4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
40 #else /* !CONFIG_USER_ONLY */
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
65 #include "migration/vmstate.h"
67 #include "qemu/range.h"
69 #include "qemu/mmap-alloc.h"
72 #include "monitor/monitor.h"
74 //#define DEBUG_SUBPAGE
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
80 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
82 static MemoryRegion
*system_memory
;
83 static MemoryRegion
*system_io
;
85 AddressSpace address_space_io
;
86 AddressSpace address_space_memory
;
88 MemoryRegion io_mem_rom
, io_mem_notdirty
;
89 static MemoryRegion io_mem_unassigned
;
91 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92 #define RAM_PREALLOC (1 << 0)
94 /* RAM is mmap-ed with MAP_SHARED */
95 #define RAM_SHARED (1 << 1)
97 /* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
100 #define RAM_RESIZEABLE (1 << 2)
102 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
103 * zero the page and wake waiting processes.
104 * (Set during postcopy)
106 #define RAM_UF_ZEROPAGE (1 << 3)
109 #ifdef TARGET_PAGE_BITS_VARY
110 int target_page_bits
;
111 bool target_page_bits_decided
;
114 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
115 /* current CPU in the current thread. It is only valid inside
117 __thread CPUState
*current_cpu
;
118 /* 0 = Do not count executed instructions.
119 1 = Precise instruction counting.
120 2 = Adaptive rate instruction counting. */
123 uintptr_t qemu_host_page_size
;
124 intptr_t qemu_host_page_mask
;
126 bool set_preferred_target_page_bits(int bits
)
128 /* The target page size is the lowest common denominator for all
129 * the CPUs in the system, so we can only make it smaller, never
130 * larger. And we can't make it smaller once we've committed to
133 #ifdef TARGET_PAGE_BITS_VARY
134 assert(bits
>= TARGET_PAGE_BITS_MIN
);
135 if (target_page_bits
== 0 || target_page_bits
> bits
) {
136 if (target_page_bits_decided
) {
139 target_page_bits
= bits
;
145 #if !defined(CONFIG_USER_ONLY)
147 static void finalize_target_page_bits(void)
149 #ifdef TARGET_PAGE_BITS_VARY
150 if (target_page_bits
== 0) {
151 target_page_bits
= TARGET_PAGE_BITS_MIN
;
153 target_page_bits_decided
= true;
157 typedef struct PhysPageEntry PhysPageEntry
;
159 struct PhysPageEntry
{
160 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
162 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
166 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
168 /* Size of the L2 (and L3, etc) page tables. */
169 #define ADDR_SPACE_BITS 64
172 #define P_L2_SIZE (1 << P_L2_BITS)
174 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
176 typedef PhysPageEntry Node
[P_L2_SIZE
];
178 typedef struct PhysPageMap
{
181 unsigned sections_nb
;
182 unsigned sections_nb_alloc
;
184 unsigned nodes_nb_alloc
;
186 MemoryRegionSection
*sections
;
189 struct AddressSpaceDispatch
{
190 MemoryRegionSection
*mru_section
;
191 /* This is a multi-level map on the physical address space.
192 * The bottom level has pointers to MemoryRegionSections.
194 PhysPageEntry phys_map
;
198 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
199 typedef struct subpage_t
{
203 uint16_t sub_section
[];
206 #define PHYS_SECTION_UNASSIGNED 0
207 #define PHYS_SECTION_NOTDIRTY 1
208 #define PHYS_SECTION_ROM 2
209 #define PHYS_SECTION_WATCH 3
211 static void io_mem_init(void);
212 static void memory_map_init(void);
213 static void tcg_commit(MemoryListener
*listener
);
215 static MemoryRegion io_mem_watch
;
218 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
219 * @cpu: the CPU whose AddressSpace this is
220 * @as: the AddressSpace itself
221 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
222 * @tcg_as_listener: listener for tracking changes to the AddressSpace
224 struct CPUAddressSpace
{
227 struct AddressSpaceDispatch
*memory_dispatch
;
228 MemoryListener tcg_as_listener
;
231 struct DirtyBitmapSnapshot
{
234 unsigned long dirty
[];
239 #if !defined(CONFIG_USER_ONLY)
241 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
243 static unsigned alloc_hint
= 16;
244 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
245 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, alloc_hint
);
246 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
247 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
248 alloc_hint
= map
->nodes_nb_alloc
;
252 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
259 ret
= map
->nodes_nb
++;
261 assert(ret
!= PHYS_MAP_NODE_NIL
);
262 assert(ret
!= map
->nodes_nb_alloc
);
264 e
.skip
= leaf
? 0 : 1;
265 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
266 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
267 memcpy(&p
[i
], &e
, sizeof(e
));
272 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
273 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
277 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
279 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
280 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
282 p
= map
->nodes
[lp
->ptr
];
283 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
285 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
286 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
292 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
298 static void phys_page_set(AddressSpaceDispatch
*d
,
299 hwaddr index
, hwaddr nb
,
302 /* Wildly overreserve - it doesn't matter much. */
303 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
305 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
308 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
309 * and update our entry so we can skip it and go directly to the destination.
311 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
)
313 unsigned valid_ptr
= P_L2_SIZE
;
318 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
323 for (i
= 0; i
< P_L2_SIZE
; i
++) {
324 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
331 phys_page_compact(&p
[i
], nodes
);
335 /* We can only compress if there's only one child. */
340 assert(valid_ptr
< P_L2_SIZE
);
342 /* Don't compress if it won't fit in the # of bits we have. */
343 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
347 lp
->ptr
= p
[valid_ptr
].ptr
;
348 if (!p
[valid_ptr
].skip
) {
349 /* If our only child is a leaf, make this a leaf. */
350 /* By design, we should have made this node a leaf to begin with so we
351 * should never reach here.
352 * But since it's so simple to handle this, let's do it just in case we
357 lp
->skip
+= p
[valid_ptr
].skip
;
361 void address_space_dispatch_compact(AddressSpaceDispatch
*d
)
363 if (d
->phys_map
.skip
) {
364 phys_page_compact(&d
->phys_map
, d
->map
.nodes
);
368 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
371 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
372 * the section must cover the entire address space.
374 return int128_gethi(section
->size
) ||
375 range_covers_byte(section
->offset_within_address_space
,
376 int128_getlo(section
->size
), addr
);
379 static MemoryRegionSection
*phys_page_find(AddressSpaceDispatch
*d
, hwaddr addr
)
381 PhysPageEntry lp
= d
->phys_map
, *p
;
382 Node
*nodes
= d
->map
.nodes
;
383 MemoryRegionSection
*sections
= d
->map
.sections
;
384 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
387 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
388 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
389 return §ions
[PHYS_SECTION_UNASSIGNED
];
392 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
395 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
396 return §ions
[lp
.ptr
];
398 return §ions
[PHYS_SECTION_UNASSIGNED
];
402 bool memory_region_is_unassigned(MemoryRegion
*mr
)
404 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
405 && mr
!= &io_mem_watch
;
408 /* Called from RCU critical section */
409 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
411 bool resolve_subpage
)
413 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
416 if (!section
|| section
== &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] ||
417 !section_covers_addr(section
, addr
)) {
418 section
= phys_page_find(d
, addr
);
419 atomic_set(&d
->mru_section
, section
);
421 if (resolve_subpage
&& section
->mr
->subpage
) {
422 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
423 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
428 /* Called from RCU critical section */
429 static MemoryRegionSection
*
430 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
431 hwaddr
*plen
, bool resolve_subpage
)
433 MemoryRegionSection
*section
;
437 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
438 /* Compute offset within MemoryRegionSection */
439 addr
-= section
->offset_within_address_space
;
441 /* Compute offset within MemoryRegion */
442 *xlat
= addr
+ section
->offset_within_region
;
446 /* MMIO registers can be expected to perform full-width accesses based only
447 * on their address, without considering adjacent registers that could
448 * decode to completely different MemoryRegions. When such registers
449 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
450 * regions overlap wildly. For this reason we cannot clamp the accesses
453 * If the length is small (as is the case for address_space_ldl/stl),
454 * everything works fine. If the incoming length is large, however,
455 * the caller really has to do the clamping through memory_access_size.
457 if (memory_region_is_ram(mr
)) {
458 diff
= int128_sub(section
->size
, int128_make64(addr
));
459 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
465 * address_space_translate_iommu - translate an address through an IOMMU
466 * memory region and then through the target address space.
468 * @iommu_mr: the IOMMU memory region that we start the translation from
469 * @addr: the address to be translated through the MMU
470 * @xlat: the translated address offset within the destination memory region.
471 * It cannot be %NULL.
472 * @plen_out: valid read/write length of the translated address. It
474 * @page_mask_out: page mask for the translated address. This
475 * should only be meaningful for IOMMU translated
476 * addresses, since there may be huge pages that this bit
477 * would tell. It can be %NULL if we don't care about it.
478 * @is_write: whether the translation operation is for write
479 * @is_mmio: whether this can be MMIO, set true if it can
480 * @target_as: the address space targeted by the IOMMU
482 * This function is called from RCU critical section. It is the common
483 * part of flatview_do_translate and address_space_translate_cached.
485 static MemoryRegionSection
address_space_translate_iommu(IOMMUMemoryRegion
*iommu_mr
,
488 hwaddr
*page_mask_out
,
491 AddressSpace
**target_as
)
493 MemoryRegionSection
*section
;
494 hwaddr page_mask
= (hwaddr
)-1;
498 IOMMUMemoryRegionClass
*imrc
= memory_region_get_iommu_class_nocheck(iommu_mr
);
499 IOMMUTLBEntry iotlb
= imrc
->translate(iommu_mr
, addr
, is_write
?
500 IOMMU_WO
: IOMMU_RO
);
502 if (!(iotlb
.perm
& (1 << is_write
))) {
506 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
507 | (addr
& iotlb
.addr_mask
));
508 page_mask
&= iotlb
.addr_mask
;
509 *plen_out
= MIN(*plen_out
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
510 *target_as
= iotlb
.target_as
;
512 section
= address_space_translate_internal(
513 address_space_to_dispatch(iotlb
.target_as
), addr
, xlat
,
516 iommu_mr
= memory_region_get_iommu(section
->mr
);
517 } while (unlikely(iommu_mr
));
520 *page_mask_out
= page_mask
;
525 return (MemoryRegionSection
) { .mr
= &io_mem_unassigned
};
529 * flatview_do_translate - translate an address in FlatView
531 * @fv: the flat view that we want to translate on
532 * @addr: the address to be translated in above address space
533 * @xlat: the translated address offset within memory region. It
535 * @plen_out: valid read/write length of the translated address. It
536 * can be @NULL when we don't care about it.
537 * @page_mask_out: page mask for the translated address. This
538 * should only be meaningful for IOMMU translated
539 * addresses, since there may be huge pages that this bit
540 * would tell. It can be @NULL if we don't care about it.
541 * @is_write: whether the translation operation is for write
542 * @is_mmio: whether this can be MMIO, set true if it can
543 * @target_as: the address space targeted by the IOMMU
545 * This function is called from RCU critical section
547 static MemoryRegionSection
flatview_do_translate(FlatView
*fv
,
551 hwaddr
*page_mask_out
,
554 AddressSpace
**target_as
)
556 MemoryRegionSection
*section
;
557 IOMMUMemoryRegion
*iommu_mr
;
558 hwaddr plen
= (hwaddr
)(-1);
564 section
= address_space_translate_internal(
565 flatview_to_dispatch(fv
), addr
, xlat
,
568 iommu_mr
= memory_region_get_iommu(section
->mr
);
569 if (unlikely(iommu_mr
)) {
570 return address_space_translate_iommu(iommu_mr
, xlat
,
571 plen_out
, page_mask_out
,
576 /* Not behind an IOMMU, use default page size. */
577 *page_mask_out
= ~TARGET_PAGE_MASK
;
583 /* Called from RCU critical section */
584 IOMMUTLBEntry
address_space_get_iotlb_entry(AddressSpace
*as
, hwaddr addr
,
587 MemoryRegionSection section
;
588 hwaddr xlat
, page_mask
;
591 * This can never be MMIO, and we don't really care about plen,
594 section
= flatview_do_translate(address_space_to_flatview(as
), addr
, &xlat
,
595 NULL
, &page_mask
, is_write
, false, &as
);
597 /* Illegal translation */
598 if (section
.mr
== &io_mem_unassigned
) {
602 /* Convert memory region offset into address space offset */
603 xlat
+= section
.offset_within_address_space
-
604 section
.offset_within_region
;
606 return (IOMMUTLBEntry
) {
608 .iova
= addr
& ~page_mask
,
609 .translated_addr
= xlat
& ~page_mask
,
610 .addr_mask
= page_mask
,
611 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
616 return (IOMMUTLBEntry
) {0};
619 /* Called from RCU critical section */
620 MemoryRegion
*flatview_translate(FlatView
*fv
, hwaddr addr
, hwaddr
*xlat
,
621 hwaddr
*plen
, bool is_write
)
624 MemoryRegionSection section
;
625 AddressSpace
*as
= NULL
;
627 /* This can be MMIO, so setup MMIO bit. */
628 section
= flatview_do_translate(fv
, addr
, xlat
, plen
, NULL
,
629 is_write
, true, &as
);
632 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
633 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
634 *plen
= MIN(page
, *plen
);
640 /* Called from RCU critical section */
641 MemoryRegionSection
*
642 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
643 hwaddr
*xlat
, hwaddr
*plen
)
645 MemoryRegionSection
*section
;
646 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpu
->cpu_ases
[asidx
].memory_dispatch
);
648 section
= address_space_translate_internal(d
, addr
, xlat
, plen
, false);
650 assert(!memory_region_is_iommu(section
->mr
));
655 #if !defined(CONFIG_USER_ONLY)
657 static int cpu_common_post_load(void *opaque
, int version_id
)
659 CPUState
*cpu
= opaque
;
661 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
662 version_id is increased. */
663 cpu
->interrupt_request
&= ~0x01;
666 /* loadvm has just updated the content of RAM, bypassing the
667 * usual mechanisms that ensure we flush TBs for writes to
668 * memory we've translated code from. So we must flush all TBs,
669 * which will now be stale.
676 static int cpu_common_pre_load(void *opaque
)
678 CPUState
*cpu
= opaque
;
680 cpu
->exception_index
= -1;
685 static bool cpu_common_exception_index_needed(void *opaque
)
687 CPUState
*cpu
= opaque
;
689 return tcg_enabled() && cpu
->exception_index
!= -1;
692 static const VMStateDescription vmstate_cpu_common_exception_index
= {
693 .name
= "cpu_common/exception_index",
695 .minimum_version_id
= 1,
696 .needed
= cpu_common_exception_index_needed
,
697 .fields
= (VMStateField
[]) {
698 VMSTATE_INT32(exception_index
, CPUState
),
699 VMSTATE_END_OF_LIST()
703 static bool cpu_common_crash_occurred_needed(void *opaque
)
705 CPUState
*cpu
= opaque
;
707 return cpu
->crash_occurred
;
710 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
711 .name
= "cpu_common/crash_occurred",
713 .minimum_version_id
= 1,
714 .needed
= cpu_common_crash_occurred_needed
,
715 .fields
= (VMStateField
[]) {
716 VMSTATE_BOOL(crash_occurred
, CPUState
),
717 VMSTATE_END_OF_LIST()
721 const VMStateDescription vmstate_cpu_common
= {
722 .name
= "cpu_common",
724 .minimum_version_id
= 1,
725 .pre_load
= cpu_common_pre_load
,
726 .post_load
= cpu_common_post_load
,
727 .fields
= (VMStateField
[]) {
728 VMSTATE_UINT32(halted
, CPUState
),
729 VMSTATE_UINT32(interrupt_request
, CPUState
),
730 VMSTATE_END_OF_LIST()
732 .subsections
= (const VMStateDescription
*[]) {
733 &vmstate_cpu_common_exception_index
,
734 &vmstate_cpu_common_crash_occurred
,
741 CPUState
*qemu_get_cpu(int index
)
746 if (cpu
->cpu_index
== index
) {
754 #if !defined(CONFIG_USER_ONLY)
755 void cpu_address_space_init(CPUState
*cpu
, int asidx
,
756 const char *prefix
, MemoryRegion
*mr
)
758 CPUAddressSpace
*newas
;
759 AddressSpace
*as
= g_new0(AddressSpace
, 1);
763 as_name
= g_strdup_printf("%s-%d", prefix
, cpu
->cpu_index
);
764 address_space_init(as
, mr
, as_name
);
767 /* Target code should have set num_ases before calling us */
768 assert(asidx
< cpu
->num_ases
);
771 /* address space 0 gets the convenience alias */
775 /* KVM cannot currently support multiple address spaces. */
776 assert(asidx
== 0 || !kvm_enabled());
778 if (!cpu
->cpu_ases
) {
779 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
782 newas
= &cpu
->cpu_ases
[asidx
];
786 newas
->tcg_as_listener
.commit
= tcg_commit
;
787 memory_listener_register(&newas
->tcg_as_listener
, as
);
791 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
793 /* Return the AddressSpace corresponding to the specified index */
794 return cpu
->cpu_ases
[asidx
].as
;
798 void cpu_exec_unrealizefn(CPUState
*cpu
)
800 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
802 cpu_list_remove(cpu
);
804 if (cc
->vmsd
!= NULL
) {
805 vmstate_unregister(NULL
, cc
->vmsd
, cpu
);
807 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
808 vmstate_unregister(NULL
, &vmstate_cpu_common
, cpu
);
812 Property cpu_common_props
[] = {
813 #ifndef CONFIG_USER_ONLY
814 /* Create a memory property for softmmu CPU object,
815 * so users can wire up its memory. (This can't go in qom/cpu.c
816 * because that file is compiled only once for both user-mode
817 * and system builds.) The default if no link is set up is to use
818 * the system address space.
820 DEFINE_PROP_LINK("memory", CPUState
, memory
, TYPE_MEMORY_REGION
,
823 DEFINE_PROP_END_OF_LIST(),
826 void cpu_exec_initfn(CPUState
*cpu
)
831 #ifndef CONFIG_USER_ONLY
832 cpu
->thread_id
= qemu_get_thread_id();
833 cpu
->memory
= system_memory
;
834 object_ref(OBJECT(cpu
->memory
));
838 void cpu_exec_realizefn(CPUState
*cpu
, Error
**errp
)
840 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
841 static bool tcg_target_initialized
;
845 if (tcg_enabled() && !tcg_target_initialized
) {
846 tcg_target_initialized
= true;
847 cc
->tcg_initialize();
850 #ifndef CONFIG_USER_ONLY
851 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
852 vmstate_register(NULL
, cpu
->cpu_index
, &vmstate_cpu_common
, cpu
);
854 if (cc
->vmsd
!= NULL
) {
855 vmstate_register(NULL
, cpu
->cpu_index
, cc
->vmsd
, cpu
);
860 const char *parse_cpu_model(const char *cpu_model
)
864 gchar
**model_pieces
;
865 const char *cpu_type
;
867 model_pieces
= g_strsplit(cpu_model
, ",", 2);
869 oc
= cpu_class_by_name(CPU_RESOLVING_TYPE
, model_pieces
[0]);
871 error_report("unable to find CPU model '%s'", model_pieces
[0]);
872 g_strfreev(model_pieces
);
876 cpu_type
= object_class_get_name(oc
);
878 cc
->parse_features(cpu_type
, model_pieces
[1], &error_fatal
);
879 g_strfreev(model_pieces
);
883 #if defined(CONFIG_USER_ONLY)
884 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
888 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
893 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
896 hwaddr phys
= cpu_get_phys_page_attrs_debug(cpu
, pc
, &attrs
);
897 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
899 /* Locks grabbed by tb_invalidate_phys_addr */
900 tb_invalidate_phys_addr(cpu
->cpu_ases
[asidx
].as
,
901 phys
| (pc
& ~TARGET_PAGE_MASK
));
906 #if defined(CONFIG_USER_ONLY)
907 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
912 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
918 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
922 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
923 int flags
, CPUWatchpoint
**watchpoint
)
928 /* Add a watchpoint. */
929 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
930 int flags
, CPUWatchpoint
**watchpoint
)
934 /* forbid ranges which are empty or run off the end of the address space */
935 if (len
== 0 || (addr
+ len
- 1) < addr
) {
936 error_report("tried to set invalid watchpoint at %"
937 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
940 wp
= g_malloc(sizeof(*wp
));
946 /* keep all GDB-injected watchpoints in front */
947 if (flags
& BP_GDB
) {
948 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
950 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
953 tlb_flush_page(cpu
, addr
);
960 /* Remove a specific watchpoint. */
961 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
966 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
967 if (addr
== wp
->vaddr
&& len
== wp
->len
968 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
969 cpu_watchpoint_remove_by_ref(cpu
, wp
);
976 /* Remove a specific watchpoint by reference. */
977 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
979 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
981 tlb_flush_page(cpu
, watchpoint
->vaddr
);
986 /* Remove all matching watchpoints. */
987 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
989 CPUWatchpoint
*wp
, *next
;
991 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
992 if (wp
->flags
& mask
) {
993 cpu_watchpoint_remove_by_ref(cpu
, wp
);
998 /* Return true if this watchpoint address matches the specified
999 * access (ie the address range covered by the watchpoint overlaps
1000 * partially or completely with the address range covered by the
1003 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
1007 /* We know the lengths are non-zero, but a little caution is
1008 * required to avoid errors in the case where the range ends
1009 * exactly at the top of the address space and so addr + len
1010 * wraps round to zero.
1012 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
1013 vaddr addrend
= addr
+ len
- 1;
1015 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
1020 /* Add a breakpoint. */
1021 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
1022 CPUBreakpoint
**breakpoint
)
1026 bp
= g_malloc(sizeof(*bp
));
1031 /* keep all GDB-injected breakpoints in front */
1032 if (flags
& BP_GDB
) {
1033 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
1035 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
1038 breakpoint_invalidate(cpu
, pc
);
1046 /* Remove a specific breakpoint. */
1047 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
1051 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
1052 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1053 cpu_breakpoint_remove_by_ref(cpu
, bp
);
1060 /* Remove a specific breakpoint by reference. */
1061 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
1063 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
1065 breakpoint_invalidate(cpu
, breakpoint
->pc
);
1070 /* Remove all matching breakpoints. */
1071 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
1073 CPUBreakpoint
*bp
, *next
;
1075 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
1076 if (bp
->flags
& mask
) {
1077 cpu_breakpoint_remove_by_ref(cpu
, bp
);
1082 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1083 CPU loop after each instruction */
1084 void cpu_single_step(CPUState
*cpu
, int enabled
)
1086 if (cpu
->singlestep_enabled
!= enabled
) {
1087 cpu
->singlestep_enabled
= enabled
;
1088 if (kvm_enabled()) {
1089 kvm_update_guest_debug(cpu
, 0);
1091 /* must flush all the translated code to avoid inconsistencies */
1092 /* XXX: only flush what is necessary */
1098 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
1105 fprintf(stderr
, "qemu: fatal: ");
1106 vfprintf(stderr
, fmt
, ap
);
1107 fprintf(stderr
, "\n");
1108 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1109 if (qemu_log_separate()) {
1111 qemu_log("qemu: fatal: ");
1112 qemu_log_vprintf(fmt
, ap2
);
1114 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1122 #if defined(CONFIG_USER_ONLY)
1124 struct sigaction act
;
1125 sigfillset(&act
.sa_mask
);
1126 act
.sa_handler
= SIG_DFL
;
1128 sigaction(SIGABRT
, &act
, NULL
);
1134 #if !defined(CONFIG_USER_ONLY)
1135 /* Called from RCU critical section */
1136 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
1140 block
= atomic_rcu_read(&ram_list
.mru_block
);
1141 if (block
&& addr
- block
->offset
< block
->max_length
) {
1144 RAMBLOCK_FOREACH(block
) {
1145 if (addr
- block
->offset
< block
->max_length
) {
1150 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1154 /* It is safe to write mru_block outside the iothread lock. This
1159 * xxx removed from list
1163 * call_rcu(reclaim_ramblock, xxx);
1166 * atomic_rcu_set is not needed here. The block was already published
1167 * when it was placed into the list. Here we're just making an extra
1168 * copy of the pointer.
1170 ram_list
.mru_block
= block
;
1174 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
1181 end
= TARGET_PAGE_ALIGN(start
+ length
);
1182 start
&= TARGET_PAGE_MASK
;
1185 block
= qemu_get_ram_block(start
);
1186 assert(block
== qemu_get_ram_block(end
- 1));
1187 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
1189 tlb_reset_dirty(cpu
, start1
, length
);
1194 /* Note: start and end must be within the same ram block. */
1195 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
1199 DirtyMemoryBlocks
*blocks
;
1200 unsigned long end
, page
;
1207 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1208 page
= start
>> TARGET_PAGE_BITS
;
1212 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1214 while (page
< end
) {
1215 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1216 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1217 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1219 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1226 if (dirty
&& tcg_enabled()) {
1227 tlb_reset_dirty_range_all(start
, length
);
1233 DirtyBitmapSnapshot
*cpu_physical_memory_snapshot_and_clear_dirty
1234 (ram_addr_t start
, ram_addr_t length
, unsigned client
)
1236 DirtyMemoryBlocks
*blocks
;
1237 unsigned long align
= 1UL << (TARGET_PAGE_BITS
+ BITS_PER_LEVEL
);
1238 ram_addr_t first
= QEMU_ALIGN_DOWN(start
, align
);
1239 ram_addr_t last
= QEMU_ALIGN_UP(start
+ length
, align
);
1240 DirtyBitmapSnapshot
*snap
;
1241 unsigned long page
, end
, dest
;
1243 snap
= g_malloc0(sizeof(*snap
) +
1244 ((last
- first
) >> (TARGET_PAGE_BITS
+ 3)));
1245 snap
->start
= first
;
1248 page
= first
>> TARGET_PAGE_BITS
;
1249 end
= last
>> TARGET_PAGE_BITS
;
1254 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1256 while (page
< end
) {
1257 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1258 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1259 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1261 assert(QEMU_IS_ALIGNED(offset
, (1 << BITS_PER_LEVEL
)));
1262 assert(QEMU_IS_ALIGNED(num
, (1 << BITS_PER_LEVEL
)));
1263 offset
>>= BITS_PER_LEVEL
;
1265 bitmap_copy_and_clear_atomic(snap
->dirty
+ dest
,
1266 blocks
->blocks
[idx
] + offset
,
1269 dest
+= num
>> BITS_PER_LEVEL
;
1274 if (tcg_enabled()) {
1275 tlb_reset_dirty_range_all(start
, length
);
1281 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot
*snap
,
1285 unsigned long page
, end
;
1287 assert(start
>= snap
->start
);
1288 assert(start
+ length
<= snap
->end
);
1290 end
= TARGET_PAGE_ALIGN(start
+ length
- snap
->start
) >> TARGET_PAGE_BITS
;
1291 page
= (start
- snap
->start
) >> TARGET_PAGE_BITS
;
1293 while (page
< end
) {
1294 if (test_bit(page
, snap
->dirty
)) {
1302 /* Called from RCU critical section */
1303 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1304 MemoryRegionSection
*section
,
1306 hwaddr paddr
, hwaddr xlat
,
1308 target_ulong
*address
)
1313 if (memory_region_is_ram(section
->mr
)) {
1315 iotlb
= memory_region_get_ram_addr(section
->mr
) + xlat
;
1316 if (!section
->readonly
) {
1317 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1319 iotlb
|= PHYS_SECTION_ROM
;
1322 AddressSpaceDispatch
*d
;
1324 d
= flatview_to_dispatch(section
->fv
);
1325 iotlb
= section
- d
->map
.sections
;
1329 /* Make accesses to pages with watchpoints go via the
1330 watchpoint trap routines. */
1331 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1332 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1333 /* Avoid trapping reads of pages with a write breakpoint. */
1334 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1335 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1336 *address
|= TLB_MMIO
;
1344 #endif /* defined(CONFIG_USER_ONLY) */
1346 #if !defined(CONFIG_USER_ONLY)
1348 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1350 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
);
1352 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
, bool shared
) =
1353 qemu_anon_ram_alloc
;
1356 * Set a custom physical guest memory alloator.
1357 * Accelerators with unusual needs may need this. Hopefully, we can
1358 * get rid of it eventually.
1360 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
, bool shared
))
1362 phys_mem_alloc
= alloc
;
1365 static uint16_t phys_section_add(PhysPageMap
*map
,
1366 MemoryRegionSection
*section
)
1368 /* The physical section number is ORed with a page-aligned
1369 * pointer to produce the iotlb entries. Thus it should
1370 * never overflow into the page-aligned value.
1372 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1374 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1375 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1376 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1377 map
->sections_nb_alloc
);
1379 map
->sections
[map
->sections_nb
] = *section
;
1380 memory_region_ref(section
->mr
);
1381 return map
->sections_nb
++;
1384 static void phys_section_destroy(MemoryRegion
*mr
)
1386 bool have_sub_page
= mr
->subpage
;
1388 memory_region_unref(mr
);
1390 if (have_sub_page
) {
1391 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1392 object_unref(OBJECT(&subpage
->iomem
));
1397 static void phys_sections_free(PhysPageMap
*map
)
1399 while (map
->sections_nb
> 0) {
1400 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1401 phys_section_destroy(section
->mr
);
1403 g_free(map
->sections
);
1407 static void register_subpage(FlatView
*fv
, MemoryRegionSection
*section
)
1409 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1411 hwaddr base
= section
->offset_within_address_space
1413 MemoryRegionSection
*existing
= phys_page_find(d
, base
);
1414 MemoryRegionSection subsection
= {
1415 .offset_within_address_space
= base
,
1416 .size
= int128_make64(TARGET_PAGE_SIZE
),
1420 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1422 if (!(existing
->mr
->subpage
)) {
1423 subpage
= subpage_init(fv
, base
);
1425 subsection
.mr
= &subpage
->iomem
;
1426 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1427 phys_section_add(&d
->map
, &subsection
));
1429 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1431 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1432 end
= start
+ int128_get64(section
->size
) - 1;
1433 subpage_register(subpage
, start
, end
,
1434 phys_section_add(&d
->map
, section
));
1438 static void register_multipage(FlatView
*fv
,
1439 MemoryRegionSection
*section
)
1441 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1442 hwaddr start_addr
= section
->offset_within_address_space
;
1443 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1444 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1448 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1451 void flatview_add_to_dispatch(FlatView
*fv
, MemoryRegionSection
*section
)
1453 MemoryRegionSection now
= *section
, remain
= *section
;
1454 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1456 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1457 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1458 - now
.offset_within_address_space
;
1460 now
.size
= int128_min(int128_make64(left
), now
.size
);
1461 register_subpage(fv
, &now
);
1463 now
.size
= int128_zero();
1465 while (int128_ne(remain
.size
, now
.size
)) {
1466 remain
.size
= int128_sub(remain
.size
, now
.size
);
1467 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1468 remain
.offset_within_region
+= int128_get64(now
.size
);
1470 if (int128_lt(remain
.size
, page_size
)) {
1471 register_subpage(fv
, &now
);
1472 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1473 now
.size
= page_size
;
1474 register_subpage(fv
, &now
);
1476 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1477 register_multipage(fv
, &now
);
1482 void qemu_flush_coalesced_mmio_buffer(void)
1485 kvm_flush_coalesced_mmio_buffer();
1488 void qemu_mutex_lock_ramlist(void)
1490 qemu_mutex_lock(&ram_list
.mutex
);
1493 void qemu_mutex_unlock_ramlist(void)
1495 qemu_mutex_unlock(&ram_list
.mutex
);
1498 void ram_block_dump(Monitor
*mon
)
1504 monitor_printf(mon
, "%24s %8s %18s %18s %18s\n",
1505 "Block Name", "PSize", "Offset", "Used", "Total");
1506 RAMBLOCK_FOREACH(block
) {
1507 psize
= size_to_str(block
->page_size
);
1508 monitor_printf(mon
, "%24s %8s 0x%016" PRIx64
" 0x%016" PRIx64
1509 " 0x%016" PRIx64
"\n", block
->idstr
, psize
,
1510 (uint64_t)block
->offset
,
1511 (uint64_t)block
->used_length
,
1512 (uint64_t)block
->max_length
);
1520 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1521 * may or may not name the same files / on the same filesystem now as
1522 * when we actually open and map them. Iterate over the file
1523 * descriptors instead, and use qemu_fd_getpagesize().
1525 static int find_max_supported_pagesize(Object
*obj
, void *opaque
)
1527 long *hpsize_min
= opaque
;
1529 if (object_dynamic_cast(obj
, TYPE_MEMORY_BACKEND
)) {
1530 long hpsize
= host_memory_backend_pagesize(MEMORY_BACKEND(obj
));
1532 if (hpsize
< *hpsize_min
) {
1533 *hpsize_min
= hpsize
;
1540 long qemu_getrampagesize(void)
1542 long hpsize
= LONG_MAX
;
1543 long mainrampagesize
;
1544 Object
*memdev_root
;
1546 mainrampagesize
= qemu_mempath_getpagesize(mem_path
);
1548 /* it's possible we have memory-backend objects with
1549 * hugepage-backed RAM. these may get mapped into system
1550 * address space via -numa parameters or memory hotplug
1551 * hooks. we want to take these into account, but we
1552 * also want to make sure these supported hugepage
1553 * sizes are applicable across the entire range of memory
1554 * we may boot from, so we take the min across all
1555 * backends, and assume normal pages in cases where a
1556 * backend isn't backed by hugepages.
1558 memdev_root
= object_resolve_path("/objects", NULL
);
1560 object_child_foreach(memdev_root
, find_max_supported_pagesize
, &hpsize
);
1562 if (hpsize
== LONG_MAX
) {
1563 /* No additional memory regions found ==> Report main RAM page size */
1564 return mainrampagesize
;
1567 /* If NUMA is disabled or the NUMA nodes are not backed with a
1568 * memory-backend, then there is at least one node using "normal" RAM,
1569 * so if its page size is smaller we have got to report that size instead.
1571 if (hpsize
> mainrampagesize
&&
1572 (nb_numa_nodes
== 0 || numa_info
[0].node_memdev
== NULL
)) {
1575 error_report("Huge page support disabled (n/a for main memory).");
1578 return mainrampagesize
;
1584 long qemu_getrampagesize(void)
1586 return getpagesize();
1591 static int64_t get_file_size(int fd
)
1593 int64_t size
= lseek(fd
, 0, SEEK_END
);
1600 static int file_ram_open(const char *path
,
1601 const char *region_name
,
1606 char *sanitized_name
;
1612 fd
= open(path
, O_RDWR
);
1614 /* @path names an existing file, use it */
1617 if (errno
== ENOENT
) {
1618 /* @path names a file that doesn't exist, create it */
1619 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1624 } else if (errno
== EISDIR
) {
1625 /* @path names a directory, create a file there */
1626 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1627 sanitized_name
= g_strdup(region_name
);
1628 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1634 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1636 g_free(sanitized_name
);
1638 fd
= mkstemp(filename
);
1646 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1647 error_setg_errno(errp
, errno
,
1648 "can't open backing store %s for guest RAM",
1653 * Try again on EINTR and EEXIST. The latter happens when
1654 * something else creates the file between our two open().
1661 static void *file_ram_alloc(RAMBlock
*block
,
1669 block
->page_size
= qemu_fd_getpagesize(fd
);
1670 if (block
->mr
->align
% block
->page_size
) {
1671 error_setg(errp
, "alignment 0x%" PRIx64
1672 " must be multiples of page size 0x%zx",
1673 block
->mr
->align
, block
->page_size
);
1676 block
->mr
->align
= MAX(block
->page_size
, block
->mr
->align
);
1677 #if defined(__s390x__)
1678 if (kvm_enabled()) {
1679 block
->mr
->align
= MAX(block
->mr
->align
, QEMU_VMALLOC_ALIGN
);
1683 if (memory
< block
->page_size
) {
1684 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1685 "or larger than page size 0x%zx",
1686 memory
, block
->page_size
);
1690 memory
= ROUND_UP(memory
, block
->page_size
);
1693 * ftruncate is not supported by hugetlbfs in older
1694 * hosts, so don't bother bailing out on errors.
1695 * If anything goes wrong with it under other filesystems,
1698 * Do not truncate the non-empty backend file to avoid corrupting
1699 * the existing data in the file. Disabling shrinking is not
1700 * enough. For example, the current vNVDIMM implementation stores
1701 * the guest NVDIMM labels at the end of the backend file. If the
1702 * backend file is later extended, QEMU will not be able to find
1703 * those labels. Therefore, extending the non-empty backend file
1704 * is disabled as well.
1706 if (truncate
&& ftruncate(fd
, memory
)) {
1707 perror("ftruncate");
1710 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
,
1711 block
->flags
& RAM_SHARED
);
1712 if (area
== MAP_FAILED
) {
1713 error_setg_errno(errp
, errno
,
1714 "unable to map backing store for guest RAM");
1719 os_mem_prealloc(fd
, area
, memory
, smp_cpus
, errp
);
1720 if (errp
&& *errp
) {
1721 qemu_ram_munmap(area
, memory
);
1731 /* Allocate space within the ram_addr_t space that governs the
1733 * Called with the ramlist lock held.
1735 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1737 RAMBlock
*block
, *next_block
;
1738 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1740 assert(size
!= 0); /* it would hand out same offset multiple times */
1742 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1746 RAMBLOCK_FOREACH(block
) {
1747 ram_addr_t candidate
, next
= RAM_ADDR_MAX
;
1749 /* Align blocks to start on a 'long' in the bitmap
1750 * which makes the bitmap sync'ing take the fast path.
1752 candidate
= block
->offset
+ block
->max_length
;
1753 candidate
= ROUND_UP(candidate
, BITS_PER_LONG
<< TARGET_PAGE_BITS
);
1755 /* Search for the closest following block
1758 RAMBLOCK_FOREACH(next_block
) {
1759 if (next_block
->offset
>= candidate
) {
1760 next
= MIN(next
, next_block
->offset
);
1764 /* If it fits remember our place and remember the size
1765 * of gap, but keep going so that we might find a smaller
1766 * gap to fill so avoiding fragmentation.
1768 if (next
- candidate
>= size
&& next
- candidate
< mingap
) {
1770 mingap
= next
- candidate
;
1773 trace_find_ram_offset_loop(size
, candidate
, offset
, next
, mingap
);
1776 if (offset
== RAM_ADDR_MAX
) {
1777 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1782 trace_find_ram_offset(size
, offset
);
1787 unsigned long last_ram_page(void)
1790 ram_addr_t last
= 0;
1793 RAMBLOCK_FOREACH(block
) {
1794 last
= MAX(last
, block
->offset
+ block
->max_length
);
1797 return last
>> TARGET_PAGE_BITS
;
1800 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1804 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1805 if (!machine_dump_guest_core(current_machine
)) {
1806 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1808 perror("qemu_madvise");
1809 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1810 "but dump_guest_core=off specified\n");
1815 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1820 bool qemu_ram_is_shared(RAMBlock
*rb
)
1822 return rb
->flags
& RAM_SHARED
;
1825 /* Note: Only set at the start of postcopy */
1826 bool qemu_ram_is_uf_zeroable(RAMBlock
*rb
)
1828 return rb
->flags
& RAM_UF_ZEROPAGE
;
1831 void qemu_ram_set_uf_zeroable(RAMBlock
*rb
)
1833 rb
->flags
|= RAM_UF_ZEROPAGE
;
1836 /* Called with iothread lock held. */
1837 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
1842 assert(!new_block
->idstr
[0]);
1845 char *id
= qdev_get_dev_path(dev
);
1847 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1851 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1854 RAMBLOCK_FOREACH(block
) {
1855 if (block
!= new_block
&&
1856 !strcmp(block
->idstr
, new_block
->idstr
)) {
1857 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1865 /* Called with iothread lock held. */
1866 void qemu_ram_unset_idstr(RAMBlock
*block
)
1868 /* FIXME: arch_init.c assumes that this is not called throughout
1869 * migration. Ignore the problem since hot-unplug during migration
1870 * does not work anyway.
1873 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1877 size_t qemu_ram_pagesize(RAMBlock
*rb
)
1879 return rb
->page_size
;
1882 /* Returns the largest size of page in use */
1883 size_t qemu_ram_pagesize_largest(void)
1888 RAMBLOCK_FOREACH(block
) {
1889 largest
= MAX(largest
, qemu_ram_pagesize(block
));
1895 static int memory_try_enable_merging(void *addr
, size_t len
)
1897 if (!machine_mem_merge(current_machine
)) {
1898 /* disabled by the user */
1902 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1905 /* Only legal before guest might have detected the memory size: e.g. on
1906 * incoming migration, or right after reset.
1908 * As memory core doesn't know how is memory accessed, it is up to
1909 * resize callback to update device state and/or add assertions to detect
1910 * misuse, if necessary.
1912 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
1916 newsize
= HOST_PAGE_ALIGN(newsize
);
1918 if (block
->used_length
== newsize
) {
1922 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1923 error_setg_errno(errp
, EINVAL
,
1924 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1925 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1926 newsize
, block
->used_length
);
1930 if (block
->max_length
< newsize
) {
1931 error_setg_errno(errp
, EINVAL
,
1932 "Length too large: %s: 0x" RAM_ADDR_FMT
1933 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1934 newsize
, block
->max_length
);
1938 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1939 block
->used_length
= newsize
;
1940 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1942 memory_region_set_size(block
->mr
, newsize
);
1943 if (block
->resized
) {
1944 block
->resized(block
->idstr
, newsize
, block
->host
);
1949 /* Called with ram_list.mutex held */
1950 static void dirty_memory_extend(ram_addr_t old_ram_size
,
1951 ram_addr_t new_ram_size
)
1953 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
1954 DIRTY_MEMORY_BLOCK_SIZE
);
1955 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
1956 DIRTY_MEMORY_BLOCK_SIZE
);
1959 /* Only need to extend if block count increased */
1960 if (new_num_blocks
<= old_num_blocks
) {
1964 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1965 DirtyMemoryBlocks
*old_blocks
;
1966 DirtyMemoryBlocks
*new_blocks
;
1969 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
1970 new_blocks
= g_malloc(sizeof(*new_blocks
) +
1971 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
1973 if (old_num_blocks
) {
1974 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
1975 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
1978 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
1979 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
1982 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
1985 g_free_rcu(old_blocks
, rcu
);
1990 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
, bool shared
)
1993 RAMBlock
*last_block
= NULL
;
1994 ram_addr_t old_ram_size
, new_ram_size
;
1997 old_ram_size
= last_ram_page();
1999 qemu_mutex_lock_ramlist();
2000 new_block
->offset
= find_ram_offset(new_block
->max_length
);
2002 if (!new_block
->host
) {
2003 if (xen_enabled()) {
2004 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
2005 new_block
->mr
, &err
);
2007 error_propagate(errp
, err
);
2008 qemu_mutex_unlock_ramlist();
2012 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
2013 &new_block
->mr
->align
, shared
);
2014 if (!new_block
->host
) {
2015 error_setg_errno(errp
, errno
,
2016 "cannot set up guest memory '%s'",
2017 memory_region_name(new_block
->mr
));
2018 qemu_mutex_unlock_ramlist();
2021 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
2025 new_ram_size
= MAX(old_ram_size
,
2026 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
2027 if (new_ram_size
> old_ram_size
) {
2028 dirty_memory_extend(old_ram_size
, new_ram_size
);
2030 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2031 * QLIST (which has an RCU-friendly variant) does not have insertion at
2032 * tail, so save the last element in last_block.
2034 RAMBLOCK_FOREACH(block
) {
2036 if (block
->max_length
< new_block
->max_length
) {
2041 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
2042 } else if (last_block
) {
2043 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
2044 } else { /* list is empty */
2045 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
2047 ram_list
.mru_block
= NULL
;
2049 /* Write list before version */
2052 qemu_mutex_unlock_ramlist();
2054 cpu_physical_memory_set_dirty_range(new_block
->offset
,
2055 new_block
->used_length
,
2058 if (new_block
->host
) {
2059 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
2060 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
2061 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2062 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
2063 ram_block_notify_add(new_block
->host
, new_block
->max_length
);
2068 RAMBlock
*qemu_ram_alloc_from_fd(ram_addr_t size
, MemoryRegion
*mr
,
2072 RAMBlock
*new_block
;
2073 Error
*local_err
= NULL
;
2076 if (xen_enabled()) {
2077 error_setg(errp
, "-mem-path not supported with Xen");
2081 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2083 "host lacks kvm mmu notifiers, -mem-path unsupported");
2087 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
2089 * file_ram_alloc() needs to allocate just like
2090 * phys_mem_alloc, but we haven't bothered to provide
2094 "-mem-path not supported with this accelerator");
2098 size
= HOST_PAGE_ALIGN(size
);
2099 file_size
= get_file_size(fd
);
2100 if (file_size
> 0 && file_size
< size
) {
2101 error_setg(errp
, "backing store %s size 0x%" PRIx64
2102 " does not match 'size' option 0x" RAM_ADDR_FMT
,
2103 mem_path
, file_size
, size
);
2107 new_block
= g_malloc0(sizeof(*new_block
));
2109 new_block
->used_length
= size
;
2110 new_block
->max_length
= size
;
2111 new_block
->flags
= share
? RAM_SHARED
: 0;
2112 new_block
->host
= file_ram_alloc(new_block
, size
, fd
, !file_size
, errp
);
2113 if (!new_block
->host
) {
2118 ram_block_add(new_block
, &local_err
, share
);
2121 error_propagate(errp
, local_err
);
2129 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
2130 bool share
, const char *mem_path
,
2137 fd
= file_ram_open(mem_path
, memory_region_name(mr
), &created
, errp
);
2142 block
= qemu_ram_alloc_from_fd(size
, mr
, share
, fd
, errp
);
2156 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
2157 void (*resized
)(const char*,
2160 void *host
, bool resizeable
, bool share
,
2161 MemoryRegion
*mr
, Error
**errp
)
2163 RAMBlock
*new_block
;
2164 Error
*local_err
= NULL
;
2166 size
= HOST_PAGE_ALIGN(size
);
2167 max_size
= HOST_PAGE_ALIGN(max_size
);
2168 new_block
= g_malloc0(sizeof(*new_block
));
2170 new_block
->resized
= resized
;
2171 new_block
->used_length
= size
;
2172 new_block
->max_length
= max_size
;
2173 assert(max_size
>= size
);
2175 new_block
->page_size
= getpagesize();
2176 new_block
->host
= host
;
2178 new_block
->flags
|= RAM_PREALLOC
;
2181 new_block
->flags
|= RAM_RESIZEABLE
;
2183 ram_block_add(new_block
, &local_err
, share
);
2186 error_propagate(errp
, local_err
);
2192 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
2193 MemoryRegion
*mr
, Error
**errp
)
2195 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false,
2199 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, bool share
,
2200 MemoryRegion
*mr
, Error
**errp
)
2202 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false,
2206 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
2207 void (*resized
)(const char*,
2210 MemoryRegion
*mr
, Error
**errp
)
2212 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true,
2216 static void reclaim_ramblock(RAMBlock
*block
)
2218 if (block
->flags
& RAM_PREALLOC
) {
2220 } else if (xen_enabled()) {
2221 xen_invalidate_map_cache_entry(block
->host
);
2223 } else if (block
->fd
>= 0) {
2224 qemu_ram_munmap(block
->host
, block
->max_length
);
2228 qemu_anon_ram_free(block
->host
, block
->max_length
);
2233 void qemu_ram_free(RAMBlock
*block
)
2240 ram_block_notify_remove(block
->host
, block
->max_length
);
2243 qemu_mutex_lock_ramlist();
2244 QLIST_REMOVE_RCU(block
, next
);
2245 ram_list
.mru_block
= NULL
;
2246 /* Write list before version */
2249 call_rcu(block
, reclaim_ramblock
, rcu
);
2250 qemu_mutex_unlock_ramlist();
2254 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
2261 RAMBLOCK_FOREACH(block
) {
2262 offset
= addr
- block
->offset
;
2263 if (offset
< block
->max_length
) {
2264 vaddr
= ramblock_ptr(block
, offset
);
2265 if (block
->flags
& RAM_PREALLOC
) {
2267 } else if (xen_enabled()) {
2271 if (block
->fd
>= 0) {
2272 flags
|= (block
->flags
& RAM_SHARED
?
2273 MAP_SHARED
: MAP_PRIVATE
);
2274 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2275 flags
, block
->fd
, offset
);
2278 * Remap needs to match alloc. Accelerators that
2279 * set phys_mem_alloc never remap. If they did,
2280 * we'd need a remap hook here.
2282 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
2284 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2285 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2288 if (area
!= vaddr
) {
2289 error_report("Could not remap addr: "
2290 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"",
2294 memory_try_enable_merging(vaddr
, length
);
2295 qemu_ram_setup_dump(vaddr
, length
);
2300 #endif /* !_WIN32 */
2302 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2303 * This should not be used for general purpose DMA. Use address_space_map
2304 * or address_space_rw instead. For local memory (e.g. video ram) that the
2305 * device owns, use memory_region_get_ram_ptr.
2307 * Called within RCU critical section.
2309 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
2311 RAMBlock
*block
= ram_block
;
2313 if (block
== NULL
) {
2314 block
= qemu_get_ram_block(addr
);
2315 addr
-= block
->offset
;
2318 if (xen_enabled() && block
->host
== NULL
) {
2319 /* We need to check if the requested address is in the RAM
2320 * because we don't want to map the entire memory in QEMU.
2321 * In that case just map until the end of the page.
2323 if (block
->offset
== 0) {
2324 return xen_map_cache(addr
, 0, 0, false);
2327 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, false);
2329 return ramblock_ptr(block
, addr
);
2332 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2333 * but takes a size argument.
2335 * Called within RCU critical section.
2337 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
2338 hwaddr
*size
, bool lock
)
2340 RAMBlock
*block
= ram_block
;
2345 if (block
== NULL
) {
2346 block
= qemu_get_ram_block(addr
);
2347 addr
-= block
->offset
;
2349 *size
= MIN(*size
, block
->max_length
- addr
);
2351 if (xen_enabled() && block
->host
== NULL
) {
2352 /* We need to check if the requested address is in the RAM
2353 * because we don't want to map the entire memory in QEMU.
2354 * In that case just map the requested area.
2356 if (block
->offset
== 0) {
2357 return xen_map_cache(addr
, *size
, lock
, lock
);
2360 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, lock
);
2363 return ramblock_ptr(block
, addr
);
2366 /* Return the offset of a hostpointer within a ramblock */
2367 ram_addr_t
qemu_ram_block_host_offset(RAMBlock
*rb
, void *host
)
2369 ram_addr_t res
= (uint8_t *)host
- (uint8_t *)rb
->host
;
2370 assert((uintptr_t)host
>= (uintptr_t)rb
->host
);
2371 assert(res
< rb
->max_length
);
2377 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2380 * ptr: Host pointer to look up
2381 * round_offset: If true round the result offset down to a page boundary
2382 * *ram_addr: set to result ram_addr
2383 * *offset: set to result offset within the RAMBlock
2385 * Returns: RAMBlock (or NULL if not found)
2387 * By the time this function returns, the returned pointer is not protected
2388 * by RCU anymore. If the caller is not within an RCU critical section and
2389 * does not hold the iothread lock, it must have other means of protecting the
2390 * pointer, such as a reference to the region that includes the incoming
2393 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
2397 uint8_t *host
= ptr
;
2399 if (xen_enabled()) {
2400 ram_addr_t ram_addr
;
2402 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
2403 block
= qemu_get_ram_block(ram_addr
);
2405 *offset
= ram_addr
- block
->offset
;
2412 block
= atomic_rcu_read(&ram_list
.mru_block
);
2413 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
2417 RAMBLOCK_FOREACH(block
) {
2418 /* This case append when the block is not mapped. */
2419 if (block
->host
== NULL
) {
2422 if (host
- block
->host
< block
->max_length
) {
2431 *offset
= (host
- block
->host
);
2433 *offset
&= TARGET_PAGE_MASK
;
2440 * Finds the named RAMBlock
2442 * name: The name of RAMBlock to find
2444 * Returns: RAMBlock (or NULL if not found)
2446 RAMBlock
*qemu_ram_block_by_name(const char *name
)
2450 RAMBLOCK_FOREACH(block
) {
2451 if (!strcmp(name
, block
->idstr
)) {
2459 /* Some of the softmmu routines need to translate from a host pointer
2460 (typically a TLB entry) back to a ram offset. */
2461 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2466 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
2468 return RAM_ADDR_INVALID
;
2471 return block
->offset
+ offset
;
2474 /* Called within RCU critical section. */
2475 void memory_notdirty_write_prepare(NotDirtyInfo
*ndi
,
2478 ram_addr_t ram_addr
,
2482 ndi
->ram_addr
= ram_addr
;
2483 ndi
->mem_vaddr
= mem_vaddr
;
2485 ndi
->locked
= false;
2487 assert(tcg_enabled());
2488 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
2491 tb_invalidate_phys_page_fast(ram_addr
, size
);
2495 /* Called within RCU critical section. */
2496 void memory_notdirty_write_complete(NotDirtyInfo
*ndi
)
2502 /* Set both VGA and migration bits for simplicity and to remove
2503 * the notdirty callback faster.
2505 cpu_physical_memory_set_dirty_range(ndi
->ram_addr
, ndi
->size
,
2506 DIRTY_CLIENTS_NOCODE
);
2507 /* we remove the notdirty callback only if the code has been
2509 if (!cpu_physical_memory_is_clean(ndi
->ram_addr
)) {
2510 tlb_set_dirty(ndi
->cpu
, ndi
->mem_vaddr
);
2514 /* Called within RCU critical section. */
2515 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
2516 uint64_t val
, unsigned size
)
2520 memory_notdirty_write_prepare(&ndi
, current_cpu
, current_cpu
->mem_io_vaddr
,
2525 stb_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2528 stw_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2531 stl_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2534 stq_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2539 memory_notdirty_write_complete(&ndi
);
2542 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2543 unsigned size
, bool is_write
)
2548 static const MemoryRegionOps notdirty_mem_ops
= {
2549 .write
= notdirty_mem_write
,
2550 .valid
.accepts
= notdirty_mem_accepts
,
2551 .endianness
= DEVICE_NATIVE_ENDIAN
,
2553 .min_access_size
= 1,
2554 .max_access_size
= 8,
2558 .min_access_size
= 1,
2559 .max_access_size
= 8,
2564 /* Generate a debug exception if a watchpoint has been hit. */
2565 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2567 CPUState
*cpu
= current_cpu
;
2568 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2572 assert(tcg_enabled());
2573 if (cpu
->watchpoint_hit
) {
2574 /* We re-entered the check after replacing the TB. Now raise
2575 * the debug interrupt so that is will trigger after the
2576 * current instruction. */
2577 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2580 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2581 vaddr
= cc
->adjust_watchpoint_address(cpu
, vaddr
, len
);
2582 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2583 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2584 && (wp
->flags
& flags
)) {
2585 if (flags
== BP_MEM_READ
) {
2586 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2588 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2590 wp
->hitaddr
= vaddr
;
2591 wp
->hitattrs
= attrs
;
2592 if (!cpu
->watchpoint_hit
) {
2593 if (wp
->flags
& BP_CPU
&&
2594 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2595 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2598 cpu
->watchpoint_hit
= wp
;
2600 /* Both tb_lock and iothread_mutex will be reset when
2601 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2602 * back into the cpu_exec main loop.
2605 tb_check_watchpoint(cpu
);
2606 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2607 cpu
->exception_index
= EXCP_DEBUG
;
2610 /* Force execution of one insn next time. */
2611 cpu
->cflags_next_tb
= 1 | curr_cflags();
2612 cpu_loop_exit_noexc(cpu
);
2616 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2621 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2622 so these check for a hit then pass through to the normal out-of-line
2624 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2625 unsigned size
, MemTxAttrs attrs
)
2629 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2630 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2632 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2635 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2638 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2641 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2644 data
= address_space_ldq(as
, addr
, attrs
, &res
);
2652 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2653 uint64_t val
, unsigned size
,
2657 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2658 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2660 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2663 address_space_stb(as
, addr
, val
, attrs
, &res
);
2666 address_space_stw(as
, addr
, val
, attrs
, &res
);
2669 address_space_stl(as
, addr
, val
, attrs
, &res
);
2672 address_space_stq(as
, addr
, val
, attrs
, &res
);
2679 static const MemoryRegionOps watch_mem_ops
= {
2680 .read_with_attrs
= watch_mem_read
,
2681 .write_with_attrs
= watch_mem_write
,
2682 .endianness
= DEVICE_NATIVE_ENDIAN
,
2684 .min_access_size
= 1,
2685 .max_access_size
= 8,
2689 .min_access_size
= 1,
2690 .max_access_size
= 8,
2695 static MemTxResult
flatview_read(FlatView
*fv
, hwaddr addr
,
2696 MemTxAttrs attrs
, uint8_t *buf
, int len
);
2697 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
2698 const uint8_t *buf
, int len
);
2699 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, int len
,
2702 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2703 unsigned len
, MemTxAttrs attrs
)
2705 subpage_t
*subpage
= opaque
;
2709 #if defined(DEBUG_SUBPAGE)
2710 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2711 subpage
, len
, addr
);
2713 res
= flatview_read(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2719 *data
= ldub_p(buf
);
2722 *data
= lduw_p(buf
);
2735 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2736 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2738 subpage_t
*subpage
= opaque
;
2741 #if defined(DEBUG_SUBPAGE)
2742 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2743 " value %"PRIx64
"\n",
2744 __func__
, subpage
, len
, addr
, value
);
2762 return flatview_write(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2765 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2766 unsigned len
, bool is_write
)
2768 subpage_t
*subpage
= opaque
;
2769 #if defined(DEBUG_SUBPAGE)
2770 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2771 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2774 return flatview_access_valid(subpage
->fv
, addr
+ subpage
->base
,
2778 static const MemoryRegionOps subpage_ops
= {
2779 .read_with_attrs
= subpage_read
,
2780 .write_with_attrs
= subpage_write
,
2781 .impl
.min_access_size
= 1,
2782 .impl
.max_access_size
= 8,
2783 .valid
.min_access_size
= 1,
2784 .valid
.max_access_size
= 8,
2785 .valid
.accepts
= subpage_accepts
,
2786 .endianness
= DEVICE_NATIVE_ENDIAN
,
2789 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2794 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2796 idx
= SUBPAGE_IDX(start
);
2797 eidx
= SUBPAGE_IDX(end
);
2798 #if defined(DEBUG_SUBPAGE)
2799 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2800 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2802 for (; idx
<= eidx
; idx
++) {
2803 mmio
->sub_section
[idx
] = section
;
2809 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
)
2813 mmio
= g_malloc0(sizeof(subpage_t
) + TARGET_PAGE_SIZE
* sizeof(uint16_t));
2816 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2817 NULL
, TARGET_PAGE_SIZE
);
2818 mmio
->iomem
.subpage
= true;
2819 #if defined(DEBUG_SUBPAGE)
2820 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2821 mmio
, base
, TARGET_PAGE_SIZE
);
2823 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2828 static uint16_t dummy_section(PhysPageMap
*map
, FlatView
*fv
, MemoryRegion
*mr
)
2831 MemoryRegionSection section
= {
2834 .offset_within_address_space
= 0,
2835 .offset_within_region
= 0,
2836 .size
= int128_2_64(),
2839 return phys_section_add(map
, §ion
);
2842 static void readonly_mem_write(void *opaque
, hwaddr addr
,
2843 uint64_t val
, unsigned size
)
2845 /* Ignore any write to ROM. */
2848 static bool readonly_mem_accepts(void *opaque
, hwaddr addr
,
2849 unsigned size
, bool is_write
)
2854 /* This will only be used for writes, because reads are special cased
2855 * to directly access the underlying host ram.
2857 static const MemoryRegionOps readonly_mem_ops
= {
2858 .write
= readonly_mem_write
,
2859 .valid
.accepts
= readonly_mem_accepts
,
2860 .endianness
= DEVICE_NATIVE_ENDIAN
,
2862 .min_access_size
= 1,
2863 .max_access_size
= 8,
2867 .min_access_size
= 1,
2868 .max_access_size
= 8,
2873 MemoryRegion
*iotlb_to_region(CPUState
*cpu
, hwaddr index
, MemTxAttrs attrs
)
2875 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2876 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2877 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2878 MemoryRegionSection
*sections
= d
->map
.sections
;
2880 return sections
[index
& ~TARGET_PAGE_MASK
].mr
;
2883 static void io_mem_init(void)
2885 memory_region_init_io(&io_mem_rom
, NULL
, &readonly_mem_ops
,
2886 NULL
, NULL
, UINT64_MAX
);
2887 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2890 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2891 * which can be called without the iothread mutex.
2893 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
2895 memory_region_clear_global_locking(&io_mem_notdirty
);
2897 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
2901 AddressSpaceDispatch
*address_space_dispatch_new(FlatView
*fv
)
2903 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2906 n
= dummy_section(&d
->map
, fv
, &io_mem_unassigned
);
2907 assert(n
== PHYS_SECTION_UNASSIGNED
);
2908 n
= dummy_section(&d
->map
, fv
, &io_mem_notdirty
);
2909 assert(n
== PHYS_SECTION_NOTDIRTY
);
2910 n
= dummy_section(&d
->map
, fv
, &io_mem_rom
);
2911 assert(n
== PHYS_SECTION_ROM
);
2912 n
= dummy_section(&d
->map
, fv
, &io_mem_watch
);
2913 assert(n
== PHYS_SECTION_WATCH
);
2915 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2920 void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2922 phys_sections_free(&d
->map
);
2926 static void tcg_commit(MemoryListener
*listener
)
2928 CPUAddressSpace
*cpuas
;
2929 AddressSpaceDispatch
*d
;
2931 /* since each CPU stores ram addresses in its TLB cache, we must
2932 reset the modified entries */
2933 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2934 cpu_reloading_memory_map();
2935 /* The CPU and TLB are protected by the iothread lock.
2936 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2937 * may have split the RCU critical section.
2939 d
= address_space_to_dispatch(cpuas
->as
);
2940 atomic_rcu_set(&cpuas
->memory_dispatch
, d
);
2941 tlb_flush(cpuas
->cpu
);
2944 static void memory_map_init(void)
2946 system_memory
= g_malloc(sizeof(*system_memory
));
2948 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2949 address_space_init(&address_space_memory
, system_memory
, "memory");
2951 system_io
= g_malloc(sizeof(*system_io
));
2952 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2954 address_space_init(&address_space_io
, system_io
, "I/O");
2957 MemoryRegion
*get_system_memory(void)
2959 return system_memory
;
2962 MemoryRegion
*get_system_io(void)
2967 #endif /* !defined(CONFIG_USER_ONLY) */
2969 /* physical memory access (slow version, mainly for debug) */
2970 #if defined(CONFIG_USER_ONLY)
2971 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2972 uint8_t *buf
, int len
, int is_write
)
2979 page
= addr
& TARGET_PAGE_MASK
;
2980 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2983 flags
= page_get_flags(page
);
2984 if (!(flags
& PAGE_VALID
))
2987 if (!(flags
& PAGE_WRITE
))
2989 /* XXX: this code should not depend on lock_user */
2990 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2993 unlock_user(p
, addr
, l
);
2995 if (!(flags
& PAGE_READ
))
2997 /* XXX: this code should not depend on lock_user */
2998 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
3001 unlock_user(p
, addr
, 0);
3012 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
3015 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
3016 addr
+= memory_region_get_ram_addr(mr
);
3018 /* No early return if dirty_log_mask is or becomes 0, because
3019 * cpu_physical_memory_set_dirty_range will still call
3020 * xen_modified_memory.
3022 if (dirty_log_mask
) {
3024 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
3026 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
3027 assert(tcg_enabled());
3029 tb_invalidate_phys_range(addr
, addr
+ length
);
3031 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
3033 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
3036 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
3038 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
3040 /* Regions are assumed to support 1-4 byte accesses unless
3041 otherwise specified. */
3042 if (access_size_max
== 0) {
3043 access_size_max
= 4;
3046 /* Bound the maximum access by the alignment of the address. */
3047 if (!mr
->ops
->impl
.unaligned
) {
3048 unsigned align_size_max
= addr
& -addr
;
3049 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
3050 access_size_max
= align_size_max
;
3054 /* Don't attempt accesses larger than the maximum. */
3055 if (l
> access_size_max
) {
3056 l
= access_size_max
;
3063 static bool prepare_mmio_access(MemoryRegion
*mr
)
3065 bool unlocked
= !qemu_mutex_iothread_locked();
3066 bool release_lock
= false;
3068 if (unlocked
&& mr
->global_locking
) {
3069 qemu_mutex_lock_iothread();
3071 release_lock
= true;
3073 if (mr
->flush_coalesced_mmio
) {
3075 qemu_mutex_lock_iothread();
3077 qemu_flush_coalesced_mmio_buffer();
3079 qemu_mutex_unlock_iothread();
3083 return release_lock
;
3086 /* Called within RCU critical section. */
3087 static MemTxResult
flatview_write_continue(FlatView
*fv
, hwaddr addr
,
3090 int len
, hwaddr addr1
,
3091 hwaddr l
, MemoryRegion
*mr
)
3095 MemTxResult result
= MEMTX_OK
;
3096 bool release_lock
= false;
3099 if (!memory_access_is_direct(mr
, true)) {
3100 release_lock
|= prepare_mmio_access(mr
);
3101 l
= memory_access_size(mr
, l
, addr1
);
3102 /* XXX: could force current_cpu to NULL to avoid
3106 /* 64 bit write access */
3108 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 8,
3112 /* 32 bit write access */
3113 val
= (uint32_t)ldl_p(buf
);
3114 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 4,
3118 /* 16 bit write access */
3120 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 2,
3124 /* 8 bit write access */
3126 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 1,
3134 ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
3135 memcpy(ptr
, buf
, l
);
3136 invalidate_and_set_dirty(mr
, addr1
, l
);
3140 qemu_mutex_unlock_iothread();
3141 release_lock
= false;
3153 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true);
3159 /* Called from RCU critical section. */
3160 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
3161 const uint8_t *buf
, int len
)
3166 MemTxResult result
= MEMTX_OK
;
3169 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true);
3170 result
= flatview_write_continue(fv
, addr
, attrs
, buf
, len
,
3176 /* Called within RCU critical section. */
3177 MemTxResult
flatview_read_continue(FlatView
*fv
, hwaddr addr
,
3178 MemTxAttrs attrs
, uint8_t *buf
,
3179 int len
, hwaddr addr1
, hwaddr l
,
3184 MemTxResult result
= MEMTX_OK
;
3185 bool release_lock
= false;
3188 if (!memory_access_is_direct(mr
, false)) {
3190 release_lock
|= prepare_mmio_access(mr
);
3191 l
= memory_access_size(mr
, l
, addr1
);
3194 /* 64 bit read access */
3195 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 8,
3200 /* 32 bit read access */
3201 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 4,
3206 /* 16 bit read access */
3207 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 2,
3212 /* 8 bit read access */
3213 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 1,
3222 ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
3223 memcpy(buf
, ptr
, l
);
3227 qemu_mutex_unlock_iothread();
3228 release_lock
= false;
3240 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false);
3246 /* Called from RCU critical section. */
3247 static MemTxResult
flatview_read(FlatView
*fv
, hwaddr addr
,
3248 MemTxAttrs attrs
, uint8_t *buf
, int len
)
3255 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false);
3256 return flatview_read_continue(fv
, addr
, attrs
, buf
, len
,
3260 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
3261 MemTxAttrs attrs
, uint8_t *buf
, int len
)
3263 MemTxResult result
= MEMTX_OK
;
3268 fv
= address_space_to_flatview(as
);
3269 result
= flatview_read(fv
, addr
, attrs
, buf
, len
);
3276 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
,
3278 const uint8_t *buf
, int len
)
3280 MemTxResult result
= MEMTX_OK
;
3285 fv
= address_space_to_flatview(as
);
3286 result
= flatview_write(fv
, addr
, attrs
, buf
, len
);
3293 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
3294 uint8_t *buf
, int len
, bool is_write
)
3297 return address_space_write(as
, addr
, attrs
, buf
, len
);
3299 return address_space_read_full(as
, addr
, attrs
, buf
, len
);
3303 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
3304 int len
, int is_write
)
3306 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
3307 buf
, len
, is_write
);
3310 enum write_rom_type
{
3315 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
3316 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
3326 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
3328 if (!(memory_region_is_ram(mr
) ||
3329 memory_region_is_romd(mr
))) {
3330 l
= memory_access_size(mr
, l
, addr1
);
3333 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3336 memcpy(ptr
, buf
, l
);
3337 invalidate_and_set_dirty(mr
, addr1
, l
);
3340 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
3351 /* used for ROM loading : can write in RAM and ROM */
3352 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
3353 const uint8_t *buf
, int len
)
3355 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
3358 void cpu_flush_icache_range(hwaddr start
, int len
)
3361 * This function should do the same thing as an icache flush that was
3362 * triggered from within the guest. For TCG we are always cache coherent,
3363 * so there is no need to flush anything. For KVM / Xen we need to flush
3364 * the host's instruction cache at least.
3366 if (tcg_enabled()) {
3370 cpu_physical_memory_write_rom_internal(&address_space_memory
,
3371 start
, NULL
, len
, FLUSH_CACHE
);
3382 static BounceBuffer bounce
;
3384 typedef struct MapClient
{
3386 QLIST_ENTRY(MapClient
) link
;
3389 QemuMutex map_client_list_lock
;
3390 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
3391 = QLIST_HEAD_INITIALIZER(map_client_list
);
3393 static void cpu_unregister_map_client_do(MapClient
*client
)
3395 QLIST_REMOVE(client
, link
);
3399 static void cpu_notify_map_clients_locked(void)
3403 while (!QLIST_EMPTY(&map_client_list
)) {
3404 client
= QLIST_FIRST(&map_client_list
);
3405 qemu_bh_schedule(client
->bh
);
3406 cpu_unregister_map_client_do(client
);
3410 void cpu_register_map_client(QEMUBH
*bh
)
3412 MapClient
*client
= g_malloc(sizeof(*client
));
3414 qemu_mutex_lock(&map_client_list_lock
);
3416 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3417 if (!atomic_read(&bounce
.in_use
)) {
3418 cpu_notify_map_clients_locked();
3420 qemu_mutex_unlock(&map_client_list_lock
);
3423 void cpu_exec_init_all(void)
3425 qemu_mutex_init(&ram_list
.mutex
);
3426 /* The data structures we set up here depend on knowing the page size,
3427 * so no more changes can be made after this point.
3428 * In an ideal world, nothing we did before we had finished the
3429 * machine setup would care about the target page size, and we could
3430 * do this much later, rather than requiring board models to state
3431 * up front what their requirements are.
3433 finalize_target_page_bits();
3436 qemu_mutex_init(&map_client_list_lock
);
3439 void cpu_unregister_map_client(QEMUBH
*bh
)
3443 qemu_mutex_lock(&map_client_list_lock
);
3444 QLIST_FOREACH(client
, &map_client_list
, link
) {
3445 if (client
->bh
== bh
) {
3446 cpu_unregister_map_client_do(client
);
3450 qemu_mutex_unlock(&map_client_list_lock
);
3453 static void cpu_notify_map_clients(void)
3455 qemu_mutex_lock(&map_client_list_lock
);
3456 cpu_notify_map_clients_locked();
3457 qemu_mutex_unlock(&map_client_list_lock
);
3460 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, int len
,
3468 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
);
3469 if (!memory_access_is_direct(mr
, is_write
)) {
3470 l
= memory_access_size(mr
, l
, addr
);
3471 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
3482 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
,
3483 int len
, bool is_write
)
3489 fv
= address_space_to_flatview(as
);
3490 result
= flatview_access_valid(fv
, addr
, len
, is_write
);
3496 flatview_extend_translation(FlatView
*fv
, hwaddr addr
,
3498 MemoryRegion
*mr
, hwaddr base
, hwaddr len
,
3503 MemoryRegion
*this_mr
;
3509 if (target_len
== 0) {
3514 this_mr
= flatview_translate(fv
, addr
, &xlat
,
3516 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
3522 /* Map a physical memory region into a host virtual address.
3523 * May map a subset of the requested range, given by and returned in *plen.
3524 * May return NULL if resources needed to perform the mapping are exhausted.
3525 * Use only for reads OR writes - not for read-modify-write operations.
3526 * Use cpu_register_map_client() to know when retrying the map operation is
3527 * likely to succeed.
3529 void *address_space_map(AddressSpace
*as
,
3546 fv
= address_space_to_flatview(as
);
3547 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
);
3549 if (!memory_access_is_direct(mr
, is_write
)) {
3550 if (atomic_xchg(&bounce
.in_use
, true)) {
3554 /* Avoid unbounded allocations */
3555 l
= MIN(l
, TARGET_PAGE_SIZE
);
3556 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
3560 memory_region_ref(mr
);
3563 flatview_read(fv
, addr
, MEMTXATTRS_UNSPECIFIED
,
3569 return bounce
.buffer
;
3573 memory_region_ref(mr
);
3574 *plen
= flatview_extend_translation(fv
, addr
, len
, mr
, xlat
,
3576 ptr
= qemu_ram_ptr_length(mr
->ram_block
, xlat
, plen
, true);
3582 /* Unmaps a memory region previously mapped by address_space_map().
3583 * Will also mark the memory as dirty if is_write == 1. access_len gives
3584 * the amount of memory that was actually read or written by the caller.
3586 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3587 int is_write
, hwaddr access_len
)
3589 if (buffer
!= bounce
.buffer
) {
3593 mr
= memory_region_from_host(buffer
, &addr1
);
3596 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3598 if (xen_enabled()) {
3599 xen_invalidate_map_cache_entry(buffer
);
3601 memory_region_unref(mr
);
3605 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3606 bounce
.buffer
, access_len
);
3608 qemu_vfree(bounce
.buffer
);
3609 bounce
.buffer
= NULL
;
3610 memory_region_unref(bounce
.mr
);
3611 atomic_mb_set(&bounce
.in_use
, false);
3612 cpu_notify_map_clients();
3615 void *cpu_physical_memory_map(hwaddr addr
,
3619 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
3622 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3623 int is_write
, hwaddr access_len
)
3625 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3628 #define ARG1_DECL AddressSpace *as
3631 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3632 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3633 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3634 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3635 #define RCU_READ_LOCK(...) rcu_read_lock()
3636 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3637 #include "memory_ldst.inc.c"
3639 int64_t address_space_cache_init(MemoryRegionCache
*cache
,
3645 AddressSpaceDispatch
*d
;
3652 cache
->fv
= address_space_get_flatview(as
);
3653 d
= flatview_to_dispatch(cache
->fv
);
3654 cache
->mrs
= *address_space_translate_internal(d
, addr
, &cache
->xlat
, &l
, true);
3657 memory_region_ref(mr
);
3658 if (memory_access_is_direct(mr
, is_write
)) {
3659 l
= flatview_extend_translation(cache
->fv
, addr
, len
, mr
,
3660 cache
->xlat
, l
, is_write
);
3661 cache
->ptr
= qemu_ram_ptr_length(mr
->ram_block
, cache
->xlat
, &l
, true);
3667 cache
->is_write
= is_write
;
3671 void address_space_cache_invalidate(MemoryRegionCache
*cache
,
3675 assert(cache
->is_write
);
3676 if (likely(cache
->ptr
)) {
3677 invalidate_and_set_dirty(cache
->mrs
.mr
, addr
+ cache
->xlat
, access_len
);
3681 void address_space_cache_destroy(MemoryRegionCache
*cache
)
3683 if (!cache
->mrs
.mr
) {
3687 if (xen_enabled()) {
3688 xen_invalidate_map_cache_entry(cache
->ptr
);
3690 memory_region_unref(cache
->mrs
.mr
);
3691 flatview_unref(cache
->fv
);
3692 cache
->mrs
.mr
= NULL
;
3696 /* Called from RCU critical section. This function has the same
3697 * semantics as address_space_translate, but it only works on a
3698 * predefined range of a MemoryRegion that was mapped with
3699 * address_space_cache_init.
3701 static inline MemoryRegion
*address_space_translate_cached(
3702 MemoryRegionCache
*cache
, hwaddr addr
, hwaddr
*xlat
,
3703 hwaddr
*plen
, bool is_write
)
3705 MemoryRegionSection section
;
3707 IOMMUMemoryRegion
*iommu_mr
;
3708 AddressSpace
*target_as
;
3710 assert(!cache
->ptr
);
3711 *xlat
= addr
+ cache
->xlat
;
3714 iommu_mr
= memory_region_get_iommu(mr
);
3720 section
= address_space_translate_iommu(iommu_mr
, xlat
, plen
,
3721 NULL
, is_write
, true,
3726 /* Called from RCU critical section. address_space_read_cached uses this
3727 * out of line function when the target is an MMIO or IOMMU region.
3730 address_space_read_cached_slow(MemoryRegionCache
*cache
, hwaddr addr
,
3737 mr
= address_space_translate_cached(cache
, addr
, &addr1
, &l
, false);
3738 flatview_read_continue(cache
->fv
,
3739 addr
, MEMTXATTRS_UNSPECIFIED
, buf
, len
,
3743 /* Called from RCU critical section. address_space_write_cached uses this
3744 * out of line function when the target is an MMIO or IOMMU region.
3747 address_space_write_cached_slow(MemoryRegionCache
*cache
, hwaddr addr
,
3748 const void *buf
, int len
)
3754 mr
= address_space_translate_cached(cache
, addr
, &addr1
, &l
, true);
3755 flatview_write_continue(cache
->fv
,
3756 addr
, MEMTXATTRS_UNSPECIFIED
, buf
, len
,
3760 #define ARG1_DECL MemoryRegionCache *cache
3762 #define SUFFIX _cached_slow
3763 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3764 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3765 #define MAP_RAM(mr, ofs) (cache->ptr + (ofs - cache->xlat))
3766 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3767 #define RCU_READ_LOCK() ((void)0)
3768 #define RCU_READ_UNLOCK() ((void)0)
3769 #include "memory_ldst.inc.c"
3771 /* virtual memory access for debug (includes writing to ROM) */
3772 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3773 uint8_t *buf
, int len
, int is_write
)
3779 cpu_synchronize_state(cpu
);
3784 page
= addr
& TARGET_PAGE_MASK
;
3785 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3786 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3787 /* if no physical page mapped, return an error */
3788 if (phys_addr
== -1)
3790 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3793 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3795 cpu_physical_memory_write_rom(cpu
->cpu_ases
[asidx
].as
,
3798 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3799 MEMTXATTRS_UNSPECIFIED
,
3810 * Allows code that needs to deal with migration bitmaps etc to still be built
3811 * target independent.
3813 size_t qemu_target_page_size(void)
3815 return TARGET_PAGE_SIZE
;
3818 int qemu_target_page_bits(void)
3820 return TARGET_PAGE_BITS
;
3823 int qemu_target_page_bits_min(void)
3825 return TARGET_PAGE_BITS_MIN
;
3830 * A helper function for the _utterly broken_ virtio device model to find out if
3831 * it's running on a big endian machine. Don't do this at home kids!
3833 bool target_words_bigendian(void);
3834 bool target_words_bigendian(void)
3836 #if defined(TARGET_WORDS_BIGENDIAN)
3843 #ifndef CONFIG_USER_ONLY
3844 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3851 mr
= address_space_translate(&address_space_memory
,
3852 phys_addr
, &phys_addr
, &l
, false);
3854 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3859 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3865 RAMBLOCK_FOREACH(block
) {
3866 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3867 block
->used_length
, opaque
);
3877 * Unmap pages of memory from start to start+length such that
3878 * they a) read as 0, b) Trigger whatever fault mechanism
3879 * the OS provides for postcopy.
3880 * The pages must be unmapped by the end of the function.
3881 * Returns: 0 on success, none-0 on failure
3884 int ram_block_discard_range(RAMBlock
*rb
, uint64_t start
, size_t length
)
3888 uint8_t *host_startaddr
= rb
->host
+ start
;
3890 if ((uintptr_t)host_startaddr
& (rb
->page_size
- 1)) {
3891 error_report("ram_block_discard_range: Unaligned start address: %p",
3896 if ((start
+ length
) <= rb
->used_length
) {
3897 bool need_madvise
, need_fallocate
;
3898 uint8_t *host_endaddr
= host_startaddr
+ length
;
3899 if ((uintptr_t)host_endaddr
& (rb
->page_size
- 1)) {
3900 error_report("ram_block_discard_range: Unaligned end address: %p",
3905 errno
= ENOTSUP
; /* If we are missing MADVISE etc */
3907 /* The logic here is messy;
3908 * madvise DONTNEED fails for hugepages
3909 * fallocate works on hugepages and shmem
3911 need_madvise
= (rb
->page_size
== qemu_host_page_size
);
3912 need_fallocate
= rb
->fd
!= -1;
3913 if (need_fallocate
) {
3914 /* For a file, this causes the area of the file to be zero'd
3915 * if read, and for hugetlbfs also causes it to be unmapped
3916 * so a userfault will trigger.
3918 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3919 ret
= fallocate(rb
->fd
, FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
,
3923 error_report("ram_block_discard_range: Failed to fallocate "
3924 "%s:%" PRIx64
" +%zx (%d)",
3925 rb
->idstr
, start
, length
, ret
);
3930 error_report("ram_block_discard_range: fallocate not available/file"
3931 "%s:%" PRIx64
" +%zx (%d)",
3932 rb
->idstr
, start
, length
, ret
);
3937 /* For normal RAM this causes it to be unmapped,
3938 * for shared memory it causes the local mapping to disappear
3939 * and to fall back on the file contents (which we just
3940 * fallocate'd away).
3942 #if defined(CONFIG_MADVISE)
3943 ret
= madvise(host_startaddr
, length
, MADV_DONTNEED
);
3946 error_report("ram_block_discard_range: Failed to discard range "
3947 "%s:%" PRIx64
" +%zx (%d)",
3948 rb
->idstr
, start
, length
, ret
);
3953 error_report("ram_block_discard_range: MADVISE not available"
3954 "%s:%" PRIx64
" +%zx (%d)",
3955 rb
->idstr
, start
, length
, ret
);
3959 trace_ram_block_discard_range(rb
->idstr
, host_startaddr
, length
,
3960 need_madvise
, need_fallocate
, ret
);
3962 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3963 "/%zx/" RAM_ADDR_FMT
")",
3964 rb
->idstr
, start
, length
, rb
->used_length
);
3973 void page_size_init(void)
3975 /* NOTE: we can always suppose that qemu_host_page_size >=
3977 if (qemu_host_page_size
== 0) {
3978 qemu_host_page_size
= qemu_real_host_page_size
;
3980 if (qemu_host_page_size
< TARGET_PAGE_SIZE
) {
3981 qemu_host_page_size
= TARGET_PAGE_SIZE
;
3983 qemu_host_page_mask
= -(intptr_t)qemu_host_page_size
;
3986 #if !defined(CONFIG_USER_ONLY)
3988 static void mtree_print_phys_entries(fprintf_function mon
, void *f
,
3989 int start
, int end
, int skip
, int ptr
)
3991 if (start
== end
- 1) {
3992 mon(f
, "\t%3d ", start
);
3994 mon(f
, "\t%3d..%-3d ", start
, end
- 1);
3996 mon(f
, " skip=%d ", skip
);
3997 if (ptr
== PHYS_MAP_NODE_NIL
) {
4000 mon(f
, " ptr=#%d", ptr
);
4002 mon(f
, " ptr=[%d]", ptr
);
4007 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4008 int128_sub((size), int128_one())) : 0)
4010 void mtree_print_dispatch(fprintf_function mon
, void *f
,
4011 AddressSpaceDispatch
*d
, MemoryRegion
*root
)
4015 mon(f
, " Dispatch\n");
4016 mon(f
, " Physical sections\n");
4018 for (i
= 0; i
< d
->map
.sections_nb
; ++i
) {
4019 MemoryRegionSection
*s
= d
->map
.sections
+ i
;
4020 const char *names
[] = { " [unassigned]", " [not dirty]",
4021 " [ROM]", " [watch]" };
4023 mon(f
, " #%d @" TARGET_FMT_plx
".." TARGET_FMT_plx
" %s%s%s%s%s",
4025 s
->offset_within_address_space
,
4026 s
->offset_within_address_space
+ MR_SIZE(s
->mr
->size
),
4027 s
->mr
->name
? s
->mr
->name
: "(noname)",
4028 i
< ARRAY_SIZE(names
) ? names
[i
] : "",
4029 s
->mr
== root
? " [ROOT]" : "",
4030 s
== d
->mru_section
? " [MRU]" : "",
4031 s
->mr
->is_iommu
? " [iommu]" : "");
4034 mon(f
, " alias=%s", s
->mr
->alias
->name
?
4035 s
->mr
->alias
->name
: "noname");
4040 mon(f
, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4041 P_L2_BITS
, P_L2_LEVELS
, d
->phys_map
.ptr
, d
->phys_map
.skip
);
4042 for (i
= 0; i
< d
->map
.nodes_nb
; ++i
) {
4045 Node
*n
= d
->map
.nodes
+ i
;
4047 mon(f
, " [%d]\n", i
);
4049 for (j
= 0, jprev
= 0, prev
= *n
[0]; j
< ARRAY_SIZE(*n
); ++j
) {
4050 PhysPageEntry
*pe
= *n
+ j
;
4052 if (pe
->ptr
== prev
.ptr
&& pe
->skip
== prev
.skip
) {
4056 mtree_print_phys_entries(mon
, f
, jprev
, j
, prev
.skip
, prev
.ptr
);
4062 if (jprev
!= ARRAY_SIZE(*n
)) {
4063 mtree_print_phys_entries(mon
, f
, jprev
, j
, prev
.skip
, prev
.ptr
);