Merge remote-tracking branch 'remotes/amarkovic/tags/mips-queue-jun-26-2019' into...
[qemu/ar7.git] / hw / ppc / spapr.c
blobb502fcac2e330f44e14bcfead085299511213568
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/numa.h"
33 #include "sysemu/qtest.h"
34 #include "hw/hw.h"
35 #include "qemu/log.h"
36 #include "hw/fw-path-provider.h"
37 #include "elf.h"
38 #include "net/net.h"
39 #include "sysemu/device_tree.h"
40 #include "sysemu/cpus.h"
41 #include "sysemu/hw_accel.h"
42 #include "kvm_ppc.h"
43 #include "migration/misc.h"
44 #include "migration/global_state.h"
45 #include "migration/register.h"
46 #include "mmu-hash64.h"
47 #include "mmu-book3s-v3.h"
48 #include "cpu-models.h"
49 #include "qom/cpu.h"
51 #include "hw/boards.h"
52 #include "hw/ppc/ppc.h"
53 #include "hw/loader.h"
55 #include "hw/ppc/fdt.h"
56 #include "hw/ppc/spapr.h"
57 #include "hw/ppc/spapr_vio.h"
58 #include "hw/pci-host/spapr.h"
59 #include "hw/pci/msi.h"
61 #include "hw/pci/pci.h"
62 #include "hw/scsi/scsi.h"
63 #include "hw/virtio/virtio-scsi.h"
64 #include "hw/virtio/vhost-scsi-common.h"
66 #include "exec/address-spaces.h"
67 #include "exec/ram_addr.h"
68 #include "hw/usb.h"
69 #include "qemu/config-file.h"
70 #include "qemu/error-report.h"
71 #include "trace.h"
72 #include "hw/nmi.h"
73 #include "hw/intc/intc.h"
75 #include "qemu/cutils.h"
76 #include "hw/ppc/spapr_cpu_core.h"
77 #include "hw/mem/memory-device.h"
79 #include <libfdt.h>
81 /* SLOF memory layout:
83 * SLOF raw image loaded at 0, copies its romfs right below the flat
84 * device-tree, then position SLOF itself 31M below that
86 * So we set FW_OVERHEAD to 40MB which should account for all of that
87 * and more
89 * We load our kernel at 4M, leaving space for SLOF initial image
91 #define FDT_MAX_SIZE 0x100000
92 #define RTAS_MAX_SIZE 0x10000
93 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
94 #define FW_MAX_SIZE 0x400000
95 #define FW_FILE_NAME "slof.bin"
96 #define FW_OVERHEAD 0x2800000
97 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
99 #define MIN_RMA_SLOF 128UL
101 #define PHANDLE_INTC 0x00001111
103 /* These two functions implement the VCPU id numbering: one to compute them
104 * all and one to identify thread 0 of a VCORE. Any change to the first one
105 * is likely to have an impact on the second one, so let's keep them close.
107 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
109 assert(spapr->vsmt);
110 return
111 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
113 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
114 PowerPCCPU *cpu)
116 assert(spapr->vsmt);
117 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
120 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
122 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
123 * and newer QEMUs don't even have them. In both cases, we don't want
124 * to send anything on the wire.
126 return false;
129 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
130 .name = "icp/server",
131 .version_id = 1,
132 .minimum_version_id = 1,
133 .needed = pre_2_10_vmstate_dummy_icp_needed,
134 .fields = (VMStateField[]) {
135 VMSTATE_UNUSED(4), /* uint32_t xirr */
136 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
137 VMSTATE_UNUSED(1), /* uint8_t mfrr */
138 VMSTATE_END_OF_LIST()
142 static void pre_2_10_vmstate_register_dummy_icp(int i)
144 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
145 (void *)(uintptr_t) i);
148 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
150 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
151 (void *)(uintptr_t) i);
154 int spapr_max_server_number(SpaprMachineState *spapr)
156 assert(spapr->vsmt);
157 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
160 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
161 int smt_threads)
163 int i, ret = 0;
164 uint32_t servers_prop[smt_threads];
165 uint32_t gservers_prop[smt_threads * 2];
166 int index = spapr_get_vcpu_id(cpu);
168 if (cpu->compat_pvr) {
169 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
170 if (ret < 0) {
171 return ret;
175 /* Build interrupt servers and gservers properties */
176 for (i = 0; i < smt_threads; i++) {
177 servers_prop[i] = cpu_to_be32(index + i);
178 /* Hack, direct the group queues back to cpu 0 */
179 gservers_prop[i*2] = cpu_to_be32(index + i);
180 gservers_prop[i*2 + 1] = 0;
182 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
183 servers_prop, sizeof(servers_prop));
184 if (ret < 0) {
185 return ret;
187 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
188 gservers_prop, sizeof(gservers_prop));
190 return ret;
193 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
195 int index = spapr_get_vcpu_id(cpu);
196 uint32_t associativity[] = {cpu_to_be32(0x5),
197 cpu_to_be32(0x0),
198 cpu_to_be32(0x0),
199 cpu_to_be32(0x0),
200 cpu_to_be32(cpu->node_id),
201 cpu_to_be32(index)};
203 /* Advertise NUMA via ibm,associativity */
204 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
205 sizeof(associativity));
208 /* Populate the "ibm,pa-features" property */
209 static void spapr_populate_pa_features(SpaprMachineState *spapr,
210 PowerPCCPU *cpu,
211 void *fdt, int offset,
212 bool legacy_guest)
214 uint8_t pa_features_206[] = { 6, 0,
215 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
216 uint8_t pa_features_207[] = { 24, 0,
217 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
218 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
219 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
220 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
221 uint8_t pa_features_300[] = { 66, 0,
222 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
223 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
224 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
225 /* 6: DS207 */
226 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
227 /* 16: Vector */
228 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
229 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
230 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
231 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
232 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
233 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
234 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
235 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
237 /* 42: PM, 44: PC RA, 46: SC vec'd */
238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
239 /* 48: SIMD, 50: QP BFP, 52: String */
240 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
241 /* 54: DecFP, 56: DecI, 58: SHA */
242 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
243 /* 60: NM atomic, 62: RNG */
244 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
246 uint8_t *pa_features = NULL;
247 size_t pa_size;
249 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
250 pa_features = pa_features_206;
251 pa_size = sizeof(pa_features_206);
253 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
254 pa_features = pa_features_207;
255 pa_size = sizeof(pa_features_207);
257 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
258 pa_features = pa_features_300;
259 pa_size = sizeof(pa_features_300);
261 if (!pa_features) {
262 return;
265 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
267 * Note: we keep CI large pages off by default because a 64K capable
268 * guest provisioned with large pages might otherwise try to map a qemu
269 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
270 * even if that qemu runs on a 4k host.
271 * We dd this bit back here if we are confident this is not an issue
273 pa_features[3] |= 0x20;
275 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
276 pa_features[24] |= 0x80; /* Transactional memory support */
278 if (legacy_guest && pa_size > 40) {
279 /* Workaround for broken kernels that attempt (guest) radix
280 * mode when they can't handle it, if they see the radix bit set
281 * in pa-features. So hide it from them. */
282 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
285 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
288 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
290 int ret = 0, offset, cpus_offset;
291 CPUState *cs;
292 char cpu_model[32];
293 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
295 CPU_FOREACH(cs) {
296 PowerPCCPU *cpu = POWERPC_CPU(cs);
297 DeviceClass *dc = DEVICE_GET_CLASS(cs);
298 int index = spapr_get_vcpu_id(cpu);
299 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
301 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
302 continue;
305 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
307 cpus_offset = fdt_path_offset(fdt, "/cpus");
308 if (cpus_offset < 0) {
309 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
310 if (cpus_offset < 0) {
311 return cpus_offset;
314 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
315 if (offset < 0) {
316 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
317 if (offset < 0) {
318 return offset;
322 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
323 pft_size_prop, sizeof(pft_size_prop));
324 if (ret < 0) {
325 return ret;
328 if (nb_numa_nodes > 1) {
329 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
330 if (ret < 0) {
331 return ret;
335 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
336 if (ret < 0) {
337 return ret;
340 spapr_populate_pa_features(spapr, cpu, fdt, offset,
341 spapr->cas_legacy_guest_workaround);
343 return ret;
346 static hwaddr spapr_node0_size(MachineState *machine)
348 if (nb_numa_nodes) {
349 int i;
350 for (i = 0; i < nb_numa_nodes; ++i) {
351 if (numa_info[i].node_mem) {
352 return MIN(pow2floor(numa_info[i].node_mem),
353 machine->ram_size);
357 return machine->ram_size;
360 static void add_str(GString *s, const gchar *s1)
362 g_string_append_len(s, s1, strlen(s1) + 1);
365 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
366 hwaddr size)
368 uint32_t associativity[] = {
369 cpu_to_be32(0x4), /* length */
370 cpu_to_be32(0x0), cpu_to_be32(0x0),
371 cpu_to_be32(0x0), cpu_to_be32(nodeid)
373 char mem_name[32];
374 uint64_t mem_reg_property[2];
375 int off;
377 mem_reg_property[0] = cpu_to_be64(start);
378 mem_reg_property[1] = cpu_to_be64(size);
380 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
381 off = fdt_add_subnode(fdt, 0, mem_name);
382 _FDT(off);
383 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
384 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
385 sizeof(mem_reg_property))));
386 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
387 sizeof(associativity))));
388 return off;
391 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
393 MachineState *machine = MACHINE(spapr);
394 hwaddr mem_start, node_size;
395 int i, nb_nodes = nb_numa_nodes;
396 NodeInfo *nodes = numa_info;
397 NodeInfo ramnode;
399 /* No NUMA nodes, assume there is just one node with whole RAM */
400 if (!nb_numa_nodes) {
401 nb_nodes = 1;
402 ramnode.node_mem = machine->ram_size;
403 nodes = &ramnode;
406 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
407 if (!nodes[i].node_mem) {
408 continue;
410 if (mem_start >= machine->ram_size) {
411 node_size = 0;
412 } else {
413 node_size = nodes[i].node_mem;
414 if (node_size > machine->ram_size - mem_start) {
415 node_size = machine->ram_size - mem_start;
418 if (!mem_start) {
419 /* spapr_machine_init() checks for rma_size <= node0_size
420 * already */
421 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
422 mem_start += spapr->rma_size;
423 node_size -= spapr->rma_size;
425 for ( ; node_size; ) {
426 hwaddr sizetmp = pow2floor(node_size);
428 /* mem_start != 0 here */
429 if (ctzl(mem_start) < ctzl(sizetmp)) {
430 sizetmp = 1ULL << ctzl(mem_start);
433 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
434 node_size -= sizetmp;
435 mem_start += sizetmp;
439 return 0;
442 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
443 SpaprMachineState *spapr)
445 PowerPCCPU *cpu = POWERPC_CPU(cs);
446 CPUPPCState *env = &cpu->env;
447 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
448 int index = spapr_get_vcpu_id(cpu);
449 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
450 0xffffffff, 0xffffffff};
451 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
452 : SPAPR_TIMEBASE_FREQ;
453 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
454 uint32_t page_sizes_prop[64];
455 size_t page_sizes_prop_size;
456 uint32_t vcpus_per_socket = smp_threads * smp_cores;
457 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
458 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
459 SpaprDrc *drc;
460 int drc_index;
461 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
462 int i;
464 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
465 if (drc) {
466 drc_index = spapr_drc_index(drc);
467 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
470 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
471 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
473 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
474 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
475 env->dcache_line_size)));
476 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
477 env->dcache_line_size)));
478 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
479 env->icache_line_size)));
480 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
481 env->icache_line_size)));
483 if (pcc->l1_dcache_size) {
484 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
485 pcc->l1_dcache_size)));
486 } else {
487 warn_report("Unknown L1 dcache size for cpu");
489 if (pcc->l1_icache_size) {
490 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
491 pcc->l1_icache_size)));
492 } else {
493 warn_report("Unknown L1 icache size for cpu");
496 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
497 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
498 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
499 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
500 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
501 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
503 if (env->spr_cb[SPR_PURR].oea_read) {
504 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
506 if (env->spr_cb[SPR_SPURR].oea_read) {
507 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
510 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
511 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
512 segs, sizeof(segs))));
515 /* Advertise VSX (vector extensions) if available
516 * 1 == VMX / Altivec available
517 * 2 == VSX available
519 * Only CPUs for which we create core types in spapr_cpu_core.c
520 * are possible, and all of those have VMX */
521 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
522 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
523 } else {
524 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
527 /* Advertise DFP (Decimal Floating Point) if available
528 * 0 / no property == no DFP
529 * 1 == DFP available */
530 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
531 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
534 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
535 sizeof(page_sizes_prop));
536 if (page_sizes_prop_size) {
537 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
538 page_sizes_prop, page_sizes_prop_size)));
541 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
543 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
544 cs->cpu_index / vcpus_per_socket)));
546 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
547 pft_size_prop, sizeof(pft_size_prop))));
549 if (nb_numa_nodes > 1) {
550 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
553 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
555 if (pcc->radix_page_info) {
556 for (i = 0; i < pcc->radix_page_info->count; i++) {
557 radix_AP_encodings[i] =
558 cpu_to_be32(pcc->radix_page_info->entries[i]);
560 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
561 radix_AP_encodings,
562 pcc->radix_page_info->count *
563 sizeof(radix_AP_encodings[0]))));
567 * We set this property to let the guest know that it can use the large
568 * decrementer and its width in bits.
570 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
571 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
572 pcc->lrg_decr_bits)));
575 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
577 CPUState **rev;
578 CPUState *cs;
579 int n_cpus;
580 int cpus_offset;
581 char *nodename;
582 int i;
584 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
585 _FDT(cpus_offset);
586 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
587 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
590 * We walk the CPUs in reverse order to ensure that CPU DT nodes
591 * created by fdt_add_subnode() end up in the right order in FDT
592 * for the guest kernel the enumerate the CPUs correctly.
594 * The CPU list cannot be traversed in reverse order, so we need
595 * to do extra work.
597 n_cpus = 0;
598 rev = NULL;
599 CPU_FOREACH(cs) {
600 rev = g_renew(CPUState *, rev, n_cpus + 1);
601 rev[n_cpus++] = cs;
604 for (i = n_cpus - 1; i >= 0; i--) {
605 CPUState *cs = rev[i];
606 PowerPCCPU *cpu = POWERPC_CPU(cs);
607 int index = spapr_get_vcpu_id(cpu);
608 DeviceClass *dc = DEVICE_GET_CLASS(cs);
609 int offset;
611 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
612 continue;
615 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
616 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
617 g_free(nodename);
618 _FDT(offset);
619 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
622 g_free(rev);
625 static int spapr_rng_populate_dt(void *fdt)
627 int node;
628 int ret;
630 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
631 if (node <= 0) {
632 return -1;
634 ret = fdt_setprop_string(fdt, node, "device_type",
635 "ibm,platform-facilities");
636 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
637 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
639 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
640 if (node <= 0) {
641 return -1;
643 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
645 return ret ? -1 : 0;
648 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
650 MemoryDeviceInfoList *info;
652 for (info = list; info; info = info->next) {
653 MemoryDeviceInfo *value = info->value;
655 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
656 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
658 if (addr >= pcdimm_info->addr &&
659 addr < (pcdimm_info->addr + pcdimm_info->size)) {
660 return pcdimm_info->node;
665 return -1;
668 struct sPAPRDrconfCellV2 {
669 uint32_t seq_lmbs;
670 uint64_t base_addr;
671 uint32_t drc_index;
672 uint32_t aa_index;
673 uint32_t flags;
674 } QEMU_PACKED;
676 typedef struct DrconfCellQueue {
677 struct sPAPRDrconfCellV2 cell;
678 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
679 } DrconfCellQueue;
681 static DrconfCellQueue *
682 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
683 uint32_t drc_index, uint32_t aa_index,
684 uint32_t flags)
686 DrconfCellQueue *elem;
688 elem = g_malloc0(sizeof(*elem));
689 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
690 elem->cell.base_addr = cpu_to_be64(base_addr);
691 elem->cell.drc_index = cpu_to_be32(drc_index);
692 elem->cell.aa_index = cpu_to_be32(aa_index);
693 elem->cell.flags = cpu_to_be32(flags);
695 return elem;
698 /* ibm,dynamic-memory-v2 */
699 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
700 int offset, MemoryDeviceInfoList *dimms)
702 MachineState *machine = MACHINE(spapr);
703 uint8_t *int_buf, *cur_index;
704 int ret;
705 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
706 uint64_t addr, cur_addr, size;
707 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
708 uint64_t mem_end = machine->device_memory->base +
709 memory_region_size(&machine->device_memory->mr);
710 uint32_t node, buf_len, nr_entries = 0;
711 SpaprDrc *drc;
712 DrconfCellQueue *elem, *next;
713 MemoryDeviceInfoList *info;
714 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
715 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
717 /* Entry to cover RAM and the gap area */
718 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
719 SPAPR_LMB_FLAGS_RESERVED |
720 SPAPR_LMB_FLAGS_DRC_INVALID);
721 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
722 nr_entries++;
724 cur_addr = machine->device_memory->base;
725 for (info = dimms; info; info = info->next) {
726 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
728 addr = di->addr;
729 size = di->size;
730 node = di->node;
732 /* Entry for hot-pluggable area */
733 if (cur_addr < addr) {
734 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
735 g_assert(drc);
736 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
737 cur_addr, spapr_drc_index(drc), -1, 0);
738 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
739 nr_entries++;
742 /* Entry for DIMM */
743 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
744 g_assert(drc);
745 elem = spapr_get_drconf_cell(size / lmb_size, addr,
746 spapr_drc_index(drc), node,
747 SPAPR_LMB_FLAGS_ASSIGNED);
748 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
749 nr_entries++;
750 cur_addr = addr + size;
753 /* Entry for remaining hotpluggable area */
754 if (cur_addr < mem_end) {
755 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
756 g_assert(drc);
757 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
758 cur_addr, spapr_drc_index(drc), -1, 0);
759 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
760 nr_entries++;
763 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
764 int_buf = cur_index = g_malloc0(buf_len);
765 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
766 cur_index += sizeof(nr_entries);
768 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
769 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
770 cur_index += sizeof(elem->cell);
771 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
772 g_free(elem);
775 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
776 g_free(int_buf);
777 if (ret < 0) {
778 return -1;
780 return 0;
783 /* ibm,dynamic-memory */
784 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
785 int offset, MemoryDeviceInfoList *dimms)
787 MachineState *machine = MACHINE(spapr);
788 int i, ret;
789 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
790 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
791 uint32_t nr_lmbs = (machine->device_memory->base +
792 memory_region_size(&machine->device_memory->mr)) /
793 lmb_size;
794 uint32_t *int_buf, *cur_index, buf_len;
797 * Allocate enough buffer size to fit in ibm,dynamic-memory
799 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
800 cur_index = int_buf = g_malloc0(buf_len);
801 int_buf[0] = cpu_to_be32(nr_lmbs);
802 cur_index++;
803 for (i = 0; i < nr_lmbs; i++) {
804 uint64_t addr = i * lmb_size;
805 uint32_t *dynamic_memory = cur_index;
807 if (i >= device_lmb_start) {
808 SpaprDrc *drc;
810 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
811 g_assert(drc);
813 dynamic_memory[0] = cpu_to_be32(addr >> 32);
814 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
815 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
816 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
817 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
818 if (memory_region_present(get_system_memory(), addr)) {
819 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
820 } else {
821 dynamic_memory[5] = cpu_to_be32(0);
823 } else {
825 * LMB information for RMA, boot time RAM and gap b/n RAM and
826 * device memory region -- all these are marked as reserved
827 * and as having no valid DRC.
829 dynamic_memory[0] = cpu_to_be32(addr >> 32);
830 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
831 dynamic_memory[2] = cpu_to_be32(0);
832 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
833 dynamic_memory[4] = cpu_to_be32(-1);
834 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
835 SPAPR_LMB_FLAGS_DRC_INVALID);
838 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
840 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
841 g_free(int_buf);
842 if (ret < 0) {
843 return -1;
845 return 0;
849 * Adds ibm,dynamic-reconfiguration-memory node.
850 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
851 * of this device tree node.
853 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
855 MachineState *machine = MACHINE(spapr);
856 int ret, i, offset;
857 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
858 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
859 uint32_t *int_buf, *cur_index, buf_len;
860 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
861 MemoryDeviceInfoList *dimms = NULL;
864 * Don't create the node if there is no device memory
866 if (machine->ram_size == machine->maxram_size) {
867 return 0;
870 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
872 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
873 sizeof(prop_lmb_size));
874 if (ret < 0) {
875 return ret;
878 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
879 if (ret < 0) {
880 return ret;
883 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
884 if (ret < 0) {
885 return ret;
888 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
889 dimms = qmp_memory_device_list();
890 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
891 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
892 } else {
893 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
895 qapi_free_MemoryDeviceInfoList(dimms);
897 if (ret < 0) {
898 return ret;
901 /* ibm,associativity-lookup-arrays */
902 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
903 cur_index = int_buf = g_malloc0(buf_len);
904 int_buf[0] = cpu_to_be32(nr_nodes);
905 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
906 cur_index += 2;
907 for (i = 0; i < nr_nodes; i++) {
908 uint32_t associativity[] = {
909 cpu_to_be32(0x0),
910 cpu_to_be32(0x0),
911 cpu_to_be32(0x0),
912 cpu_to_be32(i)
914 memcpy(cur_index, associativity, sizeof(associativity));
915 cur_index += 4;
917 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
918 (cur_index - int_buf) * sizeof(uint32_t));
919 g_free(int_buf);
921 return ret;
924 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
925 SpaprOptionVector *ov5_updates)
927 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
928 int ret = 0, offset;
930 /* Generate ibm,dynamic-reconfiguration-memory node if required */
931 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
932 g_assert(smc->dr_lmb_enabled);
933 ret = spapr_populate_drconf_memory(spapr, fdt);
934 if (ret) {
935 goto out;
939 offset = fdt_path_offset(fdt, "/chosen");
940 if (offset < 0) {
941 offset = fdt_add_subnode(fdt, 0, "chosen");
942 if (offset < 0) {
943 return offset;
946 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
947 "ibm,architecture-vec-5");
949 out:
950 return ret;
953 static bool spapr_hotplugged_dev_before_cas(void)
955 Object *drc_container, *obj;
956 ObjectProperty *prop;
957 ObjectPropertyIterator iter;
959 drc_container = container_get(object_get_root(), "/dr-connector");
960 object_property_iter_init(&iter, drc_container);
961 while ((prop = object_property_iter_next(&iter))) {
962 if (!strstart(prop->type, "link<", NULL)) {
963 continue;
965 obj = object_property_get_link(drc_container, prop->name, NULL);
966 if (spapr_drc_needed(obj)) {
967 return true;
970 return false;
973 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
974 target_ulong addr, target_ulong size,
975 SpaprOptionVector *ov5_updates)
977 void *fdt, *fdt_skel;
978 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
980 if (spapr_hotplugged_dev_before_cas()) {
981 return 1;
984 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
985 error_report("SLOF provided an unexpected CAS buffer size "
986 TARGET_FMT_lu " (min: %zu, max: %u)",
987 size, sizeof(hdr), FW_MAX_SIZE);
988 exit(EXIT_FAILURE);
991 size -= sizeof(hdr);
993 /* Create skeleton */
994 fdt_skel = g_malloc0(size);
995 _FDT((fdt_create(fdt_skel, size)));
996 _FDT((fdt_finish_reservemap(fdt_skel)));
997 _FDT((fdt_begin_node(fdt_skel, "")));
998 _FDT((fdt_end_node(fdt_skel)));
999 _FDT((fdt_finish(fdt_skel)));
1000 fdt = g_malloc0(size);
1001 _FDT((fdt_open_into(fdt_skel, fdt, size)));
1002 g_free(fdt_skel);
1004 /* Fixup cpu nodes */
1005 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1007 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1008 return -1;
1011 /* Pack resulting tree */
1012 _FDT((fdt_pack(fdt)));
1014 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1015 trace_spapr_cas_failed(size);
1016 return -1;
1019 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1020 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1021 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1022 g_free(fdt);
1024 return 0;
1027 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1029 int rtas;
1030 GString *hypertas = g_string_sized_new(256);
1031 GString *qemu_hypertas = g_string_sized_new(256);
1032 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1033 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1034 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1035 uint32_t lrdr_capacity[] = {
1036 cpu_to_be32(max_device_addr >> 32),
1037 cpu_to_be32(max_device_addr & 0xffffffff),
1038 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1039 cpu_to_be32(max_cpus / smp_threads),
1041 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
1042 uint32_t maxdomains[] = {
1043 cpu_to_be32(4),
1044 maxdomain,
1045 maxdomain,
1046 maxdomain,
1047 cpu_to_be32(spapr->gpu_numa_id),
1050 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1052 /* hypertas */
1053 add_str(hypertas, "hcall-pft");
1054 add_str(hypertas, "hcall-term");
1055 add_str(hypertas, "hcall-dabr");
1056 add_str(hypertas, "hcall-interrupt");
1057 add_str(hypertas, "hcall-tce");
1058 add_str(hypertas, "hcall-vio");
1059 add_str(hypertas, "hcall-splpar");
1060 add_str(hypertas, "hcall-bulk");
1061 add_str(hypertas, "hcall-set-mode");
1062 add_str(hypertas, "hcall-sprg0");
1063 add_str(hypertas, "hcall-copy");
1064 add_str(hypertas, "hcall-debug");
1065 add_str(hypertas, "hcall-vphn");
1066 add_str(qemu_hypertas, "hcall-memop1");
1068 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1069 add_str(hypertas, "hcall-multi-tce");
1072 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1073 add_str(hypertas, "hcall-hpt-resize");
1076 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1077 hypertas->str, hypertas->len));
1078 g_string_free(hypertas, TRUE);
1079 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1080 qemu_hypertas->str, qemu_hypertas->len));
1081 g_string_free(qemu_hypertas, TRUE);
1083 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1084 refpoints, sizeof(refpoints)));
1086 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1087 maxdomains, sizeof(maxdomains)));
1089 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1090 RTAS_ERROR_LOG_MAX));
1091 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1092 RTAS_EVENT_SCAN_RATE));
1094 g_assert(msi_nonbroken);
1095 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1098 * According to PAPR, rtas ibm,os-term does not guarantee a return
1099 * back to the guest cpu.
1101 * While an additional ibm,extended-os-term property indicates
1102 * that rtas call return will always occur. Set this property.
1104 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1106 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1107 lrdr_capacity, sizeof(lrdr_capacity)));
1109 spapr_dt_rtas_tokens(fdt, rtas);
1113 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1114 * and the XIVE features that the guest may request and thus the valid
1115 * values for bytes 23..26 of option vector 5:
1117 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1118 int chosen)
1120 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1122 char val[2 * 4] = {
1123 23, spapr->irq->ov5, /* Xive mode. */
1124 24, 0x00, /* Hash/Radix, filled in below. */
1125 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1126 26, 0x40, /* Radix options: GTSE == yes. */
1129 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1130 first_ppc_cpu->compat_pvr)) {
1132 * If we're in a pre POWER9 compat mode then the guest should
1133 * do hash and use the legacy interrupt mode
1135 val[1] = 0x00; /* XICS */
1136 val[3] = 0x00; /* Hash */
1137 } else if (kvm_enabled()) {
1138 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1139 val[3] = 0x80; /* OV5_MMU_BOTH */
1140 } else if (kvmppc_has_cap_mmu_radix()) {
1141 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1142 } else {
1143 val[3] = 0x00; /* Hash */
1145 } else {
1146 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1147 val[3] = 0xC0;
1149 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1150 val, sizeof(val)));
1153 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1155 MachineState *machine = MACHINE(spapr);
1156 int chosen;
1157 const char *boot_device = machine->boot_order;
1158 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1159 size_t cb = 0;
1160 char *bootlist = get_boot_devices_list(&cb);
1162 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1164 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1165 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1166 spapr->initrd_base));
1167 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1168 spapr->initrd_base + spapr->initrd_size));
1170 if (spapr->kernel_size) {
1171 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1172 cpu_to_be64(spapr->kernel_size) };
1174 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1175 &kprop, sizeof(kprop)));
1176 if (spapr->kernel_le) {
1177 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1180 if (boot_menu) {
1181 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1183 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1184 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1185 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1187 if (cb && bootlist) {
1188 int i;
1190 for (i = 0; i < cb; i++) {
1191 if (bootlist[i] == '\n') {
1192 bootlist[i] = ' ';
1195 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1198 if (boot_device && strlen(boot_device)) {
1199 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1202 if (!spapr->has_graphics && stdout_path) {
1204 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1205 * kernel. New platforms should only use the "stdout-path" property. Set
1206 * the new property and continue using older property to remain
1207 * compatible with the existing firmware.
1209 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1210 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1213 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1215 g_free(stdout_path);
1216 g_free(bootlist);
1219 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1221 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1222 * KVM to work under pHyp with some guest co-operation */
1223 int hypervisor;
1224 uint8_t hypercall[16];
1226 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1227 /* indicate KVM hypercall interface */
1228 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1229 if (kvmppc_has_cap_fixup_hcalls()) {
1231 * Older KVM versions with older guest kernels were broken
1232 * with the magic page, don't allow the guest to map it.
1234 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1235 sizeof(hypercall))) {
1236 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1237 hypercall, sizeof(hypercall)));
1242 static void *spapr_build_fdt(SpaprMachineState *spapr)
1244 MachineState *machine = MACHINE(spapr);
1245 MachineClass *mc = MACHINE_GET_CLASS(machine);
1246 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1247 int ret;
1248 void *fdt;
1249 SpaprPhbState *phb;
1250 char *buf;
1252 fdt = g_malloc0(FDT_MAX_SIZE);
1253 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1255 /* Root node */
1256 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1257 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1258 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1260 /* Guest UUID & Name*/
1261 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1262 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1263 if (qemu_uuid_set) {
1264 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1266 g_free(buf);
1268 if (qemu_get_vm_name()) {
1269 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1270 qemu_get_vm_name()));
1273 /* Host Model & Serial Number */
1274 if (spapr->host_model) {
1275 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1276 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1277 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1278 g_free(buf);
1281 if (spapr->host_serial) {
1282 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1283 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1284 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1285 g_free(buf);
1288 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1289 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1291 /* /interrupt controller */
1292 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1293 PHANDLE_INTC);
1295 ret = spapr_populate_memory(spapr, fdt);
1296 if (ret < 0) {
1297 error_report("couldn't setup memory nodes in fdt");
1298 exit(1);
1301 /* /vdevice */
1302 spapr_dt_vdevice(spapr->vio_bus, fdt);
1304 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1305 ret = spapr_rng_populate_dt(fdt);
1306 if (ret < 0) {
1307 error_report("could not set up rng device in the fdt");
1308 exit(1);
1312 QLIST_FOREACH(phb, &spapr->phbs, list) {
1313 ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL);
1314 if (ret < 0) {
1315 error_report("couldn't setup PCI devices in fdt");
1316 exit(1);
1320 /* cpus */
1321 spapr_populate_cpus_dt_node(fdt, spapr);
1323 if (smc->dr_lmb_enabled) {
1324 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1327 if (mc->has_hotpluggable_cpus) {
1328 int offset = fdt_path_offset(fdt, "/cpus");
1329 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1330 if (ret < 0) {
1331 error_report("Couldn't set up CPU DR device tree properties");
1332 exit(1);
1336 /* /event-sources */
1337 spapr_dt_events(spapr, fdt);
1339 /* /rtas */
1340 spapr_dt_rtas(spapr, fdt);
1342 /* /chosen */
1343 spapr_dt_chosen(spapr, fdt);
1345 /* /hypervisor */
1346 if (kvm_enabled()) {
1347 spapr_dt_hypervisor(spapr, fdt);
1350 /* Build memory reserve map */
1351 if (spapr->kernel_size) {
1352 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1354 if (spapr->initrd_size) {
1355 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1358 /* ibm,client-architecture-support updates */
1359 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1360 if (ret < 0) {
1361 error_report("couldn't setup CAS properties fdt");
1362 exit(1);
1365 if (smc->dr_phb_enabled) {
1366 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1367 if (ret < 0) {
1368 error_report("Couldn't set up PHB DR device tree properties");
1369 exit(1);
1373 return fdt;
1376 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1378 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1381 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1382 PowerPCCPU *cpu)
1384 CPUPPCState *env = &cpu->env;
1386 /* The TCG path should also be holding the BQL at this point */
1387 g_assert(qemu_mutex_iothread_locked());
1389 if (msr_pr) {
1390 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1391 env->gpr[3] = H_PRIVILEGE;
1392 } else {
1393 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1397 struct LPCRSyncState {
1398 target_ulong value;
1399 target_ulong mask;
1402 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1404 struct LPCRSyncState *s = arg.host_ptr;
1405 PowerPCCPU *cpu = POWERPC_CPU(cs);
1406 CPUPPCState *env = &cpu->env;
1407 target_ulong lpcr;
1409 cpu_synchronize_state(cs);
1410 lpcr = env->spr[SPR_LPCR];
1411 lpcr &= ~s->mask;
1412 lpcr |= s->value;
1413 ppc_store_lpcr(cpu, lpcr);
1416 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1418 CPUState *cs;
1419 struct LPCRSyncState s = {
1420 .value = value,
1421 .mask = mask
1423 CPU_FOREACH(cs) {
1424 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1428 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1430 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1432 /* Copy PATE1:GR into PATE0:HR */
1433 entry->dw0 = spapr->patb_entry & PATE0_HR;
1434 entry->dw1 = spapr->patb_entry;
1437 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1438 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1439 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1440 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1441 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1444 * Get the fd to access the kernel htab, re-opening it if necessary
1446 static int get_htab_fd(SpaprMachineState *spapr)
1448 Error *local_err = NULL;
1450 if (spapr->htab_fd >= 0) {
1451 return spapr->htab_fd;
1454 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1455 if (spapr->htab_fd < 0) {
1456 error_report_err(local_err);
1459 return spapr->htab_fd;
1462 void close_htab_fd(SpaprMachineState *spapr)
1464 if (spapr->htab_fd >= 0) {
1465 close(spapr->htab_fd);
1467 spapr->htab_fd = -1;
1470 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1472 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1474 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1477 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1479 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1481 assert(kvm_enabled());
1483 if (!spapr->htab) {
1484 return 0;
1487 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1490 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1491 hwaddr ptex, int n)
1493 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1494 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1496 if (!spapr->htab) {
1498 * HTAB is controlled by KVM. Fetch into temporary buffer
1500 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1501 kvmppc_read_hptes(hptes, ptex, n);
1502 return hptes;
1506 * HTAB is controlled by QEMU. Just point to the internally
1507 * accessible PTEG.
1509 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1512 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1513 const ppc_hash_pte64_t *hptes,
1514 hwaddr ptex, int n)
1516 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1518 if (!spapr->htab) {
1519 g_free((void *)hptes);
1522 /* Nothing to do for qemu managed HPT */
1525 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1526 uint64_t pte0, uint64_t pte1)
1528 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1529 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1531 if (!spapr->htab) {
1532 kvmppc_write_hpte(ptex, pte0, pte1);
1533 } else {
1534 if (pte0 & HPTE64_V_VALID) {
1535 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1537 * When setting valid, we write PTE1 first. This ensures
1538 * proper synchronization with the reading code in
1539 * ppc_hash64_pteg_search()
1541 smp_wmb();
1542 stq_p(spapr->htab + offset, pte0);
1543 } else {
1544 stq_p(spapr->htab + offset, pte0);
1546 * When clearing it we set PTE0 first. This ensures proper
1547 * synchronization with the reading code in
1548 * ppc_hash64_pteg_search()
1550 smp_wmb();
1551 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1556 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1557 uint64_t pte1)
1559 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1560 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1562 if (!spapr->htab) {
1563 /* There should always be a hash table when this is called */
1564 error_report("spapr_hpte_set_c called with no hash table !");
1565 return;
1568 /* The HW performs a non-atomic byte update */
1569 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1572 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1573 uint64_t pte1)
1575 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1576 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1578 if (!spapr->htab) {
1579 /* There should always be a hash table when this is called */
1580 error_report("spapr_hpte_set_r called with no hash table !");
1581 return;
1584 /* The HW performs a non-atomic byte update */
1585 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1588 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1590 int shift;
1592 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1593 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1594 * that's much more than is needed for Linux guests */
1595 shift = ctz64(pow2ceil(ramsize)) - 7;
1596 shift = MAX(shift, 18); /* Minimum architected size */
1597 shift = MIN(shift, 46); /* Maximum architected size */
1598 return shift;
1601 void spapr_free_hpt(SpaprMachineState *spapr)
1603 g_free(spapr->htab);
1604 spapr->htab = NULL;
1605 spapr->htab_shift = 0;
1606 close_htab_fd(spapr);
1609 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1610 Error **errp)
1612 long rc;
1614 /* Clean up any HPT info from a previous boot */
1615 spapr_free_hpt(spapr);
1617 rc = kvmppc_reset_htab(shift);
1618 if (rc < 0) {
1619 /* kernel-side HPT needed, but couldn't allocate one */
1620 error_setg_errno(errp, errno,
1621 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1622 shift);
1623 /* This is almost certainly fatal, but if the caller really
1624 * wants to carry on with shift == 0, it's welcome to try */
1625 } else if (rc > 0) {
1626 /* kernel-side HPT allocated */
1627 if (rc != shift) {
1628 error_setg(errp,
1629 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1630 shift, rc);
1633 spapr->htab_shift = shift;
1634 spapr->htab = NULL;
1635 } else {
1636 /* kernel-side HPT not needed, allocate in userspace instead */
1637 size_t size = 1ULL << shift;
1638 int i;
1640 spapr->htab = qemu_memalign(size, size);
1641 if (!spapr->htab) {
1642 error_setg_errno(errp, errno,
1643 "Could not allocate HPT of order %d", shift);
1644 return;
1647 memset(spapr->htab, 0, size);
1648 spapr->htab_shift = shift;
1650 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1651 DIRTY_HPTE(HPTE(spapr->htab, i));
1654 /* We're setting up a hash table, so that means we're not radix */
1655 spapr->patb_entry = 0;
1656 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1659 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1661 int hpt_shift;
1663 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1664 || (spapr->cas_reboot
1665 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1666 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1667 } else {
1668 uint64_t current_ram_size;
1670 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1671 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1673 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1675 if (spapr->vrma_adjust) {
1676 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1677 spapr->htab_shift);
1681 static int spapr_reset_drcs(Object *child, void *opaque)
1683 SpaprDrc *drc =
1684 (SpaprDrc *) object_dynamic_cast(child,
1685 TYPE_SPAPR_DR_CONNECTOR);
1687 if (drc) {
1688 spapr_drc_reset(drc);
1691 return 0;
1694 static void spapr_machine_reset(void)
1696 MachineState *machine = MACHINE(qdev_get_machine());
1697 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1698 PowerPCCPU *first_ppc_cpu;
1699 uint32_t rtas_limit;
1700 hwaddr rtas_addr, fdt_addr;
1701 void *fdt;
1702 int rc;
1704 spapr_caps_apply(spapr);
1706 first_ppc_cpu = POWERPC_CPU(first_cpu);
1707 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1708 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1709 spapr->max_compat_pvr)) {
1711 * If using KVM with radix mode available, VCPUs can be started
1712 * without a HPT because KVM will start them in radix mode.
1713 * Set the GR bit in PATE so that we know there is no HPT.
1715 spapr->patb_entry = PATE1_GR;
1716 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1717 } else {
1718 spapr_setup_hpt_and_vrma(spapr);
1722 * If this reset wasn't generated by CAS, we should reset our
1723 * negotiated options and start from scratch
1725 if (!spapr->cas_reboot) {
1726 spapr_ovec_cleanup(spapr->ov5_cas);
1727 spapr->ov5_cas = spapr_ovec_new();
1729 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1732 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1733 spapr_irq_msi_reset(spapr);
1737 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
1738 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
1739 * called from vPHB reset handler so we initialize the counter here.
1740 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
1741 * must be equally distant from any other node.
1742 * The final value of spapr->gpu_numa_id is going to be written to
1743 * max-associativity-domains in spapr_build_fdt().
1745 spapr->gpu_numa_id = MAX(1, nb_numa_nodes);
1746 qemu_devices_reset();
1749 * This is fixing some of the default configuration of the XIVE
1750 * devices. To be called after the reset of the machine devices.
1752 spapr_irq_reset(spapr, &error_fatal);
1755 * There is no CAS under qtest. Simulate one to please the code that
1756 * depends on spapr->ov5_cas. This is especially needed to test device
1757 * unplug, so we do that before resetting the DRCs.
1759 if (qtest_enabled()) {
1760 spapr_ovec_cleanup(spapr->ov5_cas);
1761 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1764 /* DRC reset may cause a device to be unplugged. This will cause troubles
1765 * if this device is used by another device (eg, a running vhost backend
1766 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1767 * situations, we reset DRCs after all devices have been reset.
1769 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1771 spapr_clear_pending_events(spapr);
1774 * We place the device tree and RTAS just below either the top of the RMA,
1775 * or just below 2GB, whichever is lower, so that it can be
1776 * processed with 32-bit real mode code if necessary
1778 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1779 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1780 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1782 fdt = spapr_build_fdt(spapr);
1784 spapr_load_rtas(spapr, fdt, rtas_addr);
1786 rc = fdt_pack(fdt);
1788 /* Should only fail if we've built a corrupted tree */
1789 assert(rc == 0);
1791 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1792 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1793 fdt_totalsize(fdt), FDT_MAX_SIZE);
1794 exit(1);
1797 /* Load the fdt */
1798 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1799 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1800 g_free(spapr->fdt_blob);
1801 spapr->fdt_size = fdt_totalsize(fdt);
1802 spapr->fdt_initial_size = spapr->fdt_size;
1803 spapr->fdt_blob = fdt;
1805 /* Set up the entry state */
1806 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1807 first_ppc_cpu->env.gpr[5] = 0;
1809 spapr->cas_reboot = false;
1812 static void spapr_create_nvram(SpaprMachineState *spapr)
1814 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1815 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1817 if (dinfo) {
1818 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1819 &error_fatal);
1822 qdev_init_nofail(dev);
1824 spapr->nvram = (struct SpaprNvram *)dev;
1827 static void spapr_rtc_create(SpaprMachineState *spapr)
1829 object_initialize_child(OBJECT(spapr), "rtc",
1830 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1831 &error_fatal, NULL);
1832 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1833 &error_fatal);
1834 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1835 "date", &error_fatal);
1838 /* Returns whether we want to use VGA or not */
1839 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1841 switch (vga_interface_type) {
1842 case VGA_NONE:
1843 return false;
1844 case VGA_DEVICE:
1845 return true;
1846 case VGA_STD:
1847 case VGA_VIRTIO:
1848 case VGA_CIRRUS:
1849 return pci_vga_init(pci_bus) != NULL;
1850 default:
1851 error_setg(errp,
1852 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1853 return false;
1857 static int spapr_pre_load(void *opaque)
1859 int rc;
1861 rc = spapr_caps_pre_load(opaque);
1862 if (rc) {
1863 return rc;
1866 return 0;
1869 static int spapr_post_load(void *opaque, int version_id)
1871 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1872 int err = 0;
1874 err = spapr_caps_post_migration(spapr);
1875 if (err) {
1876 return err;
1880 * In earlier versions, there was no separate qdev for the PAPR
1881 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1882 * So when migrating from those versions, poke the incoming offset
1883 * value into the RTC device
1885 if (version_id < 3) {
1886 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1887 if (err) {
1888 return err;
1892 if (kvm_enabled() && spapr->patb_entry) {
1893 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1894 bool radix = !!(spapr->patb_entry & PATE1_GR);
1895 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1898 * Update LPCR:HR and UPRT as they may not be set properly in
1899 * the stream
1901 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1902 LPCR_HR | LPCR_UPRT);
1904 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1905 if (err) {
1906 error_report("Process table config unsupported by the host");
1907 return -EINVAL;
1911 err = spapr_irq_post_load(spapr, version_id);
1912 if (err) {
1913 return err;
1916 return err;
1919 static int spapr_pre_save(void *opaque)
1921 int rc;
1923 rc = spapr_caps_pre_save(opaque);
1924 if (rc) {
1925 return rc;
1928 return 0;
1931 static bool version_before_3(void *opaque, int version_id)
1933 return version_id < 3;
1936 static bool spapr_pending_events_needed(void *opaque)
1938 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1939 return !QTAILQ_EMPTY(&spapr->pending_events);
1942 static const VMStateDescription vmstate_spapr_event_entry = {
1943 .name = "spapr_event_log_entry",
1944 .version_id = 1,
1945 .minimum_version_id = 1,
1946 .fields = (VMStateField[]) {
1947 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1948 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1949 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1950 NULL, extended_length),
1951 VMSTATE_END_OF_LIST()
1955 static const VMStateDescription vmstate_spapr_pending_events = {
1956 .name = "spapr_pending_events",
1957 .version_id = 1,
1958 .minimum_version_id = 1,
1959 .needed = spapr_pending_events_needed,
1960 .fields = (VMStateField[]) {
1961 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1962 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1963 VMSTATE_END_OF_LIST()
1967 static bool spapr_ov5_cas_needed(void *opaque)
1969 SpaprMachineState *spapr = opaque;
1970 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1971 SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1972 SpaprOptionVector *ov5_removed = spapr_ovec_new();
1973 bool cas_needed;
1975 /* Prior to the introduction of SpaprOptionVector, we had two option
1976 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1977 * Both of these options encode machine topology into the device-tree
1978 * in such a way that the now-booted OS should still be able to interact
1979 * appropriately with QEMU regardless of what options were actually
1980 * negotiatied on the source side.
1982 * As such, we can avoid migrating the CAS-negotiated options if these
1983 * are the only options available on the current machine/platform.
1984 * Since these are the only options available for pseries-2.7 and
1985 * earlier, this allows us to maintain old->new/new->old migration
1986 * compatibility.
1988 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1989 * via default pseries-2.8 machines and explicit command-line parameters.
1990 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1991 * of the actual CAS-negotiated values to continue working properly. For
1992 * example, availability of memory unplug depends on knowing whether
1993 * OV5_HP_EVT was negotiated via CAS.
1995 * Thus, for any cases where the set of available CAS-negotiatable
1996 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1997 * include the CAS-negotiated options in the migration stream, unless
1998 * if they affect boot time behaviour only.
2000 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2001 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2002 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2004 /* spapr_ovec_diff returns true if bits were removed. we avoid using
2005 * the mask itself since in the future it's possible "legacy" bits may be
2006 * removed via machine options, which could generate a false positive
2007 * that breaks migration.
2009 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
2010 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
2012 spapr_ovec_cleanup(ov5_mask);
2013 spapr_ovec_cleanup(ov5_legacy);
2014 spapr_ovec_cleanup(ov5_removed);
2016 return cas_needed;
2019 static const VMStateDescription vmstate_spapr_ov5_cas = {
2020 .name = "spapr_option_vector_ov5_cas",
2021 .version_id = 1,
2022 .minimum_version_id = 1,
2023 .needed = spapr_ov5_cas_needed,
2024 .fields = (VMStateField[]) {
2025 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2026 vmstate_spapr_ovec, SpaprOptionVector),
2027 VMSTATE_END_OF_LIST()
2031 static bool spapr_patb_entry_needed(void *opaque)
2033 SpaprMachineState *spapr = opaque;
2035 return !!spapr->patb_entry;
2038 static const VMStateDescription vmstate_spapr_patb_entry = {
2039 .name = "spapr_patb_entry",
2040 .version_id = 1,
2041 .minimum_version_id = 1,
2042 .needed = spapr_patb_entry_needed,
2043 .fields = (VMStateField[]) {
2044 VMSTATE_UINT64(patb_entry, SpaprMachineState),
2045 VMSTATE_END_OF_LIST()
2049 static bool spapr_irq_map_needed(void *opaque)
2051 SpaprMachineState *spapr = opaque;
2053 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2056 static const VMStateDescription vmstate_spapr_irq_map = {
2057 .name = "spapr_irq_map",
2058 .version_id = 1,
2059 .minimum_version_id = 1,
2060 .needed = spapr_irq_map_needed,
2061 .fields = (VMStateField[]) {
2062 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2063 VMSTATE_END_OF_LIST()
2067 static bool spapr_dtb_needed(void *opaque)
2069 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2071 return smc->update_dt_enabled;
2074 static int spapr_dtb_pre_load(void *opaque)
2076 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2078 g_free(spapr->fdt_blob);
2079 spapr->fdt_blob = NULL;
2080 spapr->fdt_size = 0;
2082 return 0;
2085 static const VMStateDescription vmstate_spapr_dtb = {
2086 .name = "spapr_dtb",
2087 .version_id = 1,
2088 .minimum_version_id = 1,
2089 .needed = spapr_dtb_needed,
2090 .pre_load = spapr_dtb_pre_load,
2091 .fields = (VMStateField[]) {
2092 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2093 VMSTATE_UINT32(fdt_size, SpaprMachineState),
2094 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2095 fdt_size),
2096 VMSTATE_END_OF_LIST()
2100 static const VMStateDescription vmstate_spapr = {
2101 .name = "spapr",
2102 .version_id = 3,
2103 .minimum_version_id = 1,
2104 .pre_load = spapr_pre_load,
2105 .post_load = spapr_post_load,
2106 .pre_save = spapr_pre_save,
2107 .fields = (VMStateField[]) {
2108 /* used to be @next_irq */
2109 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2111 /* RTC offset */
2112 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2114 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2115 VMSTATE_END_OF_LIST()
2117 .subsections = (const VMStateDescription*[]) {
2118 &vmstate_spapr_ov5_cas,
2119 &vmstate_spapr_patb_entry,
2120 &vmstate_spapr_pending_events,
2121 &vmstate_spapr_cap_htm,
2122 &vmstate_spapr_cap_vsx,
2123 &vmstate_spapr_cap_dfp,
2124 &vmstate_spapr_cap_cfpc,
2125 &vmstate_spapr_cap_sbbc,
2126 &vmstate_spapr_cap_ibs,
2127 &vmstate_spapr_cap_hpt_maxpagesize,
2128 &vmstate_spapr_irq_map,
2129 &vmstate_spapr_cap_nested_kvm_hv,
2130 &vmstate_spapr_dtb,
2131 &vmstate_spapr_cap_large_decr,
2132 &vmstate_spapr_cap_ccf_assist,
2133 NULL
2137 static int htab_save_setup(QEMUFile *f, void *opaque)
2139 SpaprMachineState *spapr = opaque;
2141 /* "Iteration" header */
2142 if (!spapr->htab_shift) {
2143 qemu_put_be32(f, -1);
2144 } else {
2145 qemu_put_be32(f, spapr->htab_shift);
2148 if (spapr->htab) {
2149 spapr->htab_save_index = 0;
2150 spapr->htab_first_pass = true;
2151 } else {
2152 if (spapr->htab_shift) {
2153 assert(kvm_enabled());
2158 return 0;
2161 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2162 int chunkstart, int n_valid, int n_invalid)
2164 qemu_put_be32(f, chunkstart);
2165 qemu_put_be16(f, n_valid);
2166 qemu_put_be16(f, n_invalid);
2167 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2168 HASH_PTE_SIZE_64 * n_valid);
2171 static void htab_save_end_marker(QEMUFile *f)
2173 qemu_put_be32(f, 0);
2174 qemu_put_be16(f, 0);
2175 qemu_put_be16(f, 0);
2178 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2179 int64_t max_ns)
2181 bool has_timeout = max_ns != -1;
2182 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2183 int index = spapr->htab_save_index;
2184 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2186 assert(spapr->htab_first_pass);
2188 do {
2189 int chunkstart;
2191 /* Consume invalid HPTEs */
2192 while ((index < htabslots)
2193 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2194 CLEAN_HPTE(HPTE(spapr->htab, index));
2195 index++;
2198 /* Consume valid HPTEs */
2199 chunkstart = index;
2200 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2201 && HPTE_VALID(HPTE(spapr->htab, index))) {
2202 CLEAN_HPTE(HPTE(spapr->htab, index));
2203 index++;
2206 if (index > chunkstart) {
2207 int n_valid = index - chunkstart;
2209 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2211 if (has_timeout &&
2212 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2213 break;
2216 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2218 if (index >= htabslots) {
2219 assert(index == htabslots);
2220 index = 0;
2221 spapr->htab_first_pass = false;
2223 spapr->htab_save_index = index;
2226 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2227 int64_t max_ns)
2229 bool final = max_ns < 0;
2230 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2231 int examined = 0, sent = 0;
2232 int index = spapr->htab_save_index;
2233 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2235 assert(!spapr->htab_first_pass);
2237 do {
2238 int chunkstart, invalidstart;
2240 /* Consume non-dirty HPTEs */
2241 while ((index < htabslots)
2242 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2243 index++;
2244 examined++;
2247 chunkstart = index;
2248 /* Consume valid dirty HPTEs */
2249 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2250 && HPTE_DIRTY(HPTE(spapr->htab, index))
2251 && HPTE_VALID(HPTE(spapr->htab, index))) {
2252 CLEAN_HPTE(HPTE(spapr->htab, index));
2253 index++;
2254 examined++;
2257 invalidstart = index;
2258 /* Consume invalid dirty HPTEs */
2259 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2260 && HPTE_DIRTY(HPTE(spapr->htab, index))
2261 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2262 CLEAN_HPTE(HPTE(spapr->htab, index));
2263 index++;
2264 examined++;
2267 if (index > chunkstart) {
2268 int n_valid = invalidstart - chunkstart;
2269 int n_invalid = index - invalidstart;
2271 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2272 sent += index - chunkstart;
2274 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2275 break;
2279 if (examined >= htabslots) {
2280 break;
2283 if (index >= htabslots) {
2284 assert(index == htabslots);
2285 index = 0;
2287 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2289 if (index >= htabslots) {
2290 assert(index == htabslots);
2291 index = 0;
2294 spapr->htab_save_index = index;
2296 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2299 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2300 #define MAX_KVM_BUF_SIZE 2048
2302 static int htab_save_iterate(QEMUFile *f, void *opaque)
2304 SpaprMachineState *spapr = opaque;
2305 int fd;
2306 int rc = 0;
2308 /* Iteration header */
2309 if (!spapr->htab_shift) {
2310 qemu_put_be32(f, -1);
2311 return 1;
2312 } else {
2313 qemu_put_be32(f, 0);
2316 if (!spapr->htab) {
2317 assert(kvm_enabled());
2319 fd = get_htab_fd(spapr);
2320 if (fd < 0) {
2321 return fd;
2324 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2325 if (rc < 0) {
2326 return rc;
2328 } else if (spapr->htab_first_pass) {
2329 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2330 } else {
2331 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2334 htab_save_end_marker(f);
2336 return rc;
2339 static int htab_save_complete(QEMUFile *f, void *opaque)
2341 SpaprMachineState *spapr = opaque;
2342 int fd;
2344 /* Iteration header */
2345 if (!spapr->htab_shift) {
2346 qemu_put_be32(f, -1);
2347 return 0;
2348 } else {
2349 qemu_put_be32(f, 0);
2352 if (!spapr->htab) {
2353 int rc;
2355 assert(kvm_enabled());
2357 fd = get_htab_fd(spapr);
2358 if (fd < 0) {
2359 return fd;
2362 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2363 if (rc < 0) {
2364 return rc;
2366 } else {
2367 if (spapr->htab_first_pass) {
2368 htab_save_first_pass(f, spapr, -1);
2370 htab_save_later_pass(f, spapr, -1);
2373 /* End marker */
2374 htab_save_end_marker(f);
2376 return 0;
2379 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2381 SpaprMachineState *spapr = opaque;
2382 uint32_t section_hdr;
2383 int fd = -1;
2384 Error *local_err = NULL;
2386 if (version_id < 1 || version_id > 1) {
2387 error_report("htab_load() bad version");
2388 return -EINVAL;
2391 section_hdr = qemu_get_be32(f);
2393 if (section_hdr == -1) {
2394 spapr_free_hpt(spapr);
2395 return 0;
2398 if (section_hdr) {
2399 /* First section gives the htab size */
2400 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2401 if (local_err) {
2402 error_report_err(local_err);
2403 return -EINVAL;
2405 return 0;
2408 if (!spapr->htab) {
2409 assert(kvm_enabled());
2411 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2412 if (fd < 0) {
2413 error_report_err(local_err);
2414 return fd;
2418 while (true) {
2419 uint32_t index;
2420 uint16_t n_valid, n_invalid;
2422 index = qemu_get_be32(f);
2423 n_valid = qemu_get_be16(f);
2424 n_invalid = qemu_get_be16(f);
2426 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2427 /* End of Stream */
2428 break;
2431 if ((index + n_valid + n_invalid) >
2432 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2433 /* Bad index in stream */
2434 error_report(
2435 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2436 index, n_valid, n_invalid, spapr->htab_shift);
2437 return -EINVAL;
2440 if (spapr->htab) {
2441 if (n_valid) {
2442 qemu_get_buffer(f, HPTE(spapr->htab, index),
2443 HASH_PTE_SIZE_64 * n_valid);
2445 if (n_invalid) {
2446 memset(HPTE(spapr->htab, index + n_valid), 0,
2447 HASH_PTE_SIZE_64 * n_invalid);
2449 } else {
2450 int rc;
2452 assert(fd >= 0);
2454 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2455 if (rc < 0) {
2456 return rc;
2461 if (!spapr->htab) {
2462 assert(fd >= 0);
2463 close(fd);
2466 return 0;
2469 static void htab_save_cleanup(void *opaque)
2471 SpaprMachineState *spapr = opaque;
2473 close_htab_fd(spapr);
2476 static SaveVMHandlers savevm_htab_handlers = {
2477 .save_setup = htab_save_setup,
2478 .save_live_iterate = htab_save_iterate,
2479 .save_live_complete_precopy = htab_save_complete,
2480 .save_cleanup = htab_save_cleanup,
2481 .load_state = htab_load,
2484 static void spapr_boot_set(void *opaque, const char *boot_device,
2485 Error **errp)
2487 MachineState *machine = MACHINE(opaque);
2488 machine->boot_order = g_strdup(boot_device);
2491 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2493 MachineState *machine = MACHINE(spapr);
2494 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2495 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2496 int i;
2498 for (i = 0; i < nr_lmbs; i++) {
2499 uint64_t addr;
2501 addr = i * lmb_size + machine->device_memory->base;
2502 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2503 addr / lmb_size);
2508 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2509 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2510 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2512 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2514 int i;
2516 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2517 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2518 " is not aligned to %" PRIu64 " MiB",
2519 machine->ram_size,
2520 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2521 return;
2524 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2525 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2526 " is not aligned to %" PRIu64 " MiB",
2527 machine->ram_size,
2528 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2529 return;
2532 for (i = 0; i < nb_numa_nodes; i++) {
2533 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2534 error_setg(errp,
2535 "Node %d memory size 0x%" PRIx64
2536 " is not aligned to %" PRIu64 " MiB",
2537 i, numa_info[i].node_mem,
2538 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2539 return;
2544 /* find cpu slot in machine->possible_cpus by core_id */
2545 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2547 int index = id / smp_threads;
2549 if (index >= ms->possible_cpus->len) {
2550 return NULL;
2552 if (idx) {
2553 *idx = index;
2555 return &ms->possible_cpus->cpus[index];
2558 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2560 Error *local_err = NULL;
2561 bool vsmt_user = !!spapr->vsmt;
2562 int kvm_smt = kvmppc_smt_threads();
2563 int ret;
2565 if (!kvm_enabled() && (smp_threads > 1)) {
2566 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2567 "on a pseries machine");
2568 goto out;
2570 if (!is_power_of_2(smp_threads)) {
2571 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2572 "machine because it must be a power of 2", smp_threads);
2573 goto out;
2576 /* Detemine the VSMT mode to use: */
2577 if (vsmt_user) {
2578 if (spapr->vsmt < smp_threads) {
2579 error_setg(&local_err, "Cannot support VSMT mode %d"
2580 " because it must be >= threads/core (%d)",
2581 spapr->vsmt, smp_threads);
2582 goto out;
2584 /* In this case, spapr->vsmt has been set by the command line */
2585 } else {
2587 * Default VSMT value is tricky, because we need it to be as
2588 * consistent as possible (for migration), but this requires
2589 * changing it for at least some existing cases. We pick 8 as
2590 * the value that we'd get with KVM on POWER8, the
2591 * overwhelmingly common case in production systems.
2593 spapr->vsmt = MAX(8, smp_threads);
2596 /* KVM: If necessary, set the SMT mode: */
2597 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2598 ret = kvmppc_set_smt_threads(spapr->vsmt);
2599 if (ret) {
2600 /* Looks like KVM isn't able to change VSMT mode */
2601 error_setg(&local_err,
2602 "Failed to set KVM's VSMT mode to %d (errno %d)",
2603 spapr->vsmt, ret);
2604 /* We can live with that if the default one is big enough
2605 * for the number of threads, and a submultiple of the one
2606 * we want. In this case we'll waste some vcpu ids, but
2607 * behaviour will be correct */
2608 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2609 warn_report_err(local_err);
2610 local_err = NULL;
2611 goto out;
2612 } else {
2613 if (!vsmt_user) {
2614 error_append_hint(&local_err,
2615 "On PPC, a VM with %d threads/core"
2616 " on a host with %d threads/core"
2617 " requires the use of VSMT mode %d.\n",
2618 smp_threads, kvm_smt, spapr->vsmt);
2620 kvmppc_hint_smt_possible(&local_err);
2621 goto out;
2625 /* else TCG: nothing to do currently */
2626 out:
2627 error_propagate(errp, local_err);
2630 static void spapr_init_cpus(SpaprMachineState *spapr)
2632 MachineState *machine = MACHINE(spapr);
2633 MachineClass *mc = MACHINE_GET_CLASS(machine);
2634 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2635 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2636 const CPUArchIdList *possible_cpus;
2637 int boot_cores_nr = smp_cpus / smp_threads;
2638 int i;
2640 possible_cpus = mc->possible_cpu_arch_ids(machine);
2641 if (mc->has_hotpluggable_cpus) {
2642 if (smp_cpus % smp_threads) {
2643 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2644 smp_cpus, smp_threads);
2645 exit(1);
2647 if (max_cpus % smp_threads) {
2648 error_report("max_cpus (%u) must be multiple of threads (%u)",
2649 max_cpus, smp_threads);
2650 exit(1);
2652 } else {
2653 if (max_cpus != smp_cpus) {
2654 error_report("This machine version does not support CPU hotplug");
2655 exit(1);
2657 boot_cores_nr = possible_cpus->len;
2660 if (smc->pre_2_10_has_unused_icps) {
2661 int i;
2663 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2664 /* Dummy entries get deregistered when real ICPState objects
2665 * are registered during CPU core hotplug.
2667 pre_2_10_vmstate_register_dummy_icp(i);
2671 for (i = 0; i < possible_cpus->len; i++) {
2672 int core_id = i * smp_threads;
2674 if (mc->has_hotpluggable_cpus) {
2675 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2676 spapr_vcpu_id(spapr, core_id));
2679 if (i < boot_cores_nr) {
2680 Object *core = object_new(type);
2681 int nr_threads = smp_threads;
2683 /* Handle the partially filled core for older machine types */
2684 if ((i + 1) * smp_threads >= smp_cpus) {
2685 nr_threads = smp_cpus - i * smp_threads;
2688 object_property_set_int(core, nr_threads, "nr-threads",
2689 &error_fatal);
2690 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2691 &error_fatal);
2692 object_property_set_bool(core, true, "realized", &error_fatal);
2694 object_unref(core);
2699 static PCIHostState *spapr_create_default_phb(void)
2701 DeviceState *dev;
2703 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2704 qdev_prop_set_uint32(dev, "index", 0);
2705 qdev_init_nofail(dev);
2707 return PCI_HOST_BRIDGE(dev);
2710 /* pSeries LPAR / sPAPR hardware init */
2711 static void spapr_machine_init(MachineState *machine)
2713 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2714 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2715 const char *kernel_filename = machine->kernel_filename;
2716 const char *initrd_filename = machine->initrd_filename;
2717 PCIHostState *phb;
2718 int i;
2719 MemoryRegion *sysmem = get_system_memory();
2720 MemoryRegion *ram = g_new(MemoryRegion, 1);
2721 hwaddr node0_size = spapr_node0_size(machine);
2722 long load_limit, fw_size;
2723 char *filename;
2724 Error *resize_hpt_err = NULL;
2726 msi_nonbroken = true;
2728 QLIST_INIT(&spapr->phbs);
2729 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2731 /* Determine capabilities to run with */
2732 spapr_caps_init(spapr);
2734 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2735 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2737 * If the user explicitly requested a mode we should either
2738 * supply it, or fail completely (which we do below). But if
2739 * it's not set explicitly, we reset our mode to something
2740 * that works
2742 if (resize_hpt_err) {
2743 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2744 error_free(resize_hpt_err);
2745 resize_hpt_err = NULL;
2746 } else {
2747 spapr->resize_hpt = smc->resize_hpt_default;
2751 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2753 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2755 * User requested HPT resize, but this host can't supply it. Bail out
2757 error_report_err(resize_hpt_err);
2758 exit(1);
2761 spapr->rma_size = node0_size;
2763 /* With KVM, we don't actually know whether KVM supports an
2764 * unbounded RMA (PR KVM) or is limited by the hash table size
2765 * (HV KVM using VRMA), so we always assume the latter
2767 * In that case, we also limit the initial allocations for RTAS
2768 * etc... to 256M since we have no way to know what the VRMA size
2769 * is going to be as it depends on the size of the hash table
2770 * which isn't determined yet.
2772 if (kvm_enabled()) {
2773 spapr->vrma_adjust = 1;
2774 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2777 /* Actually we don't support unbounded RMA anymore since we added
2778 * proper emulation of HV mode. The max we can get is 16G which
2779 * also happens to be what we configure for PAPR mode so make sure
2780 * we don't do anything bigger than that
2782 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2784 if (spapr->rma_size > node0_size) {
2785 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2786 spapr->rma_size);
2787 exit(1);
2790 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2791 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2794 * VSMT must be set in order to be able to compute VCPU ids, ie to
2795 * call spapr_max_server_number() or spapr_vcpu_id().
2797 spapr_set_vsmt_mode(spapr, &error_fatal);
2799 /* Set up Interrupt Controller before we create the VCPUs */
2800 spapr_irq_init(spapr, &error_fatal);
2802 /* Set up containers for ibm,client-architecture-support negotiated options
2804 spapr->ov5 = spapr_ovec_new();
2805 spapr->ov5_cas = spapr_ovec_new();
2807 if (smc->dr_lmb_enabled) {
2808 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2809 spapr_validate_node_memory(machine, &error_fatal);
2812 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2814 /* advertise support for dedicated HP event source to guests */
2815 if (spapr->use_hotplug_event_source) {
2816 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2819 /* advertise support for HPT resizing */
2820 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2821 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2824 /* advertise support for ibm,dyamic-memory-v2 */
2825 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2827 /* advertise XIVE on POWER9 machines */
2828 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2829 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2832 /* init CPUs */
2833 spapr_init_cpus(spapr);
2835 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2836 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2837 spapr->max_compat_pvr)) {
2838 /* KVM and TCG always allow GTSE with radix... */
2839 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2841 /* ... but not with hash (currently). */
2843 if (kvm_enabled()) {
2844 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2845 kvmppc_enable_logical_ci_hcalls();
2846 kvmppc_enable_set_mode_hcall();
2848 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2849 kvmppc_enable_clear_ref_mod_hcalls();
2851 /* Enable H_PAGE_INIT */
2852 kvmppc_enable_h_page_init();
2855 /* allocate RAM */
2856 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2857 machine->ram_size);
2858 memory_region_add_subregion(sysmem, 0, ram);
2860 /* always allocate the device memory information */
2861 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2863 /* initialize hotplug memory address space */
2864 if (machine->ram_size < machine->maxram_size) {
2865 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2867 * Limit the number of hotpluggable memory slots to half the number
2868 * slots that KVM supports, leaving the other half for PCI and other
2869 * devices. However ensure that number of slots doesn't drop below 32.
2871 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2872 SPAPR_MAX_RAM_SLOTS;
2874 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2875 max_memslots = SPAPR_MAX_RAM_SLOTS;
2877 if (machine->ram_slots > max_memslots) {
2878 error_report("Specified number of memory slots %"
2879 PRIu64" exceeds max supported %d",
2880 machine->ram_slots, max_memslots);
2881 exit(1);
2884 machine->device_memory->base = ROUND_UP(machine->ram_size,
2885 SPAPR_DEVICE_MEM_ALIGN);
2886 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2887 "device-memory", device_mem_size);
2888 memory_region_add_subregion(sysmem, machine->device_memory->base,
2889 &machine->device_memory->mr);
2892 if (smc->dr_lmb_enabled) {
2893 spapr_create_lmb_dr_connectors(spapr);
2896 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2897 if (!filename) {
2898 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2899 exit(1);
2901 spapr->rtas_size = get_image_size(filename);
2902 if (spapr->rtas_size < 0) {
2903 error_report("Could not get size of LPAR rtas '%s'", filename);
2904 exit(1);
2906 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2907 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2908 error_report("Could not load LPAR rtas '%s'", filename);
2909 exit(1);
2911 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2912 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2913 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2914 exit(1);
2916 g_free(filename);
2918 /* Set up RTAS event infrastructure */
2919 spapr_events_init(spapr);
2921 /* Set up the RTC RTAS interfaces */
2922 spapr_rtc_create(spapr);
2924 /* Set up VIO bus */
2925 spapr->vio_bus = spapr_vio_bus_init();
2927 for (i = 0; i < serial_max_hds(); i++) {
2928 if (serial_hd(i)) {
2929 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2933 /* We always have at least the nvram device on VIO */
2934 spapr_create_nvram(spapr);
2937 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2938 * connectors (described in root DT node's "ibm,drc-types" property)
2939 * are pre-initialized here. additional child connectors (such as
2940 * connectors for a PHBs PCI slots) are added as needed during their
2941 * parent's realization.
2943 if (smc->dr_phb_enabled) {
2944 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2945 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2949 /* Set up PCI */
2950 spapr_pci_rtas_init();
2952 phb = spapr_create_default_phb();
2954 for (i = 0; i < nb_nics; i++) {
2955 NICInfo *nd = &nd_table[i];
2957 if (!nd->model) {
2958 nd->model = g_strdup("spapr-vlan");
2961 if (g_str_equal(nd->model, "spapr-vlan") ||
2962 g_str_equal(nd->model, "ibmveth")) {
2963 spapr_vlan_create(spapr->vio_bus, nd);
2964 } else {
2965 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2969 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2970 spapr_vscsi_create(spapr->vio_bus);
2973 /* Graphics */
2974 if (spapr_vga_init(phb->bus, &error_fatal)) {
2975 spapr->has_graphics = true;
2976 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2979 if (machine->usb) {
2980 if (smc->use_ohci_by_default) {
2981 pci_create_simple(phb->bus, -1, "pci-ohci");
2982 } else {
2983 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2986 if (spapr->has_graphics) {
2987 USBBus *usb_bus = usb_bus_find(-1);
2989 usb_create_simple(usb_bus, "usb-kbd");
2990 usb_create_simple(usb_bus, "usb-mouse");
2994 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2995 error_report(
2996 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2997 MIN_RMA_SLOF);
2998 exit(1);
3001 if (kernel_filename) {
3002 uint64_t lowaddr = 0;
3004 spapr->kernel_size = load_elf(kernel_filename, NULL,
3005 translate_kernel_address, NULL,
3006 NULL, &lowaddr, NULL, 1,
3007 PPC_ELF_MACHINE, 0, 0);
3008 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3009 spapr->kernel_size = load_elf(kernel_filename, NULL,
3010 translate_kernel_address, NULL, NULL,
3011 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
3012 0, 0);
3013 spapr->kernel_le = spapr->kernel_size > 0;
3015 if (spapr->kernel_size < 0) {
3016 error_report("error loading %s: %s", kernel_filename,
3017 load_elf_strerror(spapr->kernel_size));
3018 exit(1);
3021 /* load initrd */
3022 if (initrd_filename) {
3023 /* Try to locate the initrd in the gap between the kernel
3024 * and the firmware. Add a bit of space just in case
3026 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3027 + 0x1ffff) & ~0xffff;
3028 spapr->initrd_size = load_image_targphys(initrd_filename,
3029 spapr->initrd_base,
3030 load_limit
3031 - spapr->initrd_base);
3032 if (spapr->initrd_size < 0) {
3033 error_report("could not load initial ram disk '%s'",
3034 initrd_filename);
3035 exit(1);
3040 if (bios_name == NULL) {
3041 bios_name = FW_FILE_NAME;
3043 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3044 if (!filename) {
3045 error_report("Could not find LPAR firmware '%s'", bios_name);
3046 exit(1);
3048 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3049 if (fw_size <= 0) {
3050 error_report("Could not load LPAR firmware '%s'", filename);
3051 exit(1);
3053 g_free(filename);
3055 /* FIXME: Should register things through the MachineState's qdev
3056 * interface, this is a legacy from the sPAPREnvironment structure
3057 * which predated MachineState but had a similar function */
3058 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3059 register_savevm_live(NULL, "spapr/htab", -1, 1,
3060 &savevm_htab_handlers, spapr);
3062 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3063 &error_fatal);
3065 qemu_register_boot_set(spapr_boot_set, spapr);
3067 if (kvm_enabled()) {
3068 /* to stop and start vmclock */
3069 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3070 &spapr->tb);
3072 kvmppc_spapr_enable_inkernel_multitce();
3076 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3078 if (!vm_type) {
3079 return 0;
3082 if (!strcmp(vm_type, "HV")) {
3083 return 1;
3086 if (!strcmp(vm_type, "PR")) {
3087 return 2;
3090 error_report("Unknown kvm-type specified '%s'", vm_type);
3091 exit(1);
3095 * Implementation of an interface to adjust firmware path
3096 * for the bootindex property handling.
3098 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3099 DeviceState *dev)
3101 #define CAST(type, obj, name) \
3102 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3103 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3104 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3105 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3107 if (d) {
3108 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3109 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3110 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3112 if (spapr) {
3114 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3115 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3116 * 0x8000 | (target << 8) | (bus << 5) | lun
3117 * (see the "Logical unit addressing format" table in SAM5)
3119 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3120 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3121 (uint64_t)id << 48);
3122 } else if (virtio) {
3124 * We use SRP luns of the form 01000000 | (target << 8) | lun
3125 * in the top 32 bits of the 64-bit LUN
3126 * Note: the quote above is from SLOF and it is wrong,
3127 * the actual binding is:
3128 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3130 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3131 if (d->lun >= 256) {
3132 /* Use the LUN "flat space addressing method" */
3133 id |= 0x4000;
3135 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3136 (uint64_t)id << 32);
3137 } else if (usb) {
3139 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3140 * in the top 32 bits of the 64-bit LUN
3142 unsigned usb_port = atoi(usb->port->path);
3143 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3144 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3145 (uint64_t)id << 32);
3150 * SLOF probes the USB devices, and if it recognizes that the device is a
3151 * storage device, it changes its name to "storage" instead of "usb-host",
3152 * and additionally adds a child node for the SCSI LUN, so the correct
3153 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3155 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3156 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3157 if (usb_host_dev_is_scsi_storage(usbdev)) {
3158 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3162 if (phb) {
3163 /* Replace "pci" with "pci@800000020000000" */
3164 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3167 if (vsc) {
3168 /* Same logic as virtio above */
3169 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3170 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3173 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3174 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3175 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3176 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3179 return NULL;
3182 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3184 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3186 return g_strdup(spapr->kvm_type);
3189 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3191 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3193 g_free(spapr->kvm_type);
3194 spapr->kvm_type = g_strdup(value);
3197 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3199 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3201 return spapr->use_hotplug_event_source;
3204 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3205 Error **errp)
3207 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3209 spapr->use_hotplug_event_source = value;
3212 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3214 return true;
3217 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3219 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3221 switch (spapr->resize_hpt) {
3222 case SPAPR_RESIZE_HPT_DEFAULT:
3223 return g_strdup("default");
3224 case SPAPR_RESIZE_HPT_DISABLED:
3225 return g_strdup("disabled");
3226 case SPAPR_RESIZE_HPT_ENABLED:
3227 return g_strdup("enabled");
3228 case SPAPR_RESIZE_HPT_REQUIRED:
3229 return g_strdup("required");
3231 g_assert_not_reached();
3234 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3236 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3238 if (strcmp(value, "default") == 0) {
3239 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3240 } else if (strcmp(value, "disabled") == 0) {
3241 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3242 } else if (strcmp(value, "enabled") == 0) {
3243 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3244 } else if (strcmp(value, "required") == 0) {
3245 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3246 } else {
3247 error_setg(errp, "Bad value for \"resize-hpt\" property");
3251 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3252 void *opaque, Error **errp)
3254 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3257 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3258 void *opaque, Error **errp)
3260 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3263 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3265 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3267 if (spapr->irq == &spapr_irq_xics_legacy) {
3268 return g_strdup("legacy");
3269 } else if (spapr->irq == &spapr_irq_xics) {
3270 return g_strdup("xics");
3271 } else if (spapr->irq == &spapr_irq_xive) {
3272 return g_strdup("xive");
3273 } else if (spapr->irq == &spapr_irq_dual) {
3274 return g_strdup("dual");
3276 g_assert_not_reached();
3279 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3281 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3283 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3284 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3285 return;
3288 /* The legacy IRQ backend can not be set */
3289 if (strcmp(value, "xics") == 0) {
3290 spapr->irq = &spapr_irq_xics;
3291 } else if (strcmp(value, "xive") == 0) {
3292 spapr->irq = &spapr_irq_xive;
3293 } else if (strcmp(value, "dual") == 0) {
3294 spapr->irq = &spapr_irq_dual;
3295 } else {
3296 error_setg(errp, "Bad value for \"ic-mode\" property");
3300 static char *spapr_get_host_model(Object *obj, Error **errp)
3302 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3304 return g_strdup(spapr->host_model);
3307 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3309 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3311 g_free(spapr->host_model);
3312 spapr->host_model = g_strdup(value);
3315 static char *spapr_get_host_serial(Object *obj, Error **errp)
3317 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3319 return g_strdup(spapr->host_serial);
3322 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3324 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3326 g_free(spapr->host_serial);
3327 spapr->host_serial = g_strdup(value);
3330 static void spapr_instance_init(Object *obj)
3332 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3333 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3335 spapr->htab_fd = -1;
3336 spapr->use_hotplug_event_source = true;
3337 object_property_add_str(obj, "kvm-type",
3338 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3339 object_property_set_description(obj, "kvm-type",
3340 "Specifies the KVM virtualization mode (HV, PR)",
3341 NULL);
3342 object_property_add_bool(obj, "modern-hotplug-events",
3343 spapr_get_modern_hotplug_events,
3344 spapr_set_modern_hotplug_events,
3345 NULL);
3346 object_property_set_description(obj, "modern-hotplug-events",
3347 "Use dedicated hotplug event mechanism in"
3348 " place of standard EPOW events when possible"
3349 " (required for memory hot-unplug support)",
3350 NULL);
3351 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3352 "Maximum permitted CPU compatibility mode",
3353 &error_fatal);
3355 object_property_add_str(obj, "resize-hpt",
3356 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3357 object_property_set_description(obj, "resize-hpt",
3358 "Resizing of the Hash Page Table (enabled, disabled, required)",
3359 NULL);
3360 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3361 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3362 object_property_set_description(obj, "vsmt",
3363 "Virtual SMT: KVM behaves as if this were"
3364 " the host's SMT mode", &error_abort);
3365 object_property_add_bool(obj, "vfio-no-msix-emulation",
3366 spapr_get_msix_emulation, NULL, NULL);
3368 /* The machine class defines the default interrupt controller mode */
3369 spapr->irq = smc->irq;
3370 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3371 spapr_set_ic_mode, NULL);
3372 object_property_set_description(obj, "ic-mode",
3373 "Specifies the interrupt controller mode (xics, xive, dual)",
3374 NULL);
3376 object_property_add_str(obj, "host-model",
3377 spapr_get_host_model, spapr_set_host_model,
3378 &error_abort);
3379 object_property_set_description(obj, "host-model",
3380 "Host model to advertise in guest device tree", &error_abort);
3381 object_property_add_str(obj, "host-serial",
3382 spapr_get_host_serial, spapr_set_host_serial,
3383 &error_abort);
3384 object_property_set_description(obj, "host-serial",
3385 "Host serial number to advertise in guest device tree", &error_abort);
3388 static void spapr_machine_finalizefn(Object *obj)
3390 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3392 g_free(spapr->kvm_type);
3395 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3397 cpu_synchronize_state(cs);
3398 ppc_cpu_do_system_reset(cs);
3401 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3403 CPUState *cs;
3405 CPU_FOREACH(cs) {
3406 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3410 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3411 void *fdt, int *fdt_start_offset, Error **errp)
3413 uint64_t addr;
3414 uint32_t node;
3416 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3417 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3418 &error_abort);
3419 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3420 SPAPR_MEMORY_BLOCK_SIZE);
3421 return 0;
3424 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3425 bool dedicated_hp_event_source, Error **errp)
3427 SpaprDrc *drc;
3428 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3429 int i;
3430 uint64_t addr = addr_start;
3431 bool hotplugged = spapr_drc_hotplugged(dev);
3432 Error *local_err = NULL;
3434 for (i = 0; i < nr_lmbs; i++) {
3435 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3436 addr / SPAPR_MEMORY_BLOCK_SIZE);
3437 g_assert(drc);
3439 spapr_drc_attach(drc, dev, &local_err);
3440 if (local_err) {
3441 while (addr > addr_start) {
3442 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3443 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3444 addr / SPAPR_MEMORY_BLOCK_SIZE);
3445 spapr_drc_detach(drc);
3447 error_propagate(errp, local_err);
3448 return;
3450 if (!hotplugged) {
3451 spapr_drc_reset(drc);
3453 addr += SPAPR_MEMORY_BLOCK_SIZE;
3455 /* send hotplug notification to the
3456 * guest only in case of hotplugged memory
3458 if (hotplugged) {
3459 if (dedicated_hp_event_source) {
3460 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3461 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3462 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3463 nr_lmbs,
3464 spapr_drc_index(drc));
3465 } else {
3466 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3467 nr_lmbs);
3472 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3473 Error **errp)
3475 Error *local_err = NULL;
3476 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3477 PCDIMMDevice *dimm = PC_DIMM(dev);
3478 uint64_t size, addr;
3480 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3482 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3483 if (local_err) {
3484 goto out;
3487 addr = object_property_get_uint(OBJECT(dimm),
3488 PC_DIMM_ADDR_PROP, &local_err);
3489 if (local_err) {
3490 goto out_unplug;
3493 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3494 &local_err);
3495 if (local_err) {
3496 goto out_unplug;
3499 return;
3501 out_unplug:
3502 pc_dimm_unplug(dimm, MACHINE(ms));
3503 out:
3504 error_propagate(errp, local_err);
3507 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3508 Error **errp)
3510 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3511 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3512 PCDIMMDevice *dimm = PC_DIMM(dev);
3513 Error *local_err = NULL;
3514 uint64_t size;
3515 Object *memdev;
3516 hwaddr pagesize;
3518 if (!smc->dr_lmb_enabled) {
3519 error_setg(errp, "Memory hotplug not supported for this machine");
3520 return;
3523 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3524 if (local_err) {
3525 error_propagate(errp, local_err);
3526 return;
3529 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3530 error_setg(errp, "Hotplugged memory size must be a multiple of "
3531 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3532 return;
3535 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3536 &error_abort);
3537 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3538 spapr_check_pagesize(spapr, pagesize, &local_err);
3539 if (local_err) {
3540 error_propagate(errp, local_err);
3541 return;
3544 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3547 struct SpaprDimmState {
3548 PCDIMMDevice *dimm;
3549 uint32_t nr_lmbs;
3550 QTAILQ_ENTRY(SpaprDimmState) next;
3553 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3554 PCDIMMDevice *dimm)
3556 SpaprDimmState *dimm_state = NULL;
3558 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3559 if (dimm_state->dimm == dimm) {
3560 break;
3563 return dimm_state;
3566 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3567 uint32_t nr_lmbs,
3568 PCDIMMDevice *dimm)
3570 SpaprDimmState *ds = NULL;
3573 * If this request is for a DIMM whose removal had failed earlier
3574 * (due to guest's refusal to remove the LMBs), we would have this
3575 * dimm already in the pending_dimm_unplugs list. In that
3576 * case don't add again.
3578 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3579 if (!ds) {
3580 ds = g_malloc0(sizeof(SpaprDimmState));
3581 ds->nr_lmbs = nr_lmbs;
3582 ds->dimm = dimm;
3583 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3585 return ds;
3588 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3589 SpaprDimmState *dimm_state)
3591 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3592 g_free(dimm_state);
3595 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3596 PCDIMMDevice *dimm)
3598 SpaprDrc *drc;
3599 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3600 &error_abort);
3601 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3602 uint32_t avail_lmbs = 0;
3603 uint64_t addr_start, addr;
3604 int i;
3606 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3607 &error_abort);
3609 addr = addr_start;
3610 for (i = 0; i < nr_lmbs; i++) {
3611 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3612 addr / SPAPR_MEMORY_BLOCK_SIZE);
3613 g_assert(drc);
3614 if (drc->dev) {
3615 avail_lmbs++;
3617 addr += SPAPR_MEMORY_BLOCK_SIZE;
3620 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3623 /* Callback to be called during DRC release. */
3624 void spapr_lmb_release(DeviceState *dev)
3626 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3627 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3628 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3630 /* This information will get lost if a migration occurs
3631 * during the unplug process. In this case recover it. */
3632 if (ds == NULL) {
3633 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3634 g_assert(ds);
3635 /* The DRC being examined by the caller at least must be counted */
3636 g_assert(ds->nr_lmbs);
3639 if (--ds->nr_lmbs) {
3640 return;
3644 * Now that all the LMBs have been removed by the guest, call the
3645 * unplug handler chain. This can never fail.
3647 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3648 object_unparent(OBJECT(dev));
3651 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3653 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3654 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3656 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3657 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3658 spapr_pending_dimm_unplugs_remove(spapr, ds);
3661 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3662 DeviceState *dev, Error **errp)
3664 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3665 Error *local_err = NULL;
3666 PCDIMMDevice *dimm = PC_DIMM(dev);
3667 uint32_t nr_lmbs;
3668 uint64_t size, addr_start, addr;
3669 int i;
3670 SpaprDrc *drc;
3672 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3673 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3675 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3676 &local_err);
3677 if (local_err) {
3678 goto out;
3682 * An existing pending dimm state for this DIMM means that there is an
3683 * unplug operation in progress, waiting for the spapr_lmb_release
3684 * callback to complete the job (BQL can't cover that far). In this case,
3685 * bail out to avoid detaching DRCs that were already released.
3687 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3688 error_setg(&local_err,
3689 "Memory unplug already in progress for device %s",
3690 dev->id);
3691 goto out;
3694 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3696 addr = addr_start;
3697 for (i = 0; i < nr_lmbs; i++) {
3698 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3699 addr / SPAPR_MEMORY_BLOCK_SIZE);
3700 g_assert(drc);
3702 spapr_drc_detach(drc);
3703 addr += SPAPR_MEMORY_BLOCK_SIZE;
3706 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3707 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3708 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3709 nr_lmbs, spapr_drc_index(drc));
3710 out:
3711 error_propagate(errp, local_err);
3714 /* Callback to be called during DRC release. */
3715 void spapr_core_release(DeviceState *dev)
3717 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3719 /* Call the unplug handler chain. This can never fail. */
3720 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3721 object_unparent(OBJECT(dev));
3724 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3726 MachineState *ms = MACHINE(hotplug_dev);
3727 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3728 CPUCore *cc = CPU_CORE(dev);
3729 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3731 if (smc->pre_2_10_has_unused_icps) {
3732 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3733 int i;
3735 for (i = 0; i < cc->nr_threads; i++) {
3736 CPUState *cs = CPU(sc->threads[i]);
3738 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3742 assert(core_slot);
3743 core_slot->cpu = NULL;
3744 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3747 static
3748 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3749 Error **errp)
3751 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3752 int index;
3753 SpaprDrc *drc;
3754 CPUCore *cc = CPU_CORE(dev);
3756 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3757 error_setg(errp, "Unable to find CPU core with core-id: %d",
3758 cc->core_id);
3759 return;
3761 if (index == 0) {
3762 error_setg(errp, "Boot CPU core may not be unplugged");
3763 return;
3766 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3767 spapr_vcpu_id(spapr, cc->core_id));
3768 g_assert(drc);
3770 spapr_drc_detach(drc);
3772 spapr_hotplug_req_remove_by_index(drc);
3775 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3776 void *fdt, int *fdt_start_offset, Error **errp)
3778 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3779 CPUState *cs = CPU(core->threads[0]);
3780 PowerPCCPU *cpu = POWERPC_CPU(cs);
3781 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3782 int id = spapr_get_vcpu_id(cpu);
3783 char *nodename;
3784 int offset;
3786 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3787 offset = fdt_add_subnode(fdt, 0, nodename);
3788 g_free(nodename);
3790 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3792 *fdt_start_offset = offset;
3793 return 0;
3796 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3797 Error **errp)
3799 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3800 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3801 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3802 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3803 CPUCore *cc = CPU_CORE(dev);
3804 CPUState *cs;
3805 SpaprDrc *drc;
3806 Error *local_err = NULL;
3807 CPUArchId *core_slot;
3808 int index;
3809 bool hotplugged = spapr_drc_hotplugged(dev);
3811 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3812 if (!core_slot) {
3813 error_setg(errp, "Unable to find CPU core with core-id: %d",
3814 cc->core_id);
3815 return;
3817 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3818 spapr_vcpu_id(spapr, cc->core_id));
3820 g_assert(drc || !mc->has_hotpluggable_cpus);
3822 if (drc) {
3823 spapr_drc_attach(drc, dev, &local_err);
3824 if (local_err) {
3825 error_propagate(errp, local_err);
3826 return;
3829 if (hotplugged) {
3831 * Send hotplug notification interrupt to the guest only
3832 * in case of hotplugged CPUs.
3834 spapr_hotplug_req_add_by_index(drc);
3835 } else {
3836 spapr_drc_reset(drc);
3840 core_slot->cpu = OBJECT(dev);
3842 if (smc->pre_2_10_has_unused_icps) {
3843 int i;
3845 for (i = 0; i < cc->nr_threads; i++) {
3846 cs = CPU(core->threads[i]);
3847 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3852 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3853 Error **errp)
3855 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3856 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3857 Error *local_err = NULL;
3858 CPUCore *cc = CPU_CORE(dev);
3859 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3860 const char *type = object_get_typename(OBJECT(dev));
3861 CPUArchId *core_slot;
3862 int index;
3864 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3865 error_setg(&local_err, "CPU hotplug not supported for this machine");
3866 goto out;
3869 if (strcmp(base_core_type, type)) {
3870 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3871 goto out;
3874 if (cc->core_id % smp_threads) {
3875 error_setg(&local_err, "invalid core id %d", cc->core_id);
3876 goto out;
3880 * In general we should have homogeneous threads-per-core, but old
3881 * (pre hotplug support) machine types allow the last core to have
3882 * reduced threads as a compatibility hack for when we allowed
3883 * total vcpus not a multiple of threads-per-core.
3885 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3886 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3887 cc->nr_threads, smp_threads);
3888 goto out;
3891 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3892 if (!core_slot) {
3893 error_setg(&local_err, "core id %d out of range", cc->core_id);
3894 goto out;
3897 if (core_slot->cpu) {
3898 error_setg(&local_err, "core %d already populated", cc->core_id);
3899 goto out;
3902 numa_cpu_pre_plug(core_slot, dev, &local_err);
3904 out:
3905 error_propagate(errp, local_err);
3908 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3909 void *fdt, int *fdt_start_offset, Error **errp)
3911 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3912 int intc_phandle;
3914 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3915 if (intc_phandle <= 0) {
3916 return -1;
3919 if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3920 fdt_start_offset)) {
3921 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3922 return -1;
3925 /* generally SLOF creates these, for hotplug it's up to QEMU */
3926 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3928 return 0;
3931 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3932 Error **errp)
3934 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3935 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3936 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3937 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3939 if (dev->hotplugged && !smc->dr_phb_enabled) {
3940 error_setg(errp, "PHB hotplug not supported for this machine");
3941 return;
3944 if (sphb->index == (uint32_t)-1) {
3945 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3946 return;
3950 * This will check that sphb->index doesn't exceed the maximum number of
3951 * PHBs for the current machine type.
3953 smc->phb_placement(spapr, sphb->index,
3954 &sphb->buid, &sphb->io_win_addr,
3955 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3956 windows_supported, sphb->dma_liobn,
3957 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3958 errp);
3961 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3962 Error **errp)
3964 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3965 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3966 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3967 SpaprDrc *drc;
3968 bool hotplugged = spapr_drc_hotplugged(dev);
3969 Error *local_err = NULL;
3971 if (!smc->dr_phb_enabled) {
3972 return;
3975 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3976 /* hotplug hooks should check it's enabled before getting this far */
3977 assert(drc);
3979 spapr_drc_attach(drc, DEVICE(dev), &local_err);
3980 if (local_err) {
3981 error_propagate(errp, local_err);
3982 return;
3985 if (hotplugged) {
3986 spapr_hotplug_req_add_by_index(drc);
3987 } else {
3988 spapr_drc_reset(drc);
3992 void spapr_phb_release(DeviceState *dev)
3994 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3996 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3997 object_unparent(OBJECT(dev));
4000 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4002 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4005 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4006 DeviceState *dev, Error **errp)
4008 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4009 SpaprDrc *drc;
4011 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4012 assert(drc);
4014 if (!spapr_drc_unplug_requested(drc)) {
4015 spapr_drc_detach(drc);
4016 spapr_hotplug_req_remove_by_index(drc);
4020 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4021 DeviceState *dev, Error **errp)
4023 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4024 spapr_memory_plug(hotplug_dev, dev, errp);
4025 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4026 spapr_core_plug(hotplug_dev, dev, errp);
4027 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4028 spapr_phb_plug(hotplug_dev, dev, errp);
4032 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4033 DeviceState *dev, Error **errp)
4035 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4036 spapr_memory_unplug(hotplug_dev, dev);
4037 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4038 spapr_core_unplug(hotplug_dev, dev);
4039 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4040 spapr_phb_unplug(hotplug_dev, dev);
4044 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4045 DeviceState *dev, Error **errp)
4047 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4048 MachineClass *mc = MACHINE_GET_CLASS(sms);
4049 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4051 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4052 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4053 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4054 } else {
4055 /* NOTE: this means there is a window after guest reset, prior to
4056 * CAS negotiation, where unplug requests will fail due to the
4057 * capability not being detected yet. This is a bit different than
4058 * the case with PCI unplug, where the events will be queued and
4059 * eventually handled by the guest after boot
4061 error_setg(errp, "Memory hot unplug not supported for this guest");
4063 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4064 if (!mc->has_hotpluggable_cpus) {
4065 error_setg(errp, "CPU hot unplug not supported on this machine");
4066 return;
4068 spapr_core_unplug_request(hotplug_dev, dev, errp);
4069 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4070 if (!smc->dr_phb_enabled) {
4071 error_setg(errp, "PHB hot unplug not supported on this machine");
4072 return;
4074 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4078 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4079 DeviceState *dev, Error **errp)
4081 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4082 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4083 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4084 spapr_core_pre_plug(hotplug_dev, dev, errp);
4085 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4086 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4090 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4091 DeviceState *dev)
4093 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4094 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4095 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4096 return HOTPLUG_HANDLER(machine);
4098 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4099 PCIDevice *pcidev = PCI_DEVICE(dev);
4100 PCIBus *root = pci_device_root_bus(pcidev);
4101 SpaprPhbState *phb =
4102 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4103 TYPE_SPAPR_PCI_HOST_BRIDGE);
4105 if (phb) {
4106 return HOTPLUG_HANDLER(phb);
4109 return NULL;
4112 static CpuInstanceProperties
4113 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4115 CPUArchId *core_slot;
4116 MachineClass *mc = MACHINE_GET_CLASS(machine);
4118 /* make sure possible_cpu are intialized */
4119 mc->possible_cpu_arch_ids(machine);
4120 /* get CPU core slot containing thread that matches cpu_index */
4121 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4122 assert(core_slot);
4123 return core_slot->props;
4126 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4128 return idx / smp_cores % nb_numa_nodes;
4131 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4133 int i;
4134 const char *core_type;
4135 int spapr_max_cores = max_cpus / smp_threads;
4136 MachineClass *mc = MACHINE_GET_CLASS(machine);
4138 if (!mc->has_hotpluggable_cpus) {
4139 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4141 if (machine->possible_cpus) {
4142 assert(machine->possible_cpus->len == spapr_max_cores);
4143 return machine->possible_cpus;
4146 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4147 if (!core_type) {
4148 error_report("Unable to find sPAPR CPU Core definition");
4149 exit(1);
4152 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4153 sizeof(CPUArchId) * spapr_max_cores);
4154 machine->possible_cpus->len = spapr_max_cores;
4155 for (i = 0; i < machine->possible_cpus->len; i++) {
4156 int core_id = i * smp_threads;
4158 machine->possible_cpus->cpus[i].type = core_type;
4159 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4160 machine->possible_cpus->cpus[i].arch_id = core_id;
4161 machine->possible_cpus->cpus[i].props.has_core_id = true;
4162 machine->possible_cpus->cpus[i].props.core_id = core_id;
4164 return machine->possible_cpus;
4167 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4168 uint64_t *buid, hwaddr *pio,
4169 hwaddr *mmio32, hwaddr *mmio64,
4170 unsigned n_dma, uint32_t *liobns,
4171 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4174 * New-style PHB window placement.
4176 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4177 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4178 * windows.
4180 * Some guest kernels can't work with MMIO windows above 1<<46
4181 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4183 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4184 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4185 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4186 * 1TiB 64-bit MMIO windows for each PHB.
4188 const uint64_t base_buid = 0x800000020000000ULL;
4189 int i;
4191 /* Sanity check natural alignments */
4192 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4193 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4194 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4195 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4196 /* Sanity check bounds */
4197 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4198 SPAPR_PCI_MEM32_WIN_SIZE);
4199 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4200 SPAPR_PCI_MEM64_WIN_SIZE);
4202 if (index >= SPAPR_MAX_PHBS) {
4203 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4204 SPAPR_MAX_PHBS - 1);
4205 return;
4208 *buid = base_buid + index;
4209 for (i = 0; i < n_dma; ++i) {
4210 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4213 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4214 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4215 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4217 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4218 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4221 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4223 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4225 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4228 static void spapr_ics_resend(XICSFabric *dev)
4230 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4232 ics_resend(spapr->ics);
4235 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4237 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4239 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4242 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4243 Monitor *mon)
4245 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4247 spapr->irq->print_info(spapr, mon);
4250 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4252 return cpu->vcpu_id;
4255 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4257 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4258 int vcpu_id;
4260 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4262 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4263 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4264 error_append_hint(errp, "Adjust the number of cpus to %d "
4265 "or try to raise the number of threads per core\n",
4266 vcpu_id * smp_threads / spapr->vsmt);
4267 return;
4270 cpu->vcpu_id = vcpu_id;
4273 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4275 CPUState *cs;
4277 CPU_FOREACH(cs) {
4278 PowerPCCPU *cpu = POWERPC_CPU(cs);
4280 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4281 return cpu;
4285 return NULL;
4288 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4290 MachineClass *mc = MACHINE_CLASS(oc);
4291 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4292 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4293 NMIClass *nc = NMI_CLASS(oc);
4294 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4295 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4296 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4297 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4299 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4300 mc->ignore_boot_device_suffixes = true;
4303 * We set up the default / latest behaviour here. The class_init
4304 * functions for the specific versioned machine types can override
4305 * these details for backwards compatibility
4307 mc->init = spapr_machine_init;
4308 mc->reset = spapr_machine_reset;
4309 mc->block_default_type = IF_SCSI;
4310 mc->max_cpus = 1024;
4311 mc->no_parallel = 1;
4312 mc->default_boot_order = "";
4313 mc->default_ram_size = 512 * MiB;
4314 mc->default_display = "std";
4315 mc->kvm_type = spapr_kvm_type;
4316 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4317 mc->pci_allow_0_address = true;
4318 assert(!mc->get_hotplug_handler);
4319 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4320 hc->pre_plug = spapr_machine_device_pre_plug;
4321 hc->plug = spapr_machine_device_plug;
4322 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4323 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4324 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4325 hc->unplug_request = spapr_machine_device_unplug_request;
4326 hc->unplug = spapr_machine_device_unplug;
4328 smc->dr_lmb_enabled = true;
4329 smc->update_dt_enabled = true;
4330 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4331 mc->has_hotpluggable_cpus = true;
4332 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4333 fwc->get_dev_path = spapr_get_fw_dev_path;
4334 nc->nmi_monitor_handler = spapr_nmi;
4335 smc->phb_placement = spapr_phb_placement;
4336 vhc->hypercall = emulate_spapr_hypercall;
4337 vhc->hpt_mask = spapr_hpt_mask;
4338 vhc->map_hptes = spapr_map_hptes;
4339 vhc->unmap_hptes = spapr_unmap_hptes;
4340 vhc->hpte_set_c = spapr_hpte_set_c;
4341 vhc->hpte_set_r = spapr_hpte_set_r;
4342 vhc->get_pate = spapr_get_pate;
4343 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4344 xic->ics_get = spapr_ics_get;
4345 xic->ics_resend = spapr_ics_resend;
4346 xic->icp_get = spapr_icp_get;
4347 ispc->print_info = spapr_pic_print_info;
4348 /* Force NUMA node memory size to be a multiple of
4349 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4350 * in which LMBs are represented and hot-added
4352 mc->numa_mem_align_shift = 28;
4354 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4355 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4356 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4357 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4358 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4359 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4360 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4361 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4362 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4363 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4364 spapr_caps_add_properties(smc, &error_abort);
4365 smc->irq = &spapr_irq_dual;
4366 smc->dr_phb_enabled = true;
4369 static const TypeInfo spapr_machine_info = {
4370 .name = TYPE_SPAPR_MACHINE,
4371 .parent = TYPE_MACHINE,
4372 .abstract = true,
4373 .instance_size = sizeof(SpaprMachineState),
4374 .instance_init = spapr_instance_init,
4375 .instance_finalize = spapr_machine_finalizefn,
4376 .class_size = sizeof(SpaprMachineClass),
4377 .class_init = spapr_machine_class_init,
4378 .interfaces = (InterfaceInfo[]) {
4379 { TYPE_FW_PATH_PROVIDER },
4380 { TYPE_NMI },
4381 { TYPE_HOTPLUG_HANDLER },
4382 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4383 { TYPE_XICS_FABRIC },
4384 { TYPE_INTERRUPT_STATS_PROVIDER },
4389 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4390 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4391 void *data) \
4393 MachineClass *mc = MACHINE_CLASS(oc); \
4394 spapr_machine_##suffix##_class_options(mc); \
4395 if (latest) { \
4396 mc->alias = "pseries"; \
4397 mc->is_default = 1; \
4400 static const TypeInfo spapr_machine_##suffix##_info = { \
4401 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4402 .parent = TYPE_SPAPR_MACHINE, \
4403 .class_init = spapr_machine_##suffix##_class_init, \
4404 }; \
4405 static void spapr_machine_register_##suffix(void) \
4407 type_register(&spapr_machine_##suffix##_info); \
4409 type_init(spapr_machine_register_##suffix)
4412 * pseries-4.1
4414 static void spapr_machine_4_1_class_options(MachineClass *mc)
4416 /* Defaults for the latest behaviour inherited from the base class */
4419 DEFINE_SPAPR_MACHINE(4_1, "4.1", true);
4422 * pseries-4.0
4424 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4425 uint64_t *buid, hwaddr *pio,
4426 hwaddr *mmio32, hwaddr *mmio64,
4427 unsigned n_dma, uint32_t *liobns,
4428 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4430 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4431 nv2gpa, nv2atsd, errp);
4432 *nv2gpa = 0;
4433 *nv2atsd = 0;
4436 static void spapr_machine_4_0_class_options(MachineClass *mc)
4438 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4440 spapr_machine_4_1_class_options(mc);
4441 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4442 smc->phb_placement = phb_placement_4_0;
4443 smc->irq = &spapr_irq_xics;
4444 smc->pre_4_1_migration = true;
4447 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4450 * pseries-3.1
4452 static void spapr_machine_3_1_class_options(MachineClass *mc)
4454 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4456 spapr_machine_4_0_class_options(mc);
4457 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4459 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4460 smc->update_dt_enabled = false;
4461 smc->dr_phb_enabled = false;
4462 smc->broken_host_serial_model = true;
4463 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4464 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4465 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4466 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4469 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4472 * pseries-3.0
4475 static void spapr_machine_3_0_class_options(MachineClass *mc)
4477 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4479 spapr_machine_3_1_class_options(mc);
4480 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4482 smc->legacy_irq_allocation = true;
4483 smc->irq = &spapr_irq_xics_legacy;
4486 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4489 * pseries-2.12
4491 static void spapr_machine_2_12_class_options(MachineClass *mc)
4493 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4494 static GlobalProperty compat[] = {
4495 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4496 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4499 spapr_machine_3_0_class_options(mc);
4500 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4501 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4503 /* We depend on kvm_enabled() to choose a default value for the
4504 * hpt-max-page-size capability. Of course we can't do it here
4505 * because this is too early and the HW accelerator isn't initialzed
4506 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4508 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4511 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4513 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4515 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4517 spapr_machine_2_12_class_options(mc);
4518 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4519 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4520 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4523 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4526 * pseries-2.11
4529 static void spapr_machine_2_11_class_options(MachineClass *mc)
4531 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4533 spapr_machine_2_12_class_options(mc);
4534 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4535 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4538 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4541 * pseries-2.10
4544 static void spapr_machine_2_10_class_options(MachineClass *mc)
4546 spapr_machine_2_11_class_options(mc);
4547 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4550 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4553 * pseries-2.9
4556 static void spapr_machine_2_9_class_options(MachineClass *mc)
4558 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4559 static GlobalProperty compat[] = {
4560 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4563 spapr_machine_2_10_class_options(mc);
4564 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4565 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4566 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4567 smc->pre_2_10_has_unused_icps = true;
4568 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4571 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4574 * pseries-2.8
4577 static void spapr_machine_2_8_class_options(MachineClass *mc)
4579 static GlobalProperty compat[] = {
4580 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4583 spapr_machine_2_9_class_options(mc);
4584 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4585 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4586 mc->numa_mem_align_shift = 23;
4589 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4592 * pseries-2.7
4595 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4596 uint64_t *buid, hwaddr *pio,
4597 hwaddr *mmio32, hwaddr *mmio64,
4598 unsigned n_dma, uint32_t *liobns,
4599 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4601 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4602 const uint64_t base_buid = 0x800000020000000ULL;
4603 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4604 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4605 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4606 const uint32_t max_index = 255;
4607 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4609 uint64_t ram_top = MACHINE(spapr)->ram_size;
4610 hwaddr phb0_base, phb_base;
4611 int i;
4613 /* Do we have device memory? */
4614 if (MACHINE(spapr)->maxram_size > ram_top) {
4615 /* Can't just use maxram_size, because there may be an
4616 * alignment gap between normal and device memory regions
4618 ram_top = MACHINE(spapr)->device_memory->base +
4619 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4622 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4624 if (index > max_index) {
4625 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4626 max_index);
4627 return;
4630 *buid = base_buid + index;
4631 for (i = 0; i < n_dma; ++i) {
4632 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4635 phb_base = phb0_base + index * phb_spacing;
4636 *pio = phb_base + pio_offset;
4637 *mmio32 = phb_base + mmio_offset;
4639 * We don't set the 64-bit MMIO window, relying on the PHB's
4640 * fallback behaviour of automatically splitting a large "32-bit"
4641 * window into contiguous 32-bit and 64-bit windows
4644 *nv2gpa = 0;
4645 *nv2atsd = 0;
4648 static void spapr_machine_2_7_class_options(MachineClass *mc)
4650 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4651 static GlobalProperty compat[] = {
4652 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4653 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4654 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4655 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4658 spapr_machine_2_8_class_options(mc);
4659 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4660 mc->default_machine_opts = "modern-hotplug-events=off";
4661 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4662 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4663 smc->phb_placement = phb_placement_2_7;
4666 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4669 * pseries-2.6
4672 static void spapr_machine_2_6_class_options(MachineClass *mc)
4674 static GlobalProperty compat[] = {
4675 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4678 spapr_machine_2_7_class_options(mc);
4679 mc->has_hotpluggable_cpus = false;
4680 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4681 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4684 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4687 * pseries-2.5
4690 static void spapr_machine_2_5_class_options(MachineClass *mc)
4692 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4693 static GlobalProperty compat[] = {
4694 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4697 spapr_machine_2_6_class_options(mc);
4698 smc->use_ohci_by_default = true;
4699 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4700 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4703 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4706 * pseries-2.4
4709 static void spapr_machine_2_4_class_options(MachineClass *mc)
4711 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4713 spapr_machine_2_5_class_options(mc);
4714 smc->dr_lmb_enabled = false;
4715 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4718 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4721 * pseries-2.3
4724 static void spapr_machine_2_3_class_options(MachineClass *mc)
4726 static GlobalProperty compat[] = {
4727 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4729 spapr_machine_2_4_class_options(mc);
4730 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4731 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4733 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4736 * pseries-2.2
4739 static void spapr_machine_2_2_class_options(MachineClass *mc)
4741 static GlobalProperty compat[] = {
4742 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4745 spapr_machine_2_3_class_options(mc);
4746 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4747 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4748 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4750 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4753 * pseries-2.1
4756 static void spapr_machine_2_1_class_options(MachineClass *mc)
4758 spapr_machine_2_2_class_options(mc);
4759 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4761 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4763 static void spapr_machine_register_types(void)
4765 type_register_static(&spapr_machine_info);
4768 type_init(spapr_machine_register_types)