2 * ARM implementation of KVM hooks
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
12 #include <sys/types.h>
13 #include <sys/ioctl.h>
16 #include <linux/kvm.h>
18 #include "qemu-common.h"
19 #include "qemu/timer.h"
20 #include "sysemu/sysemu.h"
21 #include "sysemu/kvm.h"
24 #include "hw/arm/arm.h"
26 /* Check that cpu.h's idea of coprocessor fields matches KVM's */
27 #if (CP_REG_SIZE_SHIFT != KVM_REG_SIZE_SHIFT) || \
28 (CP_REG_SIZE_MASK != KVM_REG_SIZE_MASK) || \
29 (CP_REG_SIZE_U32 != KVM_REG_SIZE_U32) || \
30 (CP_REG_SIZE_U64 != KVM_REG_SIZE_U64) || \
31 (CP_REG_ARM != KVM_REG_ARM)
32 #error mismatch between cpu.h and KVM header definitions
35 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
39 int kvm_arch_init(KVMState
*s
)
41 /* For ARM interrupt delivery is always asynchronous,
42 * whether we are using an in-kernel VGIC or not.
44 kvm_async_interrupts_allowed
= true;
48 unsigned long kvm_arch_vcpu_id(CPUState
*cpu
)
50 return cpu
->cpu_index
;
53 static bool reg_syncs_via_tuple_list(uint64_t regidx
)
55 /* Return true if the regidx is a register we should synchronize
56 * via the cpreg_tuples array (ie is not a core reg we sync by
57 * hand in kvm_arch_get/put_registers())
59 switch (regidx
& KVM_REG_ARM_COPROC_MASK
) {
60 case KVM_REG_ARM_CORE
:
68 static int compare_u64(const void *a
, const void *b
)
70 if (*(uint64_t *)a
> *(uint64_t *)b
) {
73 if (*(uint64_t *)a
< *(uint64_t *)b
) {
79 int kvm_arch_init_vcpu(CPUState
*cs
)
81 struct kvm_vcpu_init init
;
85 struct kvm_reg_list rl
;
86 struct kvm_reg_list
*rlp
;
87 ARMCPU
*cpu
= ARM_CPU(cs
);
89 init
.target
= KVM_ARM_TARGET_CORTEX_A15
;
90 memset(init
.features
, 0, sizeof(init
.features
));
91 ret
= kvm_vcpu_ioctl(cs
, KVM_ARM_VCPU_INIT
, &init
);
95 /* Query the kernel to make sure it supports 32 VFP
96 * registers: QEMU's "cortex-a15" CPU is always a
97 * VFP-D32 core. The simplest way to do this is just
98 * to attempt to read register d31.
100 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
| 31;
101 r
.addr
= (uintptr_t)(&v
);
102 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
103 if (ret
== -ENOENT
) {
107 /* Populate the cpreg list based on the kernel's idea
108 * of what registers exist (and throw away the TCG-created list).
111 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REG_LIST
, &rl
);
115 rlp
= g_malloc(sizeof(struct kvm_reg_list
) + rl
.n
* sizeof(uint64_t));
117 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REG_LIST
, rlp
);
121 /* Sort the list we get back from the kernel, since cpreg_tuples
122 * must be in strictly ascending order.
124 qsort(&rlp
->reg
, rlp
->n
, sizeof(rlp
->reg
[0]), compare_u64
);
126 for (i
= 0, arraylen
= 0; i
< rlp
->n
; i
++) {
127 if (!reg_syncs_via_tuple_list(rlp
->reg
[i
])) {
130 switch (rlp
->reg
[i
] & KVM_REG_SIZE_MASK
) {
131 case KVM_REG_SIZE_U32
:
132 case KVM_REG_SIZE_U64
:
135 fprintf(stderr
, "Can't handle size of register in kernel list\n");
143 cpu
->cpreg_indexes
= g_renew(uint64_t, cpu
->cpreg_indexes
, arraylen
);
144 cpu
->cpreg_values
= g_renew(uint64_t, cpu
->cpreg_values
, arraylen
);
145 cpu
->cpreg_vmstate_indexes
= g_renew(uint64_t, cpu
->cpreg_vmstate_indexes
,
147 cpu
->cpreg_vmstate_values
= g_renew(uint64_t, cpu
->cpreg_vmstate_values
,
149 cpu
->cpreg_array_len
= arraylen
;
150 cpu
->cpreg_vmstate_array_len
= arraylen
;
152 for (i
= 0, arraylen
= 0; i
< rlp
->n
; i
++) {
153 uint64_t regidx
= rlp
->reg
[i
];
154 if (!reg_syncs_via_tuple_list(regidx
)) {
157 cpu
->cpreg_indexes
[arraylen
] = regidx
;
160 assert(cpu
->cpreg_array_len
== arraylen
);
162 if (!write_kvmstate_to_list(cpu
)) {
163 /* Shouldn't happen unless kernel is inconsistent about
164 * what registers exist.
166 fprintf(stderr
, "Initial read of kernel register state failed\n");
171 /* Save a copy of the initial register values so that we can
172 * feed it back to the kernel on VCPU reset.
174 cpu
->cpreg_reset_values
= g_memdup(cpu
->cpreg_values
,
175 cpu
->cpreg_array_len
*
176 sizeof(cpu
->cpreg_values
[0]));
183 /* We track all the KVM devices which need their memory addresses
184 * passing to the kernel in a list of these structures.
185 * When board init is complete we run through the list and
186 * tell the kernel the base addresses of the memory regions.
187 * We use a MemoryListener to track mapping and unmapping of
188 * the regions during board creation, so the board models don't
189 * need to do anything special for the KVM case.
191 typedef struct KVMDevice
{
192 struct kvm_arm_device_addr kda
;
194 QSLIST_ENTRY(KVMDevice
) entries
;
197 static QSLIST_HEAD(kvm_devices_head
, KVMDevice
) kvm_devices_head
;
199 static void kvm_arm_devlistener_add(MemoryListener
*listener
,
200 MemoryRegionSection
*section
)
204 QSLIST_FOREACH(kd
, &kvm_devices_head
, entries
) {
205 if (section
->mr
== kd
->mr
) {
206 kd
->kda
.addr
= section
->offset_within_address_space
;
211 static void kvm_arm_devlistener_del(MemoryListener
*listener
,
212 MemoryRegionSection
*section
)
216 QSLIST_FOREACH(kd
, &kvm_devices_head
, entries
) {
217 if (section
->mr
== kd
->mr
) {
223 static MemoryListener devlistener
= {
224 .region_add
= kvm_arm_devlistener_add
,
225 .region_del
= kvm_arm_devlistener_del
,
228 static void kvm_arm_machine_init_done(Notifier
*notifier
, void *data
)
232 memory_listener_unregister(&devlistener
);
233 QSLIST_FOREACH_SAFE(kd
, &kvm_devices_head
, entries
, tkd
) {
234 if (kd
->kda
.addr
!= -1) {
235 if (kvm_vm_ioctl(kvm_state
, KVM_ARM_SET_DEVICE_ADDR
,
237 fprintf(stderr
, "KVM_ARM_SET_DEVICE_ADDRESS failed: %s\n",
242 memory_region_unref(kd
->mr
);
247 static Notifier notify
= {
248 .notify
= kvm_arm_machine_init_done
,
251 void kvm_arm_register_device(MemoryRegion
*mr
, uint64_t devid
)
255 if (!kvm_irqchip_in_kernel()) {
259 if (QSLIST_EMPTY(&kvm_devices_head
)) {
260 memory_listener_register(&devlistener
, NULL
);
261 qemu_add_machine_init_done_notifier(¬ify
);
263 kd
= g_new0(KVMDevice
, 1);
267 QSLIST_INSERT_HEAD(&kvm_devices_head
, kd
, entries
);
268 memory_region_ref(kd
->mr
);
271 bool write_kvmstate_to_list(ARMCPU
*cpu
)
273 CPUState
*cs
= CPU(cpu
);
277 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
278 struct kvm_one_reg r
;
279 uint64_t regidx
= cpu
->cpreg_indexes
[i
];
285 switch (regidx
& KVM_REG_SIZE_MASK
) {
286 case KVM_REG_SIZE_U32
:
287 r
.addr
= (uintptr_t)&v32
;
288 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
290 cpu
->cpreg_values
[i
] = v32
;
293 case KVM_REG_SIZE_U64
:
294 r
.addr
= (uintptr_t)(cpu
->cpreg_values
+ i
);
295 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
307 bool write_list_to_kvmstate(ARMCPU
*cpu
)
309 CPUState
*cs
= CPU(cpu
);
313 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
314 struct kvm_one_reg r
;
315 uint64_t regidx
= cpu
->cpreg_indexes
[i
];
320 switch (regidx
& KVM_REG_SIZE_MASK
) {
321 case KVM_REG_SIZE_U32
:
322 v32
= cpu
->cpreg_values
[i
];
323 r
.addr
= (uintptr_t)&v32
;
325 case KVM_REG_SIZE_U64
:
326 r
.addr
= (uintptr_t)(cpu
->cpreg_values
+ i
);
331 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
333 /* We might fail for "unknown register" and also for
334 * "you tried to set a register which is constant with
335 * a different value from what it actually contains".
348 #define COREREG(KERNELNAME, QEMUFIELD) \
350 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
351 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
352 offsetof(CPUARMState, QEMUFIELD) \
355 #define VFPSYSREG(R) \
357 KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
358 KVM_REG_ARM_VFP_##R, \
359 offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
362 static const Reg regs
[] = {
363 /* R0_usr .. R14_usr */
364 COREREG(usr_regs
.uregs
[0], regs
[0]),
365 COREREG(usr_regs
.uregs
[1], regs
[1]),
366 COREREG(usr_regs
.uregs
[2], regs
[2]),
367 COREREG(usr_regs
.uregs
[3], regs
[3]),
368 COREREG(usr_regs
.uregs
[4], regs
[4]),
369 COREREG(usr_regs
.uregs
[5], regs
[5]),
370 COREREG(usr_regs
.uregs
[6], regs
[6]),
371 COREREG(usr_regs
.uregs
[7], regs
[7]),
372 COREREG(usr_regs
.uregs
[8], usr_regs
[0]),
373 COREREG(usr_regs
.uregs
[9], usr_regs
[1]),
374 COREREG(usr_regs
.uregs
[10], usr_regs
[2]),
375 COREREG(usr_regs
.uregs
[11], usr_regs
[3]),
376 COREREG(usr_regs
.uregs
[12], usr_regs
[4]),
377 COREREG(usr_regs
.uregs
[13], banked_r13
[0]),
378 COREREG(usr_regs
.uregs
[14], banked_r14
[0]),
379 /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
380 COREREG(svc_regs
[0], banked_r13
[1]),
381 COREREG(svc_regs
[1], banked_r14
[1]),
382 COREREG(svc_regs
[2], banked_spsr
[1]),
383 COREREG(abt_regs
[0], banked_r13
[2]),
384 COREREG(abt_regs
[1], banked_r14
[2]),
385 COREREG(abt_regs
[2], banked_spsr
[2]),
386 COREREG(und_regs
[0], banked_r13
[3]),
387 COREREG(und_regs
[1], banked_r14
[3]),
388 COREREG(und_regs
[2], banked_spsr
[3]),
389 COREREG(irq_regs
[0], banked_r13
[4]),
390 COREREG(irq_regs
[1], banked_r14
[4]),
391 COREREG(irq_regs
[2], banked_spsr
[4]),
392 /* R8_fiq .. R14_fiq and SPSR_fiq */
393 COREREG(fiq_regs
[0], fiq_regs
[0]),
394 COREREG(fiq_regs
[1], fiq_regs
[1]),
395 COREREG(fiq_regs
[2], fiq_regs
[2]),
396 COREREG(fiq_regs
[3], fiq_regs
[3]),
397 COREREG(fiq_regs
[4], fiq_regs
[4]),
398 COREREG(fiq_regs
[5], banked_r13
[5]),
399 COREREG(fiq_regs
[6], banked_r14
[5]),
400 COREREG(fiq_regs
[7], banked_spsr
[5]),
402 COREREG(usr_regs
.uregs
[15], regs
[15]),
403 /* VFP system registers */
412 int kvm_arch_put_registers(CPUState
*cs
, int level
)
414 ARMCPU
*cpu
= ARM_CPU(cs
);
415 CPUARMState
*env
= &cpu
->env
;
416 struct kvm_one_reg r
;
419 uint32_t cpsr
, fpscr
;
421 /* Make sure the banked regs are properly set */
422 mode
= env
->uncached_cpsr
& CPSR_M
;
423 bn
= bank_number(mode
);
424 if (mode
== ARM_CPU_MODE_FIQ
) {
425 memcpy(env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
427 memcpy(env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
429 env
->banked_r13
[bn
] = env
->regs
[13];
430 env
->banked_r14
[bn
] = env
->regs
[14];
431 env
->banked_spsr
[bn
] = env
->spsr
;
433 /* Now we can safely copy stuff down to the kernel */
434 for (i
= 0; i
< ARRAY_SIZE(regs
); i
++) {
436 r
.addr
= (uintptr_t)(env
) + regs
[i
].offset
;
437 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
443 /* Special cases which aren't a single CPUARMState field */
444 cpsr
= cpsr_read(env
);
445 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
|
446 KVM_REG_ARM_CORE
| KVM_REG_ARM_CORE_REG(usr_regs
.ARM_cpsr
);
447 r
.addr
= (uintptr_t)(&cpsr
);
448 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
454 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
455 for (i
= 0; i
< 32; i
++) {
456 r
.addr
= (uintptr_t)(&env
->vfp
.regs
[i
]);
457 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
464 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
|
465 KVM_REG_ARM_VFP_FPSCR
;
466 fpscr
= vfp_get_fpscr(env
);
467 r
.addr
= (uintptr_t)&fpscr
;
468 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
473 /* Note that we do not call write_cpustate_to_list()
474 * here, so we are only writing the tuple list back to
475 * KVM. This is safe because nothing can change the
476 * CPUARMState cp15 fields (in particular gdb accesses cannot)
477 * and so there are no changes to sync. In fact syncing would
478 * be wrong at this point: for a constant register where TCG and
479 * KVM disagree about its value, the preceding write_list_to_cpustate()
480 * would not have had any effect on the CPUARMState value (since the
481 * register is read-only), and a write_cpustate_to_list() here would
482 * then try to write the TCG value back into KVM -- this would either
483 * fail or incorrectly change the value the guest sees.
485 * If we ever want to allow the user to modify cp15 registers via
486 * the gdb stub, we would need to be more clever here (for instance
487 * tracking the set of registers kvm_arch_get_registers() successfully
488 * managed to update the CPUARMState with, and only allowing those
489 * to be written back up into the kernel).
491 if (!write_list_to_kvmstate(cpu
)) {
498 int kvm_arch_get_registers(CPUState
*cs
)
500 ARMCPU
*cpu
= ARM_CPU(cs
);
501 CPUARMState
*env
= &cpu
->env
;
502 struct kvm_one_reg r
;
505 uint32_t cpsr
, fpscr
;
507 for (i
= 0; i
< ARRAY_SIZE(regs
); i
++) {
509 r
.addr
= (uintptr_t)(env
) + regs
[i
].offset
;
510 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
516 /* Special cases which aren't a single CPUARMState field */
517 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
|
518 KVM_REG_ARM_CORE
| KVM_REG_ARM_CORE_REG(usr_regs
.ARM_cpsr
);
519 r
.addr
= (uintptr_t)(&cpsr
);
520 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
524 cpsr_write(env
, cpsr
, 0xffffffff);
526 /* Make sure the current mode regs are properly set */
527 mode
= env
->uncached_cpsr
& CPSR_M
;
528 bn
= bank_number(mode
);
529 if (mode
== ARM_CPU_MODE_FIQ
) {
530 memcpy(env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
532 memcpy(env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
534 env
->regs
[13] = env
->banked_r13
[bn
];
535 env
->regs
[14] = env
->banked_r14
[bn
];
536 env
->spsr
= env
->banked_spsr
[bn
];
539 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
540 for (i
= 0; i
< 32; i
++) {
541 r
.addr
= (uintptr_t)(&env
->vfp
.regs
[i
]);
542 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
549 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
|
550 KVM_REG_ARM_VFP_FPSCR
;
551 r
.addr
= (uintptr_t)&fpscr
;
552 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
556 vfp_set_fpscr(env
, fpscr
);
558 if (!write_kvmstate_to_list(cpu
)) {
561 /* Note that it's OK to have registers which aren't in CPUState,
562 * so we can ignore a failure return here.
564 write_list_to_cpustate(cpu
);
569 void kvm_arch_pre_run(CPUState
*cs
, struct kvm_run
*run
)
573 void kvm_arch_post_run(CPUState
*cs
, struct kvm_run
*run
)
577 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
582 void kvm_arch_reset_vcpu(CPUState
*cs
)
584 /* Feed the kernel back its initial register state */
585 ARMCPU
*cpu
= ARM_CPU(cs
);
587 memmove(cpu
->cpreg_values
, cpu
->cpreg_reset_values
,
588 cpu
->cpreg_array_len
* sizeof(cpu
->cpreg_values
[0]));
590 if (!write_list_to_kvmstate(cpu
)) {
595 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
600 int kvm_arch_process_async_events(CPUState
*cs
)
605 int kvm_arch_on_sigbus_vcpu(CPUState
*cs
, int code
, void *addr
)
610 int kvm_arch_on_sigbus(int code
, void *addr
)
615 void kvm_arch_update_guest_debug(CPUState
*cs
, struct kvm_guest_debug
*dbg
)
617 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
620 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
,
621 struct kvm_sw_breakpoint
*bp
)
623 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
627 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
628 target_ulong len
, int type
)
630 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
634 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
635 target_ulong len
, int type
)
637 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
641 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
,
642 struct kvm_sw_breakpoint
*bp
)
644 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
648 void kvm_arch_remove_all_hw_breakpoints(void)
650 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
653 void kvm_arch_init_irq_routing(KVMState
*s
)