exec.c: Initialize sa_flags passed to sigaction()
[qemu/ar7.git] / memory.c
blobe4f484b73e732961a0888826a1cfb04687a8c648
1 /*
2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
19 #include "cpu.h"
20 #include "exec/memory.h"
21 #include "exec/address-spaces.h"
22 #include "qapi/visitor.h"
23 #include "qemu/bitops.h"
24 #include "qemu/error-report.h"
25 #include "qom/object.h"
26 #include "trace-root.h"
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "sysemu/kvm.h"
31 #include "sysemu/sysemu.h"
32 #include "hw/misc/mmio_interface.h"
33 #include "hw/qdev-properties.h"
34 #include "migration/vmstate.h"
36 //#define DEBUG_UNASSIGNED
38 static unsigned memory_region_transaction_depth;
39 static bool memory_region_update_pending;
40 static bool ioeventfd_update_pending;
41 static bool global_dirty_log = false;
43 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
44 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
46 static QTAILQ_HEAD(, AddressSpace) address_spaces
47 = QTAILQ_HEAD_INITIALIZER(address_spaces);
49 static GHashTable *flat_views;
51 typedef struct AddrRange AddrRange;
54 * Note that signed integers are needed for negative offsetting in aliases
55 * (large MemoryRegion::alias_offset).
57 struct AddrRange {
58 Int128 start;
59 Int128 size;
62 static AddrRange addrrange_make(Int128 start, Int128 size)
64 return (AddrRange) { start, size };
67 static bool addrrange_equal(AddrRange r1, AddrRange r2)
69 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
72 static Int128 addrrange_end(AddrRange r)
74 return int128_add(r.start, r.size);
77 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
79 int128_addto(&range.start, delta);
80 return range;
83 static bool addrrange_contains(AddrRange range, Int128 addr)
85 return int128_ge(addr, range.start)
86 && int128_lt(addr, addrrange_end(range));
89 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
91 return addrrange_contains(r1, r2.start)
92 || addrrange_contains(r2, r1.start);
95 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
97 Int128 start = int128_max(r1.start, r2.start);
98 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
99 return addrrange_make(start, int128_sub(end, start));
102 enum ListenerDirection { Forward, Reverse };
104 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
105 do { \
106 MemoryListener *_listener; \
108 switch (_direction) { \
109 case Forward: \
110 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
111 if (_listener->_callback) { \
112 _listener->_callback(_listener, ##_args); \
115 break; \
116 case Reverse: \
117 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
118 memory_listeners, link) { \
119 if (_listener->_callback) { \
120 _listener->_callback(_listener, ##_args); \
123 break; \
124 default: \
125 abort(); \
127 } while (0)
129 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
130 do { \
131 MemoryListener *_listener; \
132 struct memory_listeners_as *list = &(_as)->listeners; \
134 switch (_direction) { \
135 case Forward: \
136 QTAILQ_FOREACH(_listener, list, link_as) { \
137 if (_listener->_callback) { \
138 _listener->_callback(_listener, _section, ##_args); \
141 break; \
142 case Reverse: \
143 QTAILQ_FOREACH_REVERSE(_listener, list, memory_listeners_as, \
144 link_as) { \
145 if (_listener->_callback) { \
146 _listener->_callback(_listener, _section, ##_args); \
149 break; \
150 default: \
151 abort(); \
153 } while (0)
155 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
156 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
157 do { \
158 MemoryRegionSection mrs = section_from_flat_range(fr, \
159 address_space_to_flatview(as)); \
160 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
161 } while(0)
163 struct CoalescedMemoryRange {
164 AddrRange addr;
165 QTAILQ_ENTRY(CoalescedMemoryRange) link;
168 struct MemoryRegionIoeventfd {
169 AddrRange addr;
170 bool match_data;
171 uint64_t data;
172 EventNotifier *e;
175 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
176 MemoryRegionIoeventfd b)
178 if (int128_lt(a.addr.start, b.addr.start)) {
179 return true;
180 } else if (int128_gt(a.addr.start, b.addr.start)) {
181 return false;
182 } else if (int128_lt(a.addr.size, b.addr.size)) {
183 return true;
184 } else if (int128_gt(a.addr.size, b.addr.size)) {
185 return false;
186 } else if (a.match_data < b.match_data) {
187 return true;
188 } else if (a.match_data > b.match_data) {
189 return false;
190 } else if (a.match_data) {
191 if (a.data < b.data) {
192 return true;
193 } else if (a.data > b.data) {
194 return false;
197 if (a.e < b.e) {
198 return true;
199 } else if (a.e > b.e) {
200 return false;
202 return false;
205 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
206 MemoryRegionIoeventfd b)
208 return !memory_region_ioeventfd_before(a, b)
209 && !memory_region_ioeventfd_before(b, a);
212 /* Range of memory in the global map. Addresses are absolute. */
213 struct FlatRange {
214 MemoryRegion *mr;
215 hwaddr offset_in_region;
216 AddrRange addr;
217 uint8_t dirty_log_mask;
218 bool romd_mode;
219 bool readonly;
222 #define FOR_EACH_FLAT_RANGE(var, view) \
223 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
225 static inline MemoryRegionSection
226 section_from_flat_range(FlatRange *fr, FlatView *fv)
228 return (MemoryRegionSection) {
229 .mr = fr->mr,
230 .fv = fv,
231 .offset_within_region = fr->offset_in_region,
232 .size = fr->addr.size,
233 .offset_within_address_space = int128_get64(fr->addr.start),
234 .readonly = fr->readonly,
238 static bool flatrange_equal(FlatRange *a, FlatRange *b)
240 return a->mr == b->mr
241 && addrrange_equal(a->addr, b->addr)
242 && a->offset_in_region == b->offset_in_region
243 && a->romd_mode == b->romd_mode
244 && a->readonly == b->readonly;
247 static FlatView *flatview_new(MemoryRegion *mr_root)
249 FlatView *view;
251 view = g_new0(FlatView, 1);
252 view->ref = 1;
253 view->root = mr_root;
254 memory_region_ref(mr_root);
255 trace_flatview_new(view, mr_root);
257 return view;
260 /* Insert a range into a given position. Caller is responsible for maintaining
261 * sorting order.
263 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
265 if (view->nr == view->nr_allocated) {
266 view->nr_allocated = MAX(2 * view->nr, 10);
267 view->ranges = g_realloc(view->ranges,
268 view->nr_allocated * sizeof(*view->ranges));
270 memmove(view->ranges + pos + 1, view->ranges + pos,
271 (view->nr - pos) * sizeof(FlatRange));
272 view->ranges[pos] = *range;
273 memory_region_ref(range->mr);
274 ++view->nr;
277 static void flatview_destroy(FlatView *view)
279 int i;
281 trace_flatview_destroy(view, view->root);
282 if (view->dispatch) {
283 address_space_dispatch_free(view->dispatch);
285 for (i = 0; i < view->nr; i++) {
286 memory_region_unref(view->ranges[i].mr);
288 g_free(view->ranges);
289 memory_region_unref(view->root);
290 g_free(view);
293 static bool flatview_ref(FlatView *view)
295 return atomic_fetch_inc_nonzero(&view->ref) > 0;
298 void flatview_unref(FlatView *view)
300 if (atomic_fetch_dec(&view->ref) == 1) {
301 trace_flatview_destroy_rcu(view, view->root);
302 assert(view->root);
303 call_rcu(view, flatview_destroy, rcu);
307 static bool can_merge(FlatRange *r1, FlatRange *r2)
309 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
310 && r1->mr == r2->mr
311 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
312 r1->addr.size),
313 int128_make64(r2->offset_in_region))
314 && r1->dirty_log_mask == r2->dirty_log_mask
315 && r1->romd_mode == r2->romd_mode
316 && r1->readonly == r2->readonly;
319 /* Attempt to simplify a view by merging adjacent ranges */
320 static void flatview_simplify(FlatView *view)
322 unsigned i, j;
324 i = 0;
325 while (i < view->nr) {
326 j = i + 1;
327 while (j < view->nr
328 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
329 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
330 ++j;
332 ++i;
333 memmove(&view->ranges[i], &view->ranges[j],
334 (view->nr - j) * sizeof(view->ranges[j]));
335 view->nr -= j - i;
339 static bool memory_region_big_endian(MemoryRegion *mr)
341 #ifdef TARGET_WORDS_BIGENDIAN
342 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
343 #else
344 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
345 #endif
348 static bool memory_region_wrong_endianness(MemoryRegion *mr)
350 #ifdef TARGET_WORDS_BIGENDIAN
351 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
352 #else
353 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
354 #endif
357 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
359 if (memory_region_wrong_endianness(mr)) {
360 switch (size) {
361 case 1:
362 break;
363 case 2:
364 *data = bswap16(*data);
365 break;
366 case 4:
367 *data = bswap32(*data);
368 break;
369 case 8:
370 *data = bswap64(*data);
371 break;
372 default:
373 abort();
378 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
380 MemoryRegion *root;
381 hwaddr abs_addr = offset;
383 abs_addr += mr->addr;
384 for (root = mr; root->container; ) {
385 root = root->container;
386 abs_addr += root->addr;
389 return abs_addr;
392 static int get_cpu_index(void)
394 if (current_cpu) {
395 return current_cpu->cpu_index;
397 return -1;
400 static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
401 hwaddr addr,
402 uint64_t *value,
403 unsigned size,
404 unsigned shift,
405 uint64_t mask,
406 MemTxAttrs attrs)
408 uint64_t tmp;
410 tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
411 if (mr->subpage) {
412 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
413 } else if (mr == &io_mem_notdirty) {
414 /* Accesses to code which has previously been translated into a TB show
415 * up in the MMIO path, as accesses to the io_mem_notdirty
416 * MemoryRegion. */
417 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
418 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
419 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
420 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
422 *value |= (tmp & mask) << shift;
423 return MEMTX_OK;
426 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
427 hwaddr addr,
428 uint64_t *value,
429 unsigned size,
430 unsigned shift,
431 uint64_t mask,
432 MemTxAttrs attrs)
434 uint64_t tmp;
436 tmp = mr->ops->read(mr->opaque, addr, size);
437 if (mr->subpage) {
438 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
439 } else if (mr == &io_mem_notdirty) {
440 /* Accesses to code which has previously been translated into a TB show
441 * up in the MMIO path, as accesses to the io_mem_notdirty
442 * MemoryRegion. */
443 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
444 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
445 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
446 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
448 *value |= (tmp & mask) << shift;
449 return MEMTX_OK;
452 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
453 hwaddr addr,
454 uint64_t *value,
455 unsigned size,
456 unsigned shift,
457 uint64_t mask,
458 MemTxAttrs attrs)
460 uint64_t tmp = 0;
461 MemTxResult r;
463 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
464 if (mr->subpage) {
465 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
466 } else if (mr == &io_mem_notdirty) {
467 /* Accesses to code which has previously been translated into a TB show
468 * up in the MMIO path, as accesses to the io_mem_notdirty
469 * MemoryRegion. */
470 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
471 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
472 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
473 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
475 *value |= (tmp & mask) << shift;
476 return r;
479 static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
480 hwaddr addr,
481 uint64_t *value,
482 unsigned size,
483 unsigned shift,
484 uint64_t mask,
485 MemTxAttrs attrs)
487 uint64_t tmp;
489 tmp = (*value >> shift) & mask;
490 if (mr->subpage) {
491 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
492 } else if (mr == &io_mem_notdirty) {
493 /* Accesses to code which has previously been translated into a TB show
494 * up in the MMIO path, as accesses to the io_mem_notdirty
495 * MemoryRegion. */
496 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
497 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
498 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
499 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
501 mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
502 return MEMTX_OK;
505 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
506 hwaddr addr,
507 uint64_t *value,
508 unsigned size,
509 unsigned shift,
510 uint64_t mask,
511 MemTxAttrs attrs)
513 uint64_t tmp;
515 tmp = (*value >> shift) & mask;
516 if (mr->subpage) {
517 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
518 } else if (mr == &io_mem_notdirty) {
519 /* Accesses to code which has previously been translated into a TB show
520 * up in the MMIO path, as accesses to the io_mem_notdirty
521 * MemoryRegion. */
522 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
523 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
524 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
525 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
527 mr->ops->write(mr->opaque, addr, tmp, size);
528 return MEMTX_OK;
531 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
532 hwaddr addr,
533 uint64_t *value,
534 unsigned size,
535 unsigned shift,
536 uint64_t mask,
537 MemTxAttrs attrs)
539 uint64_t tmp;
541 tmp = (*value >> shift) & mask;
542 if (mr->subpage) {
543 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
544 } else if (mr == &io_mem_notdirty) {
545 /* Accesses to code which has previously been translated into a TB show
546 * up in the MMIO path, as accesses to the io_mem_notdirty
547 * MemoryRegion. */
548 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
549 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
550 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
551 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
553 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
556 static MemTxResult access_with_adjusted_size(hwaddr addr,
557 uint64_t *value,
558 unsigned size,
559 unsigned access_size_min,
560 unsigned access_size_max,
561 MemTxResult (*access_fn)
562 (MemoryRegion *mr,
563 hwaddr addr,
564 uint64_t *value,
565 unsigned size,
566 unsigned shift,
567 uint64_t mask,
568 MemTxAttrs attrs),
569 MemoryRegion *mr,
570 MemTxAttrs attrs)
572 uint64_t access_mask;
573 unsigned access_size;
574 unsigned i;
575 MemTxResult r = MEMTX_OK;
577 if (!access_size_min) {
578 access_size_min = 1;
580 if (!access_size_max) {
581 access_size_max = 4;
584 /* FIXME: support unaligned access? */
585 access_size = MAX(MIN(size, access_size_max), access_size_min);
586 access_mask = -1ULL >> (64 - access_size * 8);
587 if (memory_region_big_endian(mr)) {
588 for (i = 0; i < size; i += access_size) {
589 r |= access_fn(mr, addr + i, value, access_size,
590 (size - access_size - i) * 8, access_mask, attrs);
592 } else {
593 for (i = 0; i < size; i += access_size) {
594 r |= access_fn(mr, addr + i, value, access_size, i * 8,
595 access_mask, attrs);
598 return r;
601 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
603 AddressSpace *as;
605 while (mr->container) {
606 mr = mr->container;
608 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
609 if (mr == as->root) {
610 return as;
613 return NULL;
616 /* Render a memory region into the global view. Ranges in @view obscure
617 * ranges in @mr.
619 static void render_memory_region(FlatView *view,
620 MemoryRegion *mr,
621 Int128 base,
622 AddrRange clip,
623 bool readonly)
625 MemoryRegion *subregion;
626 unsigned i;
627 hwaddr offset_in_region;
628 Int128 remain;
629 Int128 now;
630 FlatRange fr;
631 AddrRange tmp;
633 if (!mr->enabled) {
634 return;
637 int128_addto(&base, int128_make64(mr->addr));
638 readonly |= mr->readonly;
640 tmp = addrrange_make(base, mr->size);
642 if (!addrrange_intersects(tmp, clip)) {
643 return;
646 clip = addrrange_intersection(tmp, clip);
648 if (mr->alias) {
649 int128_subfrom(&base, int128_make64(mr->alias->addr));
650 int128_subfrom(&base, int128_make64(mr->alias_offset));
651 render_memory_region(view, mr->alias, base, clip, readonly);
652 return;
655 /* Render subregions in priority order. */
656 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
657 render_memory_region(view, subregion, base, clip, readonly);
660 if (!mr->terminates) {
661 return;
664 offset_in_region = int128_get64(int128_sub(clip.start, base));
665 base = clip.start;
666 remain = clip.size;
668 fr.mr = mr;
669 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
670 fr.romd_mode = mr->romd_mode;
671 fr.readonly = readonly;
673 /* Render the region itself into any gaps left by the current view. */
674 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
675 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
676 continue;
678 if (int128_lt(base, view->ranges[i].addr.start)) {
679 now = int128_min(remain,
680 int128_sub(view->ranges[i].addr.start, base));
681 fr.offset_in_region = offset_in_region;
682 fr.addr = addrrange_make(base, now);
683 flatview_insert(view, i, &fr);
684 ++i;
685 int128_addto(&base, now);
686 offset_in_region += int128_get64(now);
687 int128_subfrom(&remain, now);
689 now = int128_sub(int128_min(int128_add(base, remain),
690 addrrange_end(view->ranges[i].addr)),
691 base);
692 int128_addto(&base, now);
693 offset_in_region += int128_get64(now);
694 int128_subfrom(&remain, now);
696 if (int128_nz(remain)) {
697 fr.offset_in_region = offset_in_region;
698 fr.addr = addrrange_make(base, remain);
699 flatview_insert(view, i, &fr);
703 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
705 while (mr->enabled) {
706 if (mr->alias) {
707 if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
708 /* The alias is included in its entirety. Use it as
709 * the "real" root, so that we can share more FlatViews.
711 mr = mr->alias;
712 continue;
714 } else if (!mr->terminates) {
715 unsigned int found = 0;
716 MemoryRegion *child, *next = NULL;
717 QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
718 if (child->enabled) {
719 if (++found > 1) {
720 next = NULL;
721 break;
723 if (!child->addr && int128_ge(mr->size, child->size)) {
724 /* A child is included in its entirety. If it's the only
725 * enabled one, use it in the hope of finding an alias down the
726 * way. This will also let us share FlatViews.
728 next = child;
732 if (found == 0) {
733 return NULL;
735 if (next) {
736 mr = next;
737 continue;
741 return mr;
744 return NULL;
747 /* Render a memory topology into a list of disjoint absolute ranges. */
748 static FlatView *generate_memory_topology(MemoryRegion *mr)
750 int i;
751 FlatView *view;
753 view = flatview_new(mr);
755 if (mr) {
756 render_memory_region(view, mr, int128_zero(),
757 addrrange_make(int128_zero(), int128_2_64()), false);
759 flatview_simplify(view);
761 view->dispatch = address_space_dispatch_new(view);
762 for (i = 0; i < view->nr; i++) {
763 MemoryRegionSection mrs =
764 section_from_flat_range(&view->ranges[i], view);
765 flatview_add_to_dispatch(view, &mrs);
767 address_space_dispatch_compact(view->dispatch);
768 g_hash_table_replace(flat_views, mr, view);
770 return view;
773 static void address_space_add_del_ioeventfds(AddressSpace *as,
774 MemoryRegionIoeventfd *fds_new,
775 unsigned fds_new_nb,
776 MemoryRegionIoeventfd *fds_old,
777 unsigned fds_old_nb)
779 unsigned iold, inew;
780 MemoryRegionIoeventfd *fd;
781 MemoryRegionSection section;
783 /* Generate a symmetric difference of the old and new fd sets, adding
784 * and deleting as necessary.
787 iold = inew = 0;
788 while (iold < fds_old_nb || inew < fds_new_nb) {
789 if (iold < fds_old_nb
790 && (inew == fds_new_nb
791 || memory_region_ioeventfd_before(fds_old[iold],
792 fds_new[inew]))) {
793 fd = &fds_old[iold];
794 section = (MemoryRegionSection) {
795 .fv = address_space_to_flatview(as),
796 .offset_within_address_space = int128_get64(fd->addr.start),
797 .size = fd->addr.size,
799 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
800 fd->match_data, fd->data, fd->e);
801 ++iold;
802 } else if (inew < fds_new_nb
803 && (iold == fds_old_nb
804 || memory_region_ioeventfd_before(fds_new[inew],
805 fds_old[iold]))) {
806 fd = &fds_new[inew];
807 section = (MemoryRegionSection) {
808 .fv = address_space_to_flatview(as),
809 .offset_within_address_space = int128_get64(fd->addr.start),
810 .size = fd->addr.size,
812 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
813 fd->match_data, fd->data, fd->e);
814 ++inew;
815 } else {
816 ++iold;
817 ++inew;
822 FlatView *address_space_get_flatview(AddressSpace *as)
824 FlatView *view;
826 rcu_read_lock();
827 do {
828 view = address_space_to_flatview(as);
829 /* If somebody has replaced as->current_map concurrently,
830 * flatview_ref returns false.
832 } while (!flatview_ref(view));
833 rcu_read_unlock();
834 return view;
837 static void address_space_update_ioeventfds(AddressSpace *as)
839 FlatView *view;
840 FlatRange *fr;
841 unsigned ioeventfd_nb = 0;
842 MemoryRegionIoeventfd *ioeventfds = NULL;
843 AddrRange tmp;
844 unsigned i;
846 view = address_space_get_flatview(as);
847 FOR_EACH_FLAT_RANGE(fr, view) {
848 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
849 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
850 int128_sub(fr->addr.start,
851 int128_make64(fr->offset_in_region)));
852 if (addrrange_intersects(fr->addr, tmp)) {
853 ++ioeventfd_nb;
854 ioeventfds = g_realloc(ioeventfds,
855 ioeventfd_nb * sizeof(*ioeventfds));
856 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
857 ioeventfds[ioeventfd_nb-1].addr = tmp;
862 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
863 as->ioeventfds, as->ioeventfd_nb);
865 g_free(as->ioeventfds);
866 as->ioeventfds = ioeventfds;
867 as->ioeventfd_nb = ioeventfd_nb;
868 flatview_unref(view);
871 static void address_space_update_topology_pass(AddressSpace *as,
872 const FlatView *old_view,
873 const FlatView *new_view,
874 bool adding)
876 unsigned iold, inew;
877 FlatRange *frold, *frnew;
879 /* Generate a symmetric difference of the old and new memory maps.
880 * Kill ranges in the old map, and instantiate ranges in the new map.
882 iold = inew = 0;
883 while (iold < old_view->nr || inew < new_view->nr) {
884 if (iold < old_view->nr) {
885 frold = &old_view->ranges[iold];
886 } else {
887 frold = NULL;
889 if (inew < new_view->nr) {
890 frnew = &new_view->ranges[inew];
891 } else {
892 frnew = NULL;
895 if (frold
896 && (!frnew
897 || int128_lt(frold->addr.start, frnew->addr.start)
898 || (int128_eq(frold->addr.start, frnew->addr.start)
899 && !flatrange_equal(frold, frnew)))) {
900 /* In old but not in new, or in both but attributes changed. */
902 if (!adding) {
903 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
906 ++iold;
907 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
908 /* In both and unchanged (except logging may have changed) */
910 if (adding) {
911 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
912 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
913 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
914 frold->dirty_log_mask,
915 frnew->dirty_log_mask);
917 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
918 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
919 frold->dirty_log_mask,
920 frnew->dirty_log_mask);
924 ++iold;
925 ++inew;
926 } else {
927 /* In new */
929 if (adding) {
930 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
933 ++inew;
938 static void flatviews_init(void)
940 static FlatView *empty_view;
942 if (flat_views) {
943 return;
946 flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
947 (GDestroyNotify) flatview_unref);
948 if (!empty_view) {
949 empty_view = generate_memory_topology(NULL);
950 /* We keep it alive forever in the global variable. */
951 flatview_ref(empty_view);
952 } else {
953 g_hash_table_replace(flat_views, NULL, empty_view);
954 flatview_ref(empty_view);
958 static void flatviews_reset(void)
960 AddressSpace *as;
962 if (flat_views) {
963 g_hash_table_unref(flat_views);
964 flat_views = NULL;
966 flatviews_init();
968 /* Render unique FVs */
969 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
970 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
972 if (g_hash_table_lookup(flat_views, physmr)) {
973 continue;
976 generate_memory_topology(physmr);
980 static void address_space_set_flatview(AddressSpace *as)
982 FlatView *old_view = address_space_to_flatview(as);
983 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
984 FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
986 assert(new_view);
988 if (old_view == new_view) {
989 return;
992 if (old_view) {
993 flatview_ref(old_view);
996 flatview_ref(new_view);
998 if (!QTAILQ_EMPTY(&as->listeners)) {
999 FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1001 if (!old_view2) {
1002 old_view2 = &tmpview;
1004 address_space_update_topology_pass(as, old_view2, new_view, false);
1005 address_space_update_topology_pass(as, old_view2, new_view, true);
1008 /* Writes are protected by the BQL. */
1009 atomic_rcu_set(&as->current_map, new_view);
1010 if (old_view) {
1011 flatview_unref(old_view);
1014 /* Note that all the old MemoryRegions are still alive up to this
1015 * point. This relieves most MemoryListeners from the need to
1016 * ref/unref the MemoryRegions they get---unless they use them
1017 * outside the iothread mutex, in which case precise reference
1018 * counting is necessary.
1020 if (old_view) {
1021 flatview_unref(old_view);
1025 static void address_space_update_topology(AddressSpace *as)
1027 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1029 flatviews_init();
1030 if (!g_hash_table_lookup(flat_views, physmr)) {
1031 generate_memory_topology(physmr);
1033 address_space_set_flatview(as);
1036 void memory_region_transaction_begin(void)
1038 qemu_flush_coalesced_mmio_buffer();
1039 ++memory_region_transaction_depth;
1042 void memory_region_transaction_commit(void)
1044 AddressSpace *as;
1046 assert(memory_region_transaction_depth);
1047 assert(qemu_mutex_iothread_locked());
1049 --memory_region_transaction_depth;
1050 if (!memory_region_transaction_depth) {
1051 if (memory_region_update_pending) {
1052 flatviews_reset();
1054 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1056 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1057 address_space_set_flatview(as);
1058 address_space_update_ioeventfds(as);
1060 memory_region_update_pending = false;
1061 ioeventfd_update_pending = false;
1062 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1063 } else if (ioeventfd_update_pending) {
1064 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1065 address_space_update_ioeventfds(as);
1067 ioeventfd_update_pending = false;
1072 static void memory_region_destructor_none(MemoryRegion *mr)
1076 static void memory_region_destructor_ram(MemoryRegion *mr)
1078 qemu_ram_free(mr->ram_block);
1081 static bool memory_region_need_escape(char c)
1083 return c == '/' || c == '[' || c == '\\' || c == ']';
1086 static char *memory_region_escape_name(const char *name)
1088 const char *p;
1089 char *escaped, *q;
1090 uint8_t c;
1091 size_t bytes = 0;
1093 for (p = name; *p; p++) {
1094 bytes += memory_region_need_escape(*p) ? 4 : 1;
1096 if (bytes == p - name) {
1097 return g_memdup(name, bytes + 1);
1100 escaped = g_malloc(bytes + 1);
1101 for (p = name, q = escaped; *p; p++) {
1102 c = *p;
1103 if (unlikely(memory_region_need_escape(c))) {
1104 *q++ = '\\';
1105 *q++ = 'x';
1106 *q++ = "0123456789abcdef"[c >> 4];
1107 c = "0123456789abcdef"[c & 15];
1109 *q++ = c;
1111 *q = 0;
1112 return escaped;
1115 static void memory_region_do_init(MemoryRegion *mr,
1116 Object *owner,
1117 const char *name,
1118 uint64_t size)
1120 mr->size = int128_make64(size);
1121 if (size == UINT64_MAX) {
1122 mr->size = int128_2_64();
1124 mr->name = g_strdup(name);
1125 mr->owner = owner;
1126 mr->ram_block = NULL;
1128 if (name) {
1129 char *escaped_name = memory_region_escape_name(name);
1130 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1132 if (!owner) {
1133 owner = container_get(qdev_get_machine(), "/unattached");
1136 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1137 object_unref(OBJECT(mr));
1138 g_free(name_array);
1139 g_free(escaped_name);
1143 void memory_region_init(MemoryRegion *mr,
1144 Object *owner,
1145 const char *name,
1146 uint64_t size)
1148 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1149 memory_region_do_init(mr, owner, name, size);
1152 static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1153 void *opaque, Error **errp)
1155 MemoryRegion *mr = MEMORY_REGION(obj);
1156 uint64_t value = mr->addr;
1158 visit_type_uint64(v, name, &value, errp);
1161 static void memory_region_get_container(Object *obj, Visitor *v,
1162 const char *name, void *opaque,
1163 Error **errp)
1165 MemoryRegion *mr = MEMORY_REGION(obj);
1166 gchar *path = (gchar *)"";
1168 if (mr->container) {
1169 path = object_get_canonical_path(OBJECT(mr->container));
1171 visit_type_str(v, name, &path, errp);
1172 if (mr->container) {
1173 g_free(path);
1177 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1178 const char *part)
1180 MemoryRegion *mr = MEMORY_REGION(obj);
1182 return OBJECT(mr->container);
1185 static void memory_region_get_priority(Object *obj, Visitor *v,
1186 const char *name, void *opaque,
1187 Error **errp)
1189 MemoryRegion *mr = MEMORY_REGION(obj);
1190 int32_t value = mr->priority;
1192 visit_type_int32(v, name, &value, errp);
1195 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1196 void *opaque, Error **errp)
1198 MemoryRegion *mr = MEMORY_REGION(obj);
1199 uint64_t value = memory_region_size(mr);
1201 visit_type_uint64(v, name, &value, errp);
1204 static void memory_region_initfn(Object *obj)
1206 MemoryRegion *mr = MEMORY_REGION(obj);
1207 ObjectProperty *op;
1209 mr->ops = &unassigned_mem_ops;
1210 mr->enabled = true;
1211 mr->romd_mode = true;
1212 mr->global_locking = true;
1213 mr->destructor = memory_region_destructor_none;
1214 QTAILQ_INIT(&mr->subregions);
1215 QTAILQ_INIT(&mr->coalesced);
1217 op = object_property_add(OBJECT(mr), "container",
1218 "link<" TYPE_MEMORY_REGION ">",
1219 memory_region_get_container,
1220 NULL, /* memory_region_set_container */
1221 NULL, NULL, &error_abort);
1222 op->resolve = memory_region_resolve_container;
1224 object_property_add(OBJECT(mr), "addr", "uint64",
1225 memory_region_get_addr,
1226 NULL, /* memory_region_set_addr */
1227 NULL, NULL, &error_abort);
1228 object_property_add(OBJECT(mr), "priority", "uint32",
1229 memory_region_get_priority,
1230 NULL, /* memory_region_set_priority */
1231 NULL, NULL, &error_abort);
1232 object_property_add(OBJECT(mr), "size", "uint64",
1233 memory_region_get_size,
1234 NULL, /* memory_region_set_size, */
1235 NULL, NULL, &error_abort);
1238 static void iommu_memory_region_initfn(Object *obj)
1240 MemoryRegion *mr = MEMORY_REGION(obj);
1242 mr->is_iommu = true;
1245 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1246 unsigned size)
1248 #ifdef DEBUG_UNASSIGNED
1249 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1250 #endif
1251 if (current_cpu != NULL) {
1252 cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1254 return 0;
1257 static void unassigned_mem_write(void *opaque, hwaddr addr,
1258 uint64_t val, unsigned size)
1260 #ifdef DEBUG_UNASSIGNED
1261 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1262 #endif
1263 if (current_cpu != NULL) {
1264 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1268 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1269 unsigned size, bool is_write)
1271 return false;
1274 const MemoryRegionOps unassigned_mem_ops = {
1275 .valid.accepts = unassigned_mem_accepts,
1276 .endianness = DEVICE_NATIVE_ENDIAN,
1279 static uint64_t memory_region_ram_device_read(void *opaque,
1280 hwaddr addr, unsigned size)
1282 MemoryRegion *mr = opaque;
1283 uint64_t data = (uint64_t)~0;
1285 switch (size) {
1286 case 1:
1287 data = *(uint8_t *)(mr->ram_block->host + addr);
1288 break;
1289 case 2:
1290 data = *(uint16_t *)(mr->ram_block->host + addr);
1291 break;
1292 case 4:
1293 data = *(uint32_t *)(mr->ram_block->host + addr);
1294 break;
1295 case 8:
1296 data = *(uint64_t *)(mr->ram_block->host + addr);
1297 break;
1300 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1302 return data;
1305 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1306 uint64_t data, unsigned size)
1308 MemoryRegion *mr = opaque;
1310 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1312 switch (size) {
1313 case 1:
1314 *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1315 break;
1316 case 2:
1317 *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1318 break;
1319 case 4:
1320 *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1321 break;
1322 case 8:
1323 *(uint64_t *)(mr->ram_block->host + addr) = data;
1324 break;
1328 static const MemoryRegionOps ram_device_mem_ops = {
1329 .read = memory_region_ram_device_read,
1330 .write = memory_region_ram_device_write,
1331 .endianness = DEVICE_HOST_ENDIAN,
1332 .valid = {
1333 .min_access_size = 1,
1334 .max_access_size = 8,
1335 .unaligned = true,
1337 .impl = {
1338 .min_access_size = 1,
1339 .max_access_size = 8,
1340 .unaligned = true,
1344 bool memory_region_access_valid(MemoryRegion *mr,
1345 hwaddr addr,
1346 unsigned size,
1347 bool is_write)
1349 int access_size_min, access_size_max;
1350 int access_size, i;
1352 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1353 return false;
1356 if (!mr->ops->valid.accepts) {
1357 return true;
1360 access_size_min = mr->ops->valid.min_access_size;
1361 if (!mr->ops->valid.min_access_size) {
1362 access_size_min = 1;
1365 access_size_max = mr->ops->valid.max_access_size;
1366 if (!mr->ops->valid.max_access_size) {
1367 access_size_max = 4;
1370 access_size = MAX(MIN(size, access_size_max), access_size_min);
1371 for (i = 0; i < size; i += access_size) {
1372 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1373 is_write)) {
1374 return false;
1378 return true;
1381 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1382 hwaddr addr,
1383 uint64_t *pval,
1384 unsigned size,
1385 MemTxAttrs attrs)
1387 *pval = 0;
1389 if (mr->ops->read) {
1390 return access_with_adjusted_size(addr, pval, size,
1391 mr->ops->impl.min_access_size,
1392 mr->ops->impl.max_access_size,
1393 memory_region_read_accessor,
1394 mr, attrs);
1395 } else if (mr->ops->read_with_attrs) {
1396 return access_with_adjusted_size(addr, pval, size,
1397 mr->ops->impl.min_access_size,
1398 mr->ops->impl.max_access_size,
1399 memory_region_read_with_attrs_accessor,
1400 mr, attrs);
1401 } else {
1402 return access_with_adjusted_size(addr, pval, size, 1, 4,
1403 memory_region_oldmmio_read_accessor,
1404 mr, attrs);
1408 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1409 hwaddr addr,
1410 uint64_t *pval,
1411 unsigned size,
1412 MemTxAttrs attrs)
1414 MemTxResult r;
1416 if (!memory_region_access_valid(mr, addr, size, false)) {
1417 *pval = unassigned_mem_read(mr, addr, size);
1418 return MEMTX_DECODE_ERROR;
1421 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1422 adjust_endianness(mr, pval, size);
1423 return r;
1426 /* Return true if an eventfd was signalled */
1427 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1428 hwaddr addr,
1429 uint64_t data,
1430 unsigned size,
1431 MemTxAttrs attrs)
1433 MemoryRegionIoeventfd ioeventfd = {
1434 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1435 .data = data,
1437 unsigned i;
1439 for (i = 0; i < mr->ioeventfd_nb; i++) {
1440 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1441 ioeventfd.e = mr->ioeventfds[i].e;
1443 if (memory_region_ioeventfd_equal(ioeventfd, mr->ioeventfds[i])) {
1444 event_notifier_set(ioeventfd.e);
1445 return true;
1449 return false;
1452 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1453 hwaddr addr,
1454 uint64_t data,
1455 unsigned size,
1456 MemTxAttrs attrs)
1458 if (!memory_region_access_valid(mr, addr, size, true)) {
1459 unassigned_mem_write(mr, addr, data, size);
1460 return MEMTX_DECODE_ERROR;
1463 adjust_endianness(mr, &data, size);
1465 if ((!kvm_eventfds_enabled()) &&
1466 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1467 return MEMTX_OK;
1470 if (mr->ops->write) {
1471 return access_with_adjusted_size(addr, &data, size,
1472 mr->ops->impl.min_access_size,
1473 mr->ops->impl.max_access_size,
1474 memory_region_write_accessor, mr,
1475 attrs);
1476 } else if (mr->ops->write_with_attrs) {
1477 return
1478 access_with_adjusted_size(addr, &data, size,
1479 mr->ops->impl.min_access_size,
1480 mr->ops->impl.max_access_size,
1481 memory_region_write_with_attrs_accessor,
1482 mr, attrs);
1483 } else {
1484 return access_with_adjusted_size(addr, &data, size, 1, 4,
1485 memory_region_oldmmio_write_accessor,
1486 mr, attrs);
1490 void memory_region_init_io(MemoryRegion *mr,
1491 Object *owner,
1492 const MemoryRegionOps *ops,
1493 void *opaque,
1494 const char *name,
1495 uint64_t size)
1497 memory_region_init(mr, owner, name, size);
1498 mr->ops = ops ? ops : &unassigned_mem_ops;
1499 mr->opaque = opaque;
1500 mr->terminates = true;
1503 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1504 Object *owner,
1505 const char *name,
1506 uint64_t size,
1507 Error **errp)
1509 memory_region_init_ram_shared_nomigrate(mr, owner, name, size, false, errp);
1512 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
1513 Object *owner,
1514 const char *name,
1515 uint64_t size,
1516 bool share,
1517 Error **errp)
1519 memory_region_init(mr, owner, name, size);
1520 mr->ram = true;
1521 mr->terminates = true;
1522 mr->destructor = memory_region_destructor_ram;
1523 mr->ram_block = qemu_ram_alloc(size, share, mr, errp);
1524 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1527 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1528 Object *owner,
1529 const char *name,
1530 uint64_t size,
1531 uint64_t max_size,
1532 void (*resized)(const char*,
1533 uint64_t length,
1534 void *host),
1535 Error **errp)
1537 memory_region_init(mr, owner, name, size);
1538 mr->ram = true;
1539 mr->terminates = true;
1540 mr->destructor = memory_region_destructor_ram;
1541 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1542 mr, errp);
1543 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1546 #ifdef __linux__
1547 void memory_region_init_ram_from_file(MemoryRegion *mr,
1548 struct Object *owner,
1549 const char *name,
1550 uint64_t size,
1551 uint64_t align,
1552 bool share,
1553 const char *path,
1554 Error **errp)
1556 memory_region_init(mr, owner, name, size);
1557 mr->ram = true;
1558 mr->terminates = true;
1559 mr->destructor = memory_region_destructor_ram;
1560 mr->align = align;
1561 mr->ram_block = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1562 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1565 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1566 struct Object *owner,
1567 const char *name,
1568 uint64_t size,
1569 bool share,
1570 int fd,
1571 Error **errp)
1573 memory_region_init(mr, owner, name, size);
1574 mr->ram = true;
1575 mr->terminates = true;
1576 mr->destructor = memory_region_destructor_ram;
1577 mr->ram_block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
1578 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1580 #endif
1582 void memory_region_init_ram_ptr(MemoryRegion *mr,
1583 Object *owner,
1584 const char *name,
1585 uint64_t size,
1586 void *ptr)
1588 memory_region_init(mr, owner, name, size);
1589 mr->ram = true;
1590 mr->terminates = true;
1591 mr->destructor = memory_region_destructor_ram;
1592 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1594 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1595 assert(ptr != NULL);
1596 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1599 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1600 Object *owner,
1601 const char *name,
1602 uint64_t size,
1603 void *ptr)
1605 memory_region_init_ram_ptr(mr, owner, name, size, ptr);
1606 mr->ram_device = true;
1607 mr->ops = &ram_device_mem_ops;
1608 mr->opaque = mr;
1611 void memory_region_init_alias(MemoryRegion *mr,
1612 Object *owner,
1613 const char *name,
1614 MemoryRegion *orig,
1615 hwaddr offset,
1616 uint64_t size)
1618 memory_region_init(mr, owner, name, size);
1619 mr->alias = orig;
1620 mr->alias_offset = offset;
1623 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1624 struct Object *owner,
1625 const char *name,
1626 uint64_t size,
1627 Error **errp)
1629 memory_region_init(mr, owner, name, size);
1630 mr->ram = true;
1631 mr->readonly = true;
1632 mr->terminates = true;
1633 mr->destructor = memory_region_destructor_ram;
1634 mr->ram_block = qemu_ram_alloc(size, false, mr, errp);
1635 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1638 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1639 Object *owner,
1640 const MemoryRegionOps *ops,
1641 void *opaque,
1642 const char *name,
1643 uint64_t size,
1644 Error **errp)
1646 assert(ops);
1647 memory_region_init(mr, owner, name, size);
1648 mr->ops = ops;
1649 mr->opaque = opaque;
1650 mr->terminates = true;
1651 mr->rom_device = true;
1652 mr->destructor = memory_region_destructor_ram;
1653 mr->ram_block = qemu_ram_alloc(size, false, mr, errp);
1656 void memory_region_init_iommu(void *_iommu_mr,
1657 size_t instance_size,
1658 const char *mrtypename,
1659 Object *owner,
1660 const char *name,
1661 uint64_t size)
1663 struct IOMMUMemoryRegion *iommu_mr;
1664 struct MemoryRegion *mr;
1666 object_initialize(_iommu_mr, instance_size, mrtypename);
1667 mr = MEMORY_REGION(_iommu_mr);
1668 memory_region_do_init(mr, owner, name, size);
1669 iommu_mr = IOMMU_MEMORY_REGION(mr);
1670 mr->terminates = true; /* then re-forwards */
1671 QLIST_INIT(&iommu_mr->iommu_notify);
1672 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1675 static void memory_region_finalize(Object *obj)
1677 MemoryRegion *mr = MEMORY_REGION(obj);
1679 assert(!mr->container);
1681 /* We know the region is not visible in any address space (it
1682 * does not have a container and cannot be a root either because
1683 * it has no references, so we can blindly clear mr->enabled.
1684 * memory_region_set_enabled instead could trigger a transaction
1685 * and cause an infinite loop.
1687 mr->enabled = false;
1688 memory_region_transaction_begin();
1689 while (!QTAILQ_EMPTY(&mr->subregions)) {
1690 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1691 memory_region_del_subregion(mr, subregion);
1693 memory_region_transaction_commit();
1695 mr->destructor(mr);
1696 memory_region_clear_coalescing(mr);
1697 g_free((char *)mr->name);
1698 g_free(mr->ioeventfds);
1701 Object *memory_region_owner(MemoryRegion *mr)
1703 Object *obj = OBJECT(mr);
1704 return obj->parent;
1707 void memory_region_ref(MemoryRegion *mr)
1709 /* MMIO callbacks most likely will access data that belongs
1710 * to the owner, hence the need to ref/unref the owner whenever
1711 * the memory region is in use.
1713 * The memory region is a child of its owner. As long as the
1714 * owner doesn't call unparent itself on the memory region,
1715 * ref-ing the owner will also keep the memory region alive.
1716 * Memory regions without an owner are supposed to never go away;
1717 * we do not ref/unref them because it slows down DMA sensibly.
1719 if (mr && mr->owner) {
1720 object_ref(mr->owner);
1724 void memory_region_unref(MemoryRegion *mr)
1726 if (mr && mr->owner) {
1727 object_unref(mr->owner);
1731 uint64_t memory_region_size(MemoryRegion *mr)
1733 if (int128_eq(mr->size, int128_2_64())) {
1734 return UINT64_MAX;
1736 return int128_get64(mr->size);
1739 const char *memory_region_name(const MemoryRegion *mr)
1741 if (!mr->name) {
1742 ((MemoryRegion *)mr)->name =
1743 object_get_canonical_path_component(OBJECT(mr));
1745 return mr->name;
1748 bool memory_region_is_ram_device(MemoryRegion *mr)
1750 return mr->ram_device;
1753 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1755 uint8_t mask = mr->dirty_log_mask;
1756 if (global_dirty_log && mr->ram_block) {
1757 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1759 return mask;
1762 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1764 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1767 static void memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr)
1769 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1770 IOMMUNotifier *iommu_notifier;
1771 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1773 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1774 flags |= iommu_notifier->notifier_flags;
1777 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1778 imrc->notify_flag_changed(iommu_mr,
1779 iommu_mr->iommu_notify_flags,
1780 flags);
1783 iommu_mr->iommu_notify_flags = flags;
1786 void memory_region_register_iommu_notifier(MemoryRegion *mr,
1787 IOMMUNotifier *n)
1789 IOMMUMemoryRegion *iommu_mr;
1791 if (mr->alias) {
1792 memory_region_register_iommu_notifier(mr->alias, n);
1793 return;
1796 /* We need to register for at least one bitfield */
1797 iommu_mr = IOMMU_MEMORY_REGION(mr);
1798 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1799 assert(n->start <= n->end);
1800 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1801 memory_region_update_iommu_notify_flags(iommu_mr);
1804 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1806 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1808 if (imrc->get_min_page_size) {
1809 return imrc->get_min_page_size(iommu_mr);
1811 return TARGET_PAGE_SIZE;
1814 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1816 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1817 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1818 hwaddr addr, granularity;
1819 IOMMUTLBEntry iotlb;
1821 /* If the IOMMU has its own replay callback, override */
1822 if (imrc->replay) {
1823 imrc->replay(iommu_mr, n);
1824 return;
1827 granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1829 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1830 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE);
1831 if (iotlb.perm != IOMMU_NONE) {
1832 n->notify(n, &iotlb);
1835 /* if (2^64 - MR size) < granularity, it's possible to get an
1836 * infinite loop here. This should catch such a wraparound */
1837 if ((addr + granularity) < addr) {
1838 break;
1843 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr)
1845 IOMMUNotifier *notifier;
1847 IOMMU_NOTIFIER_FOREACH(notifier, iommu_mr) {
1848 memory_region_iommu_replay(iommu_mr, notifier);
1852 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1853 IOMMUNotifier *n)
1855 IOMMUMemoryRegion *iommu_mr;
1857 if (mr->alias) {
1858 memory_region_unregister_iommu_notifier(mr->alias, n);
1859 return;
1861 QLIST_REMOVE(n, node);
1862 iommu_mr = IOMMU_MEMORY_REGION(mr);
1863 memory_region_update_iommu_notify_flags(iommu_mr);
1866 void memory_region_notify_one(IOMMUNotifier *notifier,
1867 IOMMUTLBEntry *entry)
1869 IOMMUNotifierFlag request_flags;
1872 * Skip the notification if the notification does not overlap
1873 * with registered range.
1875 if (notifier->start > entry->iova + entry->addr_mask ||
1876 notifier->end < entry->iova) {
1877 return;
1880 if (entry->perm & IOMMU_RW) {
1881 request_flags = IOMMU_NOTIFIER_MAP;
1882 } else {
1883 request_flags = IOMMU_NOTIFIER_UNMAP;
1886 if (notifier->notifier_flags & request_flags) {
1887 notifier->notify(notifier, entry);
1891 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1892 IOMMUTLBEntry entry)
1894 IOMMUNotifier *iommu_notifier;
1896 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
1898 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1899 memory_region_notify_one(iommu_notifier, &entry);
1903 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1904 enum IOMMUMemoryRegionAttr attr,
1905 void *data)
1907 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1909 if (!imrc->get_attr) {
1910 return -EINVAL;
1913 return imrc->get_attr(iommu_mr, attr, data);
1916 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1918 uint8_t mask = 1 << client;
1919 uint8_t old_logging;
1921 assert(client == DIRTY_MEMORY_VGA);
1922 old_logging = mr->vga_logging_count;
1923 mr->vga_logging_count += log ? 1 : -1;
1924 if (!!old_logging == !!mr->vga_logging_count) {
1925 return;
1928 memory_region_transaction_begin();
1929 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1930 memory_region_update_pending |= mr->enabled;
1931 memory_region_transaction_commit();
1934 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1935 hwaddr size, unsigned client)
1937 assert(mr->ram_block);
1938 return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr) + addr,
1939 size, client);
1942 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1943 hwaddr size)
1945 assert(mr->ram_block);
1946 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
1947 size,
1948 memory_region_get_dirty_log_mask(mr));
1951 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1953 MemoryListener *listener;
1954 AddressSpace *as;
1955 FlatView *view;
1956 FlatRange *fr;
1958 /* If the same address space has multiple log_sync listeners, we
1959 * visit that address space's FlatView multiple times. But because
1960 * log_sync listeners are rare, it's still cheaper than walking each
1961 * address space once.
1963 QTAILQ_FOREACH(listener, &memory_listeners, link) {
1964 if (!listener->log_sync) {
1965 continue;
1967 as = listener->address_space;
1968 view = address_space_get_flatview(as);
1969 FOR_EACH_FLAT_RANGE(fr, view) {
1970 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
1971 MemoryRegionSection mrs = section_from_flat_range(fr, view);
1972 listener->log_sync(listener, &mrs);
1975 flatview_unref(view);
1979 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1980 hwaddr addr,
1981 hwaddr size,
1982 unsigned client)
1984 assert(mr->ram_block);
1985 memory_region_sync_dirty_bitmap(mr);
1986 return cpu_physical_memory_snapshot_and_clear_dirty(
1987 memory_region_get_ram_addr(mr) + addr, size, client);
1990 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
1991 hwaddr addr, hwaddr size)
1993 assert(mr->ram_block);
1994 return cpu_physical_memory_snapshot_get_dirty(snap,
1995 memory_region_get_ram_addr(mr) + addr, size);
1998 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2000 if (mr->readonly != readonly) {
2001 memory_region_transaction_begin();
2002 mr->readonly = readonly;
2003 memory_region_update_pending |= mr->enabled;
2004 memory_region_transaction_commit();
2008 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2010 if (mr->romd_mode != romd_mode) {
2011 memory_region_transaction_begin();
2012 mr->romd_mode = romd_mode;
2013 memory_region_update_pending |= mr->enabled;
2014 memory_region_transaction_commit();
2018 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2019 hwaddr size, unsigned client)
2021 assert(mr->ram_block);
2022 cpu_physical_memory_test_and_clear_dirty(
2023 memory_region_get_ram_addr(mr) + addr, size, client);
2026 int memory_region_get_fd(MemoryRegion *mr)
2028 int fd;
2030 rcu_read_lock();
2031 while (mr->alias) {
2032 mr = mr->alias;
2034 fd = mr->ram_block->fd;
2035 rcu_read_unlock();
2037 return fd;
2040 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2042 void *ptr;
2043 uint64_t offset = 0;
2045 rcu_read_lock();
2046 while (mr->alias) {
2047 offset += mr->alias_offset;
2048 mr = mr->alias;
2050 assert(mr->ram_block);
2051 ptr = qemu_map_ram_ptr(mr->ram_block, offset);
2052 rcu_read_unlock();
2054 return ptr;
2057 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2059 RAMBlock *block;
2061 block = qemu_ram_block_from_host(ptr, false, offset);
2062 if (!block) {
2063 return NULL;
2066 return block->mr;
2069 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2071 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2074 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2076 assert(mr->ram_block);
2078 qemu_ram_resize(mr->ram_block, newsize, errp);
2081 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
2083 FlatView *view;
2084 FlatRange *fr;
2085 CoalescedMemoryRange *cmr;
2086 AddrRange tmp;
2087 MemoryRegionSection section;
2089 view = address_space_get_flatview(as);
2090 FOR_EACH_FLAT_RANGE(fr, view) {
2091 if (fr->mr == mr) {
2092 section = (MemoryRegionSection) {
2093 .fv = view,
2094 .offset_within_address_space = int128_get64(fr->addr.start),
2095 .size = fr->addr.size,
2098 MEMORY_LISTENER_CALL(as, coalesced_mmio_del, Reverse, &section,
2099 int128_get64(fr->addr.start),
2100 int128_get64(fr->addr.size));
2101 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
2102 tmp = addrrange_shift(cmr->addr,
2103 int128_sub(fr->addr.start,
2104 int128_make64(fr->offset_in_region)));
2105 if (!addrrange_intersects(tmp, fr->addr)) {
2106 continue;
2108 tmp = addrrange_intersection(tmp, fr->addr);
2109 MEMORY_LISTENER_CALL(as, coalesced_mmio_add, Forward, &section,
2110 int128_get64(tmp.start),
2111 int128_get64(tmp.size));
2115 flatview_unref(view);
2118 static void memory_region_update_coalesced_range(MemoryRegion *mr)
2120 AddressSpace *as;
2122 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2123 memory_region_update_coalesced_range_as(mr, as);
2127 void memory_region_set_coalescing(MemoryRegion *mr)
2129 memory_region_clear_coalescing(mr);
2130 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2133 void memory_region_add_coalescing(MemoryRegion *mr,
2134 hwaddr offset,
2135 uint64_t size)
2137 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2139 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2140 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2141 memory_region_update_coalesced_range(mr);
2142 memory_region_set_flush_coalesced(mr);
2145 void memory_region_clear_coalescing(MemoryRegion *mr)
2147 CoalescedMemoryRange *cmr;
2148 bool updated = false;
2150 qemu_flush_coalesced_mmio_buffer();
2151 mr->flush_coalesced_mmio = false;
2153 while (!QTAILQ_EMPTY(&mr->coalesced)) {
2154 cmr = QTAILQ_FIRST(&mr->coalesced);
2155 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2156 g_free(cmr);
2157 updated = true;
2160 if (updated) {
2161 memory_region_update_coalesced_range(mr);
2165 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2167 mr->flush_coalesced_mmio = true;
2170 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2172 qemu_flush_coalesced_mmio_buffer();
2173 if (QTAILQ_EMPTY(&mr->coalesced)) {
2174 mr->flush_coalesced_mmio = false;
2178 void memory_region_clear_global_locking(MemoryRegion *mr)
2180 mr->global_locking = false;
2183 static bool userspace_eventfd_warning;
2185 void memory_region_add_eventfd(MemoryRegion *mr,
2186 hwaddr addr,
2187 unsigned size,
2188 bool match_data,
2189 uint64_t data,
2190 EventNotifier *e)
2192 MemoryRegionIoeventfd mrfd = {
2193 .addr.start = int128_make64(addr),
2194 .addr.size = int128_make64(size),
2195 .match_data = match_data,
2196 .data = data,
2197 .e = e,
2199 unsigned i;
2201 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2202 userspace_eventfd_warning))) {
2203 userspace_eventfd_warning = true;
2204 error_report("Using eventfd without MMIO binding in KVM. "
2205 "Suboptimal performance expected");
2208 if (size) {
2209 adjust_endianness(mr, &mrfd.data, size);
2211 memory_region_transaction_begin();
2212 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2213 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
2214 break;
2217 ++mr->ioeventfd_nb;
2218 mr->ioeventfds = g_realloc(mr->ioeventfds,
2219 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2220 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2221 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2222 mr->ioeventfds[i] = mrfd;
2223 ioeventfd_update_pending |= mr->enabled;
2224 memory_region_transaction_commit();
2227 void memory_region_del_eventfd(MemoryRegion *mr,
2228 hwaddr addr,
2229 unsigned size,
2230 bool match_data,
2231 uint64_t data,
2232 EventNotifier *e)
2234 MemoryRegionIoeventfd mrfd = {
2235 .addr.start = int128_make64(addr),
2236 .addr.size = int128_make64(size),
2237 .match_data = match_data,
2238 .data = data,
2239 .e = e,
2241 unsigned i;
2243 if (size) {
2244 adjust_endianness(mr, &mrfd.data, size);
2246 memory_region_transaction_begin();
2247 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2248 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
2249 break;
2252 assert(i != mr->ioeventfd_nb);
2253 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2254 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2255 --mr->ioeventfd_nb;
2256 mr->ioeventfds = g_realloc(mr->ioeventfds,
2257 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2258 ioeventfd_update_pending |= mr->enabled;
2259 memory_region_transaction_commit();
2262 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2264 MemoryRegion *mr = subregion->container;
2265 MemoryRegion *other;
2267 memory_region_transaction_begin();
2269 memory_region_ref(subregion);
2270 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2271 if (subregion->priority >= other->priority) {
2272 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2273 goto done;
2276 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2277 done:
2278 memory_region_update_pending |= mr->enabled && subregion->enabled;
2279 memory_region_transaction_commit();
2282 static void memory_region_add_subregion_common(MemoryRegion *mr,
2283 hwaddr offset,
2284 MemoryRegion *subregion)
2286 assert(!subregion->container);
2287 subregion->container = mr;
2288 subregion->addr = offset;
2289 memory_region_update_container_subregions(subregion);
2292 void memory_region_add_subregion(MemoryRegion *mr,
2293 hwaddr offset,
2294 MemoryRegion *subregion)
2296 subregion->priority = 0;
2297 memory_region_add_subregion_common(mr, offset, subregion);
2300 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2301 hwaddr offset,
2302 MemoryRegion *subregion,
2303 int priority)
2305 subregion->priority = priority;
2306 memory_region_add_subregion_common(mr, offset, subregion);
2309 void memory_region_del_subregion(MemoryRegion *mr,
2310 MemoryRegion *subregion)
2312 memory_region_transaction_begin();
2313 assert(subregion->container == mr);
2314 subregion->container = NULL;
2315 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2316 memory_region_unref(subregion);
2317 memory_region_update_pending |= mr->enabled && subregion->enabled;
2318 memory_region_transaction_commit();
2321 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2323 if (enabled == mr->enabled) {
2324 return;
2326 memory_region_transaction_begin();
2327 mr->enabled = enabled;
2328 memory_region_update_pending = true;
2329 memory_region_transaction_commit();
2332 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2334 Int128 s = int128_make64(size);
2336 if (size == UINT64_MAX) {
2337 s = int128_2_64();
2339 if (int128_eq(s, mr->size)) {
2340 return;
2342 memory_region_transaction_begin();
2343 mr->size = s;
2344 memory_region_update_pending = true;
2345 memory_region_transaction_commit();
2348 static void memory_region_readd_subregion(MemoryRegion *mr)
2350 MemoryRegion *container = mr->container;
2352 if (container) {
2353 memory_region_transaction_begin();
2354 memory_region_ref(mr);
2355 memory_region_del_subregion(container, mr);
2356 mr->container = container;
2357 memory_region_update_container_subregions(mr);
2358 memory_region_unref(mr);
2359 memory_region_transaction_commit();
2363 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2365 if (addr != mr->addr) {
2366 mr->addr = addr;
2367 memory_region_readd_subregion(mr);
2371 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2373 assert(mr->alias);
2375 if (offset == mr->alias_offset) {
2376 return;
2379 memory_region_transaction_begin();
2380 mr->alias_offset = offset;
2381 memory_region_update_pending |= mr->enabled;
2382 memory_region_transaction_commit();
2385 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2387 return mr->align;
2390 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2392 const AddrRange *addr = addr_;
2393 const FlatRange *fr = fr_;
2395 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2396 return -1;
2397 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2398 return 1;
2400 return 0;
2403 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2405 return bsearch(&addr, view->ranges, view->nr,
2406 sizeof(FlatRange), cmp_flatrange_addr);
2409 bool memory_region_is_mapped(MemoryRegion *mr)
2411 return mr->container ? true : false;
2414 /* Same as memory_region_find, but it does not add a reference to the
2415 * returned region. It must be called from an RCU critical section.
2417 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2418 hwaddr addr, uint64_t size)
2420 MemoryRegionSection ret = { .mr = NULL };
2421 MemoryRegion *root;
2422 AddressSpace *as;
2423 AddrRange range;
2424 FlatView *view;
2425 FlatRange *fr;
2427 addr += mr->addr;
2428 for (root = mr; root->container; ) {
2429 root = root->container;
2430 addr += root->addr;
2433 as = memory_region_to_address_space(root);
2434 if (!as) {
2435 return ret;
2437 range = addrrange_make(int128_make64(addr), int128_make64(size));
2439 view = address_space_to_flatview(as);
2440 fr = flatview_lookup(view, range);
2441 if (!fr) {
2442 return ret;
2445 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2446 --fr;
2449 ret.mr = fr->mr;
2450 ret.fv = view;
2451 range = addrrange_intersection(range, fr->addr);
2452 ret.offset_within_region = fr->offset_in_region;
2453 ret.offset_within_region += int128_get64(int128_sub(range.start,
2454 fr->addr.start));
2455 ret.size = range.size;
2456 ret.offset_within_address_space = int128_get64(range.start);
2457 ret.readonly = fr->readonly;
2458 return ret;
2461 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2462 hwaddr addr, uint64_t size)
2464 MemoryRegionSection ret;
2465 rcu_read_lock();
2466 ret = memory_region_find_rcu(mr, addr, size);
2467 if (ret.mr) {
2468 memory_region_ref(ret.mr);
2470 rcu_read_unlock();
2471 return ret;
2474 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2476 MemoryRegion *mr;
2478 rcu_read_lock();
2479 mr = memory_region_find_rcu(container, addr, 1).mr;
2480 rcu_read_unlock();
2481 return mr && mr != container;
2484 void memory_global_dirty_log_sync(void)
2486 memory_region_sync_dirty_bitmap(NULL);
2489 static VMChangeStateEntry *vmstate_change;
2491 void memory_global_dirty_log_start(void)
2493 if (vmstate_change) {
2494 qemu_del_vm_change_state_handler(vmstate_change);
2495 vmstate_change = NULL;
2498 global_dirty_log = true;
2500 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2502 /* Refresh DIRTY_LOG_MIGRATION bit. */
2503 memory_region_transaction_begin();
2504 memory_region_update_pending = true;
2505 memory_region_transaction_commit();
2508 static void memory_global_dirty_log_do_stop(void)
2510 global_dirty_log = false;
2512 /* Refresh DIRTY_LOG_MIGRATION bit. */
2513 memory_region_transaction_begin();
2514 memory_region_update_pending = true;
2515 memory_region_transaction_commit();
2517 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2520 static void memory_vm_change_state_handler(void *opaque, int running,
2521 RunState state)
2523 if (running) {
2524 memory_global_dirty_log_do_stop();
2526 if (vmstate_change) {
2527 qemu_del_vm_change_state_handler(vmstate_change);
2528 vmstate_change = NULL;
2533 void memory_global_dirty_log_stop(void)
2535 if (!runstate_is_running()) {
2536 if (vmstate_change) {
2537 return;
2539 vmstate_change = qemu_add_vm_change_state_handler(
2540 memory_vm_change_state_handler, NULL);
2541 return;
2544 memory_global_dirty_log_do_stop();
2547 static void listener_add_address_space(MemoryListener *listener,
2548 AddressSpace *as)
2550 FlatView *view;
2551 FlatRange *fr;
2553 if (listener->begin) {
2554 listener->begin(listener);
2556 if (global_dirty_log) {
2557 if (listener->log_global_start) {
2558 listener->log_global_start(listener);
2562 view = address_space_get_flatview(as);
2563 FOR_EACH_FLAT_RANGE(fr, view) {
2564 MemoryRegionSection section = section_from_flat_range(fr, view);
2566 if (listener->region_add) {
2567 listener->region_add(listener, &section);
2569 if (fr->dirty_log_mask && listener->log_start) {
2570 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2573 if (listener->commit) {
2574 listener->commit(listener);
2576 flatview_unref(view);
2579 static void listener_del_address_space(MemoryListener *listener,
2580 AddressSpace *as)
2582 FlatView *view;
2583 FlatRange *fr;
2585 if (listener->begin) {
2586 listener->begin(listener);
2588 view = address_space_get_flatview(as);
2589 FOR_EACH_FLAT_RANGE(fr, view) {
2590 MemoryRegionSection section = section_from_flat_range(fr, view);
2592 if (fr->dirty_log_mask && listener->log_stop) {
2593 listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
2595 if (listener->region_del) {
2596 listener->region_del(listener, &section);
2599 if (listener->commit) {
2600 listener->commit(listener);
2602 flatview_unref(view);
2605 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2607 MemoryListener *other = NULL;
2609 listener->address_space = as;
2610 if (QTAILQ_EMPTY(&memory_listeners)
2611 || listener->priority >= QTAILQ_LAST(&memory_listeners,
2612 memory_listeners)->priority) {
2613 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2614 } else {
2615 QTAILQ_FOREACH(other, &memory_listeners, link) {
2616 if (listener->priority < other->priority) {
2617 break;
2620 QTAILQ_INSERT_BEFORE(other, listener, link);
2623 if (QTAILQ_EMPTY(&as->listeners)
2624 || listener->priority >= QTAILQ_LAST(&as->listeners,
2625 memory_listeners)->priority) {
2626 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2627 } else {
2628 QTAILQ_FOREACH(other, &as->listeners, link_as) {
2629 if (listener->priority < other->priority) {
2630 break;
2633 QTAILQ_INSERT_BEFORE(other, listener, link_as);
2636 listener_add_address_space(listener, as);
2639 void memory_listener_unregister(MemoryListener *listener)
2641 if (!listener->address_space) {
2642 return;
2645 listener_del_address_space(listener, listener->address_space);
2646 QTAILQ_REMOVE(&memory_listeners, listener, link);
2647 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2648 listener->address_space = NULL;
2651 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr)
2653 void *host;
2654 unsigned size = 0;
2655 unsigned offset = 0;
2656 Object *new_interface;
2658 if (!mr || !mr->ops->request_ptr) {
2659 return false;
2663 * Avoid an update if the request_ptr call
2664 * memory_region_invalidate_mmio_ptr which seems to be likely when we use
2665 * a cache.
2667 memory_region_transaction_begin();
2669 host = mr->ops->request_ptr(mr->opaque, addr - mr->addr, &size, &offset);
2671 if (!host || !size) {
2672 memory_region_transaction_commit();
2673 return false;
2676 new_interface = object_new("mmio_interface");
2677 qdev_prop_set_uint64(DEVICE(new_interface), "start", offset);
2678 qdev_prop_set_uint64(DEVICE(new_interface), "end", offset + size - 1);
2679 qdev_prop_set_bit(DEVICE(new_interface), "ro", true);
2680 qdev_prop_set_ptr(DEVICE(new_interface), "host_ptr", host);
2681 qdev_prop_set_ptr(DEVICE(new_interface), "subregion", mr);
2682 object_property_set_bool(OBJECT(new_interface), true, "realized", NULL);
2684 memory_region_transaction_commit();
2685 return true;
2688 typedef struct MMIOPtrInvalidate {
2689 MemoryRegion *mr;
2690 hwaddr offset;
2691 unsigned size;
2692 int busy;
2693 int allocated;
2694 } MMIOPtrInvalidate;
2696 #define MAX_MMIO_INVALIDATE 10
2697 static MMIOPtrInvalidate mmio_ptr_invalidate_list[MAX_MMIO_INVALIDATE];
2699 static void memory_region_do_invalidate_mmio_ptr(CPUState *cpu,
2700 run_on_cpu_data data)
2702 MMIOPtrInvalidate *invalidate_data = (MMIOPtrInvalidate *)data.host_ptr;
2703 MemoryRegion *mr = invalidate_data->mr;
2704 hwaddr offset = invalidate_data->offset;
2705 unsigned size = invalidate_data->size;
2706 MemoryRegionSection section = memory_region_find(mr, offset, size);
2708 qemu_mutex_lock_iothread();
2710 /* Reset dirty so this doesn't happen later. */
2711 cpu_physical_memory_test_and_clear_dirty(offset, size, 1);
2713 if (section.mr != mr) {
2714 /* memory_region_find add a ref on section.mr */
2715 memory_region_unref(section.mr);
2716 if (MMIO_INTERFACE(section.mr->owner)) {
2717 /* We found the interface just drop it. */
2718 object_property_set_bool(section.mr->owner, false, "realized",
2719 NULL);
2720 object_unref(section.mr->owner);
2721 object_unparent(section.mr->owner);
2725 qemu_mutex_unlock_iothread();
2727 if (invalidate_data->allocated) {
2728 g_free(invalidate_data);
2729 } else {
2730 invalidate_data->busy = 0;
2734 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
2735 unsigned size)
2737 size_t i;
2738 MMIOPtrInvalidate *invalidate_data = NULL;
2740 for (i = 0; i < MAX_MMIO_INVALIDATE; i++) {
2741 if (atomic_cmpxchg(&(mmio_ptr_invalidate_list[i].busy), 0, 1) == 0) {
2742 invalidate_data = &mmio_ptr_invalidate_list[i];
2743 break;
2747 if (!invalidate_data) {
2748 invalidate_data = g_malloc0(sizeof(MMIOPtrInvalidate));
2749 invalidate_data->allocated = 1;
2752 invalidate_data->mr = mr;
2753 invalidate_data->offset = offset;
2754 invalidate_data->size = size;
2756 async_safe_run_on_cpu(first_cpu, memory_region_do_invalidate_mmio_ptr,
2757 RUN_ON_CPU_HOST_PTR(invalidate_data));
2760 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2762 memory_region_ref(root);
2763 as->root = root;
2764 as->current_map = NULL;
2765 as->ioeventfd_nb = 0;
2766 as->ioeventfds = NULL;
2767 QTAILQ_INIT(&as->listeners);
2768 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2769 as->name = g_strdup(name ? name : "anonymous");
2770 address_space_update_topology(as);
2771 address_space_update_ioeventfds(as);
2774 static void do_address_space_destroy(AddressSpace *as)
2776 assert(QTAILQ_EMPTY(&as->listeners));
2778 flatview_unref(as->current_map);
2779 g_free(as->name);
2780 g_free(as->ioeventfds);
2781 memory_region_unref(as->root);
2784 void address_space_destroy(AddressSpace *as)
2786 MemoryRegion *root = as->root;
2788 /* Flush out anything from MemoryListeners listening in on this */
2789 memory_region_transaction_begin();
2790 as->root = NULL;
2791 memory_region_transaction_commit();
2792 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2794 /* At this point, as->dispatch and as->current_map are dummy
2795 * entries that the guest should never use. Wait for the old
2796 * values to expire before freeing the data.
2798 as->root = root;
2799 call_rcu(as, do_address_space_destroy, rcu);
2802 static const char *memory_region_type(MemoryRegion *mr)
2804 if (memory_region_is_ram_device(mr)) {
2805 return "ramd";
2806 } else if (memory_region_is_romd(mr)) {
2807 return "romd";
2808 } else if (memory_region_is_rom(mr)) {
2809 return "rom";
2810 } else if (memory_region_is_ram(mr)) {
2811 return "ram";
2812 } else {
2813 return "i/o";
2817 typedef struct MemoryRegionList MemoryRegionList;
2819 struct MemoryRegionList {
2820 const MemoryRegion *mr;
2821 QTAILQ_ENTRY(MemoryRegionList) mrqueue;
2824 typedef QTAILQ_HEAD(mrqueue, MemoryRegionList) MemoryRegionListHead;
2826 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2827 int128_sub((size), int128_one())) : 0)
2828 #define MTREE_INDENT " "
2830 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2831 const MemoryRegion *mr, unsigned int level,
2832 hwaddr base,
2833 MemoryRegionListHead *alias_print_queue)
2835 MemoryRegionList *new_ml, *ml, *next_ml;
2836 MemoryRegionListHead submr_print_queue;
2837 const MemoryRegion *submr;
2838 unsigned int i;
2839 hwaddr cur_start, cur_end;
2841 if (!mr) {
2842 return;
2845 for (i = 0; i < level; i++) {
2846 mon_printf(f, MTREE_INDENT);
2849 cur_start = base + mr->addr;
2850 cur_end = cur_start + MR_SIZE(mr->size);
2853 * Try to detect overflow of memory region. This should never
2854 * happen normally. When it happens, we dump something to warn the
2855 * user who is observing this.
2857 if (cur_start < base || cur_end < cur_start) {
2858 mon_printf(f, "[DETECTED OVERFLOW!] ");
2861 if (mr->alias) {
2862 MemoryRegionList *ml;
2863 bool found = false;
2865 /* check if the alias is already in the queue */
2866 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
2867 if (ml->mr == mr->alias) {
2868 found = true;
2872 if (!found) {
2873 ml = g_new(MemoryRegionList, 1);
2874 ml->mr = mr->alias;
2875 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
2877 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2878 " (prio %d, %s): alias %s @%s " TARGET_FMT_plx
2879 "-" TARGET_FMT_plx "%s\n",
2880 cur_start, cur_end,
2881 mr->priority,
2882 memory_region_type((MemoryRegion *)mr),
2883 memory_region_name(mr),
2884 memory_region_name(mr->alias),
2885 mr->alias_offset,
2886 mr->alias_offset + MR_SIZE(mr->size),
2887 mr->enabled ? "" : " [disabled]");
2888 } else {
2889 mon_printf(f,
2890 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %s): %s%s\n",
2891 cur_start, cur_end,
2892 mr->priority,
2893 memory_region_type((MemoryRegion *)mr),
2894 memory_region_name(mr),
2895 mr->enabled ? "" : " [disabled]");
2898 QTAILQ_INIT(&submr_print_queue);
2900 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2901 new_ml = g_new(MemoryRegionList, 1);
2902 new_ml->mr = submr;
2903 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2904 if (new_ml->mr->addr < ml->mr->addr ||
2905 (new_ml->mr->addr == ml->mr->addr &&
2906 new_ml->mr->priority > ml->mr->priority)) {
2907 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
2908 new_ml = NULL;
2909 break;
2912 if (new_ml) {
2913 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
2917 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2918 mtree_print_mr(mon_printf, f, ml->mr, level + 1, cur_start,
2919 alias_print_queue);
2922 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
2923 g_free(ml);
2927 struct FlatViewInfo {
2928 fprintf_function mon_printf;
2929 void *f;
2930 int counter;
2931 bool dispatch_tree;
2934 static void mtree_print_flatview(gpointer key, gpointer value,
2935 gpointer user_data)
2937 FlatView *view = key;
2938 GArray *fv_address_spaces = value;
2939 struct FlatViewInfo *fvi = user_data;
2940 fprintf_function p = fvi->mon_printf;
2941 void *f = fvi->f;
2942 FlatRange *range = &view->ranges[0];
2943 MemoryRegion *mr;
2944 int n = view->nr;
2945 int i;
2946 AddressSpace *as;
2948 p(f, "FlatView #%d\n", fvi->counter);
2949 ++fvi->counter;
2951 for (i = 0; i < fv_address_spaces->len; ++i) {
2952 as = g_array_index(fv_address_spaces, AddressSpace*, i);
2953 p(f, " AS \"%s\", root: %s", as->name, memory_region_name(as->root));
2954 if (as->root->alias) {
2955 p(f, ", alias %s", memory_region_name(as->root->alias));
2957 p(f, "\n");
2960 p(f, " Root memory region: %s\n",
2961 view->root ? memory_region_name(view->root) : "(none)");
2963 if (n <= 0) {
2964 p(f, MTREE_INDENT "No rendered FlatView\n\n");
2965 return;
2968 while (n--) {
2969 mr = range->mr;
2970 if (range->offset_in_region) {
2971 p(f, MTREE_INDENT TARGET_FMT_plx "-"
2972 TARGET_FMT_plx " (prio %d, %s): %s @" TARGET_FMT_plx "\n",
2973 int128_get64(range->addr.start),
2974 int128_get64(range->addr.start) + MR_SIZE(range->addr.size),
2975 mr->priority,
2976 range->readonly ? "rom" : memory_region_type(mr),
2977 memory_region_name(mr),
2978 range->offset_in_region);
2979 } else {
2980 p(f, MTREE_INDENT TARGET_FMT_plx "-"
2981 TARGET_FMT_plx " (prio %d, %s): %s\n",
2982 int128_get64(range->addr.start),
2983 int128_get64(range->addr.start) + MR_SIZE(range->addr.size),
2984 mr->priority,
2985 range->readonly ? "rom" : memory_region_type(mr),
2986 memory_region_name(mr));
2988 range++;
2991 #if !defined(CONFIG_USER_ONLY)
2992 if (fvi->dispatch_tree && view->root) {
2993 mtree_print_dispatch(p, f, view->dispatch, view->root);
2995 #endif
2997 p(f, "\n");
3000 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3001 gpointer user_data)
3003 FlatView *view = key;
3004 GArray *fv_address_spaces = value;
3006 g_array_unref(fv_address_spaces);
3007 flatview_unref(view);
3009 return true;
3012 void mtree_info(fprintf_function mon_printf, void *f, bool flatview,
3013 bool dispatch_tree)
3015 MemoryRegionListHead ml_head;
3016 MemoryRegionList *ml, *ml2;
3017 AddressSpace *as;
3019 if (flatview) {
3020 FlatView *view;
3021 struct FlatViewInfo fvi = {
3022 .mon_printf = mon_printf,
3023 .f = f,
3024 .counter = 0,
3025 .dispatch_tree = dispatch_tree
3027 GArray *fv_address_spaces;
3028 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3030 /* Gather all FVs in one table */
3031 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3032 view = address_space_get_flatview(as);
3034 fv_address_spaces = g_hash_table_lookup(views, view);
3035 if (!fv_address_spaces) {
3036 fv_address_spaces = g_array_new(false, false, sizeof(as));
3037 g_hash_table_insert(views, view, fv_address_spaces);
3040 g_array_append_val(fv_address_spaces, as);
3043 /* Print */
3044 g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3046 /* Free */
3047 g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3048 g_hash_table_unref(views);
3050 return;
3053 QTAILQ_INIT(&ml_head);
3055 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3056 mon_printf(f, "address-space: %s\n", as->name);
3057 mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head);
3058 mon_printf(f, "\n");
3061 /* print aliased regions */
3062 QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3063 mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
3064 mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head);
3065 mon_printf(f, "\n");
3068 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3069 g_free(ml);
3073 void memory_region_init_ram(MemoryRegion *mr,
3074 struct Object *owner,
3075 const char *name,
3076 uint64_t size,
3077 Error **errp)
3079 DeviceState *owner_dev;
3080 Error *err = NULL;
3082 memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
3083 if (err) {
3084 error_propagate(errp, err);
3085 return;
3087 /* This will assert if owner is neither NULL nor a DeviceState.
3088 * We only want the owner here for the purposes of defining a
3089 * unique name for migration. TODO: Ideally we should implement
3090 * a naming scheme for Objects which are not DeviceStates, in
3091 * which case we can relax this restriction.
3093 owner_dev = DEVICE(owner);
3094 vmstate_register_ram(mr, owner_dev);
3097 void memory_region_init_rom(MemoryRegion *mr,
3098 struct Object *owner,
3099 const char *name,
3100 uint64_t size,
3101 Error **errp)
3103 DeviceState *owner_dev;
3104 Error *err = NULL;
3106 memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3107 if (err) {
3108 error_propagate(errp, err);
3109 return;
3111 /* This will assert if owner is neither NULL nor a DeviceState.
3112 * We only want the owner here for the purposes of defining a
3113 * unique name for migration. TODO: Ideally we should implement
3114 * a naming scheme for Objects which are not DeviceStates, in
3115 * which case we can relax this restriction.
3117 owner_dev = DEVICE(owner);
3118 vmstate_register_ram(mr, owner_dev);
3121 void memory_region_init_rom_device(MemoryRegion *mr,
3122 struct Object *owner,
3123 const MemoryRegionOps *ops,
3124 void *opaque,
3125 const char *name,
3126 uint64_t size,
3127 Error **errp)
3129 DeviceState *owner_dev;
3130 Error *err = NULL;
3132 memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3133 name, size, &err);
3134 if (err) {
3135 error_propagate(errp, err);
3136 return;
3138 /* This will assert if owner is neither NULL nor a DeviceState.
3139 * We only want the owner here for the purposes of defining a
3140 * unique name for migration. TODO: Ideally we should implement
3141 * a naming scheme for Objects which are not DeviceStates, in
3142 * which case we can relax this restriction.
3144 owner_dev = DEVICE(owner);
3145 vmstate_register_ram(mr, owner_dev);
3148 static const TypeInfo memory_region_info = {
3149 .parent = TYPE_OBJECT,
3150 .name = TYPE_MEMORY_REGION,
3151 .instance_size = sizeof(MemoryRegion),
3152 .instance_init = memory_region_initfn,
3153 .instance_finalize = memory_region_finalize,
3156 static const TypeInfo iommu_memory_region_info = {
3157 .parent = TYPE_MEMORY_REGION,
3158 .name = TYPE_IOMMU_MEMORY_REGION,
3159 .class_size = sizeof(IOMMUMemoryRegionClass),
3160 .instance_size = sizeof(IOMMUMemoryRegion),
3161 .instance_init = iommu_memory_region_initfn,
3162 .abstract = true,
3165 static void memory_register_types(void)
3167 type_register_static(&memory_region_info);
3168 type_register_static(&iommu_memory_region_info);
3171 type_init(memory_register_types)