Merge remote-tracking branch 'remotes/amarkovic/tags/mips-queue-jun-26-2019' into...
[qemu/ar7.git] / hw / i2c / smbus_eeprom.c
blob37167e72445310f79050556826187f36ee2dd5a0
1 /*
2 * QEMU SMBus EEPROM device
4 * Copyright (c) 2007 Arastra, Inc.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qapi/error.h"
28 #include "hw/hw.h"
29 #include "hw/boards.h"
30 #include "hw/i2c/i2c.h"
31 #include "hw/i2c/smbus_slave.h"
32 #include "hw/i2c/smbus_eeprom.h"
34 //#define DEBUG
36 #define TYPE_SMBUS_EEPROM "smbus-eeprom"
38 #define SMBUS_EEPROM(obj) \
39 OBJECT_CHECK(SMBusEEPROMDevice, (obj), TYPE_SMBUS_EEPROM)
41 #define SMBUS_EEPROM_SIZE 256
43 typedef struct SMBusEEPROMDevice {
44 SMBusDevice smbusdev;
45 uint8_t data[SMBUS_EEPROM_SIZE];
46 void *init_data;
47 uint8_t offset;
48 bool accessed;
49 } SMBusEEPROMDevice;
51 static uint8_t eeprom_receive_byte(SMBusDevice *dev)
53 SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
54 uint8_t *data = eeprom->data;
55 uint8_t val = data[eeprom->offset++];
57 eeprom->accessed = true;
58 #ifdef DEBUG
59 printf("eeprom_receive_byte: addr=0x%02x val=0x%02x\n",
60 dev->i2c.address, val);
61 #endif
62 return val;
65 static int eeprom_write_data(SMBusDevice *dev, uint8_t *buf, uint8_t len)
67 SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
68 uint8_t *data = eeprom->data;
70 eeprom->accessed = true;
71 #ifdef DEBUG
72 printf("eeprom_write_byte: addr=0x%02x cmd=0x%02x val=0x%02x\n",
73 dev->i2c.address, buf[0], buf[1]);
74 #endif
75 /* len is guaranteed to be > 0 */
76 eeprom->offset = buf[0];
77 buf++;
78 len--;
80 for (; len > 0; len--) {
81 data[eeprom->offset] = *buf++;
82 eeprom->offset = (eeprom->offset + 1) % SMBUS_EEPROM_SIZE;
85 return 0;
88 static bool smbus_eeprom_vmstate_needed(void *opaque)
90 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
91 SMBusEEPROMDevice *eeprom = opaque;
93 return (eeprom->accessed || smbus_vmstate_needed(&eeprom->smbusdev)) &&
94 !mc->smbus_no_migration_support;
97 static const VMStateDescription vmstate_smbus_eeprom = {
98 .name = "smbus-eeprom",
99 .version_id = 1,
100 .minimum_version_id = 1,
101 .needed = smbus_eeprom_vmstate_needed,
102 .fields = (VMStateField[]) {
103 VMSTATE_SMBUS_DEVICE(smbusdev, SMBusEEPROMDevice),
104 VMSTATE_UINT8_ARRAY(data, SMBusEEPROMDevice, SMBUS_EEPROM_SIZE),
105 VMSTATE_UINT8(offset, SMBusEEPROMDevice),
106 VMSTATE_BOOL(accessed, SMBusEEPROMDevice),
107 VMSTATE_END_OF_LIST()
112 * Reset the EEPROM contents to the initial state on a reset. This
113 * isn't really how an EEPROM works, of course, but the general
114 * principle of QEMU is to restore function on reset to what it would
115 * be if QEMU was stopped and started.
117 * The proper thing to do would be to have a backing blockdev to hold
118 * the contents and restore that on startup, and not do this on reset.
119 * But until that time, act as if we had been stopped and restarted.
121 static void smbus_eeprom_reset(DeviceState *dev)
123 SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
125 memcpy(eeprom->data, eeprom->init_data, SMBUS_EEPROM_SIZE);
126 eeprom->offset = 0;
129 static void smbus_eeprom_realize(DeviceState *dev, Error **errp)
131 smbus_eeprom_reset(dev);
134 static Property smbus_eeprom_properties[] = {
135 DEFINE_PROP_PTR("data", SMBusEEPROMDevice, init_data),
136 DEFINE_PROP_END_OF_LIST(),
139 static void smbus_eeprom_class_initfn(ObjectClass *klass, void *data)
141 DeviceClass *dc = DEVICE_CLASS(klass);
142 SMBusDeviceClass *sc = SMBUS_DEVICE_CLASS(klass);
144 dc->realize = smbus_eeprom_realize;
145 dc->reset = smbus_eeprom_reset;
146 sc->receive_byte = eeprom_receive_byte;
147 sc->write_data = eeprom_write_data;
148 dc->props = smbus_eeprom_properties;
149 dc->vmsd = &vmstate_smbus_eeprom;
150 /* Reason: pointer property "data" */
151 dc->user_creatable = false;
154 static const TypeInfo smbus_eeprom_info = {
155 .name = TYPE_SMBUS_EEPROM,
156 .parent = TYPE_SMBUS_DEVICE,
157 .instance_size = sizeof(SMBusEEPROMDevice),
158 .class_init = smbus_eeprom_class_initfn,
161 static void smbus_eeprom_register_types(void)
163 type_register_static(&smbus_eeprom_info);
166 type_init(smbus_eeprom_register_types)
168 void smbus_eeprom_init_one(I2CBus *smbus, uint8_t address, uint8_t *eeprom_buf)
170 DeviceState *dev;
172 dev = qdev_create((BusState *) smbus, TYPE_SMBUS_EEPROM);
173 qdev_prop_set_uint8(dev, "address", address);
174 qdev_prop_set_ptr(dev, "data", eeprom_buf);
175 qdev_init_nofail(dev);
178 void smbus_eeprom_init(I2CBus *smbus, int nb_eeprom,
179 const uint8_t *eeprom_spd, int eeprom_spd_size)
181 int i;
182 /* XXX: make this persistent */
184 assert(nb_eeprom <= 8);
185 uint8_t *eeprom_buf = g_malloc0(8 * SMBUS_EEPROM_SIZE);
186 if (eeprom_spd_size > 0) {
187 memcpy(eeprom_buf, eeprom_spd, eeprom_spd_size);
190 for (i = 0; i < nb_eeprom; i++) {
191 smbus_eeprom_init_one(smbus, 0x50 + i,
192 eeprom_buf + (i * SMBUS_EEPROM_SIZE));
196 /* Generate SDRAM SPD EEPROM data describing a module of type and size */
197 uint8_t *spd_data_generate(enum sdram_type type, ram_addr_t ram_size,
198 Error **errp)
200 uint8_t *spd;
201 uint8_t nbanks;
202 uint16_t density;
203 uint32_t size;
204 int min_log2, max_log2, sz_log2;
205 int i;
207 switch (type) {
208 case SDR:
209 min_log2 = 2;
210 max_log2 = 9;
211 break;
212 case DDR:
213 min_log2 = 5;
214 max_log2 = 12;
215 break;
216 case DDR2:
217 min_log2 = 7;
218 max_log2 = 14;
219 break;
220 default:
221 g_assert_not_reached();
223 size = ram_size >> 20; /* work in terms of megabytes */
224 if (size < 4) {
225 error_setg(errp, "SDRAM size is too small");
226 return NULL;
228 sz_log2 = 31 - clz32(size);
229 size = 1U << sz_log2;
230 if (ram_size > size * MiB) {
231 error_setg(errp, "SDRAM size 0x"RAM_ADDR_FMT" is not a power of 2, "
232 "truncating to %u MB", ram_size, size);
234 if (sz_log2 < min_log2) {
235 error_setg(errp,
236 "Memory size is too small for SDRAM type, adjusting type");
237 if (size >= 32) {
238 type = DDR;
239 min_log2 = 5;
240 max_log2 = 12;
241 } else {
242 type = SDR;
243 min_log2 = 2;
244 max_log2 = 9;
248 nbanks = 1;
249 while (sz_log2 > max_log2 && nbanks < 8) {
250 sz_log2--;
251 nbanks++;
254 if (size > (1ULL << sz_log2) * nbanks) {
255 error_setg(errp, "Memory size is too big for SDRAM, truncating");
258 /* split to 2 banks if possible to avoid a bug in MIPS Malta firmware */
259 if (nbanks == 1 && sz_log2 > min_log2) {
260 sz_log2--;
261 nbanks++;
264 density = 1ULL << (sz_log2 - 2);
265 switch (type) {
266 case DDR2:
267 density = (density & 0xe0) | (density >> 8 & 0x1f);
268 break;
269 case DDR:
270 density = (density & 0xf8) | (density >> 8 & 0x07);
271 break;
272 case SDR:
273 default:
274 density &= 0xff;
275 break;
278 spd = g_malloc0(256);
279 spd[0] = 128; /* data bytes in EEPROM */
280 spd[1] = 8; /* log2 size of EEPROM */
281 spd[2] = type;
282 spd[3] = 13; /* row address bits */
283 spd[4] = 10; /* column address bits */
284 spd[5] = (type == DDR2 ? nbanks - 1 : nbanks);
285 spd[6] = 64; /* module data width */
286 /* reserved / data width high */
287 spd[8] = 4; /* interface voltage level */
288 spd[9] = 0x25; /* highest CAS latency */
289 spd[10] = 1; /* access time */
290 /* DIMM configuration 0 = non-ECC */
291 spd[12] = 0x82; /* refresh requirements */
292 spd[13] = 8; /* primary SDRAM width */
293 /* ECC SDRAM width */
294 spd[15] = (type == DDR2 ? 0 : 1); /* reserved / delay for random col rd */
295 spd[16] = 12; /* burst lengths supported */
296 spd[17] = 4; /* banks per SDRAM device */
297 spd[18] = 12; /* ~CAS latencies supported */
298 spd[19] = (type == DDR2 ? 0 : 1); /* reserved / ~CS latencies supported */
299 spd[20] = 2; /* DIMM type / ~WE latencies */
300 /* module features */
301 /* memory chip features */
302 spd[23] = 0x12; /* clock cycle time @ medium CAS latency */
303 /* data access time */
304 /* clock cycle time @ short CAS latency */
305 /* data access time */
306 spd[27] = 20; /* min. row precharge time */
307 spd[28] = 15; /* min. row active row delay */
308 spd[29] = 20; /* min. ~RAS to ~CAS delay */
309 spd[30] = 45; /* min. active to precharge time */
310 spd[31] = density;
311 spd[32] = 20; /* addr/cmd setup time */
312 spd[33] = 8; /* addr/cmd hold time */
313 spd[34] = 20; /* data input setup time */
314 spd[35] = 8; /* data input hold time */
316 /* checksum */
317 for (i = 0; i < 63; i++) {
318 spd[63] += spd[i];
320 return spd;