vmdk: vmdk_read_cid returns garbage if p_name is NULL
[qemu/ar7.git] / hw / lm32_boards.c
blob97e1c001b9e60767f419552b3ed383c42f986c12
1 /*
2 * QEMU models for LatticeMico32 uclinux and evr32 boards.
4 * Copyright (c) 2010 Michael Walle <michael@walle.cc>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "sysbus.h"
21 #include "hw.h"
22 #include "net.h"
23 #include "flash.h"
24 #include "devices.h"
25 #include "boards.h"
26 #include "loader.h"
27 #include "blockdev.h"
28 #include "elf.h"
29 #include "lm32_hwsetup.h"
30 #include "lm32.h"
31 #include "exec-memory.h"
33 typedef struct {
34 CPUState *env;
35 target_phys_addr_t bootstrap_pc;
36 target_phys_addr_t flash_base;
37 target_phys_addr_t hwsetup_base;
38 target_phys_addr_t initrd_base;
39 size_t initrd_size;
40 target_phys_addr_t cmdline_base;
41 } ResetInfo;
43 static void cpu_irq_handler(void *opaque, int irq, int level)
45 CPUState *env = opaque;
47 if (level) {
48 cpu_interrupt(env, CPU_INTERRUPT_HARD);
49 } else {
50 cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
54 static void main_cpu_reset(void *opaque)
56 ResetInfo *reset_info = opaque;
57 CPUState *env = reset_info->env;
59 cpu_reset(env);
61 /* init defaults */
62 env->pc = (uint32_t)reset_info->bootstrap_pc;
63 env->regs[R_R1] = (uint32_t)reset_info->hwsetup_base;
64 env->regs[R_R2] = (uint32_t)reset_info->cmdline_base;
65 env->regs[R_R3] = (uint32_t)reset_info->initrd_base;
66 env->regs[R_R4] = (uint32_t)(reset_info->initrd_base +
67 reset_info->initrd_size);
68 env->eba = reset_info->flash_base;
69 env->deba = reset_info->flash_base;
72 static void lm32_evr_init(ram_addr_t ram_size_not_used,
73 const char *boot_device,
74 const char *kernel_filename,
75 const char *kernel_cmdline,
76 const char *initrd_filename, const char *cpu_model)
78 CPUState *env;
79 DriveInfo *dinfo;
80 MemoryRegion *address_space_mem = get_system_memory();
81 MemoryRegion *phys_ram = g_new(MemoryRegion, 1);
82 qemu_irq *cpu_irq, irq[32];
83 ResetInfo *reset_info;
84 int i;
86 /* memory map */
87 target_phys_addr_t flash_base = 0x04000000;
88 size_t flash_sector_size = 256 * 1024;
89 size_t flash_size = 32 * 1024 * 1024;
90 target_phys_addr_t ram_base = 0x08000000;
91 size_t ram_size = 64 * 1024 * 1024;
92 target_phys_addr_t timer0_base = 0x80002000;
93 target_phys_addr_t uart0_base = 0x80006000;
94 target_phys_addr_t timer1_base = 0x8000a000;
95 int uart0_irq = 0;
96 int timer0_irq = 1;
97 int timer1_irq = 3;
99 reset_info = g_malloc0(sizeof(ResetInfo));
101 if (cpu_model == NULL) {
102 cpu_model = "lm32-full";
104 env = cpu_init(cpu_model);
105 reset_info->env = env;
107 reset_info->flash_base = flash_base;
109 memory_region_init_ram(phys_ram, NULL, "lm32_evr.sdram", ram_size);
110 memory_region_add_subregion(address_space_mem, ram_base, phys_ram);
112 dinfo = drive_get(IF_PFLASH, 0, 0);
113 /* Spansion S29NS128P */
114 pflash_cfi02_register(flash_base, NULL, "lm32_evr.flash", flash_size,
115 dinfo ? dinfo->bdrv : NULL, flash_sector_size,
116 flash_size / flash_sector_size, 1, 2,
117 0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);
119 /* create irq lines */
120 cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
121 env->pic_state = lm32_pic_init(*cpu_irq);
122 for (i = 0; i < 32; i++) {
123 irq[i] = qdev_get_gpio_in(env->pic_state, i);
126 sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
127 sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
128 sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
130 /* make sure juart isn't the first chardev */
131 env->juart_state = lm32_juart_init();
133 reset_info->bootstrap_pc = flash_base;
135 if (kernel_filename) {
136 uint64_t entry;
137 int kernel_size;
139 kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
140 1, ELF_MACHINE, 0);
141 reset_info->bootstrap_pc = entry;
143 if (kernel_size < 0) {
144 kernel_size = load_image_targphys(kernel_filename, ram_base,
145 ram_size);
146 reset_info->bootstrap_pc = ram_base;
149 if (kernel_size < 0) {
150 fprintf(stderr, "qemu: could not load kernel '%s'\n",
151 kernel_filename);
152 exit(1);
156 qemu_register_reset(main_cpu_reset, reset_info);
159 static void lm32_uclinux_init(ram_addr_t ram_size_not_used,
160 const char *boot_device,
161 const char *kernel_filename,
162 const char *kernel_cmdline,
163 const char *initrd_filename, const char *cpu_model)
165 CPUState *env;
166 DriveInfo *dinfo;
167 MemoryRegion *address_space_mem = get_system_memory();
168 MemoryRegion *phys_ram = g_new(MemoryRegion, 1);
169 qemu_irq *cpu_irq, irq[32];
170 HWSetup *hw;
171 ResetInfo *reset_info;
172 int i;
174 /* memory map */
175 target_phys_addr_t flash_base = 0x04000000;
176 size_t flash_sector_size = 256 * 1024;
177 size_t flash_size = 32 * 1024 * 1024;
178 target_phys_addr_t ram_base = 0x08000000;
179 size_t ram_size = 64 * 1024 * 1024;
180 target_phys_addr_t uart0_base = 0x80000000;
181 target_phys_addr_t timer0_base = 0x80002000;
182 target_phys_addr_t timer1_base = 0x80010000;
183 target_phys_addr_t timer2_base = 0x80012000;
184 int uart0_irq = 0;
185 int timer0_irq = 1;
186 int timer1_irq = 20;
187 int timer2_irq = 21;
188 target_phys_addr_t hwsetup_base = 0x0bffe000;
189 target_phys_addr_t cmdline_base = 0x0bfff000;
190 target_phys_addr_t initrd_base = 0x08400000;
191 size_t initrd_max = 0x01000000;
193 reset_info = g_malloc0(sizeof(ResetInfo));
195 if (cpu_model == NULL) {
196 cpu_model = "lm32-full";
198 env = cpu_init(cpu_model);
199 reset_info->env = env;
201 reset_info->flash_base = flash_base;
203 memory_region_init_ram(phys_ram, NULL, "lm32_uclinux.sdram", ram_size);
204 memory_region_add_subregion(address_space_mem, ram_base, phys_ram);
206 dinfo = drive_get(IF_PFLASH, 0, 0);
207 /* Spansion S29NS128P */
208 pflash_cfi02_register(flash_base, NULL, "lm32_uclinux.flash", flash_size,
209 dinfo ? dinfo->bdrv : NULL, flash_sector_size,
210 flash_size / flash_sector_size, 1, 2,
211 0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);
213 /* create irq lines */
214 cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
215 env->pic_state = lm32_pic_init(*cpu_irq);
216 for (i = 0; i < 32; i++) {
217 irq[i] = qdev_get_gpio_in(env->pic_state, i);
220 sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
221 sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
222 sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
223 sysbus_create_simple("lm32-timer", timer2_base, irq[timer2_irq]);
225 /* make sure juart isn't the first chardev */
226 env->juart_state = lm32_juart_init();
228 reset_info->bootstrap_pc = flash_base;
230 if (kernel_filename) {
231 uint64_t entry;
232 int kernel_size;
234 kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
235 1, ELF_MACHINE, 0);
236 reset_info->bootstrap_pc = entry;
238 if (kernel_size < 0) {
239 kernel_size = load_image_targphys(kernel_filename, ram_base,
240 ram_size);
241 reset_info->bootstrap_pc = ram_base;
244 if (kernel_size < 0) {
245 fprintf(stderr, "qemu: could not load kernel '%s'\n",
246 kernel_filename);
247 exit(1);
251 /* generate a rom with the hardware description */
252 hw = hwsetup_init();
253 hwsetup_add_cpu(hw, "LM32", 75000000);
254 hwsetup_add_flash(hw, "flash", flash_base, flash_size);
255 hwsetup_add_ddr_sdram(hw, "ddr_sdram", ram_base, ram_size);
256 hwsetup_add_timer(hw, "timer0", timer0_base, timer0_irq);
257 hwsetup_add_timer(hw, "timer1_dev_only", timer1_base, timer1_irq);
258 hwsetup_add_timer(hw, "timer2_dev_only", timer2_base, timer2_irq);
259 hwsetup_add_uart(hw, "uart", uart0_base, uart0_irq);
260 hwsetup_add_trailer(hw);
261 hwsetup_create_rom(hw, hwsetup_base);
262 hwsetup_free(hw);
264 reset_info->hwsetup_base = hwsetup_base;
266 if (kernel_cmdline && strlen(kernel_cmdline)) {
267 pstrcpy_targphys("cmdline", cmdline_base, TARGET_PAGE_SIZE,
268 kernel_cmdline);
269 reset_info->cmdline_base = cmdline_base;
272 if (initrd_filename) {
273 size_t initrd_size;
274 initrd_size = load_image_targphys(initrd_filename, initrd_base,
275 initrd_max);
276 reset_info->initrd_base = initrd_base;
277 reset_info->initrd_size = initrd_size;
280 qemu_register_reset(main_cpu_reset, reset_info);
283 static QEMUMachine lm32_evr_machine = {
284 .name = "lm32-evr",
285 .desc = "LatticeMico32 EVR32 eval system",
286 .init = lm32_evr_init,
287 .is_default = 1
290 static QEMUMachine lm32_uclinux_machine = {
291 .name = "lm32-uclinux",
292 .desc = "lm32 platform for uClinux and u-boot by Theobroma Systems",
293 .init = lm32_uclinux_init,
294 .is_default = 0
297 static void lm32_machine_init(void)
299 qemu_register_machine(&lm32_uclinux_machine);
300 qemu_register_machine(&lm32_evr_machine);
303 machine_init(lm32_machine_init);