb_sectors
; i
++) {
307 ivec
.ll
[0] = cpu_to_le64(sector_num
);
309 AES_cbc_encrypt(in_buf
, out_buf
, 512, key
,
317 static int coroutine_fn
copy_sectors(BlockDriverState
*bs
,
319 uint64_t cluster_offset
,
320 int n_start
, int n_end
)
322 BDRVQcowState
*s
= bs
->opaque
;
328 * If this is the last cluster and it is only partially used, we must only
329 * copy until the end of the image, or bdrv_check_request will fail for the
330 * bdrv_read/write calls below.
332 if (start_sect
+ n_end
> bs
->total_sectors
) {
333 n_end
= bs
->total_sectors
- start_sect
;
341 iov
.iov_len
= n
* BDRV_SECTOR_SIZE
;
342 iov
.iov_base
= qemu_blockalign(bs
, iov
.iov_len
);
344 qemu_iovec_init_external(&qiov
, &iov
, 1);
346 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_READ
);
348 /* Call .bdrv_co_readv() directly instead of using the public block-layer
349 * interface. This avoids double I/O throttling and request tracking,
350 * which can lead to deadlock when block layer copy-on-read is enabled.
352 ret
= bs
->drv
->bdrv_co_readv(bs
, start_sect
+ n_start
, n
, &qiov
);
357 if (s
->crypt_method
) {
358 qcow2_encrypt_sectors(s
, start_sect
+ n_start
,
359 iov
.iov_base
, iov
.iov_base
, n
, 1,
360 &s
->aes_encrypt_key
);
363 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_WRITE
);
364 ret
= bdrv_co_writev(bs
->file
, (cluster_offset
>> 9) + n_start
, n
, &qiov
);
371 qemu_vfree(iov
.iov_base
);
379 * For a given offset of the disk image, find the cluster offset in
380 * qcow2 file. The offset is stored in *cluster_offset.
382 * on entry, *num is the number of contiguous sectors we'd like to
383 * access following offset.
385 * on exit, *num is the number of contiguous sectors we can read.
387 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
390 int qcow2_get_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
391 int *num
, uint64_t *cluster_offset
)
393 BDRVQcowState
*s
= bs
->opaque
;
394 unsigned int l1_index
, l2_index
;
395 uint64_t l2_offset
, *l2_table
;
397 unsigned int index_in_cluster
, nb_clusters
;
398 uint64_t nb_available
, nb_needed
;
401 index_in_cluster
= (offset
>> 9) & (s
->cluster_sectors
- 1);
402 nb_needed
= *num
+ index_in_cluster
;
404 l1_bits
= s
->l2_bits
+ s
->cluster_bits
;
406 /* compute how many bytes there are between the offset and
407 * the end of the l1 entry
410 nb_available
= (1ULL << l1_bits
) - (offset
& ((1ULL << l1_bits
) - 1));
412 /* compute the number of available sectors */
414 nb_available
= (nb_available
>> 9) + index_in_cluster
;
416 if (nb_needed
> nb_available
) {
417 nb_needed
= nb_available
;
422 /* seek the the l2 offset in the l1 table */
424 l1_index
= offset
>> l1_bits
;
425 if (l1_index
>= s
->l1_size
) {
426 ret
= QCOW2_CLUSTER_UNALLOCATED
;
430 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
432 ret
= QCOW2_CLUSTER_UNALLOCATED
;
436 /* load the l2 table in memory */
438 ret
= l2_load(bs
, l2_offset
, &l2_table
);
443 /* find the cluster offset for the given disk offset */
445 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
446 *cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
447 nb_clusters
= size_to_clusters(s
, nb_needed
<< 9);
449 ret
= qcow2_get_cluster_type(*cluster_offset
);
451 case QCOW2_CLUSTER_COMPRESSED
:
452 /* Compressed clusters can only be processed one by one */
454 *cluster_offset
&= L2E_COMPRESSED_OFFSET_SIZE_MASK
;
456 case QCOW2_CLUSTER_ZERO
:
457 if (s
->qcow_version
< 3) {
460 c
= count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
461 &l2_table
[l2_index
], 0,
462 QCOW_OFLAG_COMPRESSED
| QCOW_OFLAG_ZERO
);
465 case QCOW2_CLUSTER_UNALLOCATED
:
466 /* how many empty clusters ? */
467 c
= count_contiguous_free_clusters(nb_clusters
, &l2_table
[l2_index
]);
470 case QCOW2_CLUSTER_NORMAL
:
471 /* how many allocated clusters ? */
472 c
= count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
473 &l2_table
[l2_index
], 0,
474 QCOW_OFLAG_COMPRESSED
| QCOW_OFLAG_ZERO
);
475 *cluster_offset
&= L2E_OFFSET_MASK
;
481 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
483 nb_available
= (c
* s
->cluster_sectors
);
486 if (nb_available
> nb_needed
)
487 nb_available
= nb_needed
;
489 *num
= nb_available
- index_in_cluster
;
497 * for a given disk offset, load (and allocate if needed)
500 * the l2 table offset in the qcow2 file and the cluster index
501 * in the l2 table are given to the caller.
503 * Returns 0 on success, -errno in failure case
505 static int get_cluster_table(BlockDriverState
*bs
, uint64_t offset
,
506 uint64_t **new_l2_table
,
509 BDRVQcowState
*s
= bs
->opaque
;
510 unsigned int l1_index
, l2_index
;
512 uint64_t *l2_table
= NULL
;
515 /* seek the the l2 offset in the l1 table */
517 l1_index
= offset
>> (s
->l2_bits
+ s
->cluster_bits
);
518 if (l1_index
>= s
->l1_size
) {
519 ret
= qcow2_grow_l1_table(bs
, l1_index
+ 1, false);
525 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
527 /* seek the l2 table of the given l2 offset */
529 if (s
->l1_table
[l1_index
] & QCOW_OFLAG_COPIED
) {
530 /* load the l2 table in memory */
531 ret
= l2_load(bs
, l2_offset
, &l2_table
);
536 /* First allocate a new L2 table (and do COW if needed) */
537 ret
= l2_allocate(bs
, l1_index
, &l2_table
);
542 /* Then decrease the refcount of the old table */
544 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* sizeof(uint64_t));
548 /* find the cluster offset for the given disk offset */
550 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
552 *new_l2_table
= l2_table
;
553 *new_l2_index
= l2_index
;
559 * alloc_compressed_cluster_offset
561 * For a given offset of the disk image, return cluster offset in
564 * If the offset is not found, allocate a new compressed cluster.
566 * Return the cluster offset if successful,
567 * Return 0, otherwise.
571 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState
*bs
,
575 BDRVQcowState
*s
= bs
->opaque
;
578 int64_t cluster_offset
;
581 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
586 /* Compression can't overwrite anything. Fail if the cluster was already
588 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
589 if (cluster_offset
& L2E_OFFSET_MASK
) {
590 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
594 cluster_offset
= qcow2_alloc_bytes(bs
, compressed_size
);
595 if (cluster_offset
< 0) {
596 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
600 nb_csectors
= ((cluster_offset
+ compressed_size
- 1) >> 9) -
601 (cluster_offset
>> 9);
603 cluster_offset
|= QCOW_OFLAG_COMPRESSED
|
604 ((uint64_t)nb_csectors
<< s
->csize_shift
);
606 /* update L2 table */
608 /* compressed clusters never have the copied flag */
610 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_UPDATE_COMPRESSED
);
611 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
612 l2_table
[l2_index
] = cpu_to_be64(cluster_offset
);
613 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
618 return cluster_offset
;
621 static int perform_cow(BlockDriverState
*bs
, QCowL2Meta
*m
, Qcow2COWRegion
*r
)
623 BDRVQcowState
*s
= bs
->opaque
;
626 if (r
->nb_sectors
== 0) {
630 qemu_co_mutex_unlock(&s
->lock
);
631 ret
= copy_sectors(bs
, m
->offset
/ BDRV_SECTOR_SIZE
, m
->alloc_offset
,
632 r
->offset
/ BDRV_SECTOR_SIZE
,
633 r
->offset
/ BDRV_SECTOR_SIZE
+ r
->nb_sectors
);
634 qemu_co_mutex_lock(&s
->lock
);
641 * Before we update the L2 table to actually point to the new cluster, we
642 * need to be sure that the refcounts have been increased and COW was
645 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
650 int qcow2_alloc_cluster_link_l2(BlockDriverState
*bs
, QCowL2Meta
*m
)
652 BDRVQcowState
*s
= bs
->opaque
;
653 int i
, j
= 0, l2_index
, ret
;
654 uint64_t *old_cluster
, *l2_table
;
655 uint64_t cluster_offset
= m
->alloc_offset
;
657 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m
->nb_clusters
);
658 assert(m
->nb_clusters
> 0);
660 old_cluster
= g_malloc(m
->nb_clusters
* sizeof(uint64_t));
662 /* copy content of unmodified sectors */
663 ret
= perform_cow(bs
, m
, &m
->cow_start
);
668 ret
= perform_cow(bs
, m
, &m
->cow_end
);
673 /* Update L2 table. */
674 if (s
->use_lazy_refcounts
) {
675 qcow2_mark_dirty(bs
);
677 if (qcow2_need_accurate_refcounts(s
)) {
678 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
,
679 s
->refcount_block_cache
);
682 ret
= get_cluster_table(bs
, m
->offset
, &l2_table
, &l2_index
);
686 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
688 for (i
= 0; i
< m
->nb_clusters
; i
++) {
689 /* if two concurrent writes happen to the same unallocated cluster
690 * each write allocates separate cluster and writes data concurrently.
691 * The first one to complete updates l2 table with pointer to its
692 * cluster the second one has to do RMW (which is done above by
693 * copy_sectors()), update l2 table with its cluster pointer and free
694 * old cluster. This is what this loop does */
695 if(l2_table
[l2_index
+ i
] != 0)
696 old_cluster
[j
++] = l2_table
[l2_index
+ i
];
698 l2_table
[l2_index
+ i
] = cpu_to_be64((cluster_offset
+
699 (i
<< s
->cluster_bits
)) | QCOW_OFLAG_COPIED
);
703 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
709 * If this was a COW, we need to decrease the refcount of the old cluster.
710 * Also flush bs->file to get the right order for L2 and refcount update.
713 for (i
= 0; i
< j
; i
++) {
714 qcow2_free_any_clusters(bs
, be64_to_cpu(old_cluster
[i
]), 1);
725 * Returns the number of contiguous clusters that can be used for an allocating
726 * write, but require COW to be performed (this includes yet unallocated space,
727 * which must copy from the backing file)
729 static int count_cow_clusters(BDRVQcowState
*s
, int nb_clusters
,
730 uint64_t *l2_table
, int l2_index
)
734 for (i
= 0; i
< nb_clusters
; i
++) {
735 uint64_t l2_entry
= be64_to_cpu(l2_table
[l2_index
+ i
]);
736 int cluster_type
= qcow2_get_cluster_type(l2_entry
);
738 switch(cluster_type
) {
739 case QCOW2_CLUSTER_NORMAL
:
740 if (l2_entry
& QCOW_OFLAG_COPIED
) {
744 case QCOW2_CLUSTER_UNALLOCATED
:
745 case QCOW2_CLUSTER_COMPRESSED
:
746 case QCOW2_CLUSTER_ZERO
:
754 assert(i
<= nb_clusters
);
759 * Check if there already is an AIO write request in flight which allocates
760 * the same cluster. In this case we need to wait until the previous
761 * request has completed and updated the L2 table accordingly.
764 * 0 if there was no dependency. *cur_bytes indicates the number of
765 * bytes from guest_offset that can be read before the next
766 * dependency must be processed (or the request is complete)
768 * -EAGAIN if we had to wait for another request, previously gathered
769 * information on cluster allocation may be invalid now. The caller
770 * must start over anyway, so consider *cur_bytes undefined.
772 static int handle_dependencies(BlockDriverState
*bs
, uint64_t guest_offset
,
775 BDRVQcowState
*s
= bs
->opaque
;
776 QCowL2Meta
*old_alloc
;
777 uint64_t bytes
= *cur_bytes
;
779 QLIST_FOREACH(old_alloc
, &s
->cluster_allocs
, next_in_flight
) {
781 uint64_t start
= guest_offset
;
782 uint64_t end
= start
+ bytes
;
783 uint64_t old_start
= l2meta_cow_start(old_alloc
);
784 uint64_t old_end
= l2meta_cow_end(old_alloc
);
786 if (end
<= old_start
|| start
>= old_end
) {
787 /* No intersection */
789 if (start
< old_start
) {
790 /* Stop at the start of a running allocation */
791 bytes
= old_start
- start
;
797 /* Wait for the dependency to complete. We need to recheck
798 * the free/allocated clusters when we continue. */
799 qemu_co_mutex_unlock(&s
->lock
);
800 qemu_co_queue_wait(&old_alloc
->dependent_requests
);
801 qemu_co_mutex_lock(&s
->lock
);
807 /* Make sure that existing clusters and new allocations are only used up to
808 * the next dependency if we shortened the request above */
815 * Allocates new clusters for the given guest_offset.
817 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
818 * contain the number of clusters that have been allocated and are contiguous
821 * If *host_offset is non-zero, it specifies the offset in the image file at
822 * which the new clusters must start. *nb_clusters can be 0 on return in this
823 * case if the cluster at host_offset is already in use. If *host_offset is
824 * zero, the clusters can be allocated anywhere in the image file.
826 * *host_offset is updated to contain the offset into the image file at which
827 * the first allocated cluster starts.
829 * Return 0 on success and -errno in error cases. -EAGAIN means that the
830 * function has been waiting for another request and the allocation must be
831 * restarted, but the whole request should not be failed.
833 static int do_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t guest_offset
,
834 uint64_t *host_offset
, unsigned int *nb_clusters
)
836 BDRVQcowState
*s
= bs
->opaque
;
838 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset
,
839 *host_offset
, *nb_clusters
);
841 /* Allocate new clusters */
842 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
843 if (*host_offset
== 0) {
844 int64_t cluster_offset
=
845 qcow2_alloc_clusters(bs
, *nb_clusters
* s
->cluster_size
);
846 if (cluster_offset
< 0) {
847 return cluster_offset
;
849 *host_offset
= cluster_offset
;
852 int ret
= qcow2_alloc_clusters_at(bs
, *host_offset
, *nb_clusters
);
862 * Allocates new clusters for an area that either is yet unallocated or needs a
863 * copy on write. If *host_offset is non-zero, clusters are only allocated if
864 * the new allocation can match the specified host offset.
866 * Note that guest_offset may not be cluster aligned.
869 * 0: if no clusters could be allocated. *bytes is set to 0,
870 * *host_offset is left unchanged.
872 * 1: if new clusters were allocated. *bytes may be decreased if the
873 * new allocation doesn't cover all of the requested area.
874 * *host_offset is updated to contain the host offset of the first
875 * newly allocated cluster.
877 * -errno: in error cases
879 static int handle_alloc(BlockDriverState
*bs
, uint64_t guest_offset
,
880 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
882 BDRVQcowState
*s
= bs
->opaque
;
886 unsigned int nb_clusters
;
889 uint64_t alloc_cluster_offset
;
891 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset
, *host_offset
,
896 * Calculate the number of clusters to look for. We stop at L2 table
897 * boundaries to keep things simple.
900 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
902 l2_index
= offset_to_l2_index(s
, guest_offset
);
903 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
905 /* Find L2 entry for the first involved cluster */
906 ret
= get_cluster_table(bs
, guest_offset
, &l2_table
, &l2_index
);
911 entry
= be64_to_cpu(l2_table
[l2_index
]);
913 /* For the moment, overwrite compressed clusters one by one */
914 if (entry
& QCOW_OFLAG_COMPRESSED
) {
917 nb_clusters
= count_cow_clusters(s
, nb_clusters
, l2_table
, l2_index
);
920 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
925 if (nb_clusters
== 0) {
930 /* Allocate, if necessary at a given offset in the image file */
931 alloc_cluster_offset
= *host_offset
;
932 ret
= do_alloc_cluster_offset(bs
, guest_offset
, &alloc_cluster_offset
,
938 /* Can't extend contiguous allocation */
939 if (nb_clusters
== 0) {
945 * Save info needed for meta data update.
947 * requested_sectors: Number of sectors from the start of the first
948 * newly allocated cluster to the end of the (possibly shortened
949 * before) write request.
951 * avail_sectors: Number of sectors from the start of the first
952 * newly allocated to the end of the last newly allocated cluster.
954 * nb_sectors: The number of sectors from the start of the first
955 * newly allocated cluster to the end of the area that the write
956 * request actually writes to (excluding COW at the end)
958 int requested_sectors
=
959 (*bytes
+ offset_into_cluster(s
, guest_offset
))
961 int avail_sectors
= nb_clusters
962 << (s
->cluster_bits
- BDRV_SECTOR_BITS
);
963 int alloc_n_start
= offset_into_cluster(s
, guest_offset
)
965 int nb_sectors
= MIN(requested_sectors
, avail_sectors
);
967 *host_offset
= alloc_cluster_offset
;
969 *m
= g_malloc0(sizeof(**m
));
972 .alloc_offset
= *host_offset
,
973 .offset
= start_of_cluster(s
, guest_offset
),
974 .nb_clusters
= nb_clusters
,
975 .nb_available
= nb_sectors
,
979 .nb_sectors
= alloc_n_start
,
982 .offset
= nb_sectors
* BDRV_SECTOR_SIZE
,
983 .nb_sectors
= avail_sectors
- nb_sectors
,
986 qemu_co_queue_init(&(*m
)->dependent_requests
);
987 QLIST_INSERT_HEAD(&s
->cluster_allocs
, *m
, next_in_flight
);
989 *bytes
= MIN(*bytes
, (nb_sectors
* BDRV_SECTOR_SIZE
)
990 - offset_into_cluster(s
, guest_offset
));
996 if (*m
&& (*m
)->nb_clusters
> 0) {
997 QLIST_REMOVE(*m
, next_in_flight
);
1003 * alloc_cluster_offset
1005 * For a given offset on the virtual disk, find the cluster offset in qcow2
1006 * file. If the offset is not found, allocate a new cluster.
1008 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1009 * other fields in m are meaningless.
1011 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1012 * contiguous clusters that have been allocated. In this case, the other
1013 * fields of m are valid and contain information about the first allocated
1016 * If the request conflicts with another write request in flight, the coroutine
1017 * is queued and will be reentered when the dependency has completed.
1019 * Return 0 on success and -errno in error cases
1021 int qcow2_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
1022 int n_start
, int n_end
, int *num
, uint64_t *host_offset
, QCowL2Meta
**m
)
1024 BDRVQcowState
*s
= bs
->opaque
;
1025 int l2_index
, ret
, sectors
;
1027 unsigned int nb_clusters
, keep_clusters
;
1028 uint64_t cluster_offset
;
1031 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset
,
1036 * Calculate the number of clusters to look for. We stop at L2 table
1037 * boundaries to keep things simple.
1039 l2_index
= offset_to_l2_index(s
, offset
);
1040 nb_clusters
= MIN(size_to_clusters(s
, n_end
<< BDRV_SECTOR_BITS
),
1041 s
->l2_size
- l2_index
);
1042 n_end
= MIN(n_end
, nb_clusters
* s
->cluster_sectors
);
1045 * Now start gathering as many contiguous clusters as possible:
1047 * 1. Check for overlaps with in-flight allocations
1049 * a) Overlap not in the first cluster -> shorten this request and let
1050 * the caller handle the rest in its next loop iteration.
1052 * b) Real overlaps of two requests. Yield and restart the search for
1053 * contiguous clusters (the situation could have changed while we
1056 * c) TODO: Request starts in the same cluster as the in-flight
1057 * allocation ends. Shorten the COW of the in-fight allocation, set
1058 * cluster_offset to write to the same cluster and set up the right
1059 * synchronisation between the in-flight request and the new one.
1061 * 2. Count contiguous COPIED clusters.
1062 * TODO: Consider cluster_offset if set in step 1c.
1064 * 3. If the request still hasn't completed, allocate new clusters,
1065 * considering any cluster_offset of steps 1c or 2.
1067 cur_bytes
= (n_end
- n_start
) * BDRV_SECTOR_SIZE
;
1068 ret
= handle_dependencies(bs
, offset
, &cur_bytes
);
1069 if (ret
== -EAGAIN
) {
1071 } else if (ret
< 0) {
1074 /* handle_dependencies() may have decreased cur_bytes (shortened
1075 * the allocations below) so that the next dependency is processed
1076 * correctly during the next loop iteration. */
1079 nb_clusters
= size_to_clusters(s
, offset
+ cur_bytes
)
1080 - (offset
>> s
->cluster_bits
);
1082 /* Find L2 entry for the first involved cluster */
1083 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
1088 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
1090 /* Check how many clusters are already allocated and don't need COW */
1091 if (qcow2_get_cluster_type(cluster_offset
) == QCOW2_CLUSTER_NORMAL
1092 && (cluster_offset
& QCOW_OFLAG_COPIED
))
1094 /* We keep all QCOW_OFLAG_COPIED clusters */
1096 count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
1097 &l2_table
[l2_index
], 0,
1098 QCOW_OFLAG_COPIED
| QCOW_OFLAG_ZERO
);
1099 assert(keep_clusters
<= nb_clusters
);
1100 nb_clusters
-= keep_clusters
;
1106 cluster_offset
&= L2E_OFFSET_MASK
;
1107 *host_offset
= cluster_offset
;
1110 * The L2 table isn't used any more after this. As long as the cache works
1111 * synchronously, it's important to release it before calling
1112 * do_alloc_cluster_offset, which may yield if we need to wait for another
1113 * request to complete. If we still had the reference, we could use up the
1114 * whole cache with sleeping requests.
1116 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
1121 /* If there is something left to allocate, do that now */
1122 if (nb_clusters
== 0) {
1129 if (keep_clusters
!= 0) {
1130 offset
= start_of_cluster(s
, offset
1131 + keep_clusters
* s
->cluster_size
);
1132 cluster_offset
= start_of_cluster(s
, cluster_offset
1133 + keep_clusters
* s
->cluster_size
);
1136 alloc_n_end
= n_end
- keep_clusters
* s
->cluster_sectors
;
1138 alloc_n_start
= n_start
;
1139 alloc_n_end
= n_end
;
1142 cur_bytes
= MIN(cur_bytes
, ((alloc_n_end
- alloc_n_start
) << BDRV_SECTOR_BITS
));
1144 ret
= handle_alloc(bs
, offset
, &cluster_offset
, &cur_bytes
, m
);
1149 if (!*host_offset
) {
1150 *host_offset
= cluster_offset
;
1152 nb_clusters
= size_to_clusters(s
, cur_bytes
+ offset_into_cluster(s
, offset
));
1154 /* Some cleanup work */
1156 sectors
= (keep_clusters
+ nb_clusters
) << (s
->cluster_bits
- 9);
1157 if (sectors
> n_end
) {
1161 assert(sectors
> n_start
);
1162 *num
= sectors
- n_start
;
1167 static int decompress_buffer(uint8_t *out_buf
, int out_buf_size
,
1168 const uint8_t *buf
, int buf_size
)
1170 z_stream strm1
, *strm
= &strm1
;
1173 memset(strm
, 0, sizeof(*strm
));
1175 strm
->next_in
= (uint8_t *)buf
;
1176 strm
->avail_in
= buf_size
;
1177 strm
->next_out
= out_buf
;
1178 strm
->avail_out
= out_buf_size
;
1180 ret
= inflateInit2(strm
, -12);
1183 ret
= inflate(strm
, Z_FINISH
);
1184 out_len
= strm
->next_out
- out_buf
;
1185 if ((ret
!= Z_STREAM_END
&& ret
!= Z_BUF_ERROR
) ||
1186 out_len
!= out_buf_size
) {
1194 int qcow2_decompress_cluster(BlockDriverState
*bs
, uint64_t cluster_offset
)
1196 BDRVQcowState
*s
= bs
->opaque
;
1197 int ret
, csize
, nb_csectors
, sector_offset
;
1200 coffset
= cluster_offset
& s
->cluster_offset_mask
;
1201 if (s
->cluster_cache_offset
!= coffset
) {
1202 nb_csectors
= ((cluster_offset
>> s
->csize_shift
) & s
->csize_mask
) + 1;
1203 sector_offset
= coffset
& 511;
1204 csize
= nb_csectors
* 512 - sector_offset
;
1205 BLKDBG_EVENT(bs
->file
, BLKDBG_READ_COMPRESSED
);
1206 ret
= bdrv_read(bs
->file
, coffset
>> 9, s
->cluster_data
, nb_csectors
);
1210 if (decompress_buffer(s
->cluster_cache
, s
->cluster_size
,
1211 s
->cluster_data
+ sector_offset
, csize
) < 0) {
1214 s
->cluster_cache_offset
= coffset
;
1220 * This discards as many clusters of nb_clusters as possible at once (i.e.
1221 * all clusters in the same L2 table) and returns the number of discarded
1224 static int discard_single_l2(BlockDriverState
*bs
, uint64_t offset
,
1225 unsigned int nb_clusters
)
1227 BDRVQcowState
*s
= bs
->opaque
;
1233 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
1238 /* Limit nb_clusters to one L2 table */
1239 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1241 for (i
= 0; i
< nb_clusters
; i
++) {
1242 uint64_t old_offset
;
1244 old_offset
= be64_to_cpu(l2_table
[l2_index
+ i
]);
1245 if ((old_offset
& L2E_OFFSET_MASK
) == 0) {
1249 /* First remove L2 entries */
1250 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
1251 l2_table
[l2_index
+ i
] = cpu_to_be64(0);
1253 /* Then decrease the refcount */
1254 qcow2_free_any_clusters(bs
, old_offset
, 1);
1257 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
1265 int qcow2_discard_clusters(BlockDriverState
*bs
, uint64_t offset
,
1268 BDRVQcowState
*s
= bs
->opaque
;
1269 uint64_t end_offset
;
1270 unsigned int nb_clusters
;
1273 end_offset
= offset
+ (nb_sectors
<< BDRV_SECTOR_BITS
);
1275 /* Round start up and end down */
1276 offset
= align_offset(offset
, s
->cluster_size
);
1277 end_offset
&= ~(s
->cluster_size
- 1);
1279 if (offset
> end_offset
) {
1283 nb_clusters
= size_to_clusters(s
, end_offset
- offset
);
1285 /* Each L2 table is handled by its own loop iteration */
1286 while (nb_clusters
> 0) {
1287 ret
= discard_single_l2(bs
, offset
, nb_clusters
);
1293 offset
+= (ret
* s
->cluster_size
);
1300 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1301 * all clusters in the same L2 table) and returns the number of zeroed
1304 static int zero_single_l2(BlockDriverState
*bs
, uint64_t offset
,
1305 unsigned int nb_clusters
)
1307 BDRVQcowState
*s
= bs
->opaque
;
1313 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
1318 /* Limit nb_clusters to one L2 table */
1319 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1321 for (i
= 0; i
< nb_clusters
; i
++) {
1322 uint64_t old_offset
;
1324 old_offset
= be64_to_cpu(l2_table
[l2_index
+ i
]);
1326 /* Update L2 entries */
1327 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
1328 if (old_offset
& QCOW_OFLAG_COMPRESSED
) {
1329 l2_table
[l2_index
+ i
] = cpu_to_be64(QCOW_OFLAG_ZERO
);
1330 qcow2_free_any_clusters(bs
, old_offset
, 1);
1332 l2_table
[l2_index
+ i
] |= cpu_to_be64(QCOW_OFLAG_ZERO
);
1336 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
1344 int qcow2_zero_clusters(BlockDriverState
*bs
, uint64_t offset
, int nb_sectors
)
1346 BDRVQcowState
*s
= bs
->opaque
;
1347 unsigned int nb_clusters
;
1350 /* The zero flag is only supported by version 3 and newer */
1351 if (s
->qcow_version
< 3) {
1355 /* Each L2 table is handled by its own loop iteration */
1356 nb_clusters
= size_to_clusters(s
, nb_sectors
<< BDRV_SECTOR_BITS
);
1358 while (nb_clusters
> 0) {
1359 ret
= zero_single_l2(bs
, offset
, nb_clusters
);
1365 offset
+= (ret
* s
->cluster_size
);