2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
20 #include "exec/memory.h"
21 #include "exec/address-spaces.h"
22 #include "qapi/visitor.h"
23 #include "qemu/bitops.h"
24 #include "qemu/error-report.h"
25 #include "qom/object.h"
26 #include "trace-root.h"
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "sysemu/kvm.h"
31 #include "sysemu/sysemu.h"
32 #include "hw/misc/mmio_interface.h"
33 #include "hw/qdev-properties.h"
34 #include "migration/vmstate.h"
36 //#define DEBUG_UNASSIGNED
38 static unsigned memory_region_transaction_depth
;
39 static bool memory_region_update_pending
;
40 static bool ioeventfd_update_pending
;
41 static bool global_dirty_log
= false;
43 static QTAILQ_HEAD(memory_listeners
, MemoryListener
) memory_listeners
44 = QTAILQ_HEAD_INITIALIZER(memory_listeners
);
46 static QTAILQ_HEAD(, AddressSpace
) address_spaces
47 = QTAILQ_HEAD_INITIALIZER(address_spaces
);
49 static GHashTable
*flat_views
;
51 typedef struct AddrRange AddrRange
;
54 * Note that signed integers are needed for negative offsetting in aliases
55 * (large MemoryRegion::alias_offset).
62 static AddrRange
addrrange_make(Int128 start
, Int128 size
)
64 return (AddrRange
) { start
, size
};
67 static bool addrrange_equal(AddrRange r1
, AddrRange r2
)
69 return int128_eq(r1
.start
, r2
.start
) && int128_eq(r1
.size
, r2
.size
);
72 static Int128
addrrange_end(AddrRange r
)
74 return int128_add(r
.start
, r
.size
);
77 static AddrRange
addrrange_shift(AddrRange range
, Int128 delta
)
79 int128_addto(&range
.start
, delta
);
83 static bool addrrange_contains(AddrRange range
, Int128 addr
)
85 return int128_ge(addr
, range
.start
)
86 && int128_lt(addr
, addrrange_end(range
));
89 static bool addrrange_intersects(AddrRange r1
, AddrRange r2
)
91 return addrrange_contains(r1
, r2
.start
)
92 || addrrange_contains(r2
, r1
.start
);
95 static AddrRange
addrrange_intersection(AddrRange r1
, AddrRange r2
)
97 Int128 start
= int128_max(r1
.start
, r2
.start
);
98 Int128 end
= int128_min(addrrange_end(r1
), addrrange_end(r2
));
99 return addrrange_make(start
, int128_sub(end
, start
));
102 enum ListenerDirection
{ Forward
, Reverse
};
104 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
106 MemoryListener *_listener; \
108 switch (_direction) { \
110 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
111 if (_listener->_callback) { \
112 _listener->_callback(_listener, ##_args); \
117 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
118 memory_listeners, link) { \
119 if (_listener->_callback) { \
120 _listener->_callback(_listener, ##_args); \
129 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
131 MemoryListener *_listener; \
132 struct memory_listeners_as *list = &(_as)->listeners; \
134 switch (_direction) { \
136 QTAILQ_FOREACH(_listener, list, link_as) { \
137 if (_listener->_callback) { \
138 _listener->_callback(_listener, _section, ##_args); \
143 QTAILQ_FOREACH_REVERSE(_listener, list, memory_listeners_as, \
145 if (_listener->_callback) { \
146 _listener->_callback(_listener, _section, ##_args); \
155 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
156 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
158 MemoryRegionSection mrs = section_from_flat_range(fr, \
159 address_space_to_flatview(as)); \
160 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
163 struct CoalescedMemoryRange
{
165 QTAILQ_ENTRY(CoalescedMemoryRange
) link
;
168 struct MemoryRegionIoeventfd
{
175 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a
,
176 MemoryRegionIoeventfd b
)
178 if (int128_lt(a
.addr
.start
, b
.addr
.start
)) {
180 } else if (int128_gt(a
.addr
.start
, b
.addr
.start
)) {
182 } else if (int128_lt(a
.addr
.size
, b
.addr
.size
)) {
184 } else if (int128_gt(a
.addr
.size
, b
.addr
.size
)) {
186 } else if (a
.match_data
< b
.match_data
) {
188 } else if (a
.match_data
> b
.match_data
) {
190 } else if (a
.match_data
) {
191 if (a
.data
< b
.data
) {
193 } else if (a
.data
> b
.data
) {
199 } else if (a
.e
> b
.e
) {
205 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a
,
206 MemoryRegionIoeventfd b
)
208 return !memory_region_ioeventfd_before(a
, b
)
209 && !memory_region_ioeventfd_before(b
, a
);
212 /* Range of memory in the global map. Addresses are absolute. */
215 hwaddr offset_in_region
;
217 uint8_t dirty_log_mask
;
222 #define FOR_EACH_FLAT_RANGE(var, view) \
223 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
225 static inline MemoryRegionSection
226 section_from_flat_range(FlatRange
*fr
, FlatView
*fv
)
228 return (MemoryRegionSection
) {
231 .offset_within_region
= fr
->offset_in_region
,
232 .size
= fr
->addr
.size
,
233 .offset_within_address_space
= int128_get64(fr
->addr
.start
),
234 .readonly
= fr
->readonly
,
238 static bool flatrange_equal(FlatRange
*a
, FlatRange
*b
)
240 return a
->mr
== b
->mr
241 && addrrange_equal(a
->addr
, b
->addr
)
242 && a
->offset_in_region
== b
->offset_in_region
243 && a
->romd_mode
== b
->romd_mode
244 && a
->readonly
== b
->readonly
;
247 static FlatView
*flatview_new(MemoryRegion
*mr_root
)
251 view
= g_new0(FlatView
, 1);
253 view
->root
= mr_root
;
254 memory_region_ref(mr_root
);
255 trace_flatview_new(view
, mr_root
);
260 /* Insert a range into a given position. Caller is responsible for maintaining
263 static void flatview_insert(FlatView
*view
, unsigned pos
, FlatRange
*range
)
265 if (view
->nr
== view
->nr_allocated
) {
266 view
->nr_allocated
= MAX(2 * view
->nr
, 10);
267 view
->ranges
= g_realloc(view
->ranges
,
268 view
->nr_allocated
* sizeof(*view
->ranges
));
270 memmove(view
->ranges
+ pos
+ 1, view
->ranges
+ pos
,
271 (view
->nr
- pos
) * sizeof(FlatRange
));
272 view
->ranges
[pos
] = *range
;
273 memory_region_ref(range
->mr
);
277 static void flatview_destroy(FlatView
*view
)
281 trace_flatview_destroy(view
, view
->root
);
282 if (view
->dispatch
) {
283 address_space_dispatch_free(view
->dispatch
);
285 for (i
= 0; i
< view
->nr
; i
++) {
286 memory_region_unref(view
->ranges
[i
].mr
);
288 g_free(view
->ranges
);
289 memory_region_unref(view
->root
);
293 static bool flatview_ref(FlatView
*view
)
295 return atomic_fetch_inc_nonzero(&view
->ref
) > 0;
298 void flatview_unref(FlatView
*view
)
300 if (atomic_fetch_dec(&view
->ref
) == 1) {
301 trace_flatview_destroy_rcu(view
, view
->root
);
303 call_rcu(view
, flatview_destroy
, rcu
);
307 static bool can_merge(FlatRange
*r1
, FlatRange
*r2
)
309 return int128_eq(addrrange_end(r1
->addr
), r2
->addr
.start
)
311 && int128_eq(int128_add(int128_make64(r1
->offset_in_region
),
313 int128_make64(r2
->offset_in_region
))
314 && r1
->dirty_log_mask
== r2
->dirty_log_mask
315 && r1
->romd_mode
== r2
->romd_mode
316 && r1
->readonly
== r2
->readonly
;
319 /* Attempt to simplify a view by merging adjacent ranges */
320 static void flatview_simplify(FlatView
*view
)
325 while (i
< view
->nr
) {
328 && can_merge(&view
->ranges
[j
-1], &view
->ranges
[j
])) {
329 int128_addto(&view
->ranges
[i
].addr
.size
, view
->ranges
[j
].addr
.size
);
333 memmove(&view
->ranges
[i
], &view
->ranges
[j
],
334 (view
->nr
- j
) * sizeof(view
->ranges
[j
]));
339 static bool memory_region_big_endian(MemoryRegion
*mr
)
341 #ifdef TARGET_WORDS_BIGENDIAN
342 return mr
->ops
->endianness
!= DEVICE_LITTLE_ENDIAN
;
344 return mr
->ops
->endianness
== DEVICE_BIG_ENDIAN
;
348 static bool memory_region_wrong_endianness(MemoryRegion
*mr
)
350 #ifdef TARGET_WORDS_BIGENDIAN
351 return mr
->ops
->endianness
== DEVICE_LITTLE_ENDIAN
;
353 return mr
->ops
->endianness
== DEVICE_BIG_ENDIAN
;
357 static void adjust_endianness(MemoryRegion
*mr
, uint64_t *data
, unsigned size
)
359 if (memory_region_wrong_endianness(mr
)) {
364 *data
= bswap16(*data
);
367 *data
= bswap32(*data
);
370 *data
= bswap64(*data
);
378 static hwaddr
memory_region_to_absolute_addr(MemoryRegion
*mr
, hwaddr offset
)
381 hwaddr abs_addr
= offset
;
383 abs_addr
+= mr
->addr
;
384 for (root
= mr
; root
->container
; ) {
385 root
= root
->container
;
386 abs_addr
+= root
->addr
;
392 static int get_cpu_index(void)
395 return current_cpu
->cpu_index
;
400 static MemTxResult
memory_region_oldmmio_read_accessor(MemoryRegion
*mr
,
410 tmp
= mr
->ops
->old_mmio
.read
[ctz32(size
)](mr
->opaque
, addr
);
412 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
413 } else if (mr
== &io_mem_notdirty
) {
414 /* Accesses to code which has previously been translated into a TB show
415 * up in the MMIO path, as accesses to the io_mem_notdirty
417 trace_memory_region_tb_read(get_cpu_index(), addr
, tmp
, size
);
418 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED
) {
419 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
420 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
422 *value
|= (tmp
& mask
) << shift
;
426 static MemTxResult
memory_region_read_accessor(MemoryRegion
*mr
,
436 tmp
= mr
->ops
->read(mr
->opaque
, addr
, size
);
438 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
439 } else if (mr
== &io_mem_notdirty
) {
440 /* Accesses to code which has previously been translated into a TB show
441 * up in the MMIO path, as accesses to the io_mem_notdirty
443 trace_memory_region_tb_read(get_cpu_index(), addr
, tmp
, size
);
444 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED
) {
445 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
446 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
448 *value
|= (tmp
& mask
) << shift
;
452 static MemTxResult
memory_region_read_with_attrs_accessor(MemoryRegion
*mr
,
463 r
= mr
->ops
->read_with_attrs(mr
->opaque
, addr
, &tmp
, size
, attrs
);
465 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
466 } else if (mr
== &io_mem_notdirty
) {
467 /* Accesses to code which has previously been translated into a TB show
468 * up in the MMIO path, as accesses to the io_mem_notdirty
470 trace_memory_region_tb_read(get_cpu_index(), addr
, tmp
, size
);
471 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED
) {
472 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
473 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
475 *value
|= (tmp
& mask
) << shift
;
479 static MemTxResult
memory_region_oldmmio_write_accessor(MemoryRegion
*mr
,
489 tmp
= (*value
>> shift
) & mask
;
491 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
492 } else if (mr
== &io_mem_notdirty
) {
493 /* Accesses to code which has previously been translated into a TB show
494 * up in the MMIO path, as accesses to the io_mem_notdirty
496 trace_memory_region_tb_write(get_cpu_index(), addr
, tmp
, size
);
497 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED
) {
498 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
499 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
501 mr
->ops
->old_mmio
.write
[ctz32(size
)](mr
->opaque
, addr
, tmp
);
505 static MemTxResult
memory_region_write_accessor(MemoryRegion
*mr
,
515 tmp
= (*value
>> shift
) & mask
;
517 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
518 } else if (mr
== &io_mem_notdirty
) {
519 /* Accesses to code which has previously been translated into a TB show
520 * up in the MMIO path, as accesses to the io_mem_notdirty
522 trace_memory_region_tb_write(get_cpu_index(), addr
, tmp
, size
);
523 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED
) {
524 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
525 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
527 mr
->ops
->write(mr
->opaque
, addr
, tmp
, size
);
531 static MemTxResult
memory_region_write_with_attrs_accessor(MemoryRegion
*mr
,
541 tmp
= (*value
>> shift
) & mask
;
543 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
544 } else if (mr
== &io_mem_notdirty
) {
545 /* Accesses to code which has previously been translated into a TB show
546 * up in the MMIO path, as accesses to the io_mem_notdirty
548 trace_memory_region_tb_write(get_cpu_index(), addr
, tmp
, size
);
549 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED
) {
550 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
551 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
553 return mr
->ops
->write_with_attrs(mr
->opaque
, addr
, tmp
, size
, attrs
);
556 static MemTxResult
access_with_adjusted_size(hwaddr addr
,
559 unsigned access_size_min
,
560 unsigned access_size_max
,
561 MemTxResult (*access_fn
)
572 uint64_t access_mask
;
573 unsigned access_size
;
575 MemTxResult r
= MEMTX_OK
;
577 if (!access_size_min
) {
580 if (!access_size_max
) {
584 /* FIXME: support unaligned access? */
585 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
586 access_mask
= -1ULL >> (64 - access_size
* 8);
587 if (memory_region_big_endian(mr
)) {
588 for (i
= 0; i
< size
; i
+= access_size
) {
589 r
|= access_fn(mr
, addr
+ i
, value
, access_size
,
590 (size
- access_size
- i
) * 8, access_mask
, attrs
);
593 for (i
= 0; i
< size
; i
+= access_size
) {
594 r
|= access_fn(mr
, addr
+ i
, value
, access_size
, i
* 8,
601 static AddressSpace
*memory_region_to_address_space(MemoryRegion
*mr
)
605 while (mr
->container
) {
608 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
609 if (mr
== as
->root
) {
616 /* Render a memory region into the global view. Ranges in @view obscure
619 static void render_memory_region(FlatView
*view
,
625 MemoryRegion
*subregion
;
627 hwaddr offset_in_region
;
637 int128_addto(&base
, int128_make64(mr
->addr
));
638 readonly
|= mr
->readonly
;
640 tmp
= addrrange_make(base
, mr
->size
);
642 if (!addrrange_intersects(tmp
, clip
)) {
646 clip
= addrrange_intersection(tmp
, clip
);
649 int128_subfrom(&base
, int128_make64(mr
->alias
->addr
));
650 int128_subfrom(&base
, int128_make64(mr
->alias_offset
));
651 render_memory_region(view
, mr
->alias
, base
, clip
, readonly
);
655 /* Render subregions in priority order. */
656 QTAILQ_FOREACH(subregion
, &mr
->subregions
, subregions_link
) {
657 render_memory_region(view
, subregion
, base
, clip
, readonly
);
660 if (!mr
->terminates
) {
664 offset_in_region
= int128_get64(int128_sub(clip
.start
, base
));
669 fr
.dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
670 fr
.romd_mode
= mr
->romd_mode
;
671 fr
.readonly
= readonly
;
673 /* Render the region itself into any gaps left by the current view. */
674 for (i
= 0; i
< view
->nr
&& int128_nz(remain
); ++i
) {
675 if (int128_ge(base
, addrrange_end(view
->ranges
[i
].addr
))) {
678 if (int128_lt(base
, view
->ranges
[i
].addr
.start
)) {
679 now
= int128_min(remain
,
680 int128_sub(view
->ranges
[i
].addr
.start
, base
));
681 fr
.offset_in_region
= offset_in_region
;
682 fr
.addr
= addrrange_make(base
, now
);
683 flatview_insert(view
, i
, &fr
);
685 int128_addto(&base
, now
);
686 offset_in_region
+= int128_get64(now
);
687 int128_subfrom(&remain
, now
);
689 now
= int128_sub(int128_min(int128_add(base
, remain
),
690 addrrange_end(view
->ranges
[i
].addr
)),
692 int128_addto(&base
, now
);
693 offset_in_region
+= int128_get64(now
);
694 int128_subfrom(&remain
, now
);
696 if (int128_nz(remain
)) {
697 fr
.offset_in_region
= offset_in_region
;
698 fr
.addr
= addrrange_make(base
, remain
);
699 flatview_insert(view
, i
, &fr
);
703 static MemoryRegion
*memory_region_get_flatview_root(MemoryRegion
*mr
)
705 while (mr
->enabled
) {
707 if (!mr
->alias_offset
&& int128_ge(mr
->size
, mr
->alias
->size
)) {
708 /* The alias is included in its entirety. Use it as
709 * the "real" root, so that we can share more FlatViews.
714 } else if (!mr
->terminates
) {
715 unsigned int found
= 0;
716 MemoryRegion
*child
, *next
= NULL
;
717 QTAILQ_FOREACH(child
, &mr
->subregions
, subregions_link
) {
718 if (child
->enabled
) {
723 if (!child
->addr
&& int128_ge(mr
->size
, child
->size
)) {
724 /* A child is included in its entirety. If it's the only
725 * enabled one, use it in the hope of finding an alias down the
726 * way. This will also let us share FlatViews.
747 /* Render a memory topology into a list of disjoint absolute ranges. */
748 static FlatView
*generate_memory_topology(MemoryRegion
*mr
)
753 view
= flatview_new(mr
);
756 render_memory_region(view
, mr
, int128_zero(),
757 addrrange_make(int128_zero(), int128_2_64()), false);
759 flatview_simplify(view
);
761 view
->dispatch
= address_space_dispatch_new(view
);
762 for (i
= 0; i
< view
->nr
; i
++) {
763 MemoryRegionSection mrs
=
764 section_from_flat_range(&view
->ranges
[i
], view
);
765 flatview_add_to_dispatch(view
, &mrs
);
767 address_space_dispatch_compact(view
->dispatch
);
768 g_hash_table_replace(flat_views
, mr
, view
);
773 static void address_space_add_del_ioeventfds(AddressSpace
*as
,
774 MemoryRegionIoeventfd
*fds_new
,
776 MemoryRegionIoeventfd
*fds_old
,
780 MemoryRegionIoeventfd
*fd
;
781 MemoryRegionSection section
;
783 /* Generate a symmetric difference of the old and new fd sets, adding
784 * and deleting as necessary.
788 while (iold
< fds_old_nb
|| inew
< fds_new_nb
) {
789 if (iold
< fds_old_nb
790 && (inew
== fds_new_nb
791 || memory_region_ioeventfd_before(fds_old
[iold
],
794 section
= (MemoryRegionSection
) {
795 .fv
= address_space_to_flatview(as
),
796 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
797 .size
= fd
->addr
.size
,
799 MEMORY_LISTENER_CALL(as
, eventfd_del
, Forward
, §ion
,
800 fd
->match_data
, fd
->data
, fd
->e
);
802 } else if (inew
< fds_new_nb
803 && (iold
== fds_old_nb
804 || memory_region_ioeventfd_before(fds_new
[inew
],
807 section
= (MemoryRegionSection
) {
808 .fv
= address_space_to_flatview(as
),
809 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
810 .size
= fd
->addr
.size
,
812 MEMORY_LISTENER_CALL(as
, eventfd_add
, Reverse
, §ion
,
813 fd
->match_data
, fd
->data
, fd
->e
);
822 FlatView
*address_space_get_flatview(AddressSpace
*as
)
828 view
= address_space_to_flatview(as
);
829 /* If somebody has replaced as->current_map concurrently,
830 * flatview_ref returns false.
832 } while (!flatview_ref(view
));
837 static void address_space_update_ioeventfds(AddressSpace
*as
)
841 unsigned ioeventfd_nb
= 0;
842 MemoryRegionIoeventfd
*ioeventfds
= NULL
;
846 view
= address_space_get_flatview(as
);
847 FOR_EACH_FLAT_RANGE(fr
, view
) {
848 for (i
= 0; i
< fr
->mr
->ioeventfd_nb
; ++i
) {
849 tmp
= addrrange_shift(fr
->mr
->ioeventfds
[i
].addr
,
850 int128_sub(fr
->addr
.start
,
851 int128_make64(fr
->offset_in_region
)));
852 if (addrrange_intersects(fr
->addr
, tmp
)) {
854 ioeventfds
= g_realloc(ioeventfds
,
855 ioeventfd_nb
* sizeof(*ioeventfds
));
856 ioeventfds
[ioeventfd_nb
-1] = fr
->mr
->ioeventfds
[i
];
857 ioeventfds
[ioeventfd_nb
-1].addr
= tmp
;
862 address_space_add_del_ioeventfds(as
, ioeventfds
, ioeventfd_nb
,
863 as
->ioeventfds
, as
->ioeventfd_nb
);
865 g_free(as
->ioeventfds
);
866 as
->ioeventfds
= ioeventfds
;
867 as
->ioeventfd_nb
= ioeventfd_nb
;
868 flatview_unref(view
);
871 static void address_space_update_topology_pass(AddressSpace
*as
,
872 const FlatView
*old_view
,
873 const FlatView
*new_view
,
877 FlatRange
*frold
, *frnew
;
879 /* Generate a symmetric difference of the old and new memory maps.
880 * Kill ranges in the old map, and instantiate ranges in the new map.
883 while (iold
< old_view
->nr
|| inew
< new_view
->nr
) {
884 if (iold
< old_view
->nr
) {
885 frold
= &old_view
->ranges
[iold
];
889 if (inew
< new_view
->nr
) {
890 frnew
= &new_view
->ranges
[inew
];
897 || int128_lt(frold
->addr
.start
, frnew
->addr
.start
)
898 || (int128_eq(frold
->addr
.start
, frnew
->addr
.start
)
899 && !flatrange_equal(frold
, frnew
)))) {
900 /* In old but not in new, or in both but attributes changed. */
903 MEMORY_LISTENER_UPDATE_REGION(frold
, as
, Reverse
, region_del
);
907 } else if (frold
&& frnew
&& flatrange_equal(frold
, frnew
)) {
908 /* In both and unchanged (except logging may have changed) */
911 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_nop
);
912 if (frnew
->dirty_log_mask
& ~frold
->dirty_log_mask
) {
913 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, log_start
,
914 frold
->dirty_log_mask
,
915 frnew
->dirty_log_mask
);
917 if (frold
->dirty_log_mask
& ~frnew
->dirty_log_mask
) {
918 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Reverse
, log_stop
,
919 frold
->dirty_log_mask
,
920 frnew
->dirty_log_mask
);
930 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_add
);
938 static void flatviews_init(void)
940 static FlatView
*empty_view
;
946 flat_views
= g_hash_table_new_full(g_direct_hash
, g_direct_equal
, NULL
,
947 (GDestroyNotify
) flatview_unref
);
949 empty_view
= generate_memory_topology(NULL
);
950 /* We keep it alive forever in the global variable. */
951 flatview_ref(empty_view
);
953 g_hash_table_replace(flat_views
, NULL
, empty_view
);
954 flatview_ref(empty_view
);
958 static void flatviews_reset(void)
963 g_hash_table_unref(flat_views
);
968 /* Render unique FVs */
969 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
970 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
972 if (g_hash_table_lookup(flat_views
, physmr
)) {
976 generate_memory_topology(physmr
);
980 static void address_space_set_flatview(AddressSpace
*as
)
982 FlatView
*old_view
= address_space_to_flatview(as
);
983 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
984 FlatView
*new_view
= g_hash_table_lookup(flat_views
, physmr
);
988 if (old_view
== new_view
) {
993 flatview_ref(old_view
);
996 flatview_ref(new_view
);
998 if (!QTAILQ_EMPTY(&as
->listeners
)) {
999 FlatView tmpview
= { .nr
= 0 }, *old_view2
= old_view
;
1002 old_view2
= &tmpview
;
1004 address_space_update_topology_pass(as
, old_view2
, new_view
, false);
1005 address_space_update_topology_pass(as
, old_view2
, new_view
, true);
1008 /* Writes are protected by the BQL. */
1009 atomic_rcu_set(&as
->current_map
, new_view
);
1011 flatview_unref(old_view
);
1014 /* Note that all the old MemoryRegions are still alive up to this
1015 * point. This relieves most MemoryListeners from the need to
1016 * ref/unref the MemoryRegions they get---unless they use them
1017 * outside the iothread mutex, in which case precise reference
1018 * counting is necessary.
1021 flatview_unref(old_view
);
1025 static void address_space_update_topology(AddressSpace
*as
)
1027 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
1030 if (!g_hash_table_lookup(flat_views
, physmr
)) {
1031 generate_memory_topology(physmr
);
1033 address_space_set_flatview(as
);
1036 void memory_region_transaction_begin(void)
1038 qemu_flush_coalesced_mmio_buffer();
1039 ++memory_region_transaction_depth
;
1042 void memory_region_transaction_commit(void)
1046 assert(memory_region_transaction_depth
);
1047 assert(qemu_mutex_iothread_locked());
1049 --memory_region_transaction_depth
;
1050 if (!memory_region_transaction_depth
) {
1051 if (memory_region_update_pending
) {
1054 MEMORY_LISTENER_CALL_GLOBAL(begin
, Forward
);
1056 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1057 address_space_set_flatview(as
);
1058 address_space_update_ioeventfds(as
);
1060 memory_region_update_pending
= false;
1061 ioeventfd_update_pending
= false;
1062 MEMORY_LISTENER_CALL_GLOBAL(commit
, Forward
);
1063 } else if (ioeventfd_update_pending
) {
1064 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1065 address_space_update_ioeventfds(as
);
1067 ioeventfd_update_pending
= false;
1072 static void memory_region_destructor_none(MemoryRegion
*mr
)
1076 static void memory_region_destructor_ram(MemoryRegion
*mr
)
1078 qemu_ram_free(mr
->ram_block
);
1081 static bool memory_region_need_escape(char c
)
1083 return c
== '/' || c
== '[' || c
== '\\' || c
== ']';
1086 static char *memory_region_escape_name(const char *name
)
1093 for (p
= name
; *p
; p
++) {
1094 bytes
+= memory_region_need_escape(*p
) ? 4 : 1;
1096 if (bytes
== p
- name
) {
1097 return g_memdup(name
, bytes
+ 1);
1100 escaped
= g_malloc(bytes
+ 1);
1101 for (p
= name
, q
= escaped
; *p
; p
++) {
1103 if (unlikely(memory_region_need_escape(c
))) {
1106 *q
++ = "0123456789abcdef"[c
>> 4];
1107 c
= "0123456789abcdef"[c
& 15];
1115 static void memory_region_do_init(MemoryRegion
*mr
,
1120 mr
->size
= int128_make64(size
);
1121 if (size
== UINT64_MAX
) {
1122 mr
->size
= int128_2_64();
1124 mr
->name
= g_strdup(name
);
1126 mr
->ram_block
= NULL
;
1129 char *escaped_name
= memory_region_escape_name(name
);
1130 char *name_array
= g_strdup_printf("%s[*]", escaped_name
);
1133 owner
= container_get(qdev_get_machine(), "/unattached");
1136 object_property_add_child(owner
, name_array
, OBJECT(mr
), &error_abort
);
1137 object_unref(OBJECT(mr
));
1139 g_free(escaped_name
);
1143 void memory_region_init(MemoryRegion
*mr
,
1148 object_initialize(mr
, sizeof(*mr
), TYPE_MEMORY_REGION
);
1149 memory_region_do_init(mr
, owner
, name
, size
);
1152 static void memory_region_get_addr(Object
*obj
, Visitor
*v
, const char *name
,
1153 void *opaque
, Error
**errp
)
1155 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1156 uint64_t value
= mr
->addr
;
1158 visit_type_uint64(v
, name
, &value
, errp
);
1161 static void memory_region_get_container(Object
*obj
, Visitor
*v
,
1162 const char *name
, void *opaque
,
1165 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1166 gchar
*path
= (gchar
*)"";
1168 if (mr
->container
) {
1169 path
= object_get_canonical_path(OBJECT(mr
->container
));
1171 visit_type_str(v
, name
, &path
, errp
);
1172 if (mr
->container
) {
1177 static Object
*memory_region_resolve_container(Object
*obj
, void *opaque
,
1180 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1182 return OBJECT(mr
->container
);
1185 static void memory_region_get_priority(Object
*obj
, Visitor
*v
,
1186 const char *name
, void *opaque
,
1189 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1190 int32_t value
= mr
->priority
;
1192 visit_type_int32(v
, name
, &value
, errp
);
1195 static void memory_region_get_size(Object
*obj
, Visitor
*v
, const char *name
,
1196 void *opaque
, Error
**errp
)
1198 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1199 uint64_t value
= memory_region_size(mr
);
1201 visit_type_uint64(v
, name
, &value
, errp
);
1204 static void memory_region_initfn(Object
*obj
)
1206 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1209 mr
->ops
= &unassigned_mem_ops
;
1211 mr
->romd_mode
= true;
1212 mr
->global_locking
= true;
1213 mr
->destructor
= memory_region_destructor_none
;
1214 QTAILQ_INIT(&mr
->subregions
);
1215 QTAILQ_INIT(&mr
->coalesced
);
1217 op
= object_property_add(OBJECT(mr
), "container",
1218 "link<" TYPE_MEMORY_REGION
">",
1219 memory_region_get_container
,
1220 NULL
, /* memory_region_set_container */
1221 NULL
, NULL
, &error_abort
);
1222 op
->resolve
= memory_region_resolve_container
;
1224 object_property_add(OBJECT(mr
), "addr", "uint64",
1225 memory_region_get_addr
,
1226 NULL
, /* memory_region_set_addr */
1227 NULL
, NULL
, &error_abort
);
1228 object_property_add(OBJECT(mr
), "priority", "uint32",
1229 memory_region_get_priority
,
1230 NULL
, /* memory_region_set_priority */
1231 NULL
, NULL
, &error_abort
);
1232 object_property_add(OBJECT(mr
), "size", "uint64",
1233 memory_region_get_size
,
1234 NULL
, /* memory_region_set_size, */
1235 NULL
, NULL
, &error_abort
);
1238 static void iommu_memory_region_initfn(Object
*obj
)
1240 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1242 mr
->is_iommu
= true;
1245 static uint64_t unassigned_mem_read(void *opaque
, hwaddr addr
,
1248 #ifdef DEBUG_UNASSIGNED
1249 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
1251 if (current_cpu
!= NULL
) {
1252 cpu_unassigned_access(current_cpu
, addr
, false, false, 0, size
);
1257 static void unassigned_mem_write(void *opaque
, hwaddr addr
,
1258 uint64_t val
, unsigned size
)
1260 #ifdef DEBUG_UNASSIGNED
1261 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%"PRIx64
"\n", addr
, val
);
1263 if (current_cpu
!= NULL
) {
1264 cpu_unassigned_access(current_cpu
, addr
, true, false, 0, size
);
1268 static bool unassigned_mem_accepts(void *opaque
, hwaddr addr
,
1269 unsigned size
, bool is_write
)
1274 const MemoryRegionOps unassigned_mem_ops
= {
1275 .valid
.accepts
= unassigned_mem_accepts
,
1276 .endianness
= DEVICE_NATIVE_ENDIAN
,
1279 static uint64_t memory_region_ram_device_read(void *opaque
,
1280 hwaddr addr
, unsigned size
)
1282 MemoryRegion
*mr
= opaque
;
1283 uint64_t data
= (uint64_t)~0;
1287 data
= *(uint8_t *)(mr
->ram_block
->host
+ addr
);
1290 data
= *(uint16_t *)(mr
->ram_block
->host
+ addr
);
1293 data
= *(uint32_t *)(mr
->ram_block
->host
+ addr
);
1296 data
= *(uint64_t *)(mr
->ram_block
->host
+ addr
);
1300 trace_memory_region_ram_device_read(get_cpu_index(), mr
, addr
, data
, size
);
1305 static void memory_region_ram_device_write(void *opaque
, hwaddr addr
,
1306 uint64_t data
, unsigned size
)
1308 MemoryRegion
*mr
= opaque
;
1310 trace_memory_region_ram_device_write(get_cpu_index(), mr
, addr
, data
, size
);
1314 *(uint8_t *)(mr
->ram_block
->host
+ addr
) = (uint8_t)data
;
1317 *(uint16_t *)(mr
->ram_block
->host
+ addr
) = (uint16_t)data
;
1320 *(uint32_t *)(mr
->ram_block
->host
+ addr
) = (uint32_t)data
;
1323 *(uint64_t *)(mr
->ram_block
->host
+ addr
) = data
;
1328 static const MemoryRegionOps ram_device_mem_ops
= {
1329 .read
= memory_region_ram_device_read
,
1330 .write
= memory_region_ram_device_write
,
1331 .endianness
= DEVICE_HOST_ENDIAN
,
1333 .min_access_size
= 1,
1334 .max_access_size
= 8,
1338 .min_access_size
= 1,
1339 .max_access_size
= 8,
1344 bool memory_region_access_valid(MemoryRegion
*mr
,
1349 int access_size_min
, access_size_max
;
1352 if (!mr
->ops
->valid
.unaligned
&& (addr
& (size
- 1))) {
1356 if (!mr
->ops
->valid
.accepts
) {
1360 access_size_min
= mr
->ops
->valid
.min_access_size
;
1361 if (!mr
->ops
->valid
.min_access_size
) {
1362 access_size_min
= 1;
1365 access_size_max
= mr
->ops
->valid
.max_access_size
;
1366 if (!mr
->ops
->valid
.max_access_size
) {
1367 access_size_max
= 4;
1370 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
1371 for (i
= 0; i
< size
; i
+= access_size
) {
1372 if (!mr
->ops
->valid
.accepts(mr
->opaque
, addr
+ i
, access_size
,
1381 static MemTxResult
memory_region_dispatch_read1(MemoryRegion
*mr
,
1389 if (mr
->ops
->read
) {
1390 return access_with_adjusted_size(addr
, pval
, size
,
1391 mr
->ops
->impl
.min_access_size
,
1392 mr
->ops
->impl
.max_access_size
,
1393 memory_region_read_accessor
,
1395 } else if (mr
->ops
->read_with_attrs
) {
1396 return access_with_adjusted_size(addr
, pval
, size
,
1397 mr
->ops
->impl
.min_access_size
,
1398 mr
->ops
->impl
.max_access_size
,
1399 memory_region_read_with_attrs_accessor
,
1402 return access_with_adjusted_size(addr
, pval
, size
, 1, 4,
1403 memory_region_oldmmio_read_accessor
,
1408 MemTxResult
memory_region_dispatch_read(MemoryRegion
*mr
,
1416 if (!memory_region_access_valid(mr
, addr
, size
, false)) {
1417 *pval
= unassigned_mem_read(mr
, addr
, size
);
1418 return MEMTX_DECODE_ERROR
;
1421 r
= memory_region_dispatch_read1(mr
, addr
, pval
, size
, attrs
);
1422 adjust_endianness(mr
, pval
, size
);
1426 /* Return true if an eventfd was signalled */
1427 static bool memory_region_dispatch_write_eventfds(MemoryRegion
*mr
,
1433 MemoryRegionIoeventfd ioeventfd
= {
1434 .addr
= addrrange_make(int128_make64(addr
), int128_make64(size
)),
1439 for (i
= 0; i
< mr
->ioeventfd_nb
; i
++) {
1440 ioeventfd
.match_data
= mr
->ioeventfds
[i
].match_data
;
1441 ioeventfd
.e
= mr
->ioeventfds
[i
].e
;
1443 if (memory_region_ioeventfd_equal(ioeventfd
, mr
->ioeventfds
[i
])) {
1444 event_notifier_set(ioeventfd
.e
);
1452 MemTxResult
memory_region_dispatch_write(MemoryRegion
*mr
,
1458 if (!memory_region_access_valid(mr
, addr
, size
, true)) {
1459 unassigned_mem_write(mr
, addr
, data
, size
);
1460 return MEMTX_DECODE_ERROR
;
1463 adjust_endianness(mr
, &data
, size
);
1465 if ((!kvm_eventfds_enabled()) &&
1466 memory_region_dispatch_write_eventfds(mr
, addr
, data
, size
, attrs
)) {
1470 if (mr
->ops
->write
) {
1471 return access_with_adjusted_size(addr
, &data
, size
,
1472 mr
->ops
->impl
.min_access_size
,
1473 mr
->ops
->impl
.max_access_size
,
1474 memory_region_write_accessor
, mr
,
1476 } else if (mr
->ops
->write_with_attrs
) {
1478 access_with_adjusted_size(addr
, &data
, size
,
1479 mr
->ops
->impl
.min_access_size
,
1480 mr
->ops
->impl
.max_access_size
,
1481 memory_region_write_with_attrs_accessor
,
1484 return access_with_adjusted_size(addr
, &data
, size
, 1, 4,
1485 memory_region_oldmmio_write_accessor
,
1490 void memory_region_init_io(MemoryRegion
*mr
,
1492 const MemoryRegionOps
*ops
,
1497 memory_region_init(mr
, owner
, name
, size
);
1498 mr
->ops
= ops
? ops
: &unassigned_mem_ops
;
1499 mr
->opaque
= opaque
;
1500 mr
->terminates
= true;
1503 void memory_region_init_ram_nomigrate(MemoryRegion
*mr
,
1509 memory_region_init_ram_shared_nomigrate(mr
, owner
, name
, size
, false, errp
);
1512 void memory_region_init_ram_shared_nomigrate(MemoryRegion
*mr
,
1519 memory_region_init(mr
, owner
, name
, size
);
1521 mr
->terminates
= true;
1522 mr
->destructor
= memory_region_destructor_ram
;
1523 mr
->ram_block
= qemu_ram_alloc(size
, share
, mr
, errp
);
1524 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1527 void memory_region_init_resizeable_ram(MemoryRegion
*mr
,
1532 void (*resized
)(const char*,
1537 memory_region_init(mr
, owner
, name
, size
);
1539 mr
->terminates
= true;
1540 mr
->destructor
= memory_region_destructor_ram
;
1541 mr
->ram_block
= qemu_ram_alloc_resizeable(size
, max_size
, resized
,
1543 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1547 void memory_region_init_ram_from_file(MemoryRegion
*mr
,
1548 struct Object
*owner
,
1556 memory_region_init(mr
, owner
, name
, size
);
1558 mr
->terminates
= true;
1559 mr
->destructor
= memory_region_destructor_ram
;
1561 mr
->ram_block
= qemu_ram_alloc_from_file(size
, mr
, share
, path
, errp
);
1562 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1565 void memory_region_init_ram_from_fd(MemoryRegion
*mr
,
1566 struct Object
*owner
,
1573 memory_region_init(mr
, owner
, name
, size
);
1575 mr
->terminates
= true;
1576 mr
->destructor
= memory_region_destructor_ram
;
1577 mr
->ram_block
= qemu_ram_alloc_from_fd(size
, mr
, share
, fd
, errp
);
1578 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1582 void memory_region_init_ram_ptr(MemoryRegion
*mr
,
1588 memory_region_init(mr
, owner
, name
, size
);
1590 mr
->terminates
= true;
1591 mr
->destructor
= memory_region_destructor_ram
;
1592 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1594 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1595 assert(ptr
!= NULL
);
1596 mr
->ram_block
= qemu_ram_alloc_from_ptr(size
, ptr
, mr
, &error_fatal
);
1599 void memory_region_init_ram_device_ptr(MemoryRegion
*mr
,
1605 memory_region_init_ram_ptr(mr
, owner
, name
, size
, ptr
);
1606 mr
->ram_device
= true;
1607 mr
->ops
= &ram_device_mem_ops
;
1611 void memory_region_init_alias(MemoryRegion
*mr
,
1618 memory_region_init(mr
, owner
, name
, size
);
1620 mr
->alias_offset
= offset
;
1623 void memory_region_init_rom_nomigrate(MemoryRegion
*mr
,
1624 struct Object
*owner
,
1629 memory_region_init(mr
, owner
, name
, size
);
1631 mr
->readonly
= true;
1632 mr
->terminates
= true;
1633 mr
->destructor
= memory_region_destructor_ram
;
1634 mr
->ram_block
= qemu_ram_alloc(size
, false, mr
, errp
);
1635 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1638 void memory_region_init_rom_device_nomigrate(MemoryRegion
*mr
,
1640 const MemoryRegionOps
*ops
,
1647 memory_region_init(mr
, owner
, name
, size
);
1649 mr
->opaque
= opaque
;
1650 mr
->terminates
= true;
1651 mr
->rom_device
= true;
1652 mr
->destructor
= memory_region_destructor_ram
;
1653 mr
->ram_block
= qemu_ram_alloc(size
, false, mr
, errp
);
1656 void memory_region_init_iommu(void *_iommu_mr
,
1657 size_t instance_size
,
1658 const char *mrtypename
,
1663 struct IOMMUMemoryRegion
*iommu_mr
;
1664 struct MemoryRegion
*mr
;
1666 object_initialize(_iommu_mr
, instance_size
, mrtypename
);
1667 mr
= MEMORY_REGION(_iommu_mr
);
1668 memory_region_do_init(mr
, owner
, name
, size
);
1669 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1670 mr
->terminates
= true; /* then re-forwards */
1671 QLIST_INIT(&iommu_mr
->iommu_notify
);
1672 iommu_mr
->iommu_notify_flags
= IOMMU_NOTIFIER_NONE
;
1675 static void memory_region_finalize(Object
*obj
)
1677 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1679 assert(!mr
->container
);
1681 /* We know the region is not visible in any address space (it
1682 * does not have a container and cannot be a root either because
1683 * it has no references, so we can blindly clear mr->enabled.
1684 * memory_region_set_enabled instead could trigger a transaction
1685 * and cause an infinite loop.
1687 mr
->enabled
= false;
1688 memory_region_transaction_begin();
1689 while (!QTAILQ_EMPTY(&mr
->subregions
)) {
1690 MemoryRegion
*subregion
= QTAILQ_FIRST(&mr
->subregions
);
1691 memory_region_del_subregion(mr
, subregion
);
1693 memory_region_transaction_commit();
1696 memory_region_clear_coalescing(mr
);
1697 g_free((char *)mr
->name
);
1698 g_free(mr
->ioeventfds
);
1701 Object
*memory_region_owner(MemoryRegion
*mr
)
1703 Object
*obj
= OBJECT(mr
);
1707 void memory_region_ref(MemoryRegion
*mr
)
1709 /* MMIO callbacks most likely will access data that belongs
1710 * to the owner, hence the need to ref/unref the owner whenever
1711 * the memory region is in use.
1713 * The memory region is a child of its owner. As long as the
1714 * owner doesn't call unparent itself on the memory region,
1715 * ref-ing the owner will also keep the memory region alive.
1716 * Memory regions without an owner are supposed to never go away;
1717 * we do not ref/unref them because it slows down DMA sensibly.
1719 if (mr
&& mr
->owner
) {
1720 object_ref(mr
->owner
);
1724 void memory_region_unref(MemoryRegion
*mr
)
1726 if (mr
&& mr
->owner
) {
1727 object_unref(mr
->owner
);
1731 uint64_t memory_region_size(MemoryRegion
*mr
)
1733 if (int128_eq(mr
->size
, int128_2_64())) {
1736 return int128_get64(mr
->size
);
1739 const char *memory_region_name(const MemoryRegion
*mr
)
1742 ((MemoryRegion
*)mr
)->name
=
1743 object_get_canonical_path_component(OBJECT(mr
));
1748 bool memory_region_is_ram_device(MemoryRegion
*mr
)
1750 return mr
->ram_device
;
1753 uint8_t memory_region_get_dirty_log_mask(MemoryRegion
*mr
)
1755 uint8_t mask
= mr
->dirty_log_mask
;
1756 if (global_dirty_log
&& mr
->ram_block
) {
1757 mask
|= (1 << DIRTY_MEMORY_MIGRATION
);
1762 bool memory_region_is_logging(MemoryRegion
*mr
, uint8_t client
)
1764 return memory_region_get_dirty_log_mask(mr
) & (1 << client
);
1767 static void memory_region_update_iommu_notify_flags(IOMMUMemoryRegion
*iommu_mr
)
1769 IOMMUNotifierFlag flags
= IOMMU_NOTIFIER_NONE
;
1770 IOMMUNotifier
*iommu_notifier
;
1771 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1773 IOMMU_NOTIFIER_FOREACH(iommu_notifier
, iommu_mr
) {
1774 flags
|= iommu_notifier
->notifier_flags
;
1777 if (flags
!= iommu_mr
->iommu_notify_flags
&& imrc
->notify_flag_changed
) {
1778 imrc
->notify_flag_changed(iommu_mr
,
1779 iommu_mr
->iommu_notify_flags
,
1783 iommu_mr
->iommu_notify_flags
= flags
;
1786 void memory_region_register_iommu_notifier(MemoryRegion
*mr
,
1789 IOMMUMemoryRegion
*iommu_mr
;
1792 memory_region_register_iommu_notifier(mr
->alias
, n
);
1796 /* We need to register for at least one bitfield */
1797 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1798 assert(n
->notifier_flags
!= IOMMU_NOTIFIER_NONE
);
1799 assert(n
->start
<= n
->end
);
1800 QLIST_INSERT_HEAD(&iommu_mr
->iommu_notify
, n
, node
);
1801 memory_region_update_iommu_notify_flags(iommu_mr
);
1804 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion
*iommu_mr
)
1806 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1808 if (imrc
->get_min_page_size
) {
1809 return imrc
->get_min_page_size(iommu_mr
);
1811 return TARGET_PAGE_SIZE
;
1814 void memory_region_iommu_replay(IOMMUMemoryRegion
*iommu_mr
, IOMMUNotifier
*n
)
1816 MemoryRegion
*mr
= MEMORY_REGION(iommu_mr
);
1817 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1818 hwaddr addr
, granularity
;
1819 IOMMUTLBEntry iotlb
;
1821 /* If the IOMMU has its own replay callback, override */
1823 imrc
->replay(iommu_mr
, n
);
1827 granularity
= memory_region_iommu_get_min_page_size(iommu_mr
);
1829 for (addr
= 0; addr
< memory_region_size(mr
); addr
+= granularity
) {
1830 iotlb
= imrc
->translate(iommu_mr
, addr
, IOMMU_NONE
);
1831 if (iotlb
.perm
!= IOMMU_NONE
) {
1832 n
->notify(n
, &iotlb
);
1835 /* if (2^64 - MR size) < granularity, it's possible to get an
1836 * infinite loop here. This should catch such a wraparound */
1837 if ((addr
+ granularity
) < addr
) {
1843 void memory_region_iommu_replay_all(IOMMUMemoryRegion
*iommu_mr
)
1845 IOMMUNotifier
*notifier
;
1847 IOMMU_NOTIFIER_FOREACH(notifier
, iommu_mr
) {
1848 memory_region_iommu_replay(iommu_mr
, notifier
);
1852 void memory_region_unregister_iommu_notifier(MemoryRegion
*mr
,
1855 IOMMUMemoryRegion
*iommu_mr
;
1858 memory_region_unregister_iommu_notifier(mr
->alias
, n
);
1861 QLIST_REMOVE(n
, node
);
1862 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1863 memory_region_update_iommu_notify_flags(iommu_mr
);
1866 void memory_region_notify_one(IOMMUNotifier
*notifier
,
1867 IOMMUTLBEntry
*entry
)
1869 IOMMUNotifierFlag request_flags
;
1872 * Skip the notification if the notification does not overlap
1873 * with registered range.
1875 if (notifier
->start
> entry
->iova
+ entry
->addr_mask
||
1876 notifier
->end
< entry
->iova
) {
1880 if (entry
->perm
& IOMMU_RW
) {
1881 request_flags
= IOMMU_NOTIFIER_MAP
;
1883 request_flags
= IOMMU_NOTIFIER_UNMAP
;
1886 if (notifier
->notifier_flags
& request_flags
) {
1887 notifier
->notify(notifier
, entry
);
1891 void memory_region_notify_iommu(IOMMUMemoryRegion
*iommu_mr
,
1892 IOMMUTLBEntry entry
)
1894 IOMMUNotifier
*iommu_notifier
;
1896 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr
)));
1898 IOMMU_NOTIFIER_FOREACH(iommu_notifier
, iommu_mr
) {
1899 memory_region_notify_one(iommu_notifier
, &entry
);
1903 int memory_region_iommu_get_attr(IOMMUMemoryRegion
*iommu_mr
,
1904 enum IOMMUMemoryRegionAttr attr
,
1907 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1909 if (!imrc
->get_attr
) {
1913 return imrc
->get_attr(iommu_mr
, attr
, data
);
1916 void memory_region_set_log(MemoryRegion
*mr
, bool log
, unsigned client
)
1918 uint8_t mask
= 1 << client
;
1919 uint8_t old_logging
;
1921 assert(client
== DIRTY_MEMORY_VGA
);
1922 old_logging
= mr
->vga_logging_count
;
1923 mr
->vga_logging_count
+= log
? 1 : -1;
1924 if (!!old_logging
== !!mr
->vga_logging_count
) {
1928 memory_region_transaction_begin();
1929 mr
->dirty_log_mask
= (mr
->dirty_log_mask
& ~mask
) | (log
* mask
);
1930 memory_region_update_pending
|= mr
->enabled
;
1931 memory_region_transaction_commit();
1934 bool memory_region_get_dirty(MemoryRegion
*mr
, hwaddr addr
,
1935 hwaddr size
, unsigned client
)
1937 assert(mr
->ram_block
);
1938 return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr
) + addr
,
1942 void memory_region_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
1945 assert(mr
->ram_block
);
1946 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr
) + addr
,
1948 memory_region_get_dirty_log_mask(mr
));
1951 static void memory_region_sync_dirty_bitmap(MemoryRegion
*mr
)
1953 MemoryListener
*listener
;
1958 /* If the same address space has multiple log_sync listeners, we
1959 * visit that address space's FlatView multiple times. But because
1960 * log_sync listeners are rare, it's still cheaper than walking each
1961 * address space once.
1963 QTAILQ_FOREACH(listener
, &memory_listeners
, link
) {
1964 if (!listener
->log_sync
) {
1967 as
= listener
->address_space
;
1968 view
= address_space_get_flatview(as
);
1969 FOR_EACH_FLAT_RANGE(fr
, view
) {
1970 if (fr
->dirty_log_mask
&& (!mr
|| fr
->mr
== mr
)) {
1971 MemoryRegionSection mrs
= section_from_flat_range(fr
, view
);
1972 listener
->log_sync(listener
, &mrs
);
1975 flatview_unref(view
);
1979 DirtyBitmapSnapshot
*memory_region_snapshot_and_clear_dirty(MemoryRegion
*mr
,
1984 assert(mr
->ram_block
);
1985 memory_region_sync_dirty_bitmap(mr
);
1986 return cpu_physical_memory_snapshot_and_clear_dirty(
1987 memory_region_get_ram_addr(mr
) + addr
, size
, client
);
1990 bool memory_region_snapshot_get_dirty(MemoryRegion
*mr
, DirtyBitmapSnapshot
*snap
,
1991 hwaddr addr
, hwaddr size
)
1993 assert(mr
->ram_block
);
1994 return cpu_physical_memory_snapshot_get_dirty(snap
,
1995 memory_region_get_ram_addr(mr
) + addr
, size
);
1998 void memory_region_set_readonly(MemoryRegion
*mr
, bool readonly
)
2000 if (mr
->readonly
!= readonly
) {
2001 memory_region_transaction_begin();
2002 mr
->readonly
= readonly
;
2003 memory_region_update_pending
|= mr
->enabled
;
2004 memory_region_transaction_commit();
2008 void memory_region_rom_device_set_romd(MemoryRegion
*mr
, bool romd_mode
)
2010 if (mr
->romd_mode
!= romd_mode
) {
2011 memory_region_transaction_begin();
2012 mr
->romd_mode
= romd_mode
;
2013 memory_region_update_pending
|= mr
->enabled
;
2014 memory_region_transaction_commit();
2018 void memory_region_reset_dirty(MemoryRegion
*mr
, hwaddr addr
,
2019 hwaddr size
, unsigned client
)
2021 assert(mr
->ram_block
);
2022 cpu_physical_memory_test_and_clear_dirty(
2023 memory_region_get_ram_addr(mr
) + addr
, size
, client
);
2026 int memory_region_get_fd(MemoryRegion
*mr
)
2034 fd
= mr
->ram_block
->fd
;
2040 void *memory_region_get_ram_ptr(MemoryRegion
*mr
)
2043 uint64_t offset
= 0;
2047 offset
+= mr
->alias_offset
;
2050 assert(mr
->ram_block
);
2051 ptr
= qemu_map_ram_ptr(mr
->ram_block
, offset
);
2057 MemoryRegion
*memory_region_from_host(void *ptr
, ram_addr_t
*offset
)
2061 block
= qemu_ram_block_from_host(ptr
, false, offset
);
2069 ram_addr_t
memory_region_get_ram_addr(MemoryRegion
*mr
)
2071 return mr
->ram_block
? mr
->ram_block
->offset
: RAM_ADDR_INVALID
;
2074 void memory_region_ram_resize(MemoryRegion
*mr
, ram_addr_t newsize
, Error
**errp
)
2076 assert(mr
->ram_block
);
2078 qemu_ram_resize(mr
->ram_block
, newsize
, errp
);
2081 static void memory_region_update_coalesced_range_as(MemoryRegion
*mr
, AddressSpace
*as
)
2085 CoalescedMemoryRange
*cmr
;
2087 MemoryRegionSection section
;
2089 view
= address_space_get_flatview(as
);
2090 FOR_EACH_FLAT_RANGE(fr
, view
) {
2092 section
= (MemoryRegionSection
) {
2094 .offset_within_address_space
= int128_get64(fr
->addr
.start
),
2095 .size
= fr
->addr
.size
,
2098 MEMORY_LISTENER_CALL(as
, coalesced_mmio_del
, Reverse
, §ion
,
2099 int128_get64(fr
->addr
.start
),
2100 int128_get64(fr
->addr
.size
));
2101 QTAILQ_FOREACH(cmr
, &mr
->coalesced
, link
) {
2102 tmp
= addrrange_shift(cmr
->addr
,
2103 int128_sub(fr
->addr
.start
,
2104 int128_make64(fr
->offset_in_region
)));
2105 if (!addrrange_intersects(tmp
, fr
->addr
)) {
2108 tmp
= addrrange_intersection(tmp
, fr
->addr
);
2109 MEMORY_LISTENER_CALL(as
, coalesced_mmio_add
, Forward
, §ion
,
2110 int128_get64(tmp
.start
),
2111 int128_get64(tmp
.size
));
2115 flatview_unref(view
);
2118 static void memory_region_update_coalesced_range(MemoryRegion
*mr
)
2122 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
2123 memory_region_update_coalesced_range_as(mr
, as
);
2127 void memory_region_set_coalescing(MemoryRegion
*mr
)
2129 memory_region_clear_coalescing(mr
);
2130 memory_region_add_coalescing(mr
, 0, int128_get64(mr
->size
));
2133 void memory_region_add_coalescing(MemoryRegion
*mr
,
2137 CoalescedMemoryRange
*cmr
= g_malloc(sizeof(*cmr
));
2139 cmr
->addr
= addrrange_make(int128_make64(offset
), int128_make64(size
));
2140 QTAILQ_INSERT_TAIL(&mr
->coalesced
, cmr
, link
);
2141 memory_region_update_coalesced_range(mr
);
2142 memory_region_set_flush_coalesced(mr
);
2145 void memory_region_clear_coalescing(MemoryRegion
*mr
)
2147 CoalescedMemoryRange
*cmr
;
2148 bool updated
= false;
2150 qemu_flush_coalesced_mmio_buffer();
2151 mr
->flush_coalesced_mmio
= false;
2153 while (!QTAILQ_EMPTY(&mr
->coalesced
)) {
2154 cmr
= QTAILQ_FIRST(&mr
->coalesced
);
2155 QTAILQ_REMOVE(&mr
->coalesced
, cmr
, link
);
2161 memory_region_update_coalesced_range(mr
);
2165 void memory_region_set_flush_coalesced(MemoryRegion
*mr
)
2167 mr
->flush_coalesced_mmio
= true;
2170 void memory_region_clear_flush_coalesced(MemoryRegion
*mr
)
2172 qemu_flush_coalesced_mmio_buffer();
2173 if (QTAILQ_EMPTY(&mr
->coalesced
)) {
2174 mr
->flush_coalesced_mmio
= false;
2178 void memory_region_clear_global_locking(MemoryRegion
*mr
)
2180 mr
->global_locking
= false;
2183 static bool userspace_eventfd_warning
;
2185 void memory_region_add_eventfd(MemoryRegion
*mr
,
2192 MemoryRegionIoeventfd mrfd
= {
2193 .addr
.start
= int128_make64(addr
),
2194 .addr
.size
= int128_make64(size
),
2195 .match_data
= match_data
,
2201 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2202 userspace_eventfd_warning
))) {
2203 userspace_eventfd_warning
= true;
2204 error_report("Using eventfd without MMIO binding in KVM. "
2205 "Suboptimal performance expected");
2209 adjust_endianness(mr
, &mrfd
.data
, size
);
2211 memory_region_transaction_begin();
2212 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
2213 if (memory_region_ioeventfd_before(mrfd
, mr
->ioeventfds
[i
])) {
2218 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
2219 sizeof(*mr
->ioeventfds
) * mr
->ioeventfd_nb
);
2220 memmove(&mr
->ioeventfds
[i
+1], &mr
->ioeventfds
[i
],
2221 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
-1 - i
));
2222 mr
->ioeventfds
[i
] = mrfd
;
2223 ioeventfd_update_pending
|= mr
->enabled
;
2224 memory_region_transaction_commit();
2227 void memory_region_del_eventfd(MemoryRegion
*mr
,
2234 MemoryRegionIoeventfd mrfd
= {
2235 .addr
.start
= int128_make64(addr
),
2236 .addr
.size
= int128_make64(size
),
2237 .match_data
= match_data
,
2244 adjust_endianness(mr
, &mrfd
.data
, size
);
2246 memory_region_transaction_begin();
2247 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
2248 if (memory_region_ioeventfd_equal(mrfd
, mr
->ioeventfds
[i
])) {
2252 assert(i
!= mr
->ioeventfd_nb
);
2253 memmove(&mr
->ioeventfds
[i
], &mr
->ioeventfds
[i
+1],
2254 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
- (i
+1)));
2256 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
2257 sizeof(*mr
->ioeventfds
)*mr
->ioeventfd_nb
+ 1);
2258 ioeventfd_update_pending
|= mr
->enabled
;
2259 memory_region_transaction_commit();
2262 static void memory_region_update_container_subregions(MemoryRegion
*subregion
)
2264 MemoryRegion
*mr
= subregion
->container
;
2265 MemoryRegion
*other
;
2267 memory_region_transaction_begin();
2269 memory_region_ref(subregion
);
2270 QTAILQ_FOREACH(other
, &mr
->subregions
, subregions_link
) {
2271 if (subregion
->priority
>= other
->priority
) {
2272 QTAILQ_INSERT_BEFORE(other
, subregion
, subregions_link
);
2276 QTAILQ_INSERT_TAIL(&mr
->subregions
, subregion
, subregions_link
);
2278 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
2279 memory_region_transaction_commit();
2282 static void memory_region_add_subregion_common(MemoryRegion
*mr
,
2284 MemoryRegion
*subregion
)
2286 assert(!subregion
->container
);
2287 subregion
->container
= mr
;
2288 subregion
->addr
= offset
;
2289 memory_region_update_container_subregions(subregion
);
2292 void memory_region_add_subregion(MemoryRegion
*mr
,
2294 MemoryRegion
*subregion
)
2296 subregion
->priority
= 0;
2297 memory_region_add_subregion_common(mr
, offset
, subregion
);
2300 void memory_region_add_subregion_overlap(MemoryRegion
*mr
,
2302 MemoryRegion
*subregion
,
2305 subregion
->priority
= priority
;
2306 memory_region_add_subregion_common(mr
, offset
, subregion
);
2309 void memory_region_del_subregion(MemoryRegion
*mr
,
2310 MemoryRegion
*subregion
)
2312 memory_region_transaction_begin();
2313 assert(subregion
->container
== mr
);
2314 subregion
->container
= NULL
;
2315 QTAILQ_REMOVE(&mr
->subregions
, subregion
, subregions_link
);
2316 memory_region_unref(subregion
);
2317 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
2318 memory_region_transaction_commit();
2321 void memory_region_set_enabled(MemoryRegion
*mr
, bool enabled
)
2323 if (enabled
== mr
->enabled
) {
2326 memory_region_transaction_begin();
2327 mr
->enabled
= enabled
;
2328 memory_region_update_pending
= true;
2329 memory_region_transaction_commit();
2332 void memory_region_set_size(MemoryRegion
*mr
, uint64_t size
)
2334 Int128 s
= int128_make64(size
);
2336 if (size
== UINT64_MAX
) {
2339 if (int128_eq(s
, mr
->size
)) {
2342 memory_region_transaction_begin();
2344 memory_region_update_pending
= true;
2345 memory_region_transaction_commit();
2348 static void memory_region_readd_subregion(MemoryRegion
*mr
)
2350 MemoryRegion
*container
= mr
->container
;
2353 memory_region_transaction_begin();
2354 memory_region_ref(mr
);
2355 memory_region_del_subregion(container
, mr
);
2356 mr
->container
= container
;
2357 memory_region_update_container_subregions(mr
);
2358 memory_region_unref(mr
);
2359 memory_region_transaction_commit();
2363 void memory_region_set_address(MemoryRegion
*mr
, hwaddr addr
)
2365 if (addr
!= mr
->addr
) {
2367 memory_region_readd_subregion(mr
);
2371 void memory_region_set_alias_offset(MemoryRegion
*mr
, hwaddr offset
)
2375 if (offset
== mr
->alias_offset
) {
2379 memory_region_transaction_begin();
2380 mr
->alias_offset
= offset
;
2381 memory_region_update_pending
|= mr
->enabled
;
2382 memory_region_transaction_commit();
2385 uint64_t memory_region_get_alignment(const MemoryRegion
*mr
)
2390 static int cmp_flatrange_addr(const void *addr_
, const void *fr_
)
2392 const AddrRange
*addr
= addr_
;
2393 const FlatRange
*fr
= fr_
;
2395 if (int128_le(addrrange_end(*addr
), fr
->addr
.start
)) {
2397 } else if (int128_ge(addr
->start
, addrrange_end(fr
->addr
))) {
2403 static FlatRange
*flatview_lookup(FlatView
*view
, AddrRange addr
)
2405 return bsearch(&addr
, view
->ranges
, view
->nr
,
2406 sizeof(FlatRange
), cmp_flatrange_addr
);
2409 bool memory_region_is_mapped(MemoryRegion
*mr
)
2411 return mr
->container
? true : false;
2414 /* Same as memory_region_find, but it does not add a reference to the
2415 * returned region. It must be called from an RCU critical section.
2417 static MemoryRegionSection
memory_region_find_rcu(MemoryRegion
*mr
,
2418 hwaddr addr
, uint64_t size
)
2420 MemoryRegionSection ret
= { .mr
= NULL
};
2428 for (root
= mr
; root
->container
; ) {
2429 root
= root
->container
;
2433 as
= memory_region_to_address_space(root
);
2437 range
= addrrange_make(int128_make64(addr
), int128_make64(size
));
2439 view
= address_space_to_flatview(as
);
2440 fr
= flatview_lookup(view
, range
);
2445 while (fr
> view
->ranges
&& addrrange_intersects(fr
[-1].addr
, range
)) {
2451 range
= addrrange_intersection(range
, fr
->addr
);
2452 ret
.offset_within_region
= fr
->offset_in_region
;
2453 ret
.offset_within_region
+= int128_get64(int128_sub(range
.start
,
2455 ret
.size
= range
.size
;
2456 ret
.offset_within_address_space
= int128_get64(range
.start
);
2457 ret
.readonly
= fr
->readonly
;
2461 MemoryRegionSection
memory_region_find(MemoryRegion
*mr
,
2462 hwaddr addr
, uint64_t size
)
2464 MemoryRegionSection ret
;
2466 ret
= memory_region_find_rcu(mr
, addr
, size
);
2468 memory_region_ref(ret
.mr
);
2474 bool memory_region_present(MemoryRegion
*container
, hwaddr addr
)
2479 mr
= memory_region_find_rcu(container
, addr
, 1).mr
;
2481 return mr
&& mr
!= container
;
2484 void memory_global_dirty_log_sync(void)
2486 memory_region_sync_dirty_bitmap(NULL
);
2489 static VMChangeStateEntry
*vmstate_change
;
2491 void memory_global_dirty_log_start(void)
2493 if (vmstate_change
) {
2494 qemu_del_vm_change_state_handler(vmstate_change
);
2495 vmstate_change
= NULL
;
2498 global_dirty_log
= true;
2500 MEMORY_LISTENER_CALL_GLOBAL(log_global_start
, Forward
);
2502 /* Refresh DIRTY_LOG_MIGRATION bit. */
2503 memory_region_transaction_begin();
2504 memory_region_update_pending
= true;
2505 memory_region_transaction_commit();
2508 static void memory_global_dirty_log_do_stop(void)
2510 global_dirty_log
= false;
2512 /* Refresh DIRTY_LOG_MIGRATION bit. */
2513 memory_region_transaction_begin();
2514 memory_region_update_pending
= true;
2515 memory_region_transaction_commit();
2517 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop
, Reverse
);
2520 static void memory_vm_change_state_handler(void *opaque
, int running
,
2524 memory_global_dirty_log_do_stop();
2526 if (vmstate_change
) {
2527 qemu_del_vm_change_state_handler(vmstate_change
);
2528 vmstate_change
= NULL
;
2533 void memory_global_dirty_log_stop(void)
2535 if (!runstate_is_running()) {
2536 if (vmstate_change
) {
2539 vmstate_change
= qemu_add_vm_change_state_handler(
2540 memory_vm_change_state_handler
, NULL
);
2544 memory_global_dirty_log_do_stop();
2547 static void listener_add_address_space(MemoryListener
*listener
,
2553 if (listener
->begin
) {
2554 listener
->begin(listener
);
2556 if (global_dirty_log
) {
2557 if (listener
->log_global_start
) {
2558 listener
->log_global_start(listener
);
2562 view
= address_space_get_flatview(as
);
2563 FOR_EACH_FLAT_RANGE(fr
, view
) {
2564 MemoryRegionSection section
= section_from_flat_range(fr
, view
);
2566 if (listener
->region_add
) {
2567 listener
->region_add(listener
, §ion
);
2569 if (fr
->dirty_log_mask
&& listener
->log_start
) {
2570 listener
->log_start(listener
, §ion
, 0, fr
->dirty_log_mask
);
2573 if (listener
->commit
) {
2574 listener
->commit(listener
);
2576 flatview_unref(view
);
2579 static void listener_del_address_space(MemoryListener
*listener
,
2585 if (listener
->begin
) {
2586 listener
->begin(listener
);
2588 view
= address_space_get_flatview(as
);
2589 FOR_EACH_FLAT_RANGE(fr
, view
) {
2590 MemoryRegionSection section
= section_from_flat_range(fr
, view
);
2592 if (fr
->dirty_log_mask
&& listener
->log_stop
) {
2593 listener
->log_stop(listener
, §ion
, fr
->dirty_log_mask
, 0);
2595 if (listener
->region_del
) {
2596 listener
->region_del(listener
, §ion
);
2599 if (listener
->commit
) {
2600 listener
->commit(listener
);
2602 flatview_unref(view
);
2605 void memory_listener_register(MemoryListener
*listener
, AddressSpace
*as
)
2607 MemoryListener
*other
= NULL
;
2609 listener
->address_space
= as
;
2610 if (QTAILQ_EMPTY(&memory_listeners
)
2611 || listener
->priority
>= QTAILQ_LAST(&memory_listeners
,
2612 memory_listeners
)->priority
) {
2613 QTAILQ_INSERT_TAIL(&memory_listeners
, listener
, link
);
2615 QTAILQ_FOREACH(other
, &memory_listeners
, link
) {
2616 if (listener
->priority
< other
->priority
) {
2620 QTAILQ_INSERT_BEFORE(other
, listener
, link
);
2623 if (QTAILQ_EMPTY(&as
->listeners
)
2624 || listener
->priority
>= QTAILQ_LAST(&as
->listeners
,
2625 memory_listeners
)->priority
) {
2626 QTAILQ_INSERT_TAIL(&as
->listeners
, listener
, link_as
);
2628 QTAILQ_FOREACH(other
, &as
->listeners
, link_as
) {
2629 if (listener
->priority
< other
->priority
) {
2633 QTAILQ_INSERT_BEFORE(other
, listener
, link_as
);
2636 listener_add_address_space(listener
, as
);
2639 void memory_listener_unregister(MemoryListener
*listener
)
2641 if (!listener
->address_space
) {
2645 listener_del_address_space(listener
, listener
->address_space
);
2646 QTAILQ_REMOVE(&memory_listeners
, listener
, link
);
2647 QTAILQ_REMOVE(&listener
->address_space
->listeners
, listener
, link_as
);
2648 listener
->address_space
= NULL
;
2651 bool memory_region_request_mmio_ptr(MemoryRegion
*mr
, hwaddr addr
)
2655 unsigned offset
= 0;
2656 Object
*new_interface
;
2658 if (!mr
|| !mr
->ops
->request_ptr
) {
2663 * Avoid an update if the request_ptr call
2664 * memory_region_invalidate_mmio_ptr which seems to be likely when we use
2667 memory_region_transaction_begin();
2669 host
= mr
->ops
->request_ptr(mr
->opaque
, addr
- mr
->addr
, &size
, &offset
);
2671 if (!host
|| !size
) {
2672 memory_region_transaction_commit();
2676 new_interface
= object_new("mmio_interface");
2677 qdev_prop_set_uint64(DEVICE(new_interface
), "start", offset
);
2678 qdev_prop_set_uint64(DEVICE(new_interface
), "end", offset
+ size
- 1);
2679 qdev_prop_set_bit(DEVICE(new_interface
), "ro", true);
2680 qdev_prop_set_ptr(DEVICE(new_interface
), "host_ptr", host
);
2681 qdev_prop_set_ptr(DEVICE(new_interface
), "subregion", mr
);
2682 object_property_set_bool(OBJECT(new_interface
), true, "realized", NULL
);
2684 memory_region_transaction_commit();
2688 typedef struct MMIOPtrInvalidate
{
2694 } MMIOPtrInvalidate
;
2696 #define MAX_MMIO_INVALIDATE 10
2697 static MMIOPtrInvalidate mmio_ptr_invalidate_list
[MAX_MMIO_INVALIDATE
];
2699 static void memory_region_do_invalidate_mmio_ptr(CPUState
*cpu
,
2700 run_on_cpu_data data
)
2702 MMIOPtrInvalidate
*invalidate_data
= (MMIOPtrInvalidate
*)data
.host_ptr
;
2703 MemoryRegion
*mr
= invalidate_data
->mr
;
2704 hwaddr offset
= invalidate_data
->offset
;
2705 unsigned size
= invalidate_data
->size
;
2706 MemoryRegionSection section
= memory_region_find(mr
, offset
, size
);
2708 qemu_mutex_lock_iothread();
2710 /* Reset dirty so this doesn't happen later. */
2711 cpu_physical_memory_test_and_clear_dirty(offset
, size
, 1);
2713 if (section
.mr
!= mr
) {
2714 /* memory_region_find add a ref on section.mr */
2715 memory_region_unref(section
.mr
);
2716 if (MMIO_INTERFACE(section
.mr
->owner
)) {
2717 /* We found the interface just drop it. */
2718 object_property_set_bool(section
.mr
->owner
, false, "realized",
2720 object_unref(section
.mr
->owner
);
2721 object_unparent(section
.mr
->owner
);
2725 qemu_mutex_unlock_iothread();
2727 if (invalidate_data
->allocated
) {
2728 g_free(invalidate_data
);
2730 invalidate_data
->busy
= 0;
2734 void memory_region_invalidate_mmio_ptr(MemoryRegion
*mr
, hwaddr offset
,
2738 MMIOPtrInvalidate
*invalidate_data
= NULL
;
2740 for (i
= 0; i
< MAX_MMIO_INVALIDATE
; i
++) {
2741 if (atomic_cmpxchg(&(mmio_ptr_invalidate_list
[i
].busy
), 0, 1) == 0) {
2742 invalidate_data
= &mmio_ptr_invalidate_list
[i
];
2747 if (!invalidate_data
) {
2748 invalidate_data
= g_malloc0(sizeof(MMIOPtrInvalidate
));
2749 invalidate_data
->allocated
= 1;
2752 invalidate_data
->mr
= mr
;
2753 invalidate_data
->offset
= offset
;
2754 invalidate_data
->size
= size
;
2756 async_safe_run_on_cpu(first_cpu
, memory_region_do_invalidate_mmio_ptr
,
2757 RUN_ON_CPU_HOST_PTR(invalidate_data
));
2760 void address_space_init(AddressSpace
*as
, MemoryRegion
*root
, const char *name
)
2762 memory_region_ref(root
);
2764 as
->current_map
= NULL
;
2765 as
->ioeventfd_nb
= 0;
2766 as
->ioeventfds
= NULL
;
2767 QTAILQ_INIT(&as
->listeners
);
2768 QTAILQ_INSERT_TAIL(&address_spaces
, as
, address_spaces_link
);
2769 as
->name
= g_strdup(name
? name
: "anonymous");
2770 address_space_update_topology(as
);
2771 address_space_update_ioeventfds(as
);
2774 static void do_address_space_destroy(AddressSpace
*as
)
2776 assert(QTAILQ_EMPTY(&as
->listeners
));
2778 flatview_unref(as
->current_map
);
2780 g_free(as
->ioeventfds
);
2781 memory_region_unref(as
->root
);
2784 void address_space_destroy(AddressSpace
*as
)
2786 MemoryRegion
*root
= as
->root
;
2788 /* Flush out anything from MemoryListeners listening in on this */
2789 memory_region_transaction_begin();
2791 memory_region_transaction_commit();
2792 QTAILQ_REMOVE(&address_spaces
, as
, address_spaces_link
);
2794 /* At this point, as->dispatch and as->current_map are dummy
2795 * entries that the guest should never use. Wait for the old
2796 * values to expire before freeing the data.
2799 call_rcu(as
, do_address_space_destroy
, rcu
);
2802 static const char *memory_region_type(MemoryRegion
*mr
)
2804 if (memory_region_is_ram_device(mr
)) {
2806 } else if (memory_region_is_romd(mr
)) {
2808 } else if (memory_region_is_rom(mr
)) {
2810 } else if (memory_region_is_ram(mr
)) {
2817 typedef struct MemoryRegionList MemoryRegionList
;
2819 struct MemoryRegionList
{
2820 const MemoryRegion
*mr
;
2821 QTAILQ_ENTRY(MemoryRegionList
) mrqueue
;
2824 typedef QTAILQ_HEAD(mrqueue
, MemoryRegionList
) MemoryRegionListHead
;
2826 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2827 int128_sub((size), int128_one())) : 0)
2828 #define MTREE_INDENT " "
2830 static void mtree_print_mr(fprintf_function mon_printf
, void *f
,
2831 const MemoryRegion
*mr
, unsigned int level
,
2833 MemoryRegionListHead
*alias_print_queue
)
2835 MemoryRegionList
*new_ml
, *ml
, *next_ml
;
2836 MemoryRegionListHead submr_print_queue
;
2837 const MemoryRegion
*submr
;
2839 hwaddr cur_start
, cur_end
;
2845 for (i
= 0; i
< level
; i
++) {
2846 mon_printf(f
, MTREE_INDENT
);
2849 cur_start
= base
+ mr
->addr
;
2850 cur_end
= cur_start
+ MR_SIZE(mr
->size
);
2853 * Try to detect overflow of memory region. This should never
2854 * happen normally. When it happens, we dump something to warn the
2855 * user who is observing this.
2857 if (cur_start
< base
|| cur_end
< cur_start
) {
2858 mon_printf(f
, "[DETECTED OVERFLOW!] ");
2862 MemoryRegionList
*ml
;
2865 /* check if the alias is already in the queue */
2866 QTAILQ_FOREACH(ml
, alias_print_queue
, mrqueue
) {
2867 if (ml
->mr
== mr
->alias
) {
2873 ml
= g_new(MemoryRegionList
, 1);
2875 QTAILQ_INSERT_TAIL(alias_print_queue
, ml
, mrqueue
);
2877 mon_printf(f
, TARGET_FMT_plx
"-" TARGET_FMT_plx
2878 " (prio %d, %s): alias %s @%s " TARGET_FMT_plx
2879 "-" TARGET_FMT_plx
"%s\n",
2882 memory_region_type((MemoryRegion
*)mr
),
2883 memory_region_name(mr
),
2884 memory_region_name(mr
->alias
),
2886 mr
->alias_offset
+ MR_SIZE(mr
->size
),
2887 mr
->enabled
? "" : " [disabled]");
2890 TARGET_FMT_plx
"-" TARGET_FMT_plx
" (prio %d, %s): %s%s\n",
2893 memory_region_type((MemoryRegion
*)mr
),
2894 memory_region_name(mr
),
2895 mr
->enabled
? "" : " [disabled]");
2898 QTAILQ_INIT(&submr_print_queue
);
2900 QTAILQ_FOREACH(submr
, &mr
->subregions
, subregions_link
) {
2901 new_ml
= g_new(MemoryRegionList
, 1);
2903 QTAILQ_FOREACH(ml
, &submr_print_queue
, mrqueue
) {
2904 if (new_ml
->mr
->addr
< ml
->mr
->addr
||
2905 (new_ml
->mr
->addr
== ml
->mr
->addr
&&
2906 new_ml
->mr
->priority
> ml
->mr
->priority
)) {
2907 QTAILQ_INSERT_BEFORE(ml
, new_ml
, mrqueue
);
2913 QTAILQ_INSERT_TAIL(&submr_print_queue
, new_ml
, mrqueue
);
2917 QTAILQ_FOREACH(ml
, &submr_print_queue
, mrqueue
) {
2918 mtree_print_mr(mon_printf
, f
, ml
->mr
, level
+ 1, cur_start
,
2922 QTAILQ_FOREACH_SAFE(ml
, &submr_print_queue
, mrqueue
, next_ml
) {
2927 struct FlatViewInfo
{
2928 fprintf_function mon_printf
;
2934 static void mtree_print_flatview(gpointer key
, gpointer value
,
2937 FlatView
*view
= key
;
2938 GArray
*fv_address_spaces
= value
;
2939 struct FlatViewInfo
*fvi
= user_data
;
2940 fprintf_function p
= fvi
->mon_printf
;
2942 FlatRange
*range
= &view
->ranges
[0];
2948 p(f
, "FlatView #%d\n", fvi
->counter
);
2951 for (i
= 0; i
< fv_address_spaces
->len
; ++i
) {
2952 as
= g_array_index(fv_address_spaces
, AddressSpace
*, i
);
2953 p(f
, " AS \"%s\", root: %s", as
->name
, memory_region_name(as
->root
));
2954 if (as
->root
->alias
) {
2955 p(f
, ", alias %s", memory_region_name(as
->root
->alias
));
2960 p(f
, " Root memory region: %s\n",
2961 view
->root
? memory_region_name(view
->root
) : "(none)");
2964 p(f
, MTREE_INDENT
"No rendered FlatView\n\n");
2970 if (range
->offset_in_region
) {
2971 p(f
, MTREE_INDENT TARGET_FMT_plx
"-"
2972 TARGET_FMT_plx
" (prio %d, %s): %s @" TARGET_FMT_plx
"\n",
2973 int128_get64(range
->addr
.start
),
2974 int128_get64(range
->addr
.start
) + MR_SIZE(range
->addr
.size
),
2976 range
->readonly
? "rom" : memory_region_type(mr
),
2977 memory_region_name(mr
),
2978 range
->offset_in_region
);
2980 p(f
, MTREE_INDENT TARGET_FMT_plx
"-"
2981 TARGET_FMT_plx
" (prio %d, %s): %s\n",
2982 int128_get64(range
->addr
.start
),
2983 int128_get64(range
->addr
.start
) + MR_SIZE(range
->addr
.size
),
2985 range
->readonly
? "rom" : memory_region_type(mr
),
2986 memory_region_name(mr
));
2991 #if !defined(CONFIG_USER_ONLY)
2992 if (fvi
->dispatch_tree
&& view
->root
) {
2993 mtree_print_dispatch(p
, f
, view
->dispatch
, view
->root
);
3000 static gboolean
mtree_info_flatview_free(gpointer key
, gpointer value
,
3003 FlatView
*view
= key
;
3004 GArray
*fv_address_spaces
= value
;
3006 g_array_unref(fv_address_spaces
);
3007 flatview_unref(view
);
3012 void mtree_info(fprintf_function mon_printf
, void *f
, bool flatview
,
3015 MemoryRegionListHead ml_head
;
3016 MemoryRegionList
*ml
, *ml2
;
3021 struct FlatViewInfo fvi
= {
3022 .mon_printf
= mon_printf
,
3025 .dispatch_tree
= dispatch_tree
3027 GArray
*fv_address_spaces
;
3028 GHashTable
*views
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
3030 /* Gather all FVs in one table */
3031 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
3032 view
= address_space_get_flatview(as
);
3034 fv_address_spaces
= g_hash_table_lookup(views
, view
);
3035 if (!fv_address_spaces
) {
3036 fv_address_spaces
= g_array_new(false, false, sizeof(as
));
3037 g_hash_table_insert(views
, view
, fv_address_spaces
);
3040 g_array_append_val(fv_address_spaces
, as
);
3044 g_hash_table_foreach(views
, mtree_print_flatview
, &fvi
);
3047 g_hash_table_foreach_remove(views
, mtree_info_flatview_free
, 0);
3048 g_hash_table_unref(views
);
3053 QTAILQ_INIT(&ml_head
);
3055 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
3056 mon_printf(f
, "address-space: %s\n", as
->name
);
3057 mtree_print_mr(mon_printf
, f
, as
->root
, 1, 0, &ml_head
);
3058 mon_printf(f
, "\n");
3061 /* print aliased regions */
3062 QTAILQ_FOREACH(ml
, &ml_head
, mrqueue
) {
3063 mon_printf(f
, "memory-region: %s\n", memory_region_name(ml
->mr
));
3064 mtree_print_mr(mon_printf
, f
, ml
->mr
, 1, 0, &ml_head
);
3065 mon_printf(f
, "\n");
3068 QTAILQ_FOREACH_SAFE(ml
, &ml_head
, mrqueue
, ml2
) {
3073 void memory_region_init_ram(MemoryRegion
*mr
,
3074 struct Object
*owner
,
3079 DeviceState
*owner_dev
;
3082 memory_region_init_ram_nomigrate(mr
, owner
, name
, size
, &err
);
3084 error_propagate(errp
, err
);
3087 /* This will assert if owner is neither NULL nor a DeviceState.
3088 * We only want the owner here for the purposes of defining a
3089 * unique name for migration. TODO: Ideally we should implement
3090 * a naming scheme for Objects which are not DeviceStates, in
3091 * which case we can relax this restriction.
3093 owner_dev
= DEVICE(owner
);
3094 vmstate_register_ram(mr
, owner_dev
);
3097 void memory_region_init_rom(MemoryRegion
*mr
,
3098 struct Object
*owner
,
3103 DeviceState
*owner_dev
;
3106 memory_region_init_rom_nomigrate(mr
, owner
, name
, size
, &err
);
3108 error_propagate(errp
, err
);
3111 /* This will assert if owner is neither NULL nor a DeviceState.
3112 * We only want the owner here for the purposes of defining a
3113 * unique name for migration. TODO: Ideally we should implement
3114 * a naming scheme for Objects which are not DeviceStates, in
3115 * which case we can relax this restriction.
3117 owner_dev
= DEVICE(owner
);
3118 vmstate_register_ram(mr
, owner_dev
);
3121 void memory_region_init_rom_device(MemoryRegion
*mr
,
3122 struct Object
*owner
,
3123 const MemoryRegionOps
*ops
,
3129 DeviceState
*owner_dev
;
3132 memory_region_init_rom_device_nomigrate(mr
, owner
, ops
, opaque
,
3135 error_propagate(errp
, err
);
3138 /* This will assert if owner is neither NULL nor a DeviceState.
3139 * We only want the owner here for the purposes of defining a
3140 * unique name for migration. TODO: Ideally we should implement
3141 * a naming scheme for Objects which are not DeviceStates, in
3142 * which case we can relax this restriction.
3144 owner_dev
= DEVICE(owner
);
3145 vmstate_register_ram(mr
, owner_dev
);
3148 static const TypeInfo memory_region_info
= {
3149 .parent
= TYPE_OBJECT
,
3150 .name
= TYPE_MEMORY_REGION
,
3151 .instance_size
= sizeof(MemoryRegion
),
3152 .instance_init
= memory_region_initfn
,
3153 .instance_finalize
= memory_region_finalize
,
3156 static const TypeInfo iommu_memory_region_info
= {
3157 .parent
= TYPE_MEMORY_REGION
,
3158 .name
= TYPE_IOMMU_MEMORY_REGION
,
3159 .class_size
= sizeof(IOMMUMemoryRegionClass
),
3160 .instance_size
= sizeof(IOMMUMemoryRegion
),
3161 .instance_init
= iommu_memory_region_initfn
,
3165 static void memory_register_types(void)
3167 type_register_static(&memory_region_info
);
3168 type_register_static(&iommu_memory_region_info
);
3171 type_init(memory_register_types
)