exec.c: Initialize sa_flags passed to sigaction()
[qemu/ar7.git] / exec.c
blobbd8833fc9dfb9d81b43b319ec61dc63270834681
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
26 #include "tcg.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
53 #endif
55 #endif
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
65 #include "migration/vmstate.h"
67 #include "qemu/range.h"
68 #ifndef _WIN32
69 #include "qemu/mmap-alloc.h"
70 #endif
72 #include "monitor/monitor.h"
74 //#define DEBUG_SUBPAGE
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
80 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
82 static MemoryRegion *system_memory;
83 static MemoryRegion *system_io;
85 AddressSpace address_space_io;
86 AddressSpace address_space_memory;
88 MemoryRegion io_mem_rom, io_mem_notdirty;
89 static MemoryRegion io_mem_unassigned;
91 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92 #define RAM_PREALLOC (1 << 0)
94 /* RAM is mmap-ed with MAP_SHARED */
95 #define RAM_SHARED (1 << 1)
97 /* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
100 #define RAM_RESIZEABLE (1 << 2)
102 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
103 * zero the page and wake waiting processes.
104 * (Set during postcopy)
106 #define RAM_UF_ZEROPAGE (1 << 3)
107 #endif
109 #ifdef TARGET_PAGE_BITS_VARY
110 int target_page_bits;
111 bool target_page_bits_decided;
112 #endif
114 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
115 /* current CPU in the current thread. It is only valid inside
116 cpu_exec() */
117 __thread CPUState *current_cpu;
118 /* 0 = Do not count executed instructions.
119 1 = Precise instruction counting.
120 2 = Adaptive rate instruction counting. */
121 int use_icount;
123 uintptr_t qemu_host_page_size;
124 intptr_t qemu_host_page_mask;
126 bool set_preferred_target_page_bits(int bits)
128 /* The target page size is the lowest common denominator for all
129 * the CPUs in the system, so we can only make it smaller, never
130 * larger. And we can't make it smaller once we've committed to
131 * a particular size.
133 #ifdef TARGET_PAGE_BITS_VARY
134 assert(bits >= TARGET_PAGE_BITS_MIN);
135 if (target_page_bits == 0 || target_page_bits > bits) {
136 if (target_page_bits_decided) {
137 return false;
139 target_page_bits = bits;
141 #endif
142 return true;
145 #if !defined(CONFIG_USER_ONLY)
147 static void finalize_target_page_bits(void)
149 #ifdef TARGET_PAGE_BITS_VARY
150 if (target_page_bits == 0) {
151 target_page_bits = TARGET_PAGE_BITS_MIN;
153 target_page_bits_decided = true;
154 #endif
157 typedef struct PhysPageEntry PhysPageEntry;
159 struct PhysPageEntry {
160 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
161 uint32_t skip : 6;
162 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
163 uint32_t ptr : 26;
166 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
168 /* Size of the L2 (and L3, etc) page tables. */
169 #define ADDR_SPACE_BITS 64
171 #define P_L2_BITS 9
172 #define P_L2_SIZE (1 << P_L2_BITS)
174 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
176 typedef PhysPageEntry Node[P_L2_SIZE];
178 typedef struct PhysPageMap {
179 struct rcu_head rcu;
181 unsigned sections_nb;
182 unsigned sections_nb_alloc;
183 unsigned nodes_nb;
184 unsigned nodes_nb_alloc;
185 Node *nodes;
186 MemoryRegionSection *sections;
187 } PhysPageMap;
189 struct AddressSpaceDispatch {
190 MemoryRegionSection *mru_section;
191 /* This is a multi-level map on the physical address space.
192 * The bottom level has pointers to MemoryRegionSections.
194 PhysPageEntry phys_map;
195 PhysPageMap map;
198 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
199 typedef struct subpage_t {
200 MemoryRegion iomem;
201 FlatView *fv;
202 hwaddr base;
203 uint16_t sub_section[];
204 } subpage_t;
206 #define PHYS_SECTION_UNASSIGNED 0
207 #define PHYS_SECTION_NOTDIRTY 1
208 #define PHYS_SECTION_ROM 2
209 #define PHYS_SECTION_WATCH 3
211 static void io_mem_init(void);
212 static void memory_map_init(void);
213 static void tcg_commit(MemoryListener *listener);
215 static MemoryRegion io_mem_watch;
218 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
219 * @cpu: the CPU whose AddressSpace this is
220 * @as: the AddressSpace itself
221 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
222 * @tcg_as_listener: listener for tracking changes to the AddressSpace
224 struct CPUAddressSpace {
225 CPUState *cpu;
226 AddressSpace *as;
227 struct AddressSpaceDispatch *memory_dispatch;
228 MemoryListener tcg_as_listener;
231 struct DirtyBitmapSnapshot {
232 ram_addr_t start;
233 ram_addr_t end;
234 unsigned long dirty[];
237 #endif
239 #if !defined(CONFIG_USER_ONLY)
241 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
243 static unsigned alloc_hint = 16;
244 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
245 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
246 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
247 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
248 alloc_hint = map->nodes_nb_alloc;
252 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
254 unsigned i;
255 uint32_t ret;
256 PhysPageEntry e;
257 PhysPageEntry *p;
259 ret = map->nodes_nb++;
260 p = map->nodes[ret];
261 assert(ret != PHYS_MAP_NODE_NIL);
262 assert(ret != map->nodes_nb_alloc);
264 e.skip = leaf ? 0 : 1;
265 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
266 for (i = 0; i < P_L2_SIZE; ++i) {
267 memcpy(&p[i], &e, sizeof(e));
269 return ret;
272 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
273 hwaddr *index, hwaddr *nb, uint16_t leaf,
274 int level)
276 PhysPageEntry *p;
277 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
279 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
280 lp->ptr = phys_map_node_alloc(map, level == 0);
282 p = map->nodes[lp->ptr];
283 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
285 while (*nb && lp < &p[P_L2_SIZE]) {
286 if ((*index & (step - 1)) == 0 && *nb >= step) {
287 lp->skip = 0;
288 lp->ptr = leaf;
289 *index += step;
290 *nb -= step;
291 } else {
292 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
294 ++lp;
298 static void phys_page_set(AddressSpaceDispatch *d,
299 hwaddr index, hwaddr nb,
300 uint16_t leaf)
302 /* Wildly overreserve - it doesn't matter much. */
303 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
305 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
308 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
309 * and update our entry so we can skip it and go directly to the destination.
311 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
313 unsigned valid_ptr = P_L2_SIZE;
314 int valid = 0;
315 PhysPageEntry *p;
316 int i;
318 if (lp->ptr == PHYS_MAP_NODE_NIL) {
319 return;
322 p = nodes[lp->ptr];
323 for (i = 0; i < P_L2_SIZE; i++) {
324 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
325 continue;
328 valid_ptr = i;
329 valid++;
330 if (p[i].skip) {
331 phys_page_compact(&p[i], nodes);
335 /* We can only compress if there's only one child. */
336 if (valid != 1) {
337 return;
340 assert(valid_ptr < P_L2_SIZE);
342 /* Don't compress if it won't fit in the # of bits we have. */
343 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
344 return;
347 lp->ptr = p[valid_ptr].ptr;
348 if (!p[valid_ptr].skip) {
349 /* If our only child is a leaf, make this a leaf. */
350 /* By design, we should have made this node a leaf to begin with so we
351 * should never reach here.
352 * But since it's so simple to handle this, let's do it just in case we
353 * change this rule.
355 lp->skip = 0;
356 } else {
357 lp->skip += p[valid_ptr].skip;
361 void address_space_dispatch_compact(AddressSpaceDispatch *d)
363 if (d->phys_map.skip) {
364 phys_page_compact(&d->phys_map, d->map.nodes);
368 static inline bool section_covers_addr(const MemoryRegionSection *section,
369 hwaddr addr)
371 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
372 * the section must cover the entire address space.
374 return int128_gethi(section->size) ||
375 range_covers_byte(section->offset_within_address_space,
376 int128_getlo(section->size), addr);
379 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
381 PhysPageEntry lp = d->phys_map, *p;
382 Node *nodes = d->map.nodes;
383 MemoryRegionSection *sections = d->map.sections;
384 hwaddr index = addr >> TARGET_PAGE_BITS;
385 int i;
387 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
388 if (lp.ptr == PHYS_MAP_NODE_NIL) {
389 return &sections[PHYS_SECTION_UNASSIGNED];
391 p = nodes[lp.ptr];
392 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
395 if (section_covers_addr(&sections[lp.ptr], addr)) {
396 return &sections[lp.ptr];
397 } else {
398 return &sections[PHYS_SECTION_UNASSIGNED];
402 bool memory_region_is_unassigned(MemoryRegion *mr)
404 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
405 && mr != &io_mem_watch;
408 /* Called from RCU critical section */
409 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
410 hwaddr addr,
411 bool resolve_subpage)
413 MemoryRegionSection *section = atomic_read(&d->mru_section);
414 subpage_t *subpage;
416 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
417 !section_covers_addr(section, addr)) {
418 section = phys_page_find(d, addr);
419 atomic_set(&d->mru_section, section);
421 if (resolve_subpage && section->mr->subpage) {
422 subpage = container_of(section->mr, subpage_t, iomem);
423 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
425 return section;
428 /* Called from RCU critical section */
429 static MemoryRegionSection *
430 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
431 hwaddr *plen, bool resolve_subpage)
433 MemoryRegionSection *section;
434 MemoryRegion *mr;
435 Int128 diff;
437 section = address_space_lookup_region(d, addr, resolve_subpage);
438 /* Compute offset within MemoryRegionSection */
439 addr -= section->offset_within_address_space;
441 /* Compute offset within MemoryRegion */
442 *xlat = addr + section->offset_within_region;
444 mr = section->mr;
446 /* MMIO registers can be expected to perform full-width accesses based only
447 * on their address, without considering adjacent registers that could
448 * decode to completely different MemoryRegions. When such registers
449 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
450 * regions overlap wildly. For this reason we cannot clamp the accesses
451 * here.
453 * If the length is small (as is the case for address_space_ldl/stl),
454 * everything works fine. If the incoming length is large, however,
455 * the caller really has to do the clamping through memory_access_size.
457 if (memory_region_is_ram(mr)) {
458 diff = int128_sub(section->size, int128_make64(addr));
459 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
461 return section;
465 * address_space_translate_iommu - translate an address through an IOMMU
466 * memory region and then through the target address space.
468 * @iommu_mr: the IOMMU memory region that we start the translation from
469 * @addr: the address to be translated through the MMU
470 * @xlat: the translated address offset within the destination memory region.
471 * It cannot be %NULL.
472 * @plen_out: valid read/write length of the translated address. It
473 * cannot be %NULL.
474 * @page_mask_out: page mask for the translated address. This
475 * should only be meaningful for IOMMU translated
476 * addresses, since there may be huge pages that this bit
477 * would tell. It can be %NULL if we don't care about it.
478 * @is_write: whether the translation operation is for write
479 * @is_mmio: whether this can be MMIO, set true if it can
480 * @target_as: the address space targeted by the IOMMU
482 * This function is called from RCU critical section. It is the common
483 * part of flatview_do_translate and address_space_translate_cached.
485 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
486 hwaddr *xlat,
487 hwaddr *plen_out,
488 hwaddr *page_mask_out,
489 bool is_write,
490 bool is_mmio,
491 AddressSpace **target_as)
493 MemoryRegionSection *section;
494 hwaddr page_mask = (hwaddr)-1;
496 do {
497 hwaddr addr = *xlat;
498 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
499 IOMMUTLBEntry iotlb = imrc->translate(iommu_mr, addr, is_write ?
500 IOMMU_WO : IOMMU_RO);
502 if (!(iotlb.perm & (1 << is_write))) {
503 goto unassigned;
506 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
507 | (addr & iotlb.addr_mask));
508 page_mask &= iotlb.addr_mask;
509 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
510 *target_as = iotlb.target_as;
512 section = address_space_translate_internal(
513 address_space_to_dispatch(iotlb.target_as), addr, xlat,
514 plen_out, is_mmio);
516 iommu_mr = memory_region_get_iommu(section->mr);
517 } while (unlikely(iommu_mr));
519 if (page_mask_out) {
520 *page_mask_out = page_mask;
522 return *section;
524 unassigned:
525 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
529 * flatview_do_translate - translate an address in FlatView
531 * @fv: the flat view that we want to translate on
532 * @addr: the address to be translated in above address space
533 * @xlat: the translated address offset within memory region. It
534 * cannot be @NULL.
535 * @plen_out: valid read/write length of the translated address. It
536 * can be @NULL when we don't care about it.
537 * @page_mask_out: page mask for the translated address. This
538 * should only be meaningful for IOMMU translated
539 * addresses, since there may be huge pages that this bit
540 * would tell. It can be @NULL if we don't care about it.
541 * @is_write: whether the translation operation is for write
542 * @is_mmio: whether this can be MMIO, set true if it can
543 * @target_as: the address space targeted by the IOMMU
545 * This function is called from RCU critical section
547 static MemoryRegionSection flatview_do_translate(FlatView *fv,
548 hwaddr addr,
549 hwaddr *xlat,
550 hwaddr *plen_out,
551 hwaddr *page_mask_out,
552 bool is_write,
553 bool is_mmio,
554 AddressSpace **target_as)
556 MemoryRegionSection *section;
557 IOMMUMemoryRegion *iommu_mr;
558 hwaddr plen = (hwaddr)(-1);
560 if (!plen_out) {
561 plen_out = &plen;
564 section = address_space_translate_internal(
565 flatview_to_dispatch(fv), addr, xlat,
566 plen_out, is_mmio);
568 iommu_mr = memory_region_get_iommu(section->mr);
569 if (unlikely(iommu_mr)) {
570 return address_space_translate_iommu(iommu_mr, xlat,
571 plen_out, page_mask_out,
572 is_write, is_mmio,
573 target_as);
575 if (page_mask_out) {
576 /* Not behind an IOMMU, use default page size. */
577 *page_mask_out = ~TARGET_PAGE_MASK;
580 return *section;
583 /* Called from RCU critical section */
584 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
585 bool is_write)
587 MemoryRegionSection section;
588 hwaddr xlat, page_mask;
591 * This can never be MMIO, and we don't really care about plen,
592 * but page mask.
594 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
595 NULL, &page_mask, is_write, false, &as);
597 /* Illegal translation */
598 if (section.mr == &io_mem_unassigned) {
599 goto iotlb_fail;
602 /* Convert memory region offset into address space offset */
603 xlat += section.offset_within_address_space -
604 section.offset_within_region;
606 return (IOMMUTLBEntry) {
607 .target_as = as,
608 .iova = addr & ~page_mask,
609 .translated_addr = xlat & ~page_mask,
610 .addr_mask = page_mask,
611 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
612 .perm = IOMMU_RW,
615 iotlb_fail:
616 return (IOMMUTLBEntry) {0};
619 /* Called from RCU critical section */
620 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
621 hwaddr *plen, bool is_write)
623 MemoryRegion *mr;
624 MemoryRegionSection section;
625 AddressSpace *as = NULL;
627 /* This can be MMIO, so setup MMIO bit. */
628 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
629 is_write, true, &as);
630 mr = section.mr;
632 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
633 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
634 *plen = MIN(page, *plen);
637 return mr;
640 /* Called from RCU critical section */
641 MemoryRegionSection *
642 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
643 hwaddr *xlat, hwaddr *plen)
645 MemoryRegionSection *section;
646 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
648 section = address_space_translate_internal(d, addr, xlat, plen, false);
650 assert(!memory_region_is_iommu(section->mr));
651 return section;
653 #endif
655 #if !defined(CONFIG_USER_ONLY)
657 static int cpu_common_post_load(void *opaque, int version_id)
659 CPUState *cpu = opaque;
661 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
662 version_id is increased. */
663 cpu->interrupt_request &= ~0x01;
664 tlb_flush(cpu);
666 /* loadvm has just updated the content of RAM, bypassing the
667 * usual mechanisms that ensure we flush TBs for writes to
668 * memory we've translated code from. So we must flush all TBs,
669 * which will now be stale.
671 tb_flush(cpu);
673 return 0;
676 static int cpu_common_pre_load(void *opaque)
678 CPUState *cpu = opaque;
680 cpu->exception_index = -1;
682 return 0;
685 static bool cpu_common_exception_index_needed(void *opaque)
687 CPUState *cpu = opaque;
689 return tcg_enabled() && cpu->exception_index != -1;
692 static const VMStateDescription vmstate_cpu_common_exception_index = {
693 .name = "cpu_common/exception_index",
694 .version_id = 1,
695 .minimum_version_id = 1,
696 .needed = cpu_common_exception_index_needed,
697 .fields = (VMStateField[]) {
698 VMSTATE_INT32(exception_index, CPUState),
699 VMSTATE_END_OF_LIST()
703 static bool cpu_common_crash_occurred_needed(void *opaque)
705 CPUState *cpu = opaque;
707 return cpu->crash_occurred;
710 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
711 .name = "cpu_common/crash_occurred",
712 .version_id = 1,
713 .minimum_version_id = 1,
714 .needed = cpu_common_crash_occurred_needed,
715 .fields = (VMStateField[]) {
716 VMSTATE_BOOL(crash_occurred, CPUState),
717 VMSTATE_END_OF_LIST()
721 const VMStateDescription vmstate_cpu_common = {
722 .name = "cpu_common",
723 .version_id = 1,
724 .minimum_version_id = 1,
725 .pre_load = cpu_common_pre_load,
726 .post_load = cpu_common_post_load,
727 .fields = (VMStateField[]) {
728 VMSTATE_UINT32(halted, CPUState),
729 VMSTATE_UINT32(interrupt_request, CPUState),
730 VMSTATE_END_OF_LIST()
732 .subsections = (const VMStateDescription*[]) {
733 &vmstate_cpu_common_exception_index,
734 &vmstate_cpu_common_crash_occurred,
735 NULL
739 #endif
741 CPUState *qemu_get_cpu(int index)
743 CPUState *cpu;
745 CPU_FOREACH(cpu) {
746 if (cpu->cpu_index == index) {
747 return cpu;
751 return NULL;
754 #if !defined(CONFIG_USER_ONLY)
755 void cpu_address_space_init(CPUState *cpu, int asidx,
756 const char *prefix, MemoryRegion *mr)
758 CPUAddressSpace *newas;
759 AddressSpace *as = g_new0(AddressSpace, 1);
760 char *as_name;
762 assert(mr);
763 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
764 address_space_init(as, mr, as_name);
765 g_free(as_name);
767 /* Target code should have set num_ases before calling us */
768 assert(asidx < cpu->num_ases);
770 if (asidx == 0) {
771 /* address space 0 gets the convenience alias */
772 cpu->as = as;
775 /* KVM cannot currently support multiple address spaces. */
776 assert(asidx == 0 || !kvm_enabled());
778 if (!cpu->cpu_ases) {
779 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
782 newas = &cpu->cpu_ases[asidx];
783 newas->cpu = cpu;
784 newas->as = as;
785 if (tcg_enabled()) {
786 newas->tcg_as_listener.commit = tcg_commit;
787 memory_listener_register(&newas->tcg_as_listener, as);
791 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
793 /* Return the AddressSpace corresponding to the specified index */
794 return cpu->cpu_ases[asidx].as;
796 #endif
798 void cpu_exec_unrealizefn(CPUState *cpu)
800 CPUClass *cc = CPU_GET_CLASS(cpu);
802 cpu_list_remove(cpu);
804 if (cc->vmsd != NULL) {
805 vmstate_unregister(NULL, cc->vmsd, cpu);
807 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
808 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
812 Property cpu_common_props[] = {
813 #ifndef CONFIG_USER_ONLY
814 /* Create a memory property for softmmu CPU object,
815 * so users can wire up its memory. (This can't go in qom/cpu.c
816 * because that file is compiled only once for both user-mode
817 * and system builds.) The default if no link is set up is to use
818 * the system address space.
820 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
821 MemoryRegion *),
822 #endif
823 DEFINE_PROP_END_OF_LIST(),
826 void cpu_exec_initfn(CPUState *cpu)
828 cpu->as = NULL;
829 cpu->num_ases = 0;
831 #ifndef CONFIG_USER_ONLY
832 cpu->thread_id = qemu_get_thread_id();
833 cpu->memory = system_memory;
834 object_ref(OBJECT(cpu->memory));
835 #endif
838 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
840 CPUClass *cc = CPU_GET_CLASS(cpu);
841 static bool tcg_target_initialized;
843 cpu_list_add(cpu);
845 if (tcg_enabled() && !tcg_target_initialized) {
846 tcg_target_initialized = true;
847 cc->tcg_initialize();
850 #ifndef CONFIG_USER_ONLY
851 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
852 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
854 if (cc->vmsd != NULL) {
855 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
857 #endif
860 const char *parse_cpu_model(const char *cpu_model)
862 ObjectClass *oc;
863 CPUClass *cc;
864 gchar **model_pieces;
865 const char *cpu_type;
867 model_pieces = g_strsplit(cpu_model, ",", 2);
869 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
870 if (oc == NULL) {
871 error_report("unable to find CPU model '%s'", model_pieces[0]);
872 g_strfreev(model_pieces);
873 exit(EXIT_FAILURE);
876 cpu_type = object_class_get_name(oc);
877 cc = CPU_CLASS(oc);
878 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
879 g_strfreev(model_pieces);
880 return cpu_type;
883 #if defined(CONFIG_USER_ONLY)
884 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
886 mmap_lock();
887 tb_lock();
888 tb_invalidate_phys_page_range(pc, pc + 1, 0);
889 tb_unlock();
890 mmap_unlock();
892 #else
893 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
895 MemTxAttrs attrs;
896 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
897 int asidx = cpu_asidx_from_attrs(cpu, attrs);
898 if (phys != -1) {
899 /* Locks grabbed by tb_invalidate_phys_addr */
900 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
901 phys | (pc & ~TARGET_PAGE_MASK));
904 #endif
906 #if defined(CONFIG_USER_ONLY)
907 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
912 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
913 int flags)
915 return -ENOSYS;
918 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
922 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
923 int flags, CPUWatchpoint **watchpoint)
925 return -ENOSYS;
927 #else
928 /* Add a watchpoint. */
929 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
930 int flags, CPUWatchpoint **watchpoint)
932 CPUWatchpoint *wp;
934 /* forbid ranges which are empty or run off the end of the address space */
935 if (len == 0 || (addr + len - 1) < addr) {
936 error_report("tried to set invalid watchpoint at %"
937 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
938 return -EINVAL;
940 wp = g_malloc(sizeof(*wp));
942 wp->vaddr = addr;
943 wp->len = len;
944 wp->flags = flags;
946 /* keep all GDB-injected watchpoints in front */
947 if (flags & BP_GDB) {
948 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
949 } else {
950 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
953 tlb_flush_page(cpu, addr);
955 if (watchpoint)
956 *watchpoint = wp;
957 return 0;
960 /* Remove a specific watchpoint. */
961 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
962 int flags)
964 CPUWatchpoint *wp;
966 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
967 if (addr == wp->vaddr && len == wp->len
968 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
969 cpu_watchpoint_remove_by_ref(cpu, wp);
970 return 0;
973 return -ENOENT;
976 /* Remove a specific watchpoint by reference. */
977 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
979 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
981 tlb_flush_page(cpu, watchpoint->vaddr);
983 g_free(watchpoint);
986 /* Remove all matching watchpoints. */
987 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
989 CPUWatchpoint *wp, *next;
991 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
992 if (wp->flags & mask) {
993 cpu_watchpoint_remove_by_ref(cpu, wp);
998 /* Return true if this watchpoint address matches the specified
999 * access (ie the address range covered by the watchpoint overlaps
1000 * partially or completely with the address range covered by the
1001 * access).
1003 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1004 vaddr addr,
1005 vaddr len)
1007 /* We know the lengths are non-zero, but a little caution is
1008 * required to avoid errors in the case where the range ends
1009 * exactly at the top of the address space and so addr + len
1010 * wraps round to zero.
1012 vaddr wpend = wp->vaddr + wp->len - 1;
1013 vaddr addrend = addr + len - 1;
1015 return !(addr > wpend || wp->vaddr > addrend);
1018 #endif
1020 /* Add a breakpoint. */
1021 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1022 CPUBreakpoint **breakpoint)
1024 CPUBreakpoint *bp;
1026 bp = g_malloc(sizeof(*bp));
1028 bp->pc = pc;
1029 bp->flags = flags;
1031 /* keep all GDB-injected breakpoints in front */
1032 if (flags & BP_GDB) {
1033 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1034 } else {
1035 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1038 breakpoint_invalidate(cpu, pc);
1040 if (breakpoint) {
1041 *breakpoint = bp;
1043 return 0;
1046 /* Remove a specific breakpoint. */
1047 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1049 CPUBreakpoint *bp;
1051 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1052 if (bp->pc == pc && bp->flags == flags) {
1053 cpu_breakpoint_remove_by_ref(cpu, bp);
1054 return 0;
1057 return -ENOENT;
1060 /* Remove a specific breakpoint by reference. */
1061 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1063 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1065 breakpoint_invalidate(cpu, breakpoint->pc);
1067 g_free(breakpoint);
1070 /* Remove all matching breakpoints. */
1071 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1073 CPUBreakpoint *bp, *next;
1075 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1076 if (bp->flags & mask) {
1077 cpu_breakpoint_remove_by_ref(cpu, bp);
1082 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1083 CPU loop after each instruction */
1084 void cpu_single_step(CPUState *cpu, int enabled)
1086 if (cpu->singlestep_enabled != enabled) {
1087 cpu->singlestep_enabled = enabled;
1088 if (kvm_enabled()) {
1089 kvm_update_guest_debug(cpu, 0);
1090 } else {
1091 /* must flush all the translated code to avoid inconsistencies */
1092 /* XXX: only flush what is necessary */
1093 tb_flush(cpu);
1098 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1100 va_list ap;
1101 va_list ap2;
1103 va_start(ap, fmt);
1104 va_copy(ap2, ap);
1105 fprintf(stderr, "qemu: fatal: ");
1106 vfprintf(stderr, fmt, ap);
1107 fprintf(stderr, "\n");
1108 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1109 if (qemu_log_separate()) {
1110 qemu_log_lock();
1111 qemu_log("qemu: fatal: ");
1112 qemu_log_vprintf(fmt, ap2);
1113 qemu_log("\n");
1114 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1115 qemu_log_flush();
1116 qemu_log_unlock();
1117 qemu_log_close();
1119 va_end(ap2);
1120 va_end(ap);
1121 replay_finish();
1122 #if defined(CONFIG_USER_ONLY)
1124 struct sigaction act;
1125 sigfillset(&act.sa_mask);
1126 act.sa_handler = SIG_DFL;
1127 act.sa_flags = 0;
1128 sigaction(SIGABRT, &act, NULL);
1130 #endif
1131 abort();
1134 #if !defined(CONFIG_USER_ONLY)
1135 /* Called from RCU critical section */
1136 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1138 RAMBlock *block;
1140 block = atomic_rcu_read(&ram_list.mru_block);
1141 if (block && addr - block->offset < block->max_length) {
1142 return block;
1144 RAMBLOCK_FOREACH(block) {
1145 if (addr - block->offset < block->max_length) {
1146 goto found;
1150 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1151 abort();
1153 found:
1154 /* It is safe to write mru_block outside the iothread lock. This
1155 * is what happens:
1157 * mru_block = xxx
1158 * rcu_read_unlock()
1159 * xxx removed from list
1160 * rcu_read_lock()
1161 * read mru_block
1162 * mru_block = NULL;
1163 * call_rcu(reclaim_ramblock, xxx);
1164 * rcu_read_unlock()
1166 * atomic_rcu_set is not needed here. The block was already published
1167 * when it was placed into the list. Here we're just making an extra
1168 * copy of the pointer.
1170 ram_list.mru_block = block;
1171 return block;
1174 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1176 CPUState *cpu;
1177 ram_addr_t start1;
1178 RAMBlock *block;
1179 ram_addr_t end;
1181 end = TARGET_PAGE_ALIGN(start + length);
1182 start &= TARGET_PAGE_MASK;
1184 rcu_read_lock();
1185 block = qemu_get_ram_block(start);
1186 assert(block == qemu_get_ram_block(end - 1));
1187 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1188 CPU_FOREACH(cpu) {
1189 tlb_reset_dirty(cpu, start1, length);
1191 rcu_read_unlock();
1194 /* Note: start and end must be within the same ram block. */
1195 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1196 ram_addr_t length,
1197 unsigned client)
1199 DirtyMemoryBlocks *blocks;
1200 unsigned long end, page;
1201 bool dirty = false;
1203 if (length == 0) {
1204 return false;
1207 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1208 page = start >> TARGET_PAGE_BITS;
1210 rcu_read_lock();
1212 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1214 while (page < end) {
1215 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1216 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1217 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1219 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1220 offset, num);
1221 page += num;
1224 rcu_read_unlock();
1226 if (dirty && tcg_enabled()) {
1227 tlb_reset_dirty_range_all(start, length);
1230 return dirty;
1233 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1234 (ram_addr_t start, ram_addr_t length, unsigned client)
1236 DirtyMemoryBlocks *blocks;
1237 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1238 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1239 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1240 DirtyBitmapSnapshot *snap;
1241 unsigned long page, end, dest;
1243 snap = g_malloc0(sizeof(*snap) +
1244 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1245 snap->start = first;
1246 snap->end = last;
1248 page = first >> TARGET_PAGE_BITS;
1249 end = last >> TARGET_PAGE_BITS;
1250 dest = 0;
1252 rcu_read_lock();
1254 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1256 while (page < end) {
1257 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1258 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1259 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1261 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1262 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1263 offset >>= BITS_PER_LEVEL;
1265 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1266 blocks->blocks[idx] + offset,
1267 num);
1268 page += num;
1269 dest += num >> BITS_PER_LEVEL;
1272 rcu_read_unlock();
1274 if (tcg_enabled()) {
1275 tlb_reset_dirty_range_all(start, length);
1278 return snap;
1281 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1282 ram_addr_t start,
1283 ram_addr_t length)
1285 unsigned long page, end;
1287 assert(start >= snap->start);
1288 assert(start + length <= snap->end);
1290 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1291 page = (start - snap->start) >> TARGET_PAGE_BITS;
1293 while (page < end) {
1294 if (test_bit(page, snap->dirty)) {
1295 return true;
1297 page++;
1299 return false;
1302 /* Called from RCU critical section */
1303 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1304 MemoryRegionSection *section,
1305 target_ulong vaddr,
1306 hwaddr paddr, hwaddr xlat,
1307 int prot,
1308 target_ulong *address)
1310 hwaddr iotlb;
1311 CPUWatchpoint *wp;
1313 if (memory_region_is_ram(section->mr)) {
1314 /* Normal RAM. */
1315 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1316 if (!section->readonly) {
1317 iotlb |= PHYS_SECTION_NOTDIRTY;
1318 } else {
1319 iotlb |= PHYS_SECTION_ROM;
1321 } else {
1322 AddressSpaceDispatch *d;
1324 d = flatview_to_dispatch(section->fv);
1325 iotlb = section - d->map.sections;
1326 iotlb += xlat;
1329 /* Make accesses to pages with watchpoints go via the
1330 watchpoint trap routines. */
1331 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1332 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1333 /* Avoid trapping reads of pages with a write breakpoint. */
1334 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1335 iotlb = PHYS_SECTION_WATCH + paddr;
1336 *address |= TLB_MMIO;
1337 break;
1342 return iotlb;
1344 #endif /* defined(CONFIG_USER_ONLY) */
1346 #if !defined(CONFIG_USER_ONLY)
1348 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1349 uint16_t section);
1350 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1352 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1353 qemu_anon_ram_alloc;
1356 * Set a custom physical guest memory alloator.
1357 * Accelerators with unusual needs may need this. Hopefully, we can
1358 * get rid of it eventually.
1360 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1362 phys_mem_alloc = alloc;
1365 static uint16_t phys_section_add(PhysPageMap *map,
1366 MemoryRegionSection *section)
1368 /* The physical section number is ORed with a page-aligned
1369 * pointer to produce the iotlb entries. Thus it should
1370 * never overflow into the page-aligned value.
1372 assert(map->sections_nb < TARGET_PAGE_SIZE);
1374 if (map->sections_nb == map->sections_nb_alloc) {
1375 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1376 map->sections = g_renew(MemoryRegionSection, map->sections,
1377 map->sections_nb_alloc);
1379 map->sections[map->sections_nb] = *section;
1380 memory_region_ref(section->mr);
1381 return map->sections_nb++;
1384 static void phys_section_destroy(MemoryRegion *mr)
1386 bool have_sub_page = mr->subpage;
1388 memory_region_unref(mr);
1390 if (have_sub_page) {
1391 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1392 object_unref(OBJECT(&subpage->iomem));
1393 g_free(subpage);
1397 static void phys_sections_free(PhysPageMap *map)
1399 while (map->sections_nb > 0) {
1400 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1401 phys_section_destroy(section->mr);
1403 g_free(map->sections);
1404 g_free(map->nodes);
1407 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1409 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1410 subpage_t *subpage;
1411 hwaddr base = section->offset_within_address_space
1412 & TARGET_PAGE_MASK;
1413 MemoryRegionSection *existing = phys_page_find(d, base);
1414 MemoryRegionSection subsection = {
1415 .offset_within_address_space = base,
1416 .size = int128_make64(TARGET_PAGE_SIZE),
1418 hwaddr start, end;
1420 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1422 if (!(existing->mr->subpage)) {
1423 subpage = subpage_init(fv, base);
1424 subsection.fv = fv;
1425 subsection.mr = &subpage->iomem;
1426 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1427 phys_section_add(&d->map, &subsection));
1428 } else {
1429 subpage = container_of(existing->mr, subpage_t, iomem);
1431 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1432 end = start + int128_get64(section->size) - 1;
1433 subpage_register(subpage, start, end,
1434 phys_section_add(&d->map, section));
1438 static void register_multipage(FlatView *fv,
1439 MemoryRegionSection *section)
1441 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1442 hwaddr start_addr = section->offset_within_address_space;
1443 uint16_t section_index = phys_section_add(&d->map, section);
1444 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1445 TARGET_PAGE_BITS));
1447 assert(num_pages);
1448 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1451 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1453 MemoryRegionSection now = *section, remain = *section;
1454 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1456 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1457 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1458 - now.offset_within_address_space;
1460 now.size = int128_min(int128_make64(left), now.size);
1461 register_subpage(fv, &now);
1462 } else {
1463 now.size = int128_zero();
1465 while (int128_ne(remain.size, now.size)) {
1466 remain.size = int128_sub(remain.size, now.size);
1467 remain.offset_within_address_space += int128_get64(now.size);
1468 remain.offset_within_region += int128_get64(now.size);
1469 now = remain;
1470 if (int128_lt(remain.size, page_size)) {
1471 register_subpage(fv, &now);
1472 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1473 now.size = page_size;
1474 register_subpage(fv, &now);
1475 } else {
1476 now.size = int128_and(now.size, int128_neg(page_size));
1477 register_multipage(fv, &now);
1482 void qemu_flush_coalesced_mmio_buffer(void)
1484 if (kvm_enabled())
1485 kvm_flush_coalesced_mmio_buffer();
1488 void qemu_mutex_lock_ramlist(void)
1490 qemu_mutex_lock(&ram_list.mutex);
1493 void qemu_mutex_unlock_ramlist(void)
1495 qemu_mutex_unlock(&ram_list.mutex);
1498 void ram_block_dump(Monitor *mon)
1500 RAMBlock *block;
1501 char *psize;
1503 rcu_read_lock();
1504 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1505 "Block Name", "PSize", "Offset", "Used", "Total");
1506 RAMBLOCK_FOREACH(block) {
1507 psize = size_to_str(block->page_size);
1508 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1509 " 0x%016" PRIx64 "\n", block->idstr, psize,
1510 (uint64_t)block->offset,
1511 (uint64_t)block->used_length,
1512 (uint64_t)block->max_length);
1513 g_free(psize);
1515 rcu_read_unlock();
1518 #ifdef __linux__
1520 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1521 * may or may not name the same files / on the same filesystem now as
1522 * when we actually open and map them. Iterate over the file
1523 * descriptors instead, and use qemu_fd_getpagesize().
1525 static int find_max_supported_pagesize(Object *obj, void *opaque)
1527 long *hpsize_min = opaque;
1529 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1530 long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));
1532 if (hpsize < *hpsize_min) {
1533 *hpsize_min = hpsize;
1537 return 0;
1540 long qemu_getrampagesize(void)
1542 long hpsize = LONG_MAX;
1543 long mainrampagesize;
1544 Object *memdev_root;
1546 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1548 /* it's possible we have memory-backend objects with
1549 * hugepage-backed RAM. these may get mapped into system
1550 * address space via -numa parameters or memory hotplug
1551 * hooks. we want to take these into account, but we
1552 * also want to make sure these supported hugepage
1553 * sizes are applicable across the entire range of memory
1554 * we may boot from, so we take the min across all
1555 * backends, and assume normal pages in cases where a
1556 * backend isn't backed by hugepages.
1558 memdev_root = object_resolve_path("/objects", NULL);
1559 if (memdev_root) {
1560 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1562 if (hpsize == LONG_MAX) {
1563 /* No additional memory regions found ==> Report main RAM page size */
1564 return mainrampagesize;
1567 /* If NUMA is disabled or the NUMA nodes are not backed with a
1568 * memory-backend, then there is at least one node using "normal" RAM,
1569 * so if its page size is smaller we have got to report that size instead.
1571 if (hpsize > mainrampagesize &&
1572 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1573 static bool warned;
1574 if (!warned) {
1575 error_report("Huge page support disabled (n/a for main memory).");
1576 warned = true;
1578 return mainrampagesize;
1581 return hpsize;
1583 #else
1584 long qemu_getrampagesize(void)
1586 return getpagesize();
1588 #endif
1590 #ifdef __linux__
1591 static int64_t get_file_size(int fd)
1593 int64_t size = lseek(fd, 0, SEEK_END);
1594 if (size < 0) {
1595 return -errno;
1597 return size;
1600 static int file_ram_open(const char *path,
1601 const char *region_name,
1602 bool *created,
1603 Error **errp)
1605 char *filename;
1606 char *sanitized_name;
1607 char *c;
1608 int fd = -1;
1610 *created = false;
1611 for (;;) {
1612 fd = open(path, O_RDWR);
1613 if (fd >= 0) {
1614 /* @path names an existing file, use it */
1615 break;
1617 if (errno == ENOENT) {
1618 /* @path names a file that doesn't exist, create it */
1619 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1620 if (fd >= 0) {
1621 *created = true;
1622 break;
1624 } else if (errno == EISDIR) {
1625 /* @path names a directory, create a file there */
1626 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1627 sanitized_name = g_strdup(region_name);
1628 for (c = sanitized_name; *c != '\0'; c++) {
1629 if (*c == '/') {
1630 *c = '_';
1634 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1635 sanitized_name);
1636 g_free(sanitized_name);
1638 fd = mkstemp(filename);
1639 if (fd >= 0) {
1640 unlink(filename);
1641 g_free(filename);
1642 break;
1644 g_free(filename);
1646 if (errno != EEXIST && errno != EINTR) {
1647 error_setg_errno(errp, errno,
1648 "can't open backing store %s for guest RAM",
1649 path);
1650 return -1;
1653 * Try again on EINTR and EEXIST. The latter happens when
1654 * something else creates the file between our two open().
1658 return fd;
1661 static void *file_ram_alloc(RAMBlock *block,
1662 ram_addr_t memory,
1663 int fd,
1664 bool truncate,
1665 Error **errp)
1667 void *area;
1669 block->page_size = qemu_fd_getpagesize(fd);
1670 if (block->mr->align % block->page_size) {
1671 error_setg(errp, "alignment 0x%" PRIx64
1672 " must be multiples of page size 0x%zx",
1673 block->mr->align, block->page_size);
1674 return NULL;
1676 block->mr->align = MAX(block->page_size, block->mr->align);
1677 #if defined(__s390x__)
1678 if (kvm_enabled()) {
1679 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1681 #endif
1683 if (memory < block->page_size) {
1684 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1685 "or larger than page size 0x%zx",
1686 memory, block->page_size);
1687 return NULL;
1690 memory = ROUND_UP(memory, block->page_size);
1693 * ftruncate is not supported by hugetlbfs in older
1694 * hosts, so don't bother bailing out on errors.
1695 * If anything goes wrong with it under other filesystems,
1696 * mmap will fail.
1698 * Do not truncate the non-empty backend file to avoid corrupting
1699 * the existing data in the file. Disabling shrinking is not
1700 * enough. For example, the current vNVDIMM implementation stores
1701 * the guest NVDIMM labels at the end of the backend file. If the
1702 * backend file is later extended, QEMU will not be able to find
1703 * those labels. Therefore, extending the non-empty backend file
1704 * is disabled as well.
1706 if (truncate && ftruncate(fd, memory)) {
1707 perror("ftruncate");
1710 area = qemu_ram_mmap(fd, memory, block->mr->align,
1711 block->flags & RAM_SHARED);
1712 if (area == MAP_FAILED) {
1713 error_setg_errno(errp, errno,
1714 "unable to map backing store for guest RAM");
1715 return NULL;
1718 if (mem_prealloc) {
1719 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1720 if (errp && *errp) {
1721 qemu_ram_munmap(area, memory);
1722 return NULL;
1726 block->fd = fd;
1727 return area;
1729 #endif
1731 /* Allocate space within the ram_addr_t space that governs the
1732 * dirty bitmaps.
1733 * Called with the ramlist lock held.
1735 static ram_addr_t find_ram_offset(ram_addr_t size)
1737 RAMBlock *block, *next_block;
1738 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1740 assert(size != 0); /* it would hand out same offset multiple times */
1742 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1743 return 0;
1746 RAMBLOCK_FOREACH(block) {
1747 ram_addr_t candidate, next = RAM_ADDR_MAX;
1749 /* Align blocks to start on a 'long' in the bitmap
1750 * which makes the bitmap sync'ing take the fast path.
1752 candidate = block->offset + block->max_length;
1753 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1755 /* Search for the closest following block
1756 * and find the gap.
1758 RAMBLOCK_FOREACH(next_block) {
1759 if (next_block->offset >= candidate) {
1760 next = MIN(next, next_block->offset);
1764 /* If it fits remember our place and remember the size
1765 * of gap, but keep going so that we might find a smaller
1766 * gap to fill so avoiding fragmentation.
1768 if (next - candidate >= size && next - candidate < mingap) {
1769 offset = candidate;
1770 mingap = next - candidate;
1773 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1776 if (offset == RAM_ADDR_MAX) {
1777 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1778 (uint64_t)size);
1779 abort();
1782 trace_find_ram_offset(size, offset);
1784 return offset;
1787 unsigned long last_ram_page(void)
1789 RAMBlock *block;
1790 ram_addr_t last = 0;
1792 rcu_read_lock();
1793 RAMBLOCK_FOREACH(block) {
1794 last = MAX(last, block->offset + block->max_length);
1796 rcu_read_unlock();
1797 return last >> TARGET_PAGE_BITS;
1800 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1802 int ret;
1804 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1805 if (!machine_dump_guest_core(current_machine)) {
1806 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1807 if (ret) {
1808 perror("qemu_madvise");
1809 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1810 "but dump_guest_core=off specified\n");
1815 const char *qemu_ram_get_idstr(RAMBlock *rb)
1817 return rb->idstr;
1820 bool qemu_ram_is_shared(RAMBlock *rb)
1822 return rb->flags & RAM_SHARED;
1825 /* Note: Only set at the start of postcopy */
1826 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1828 return rb->flags & RAM_UF_ZEROPAGE;
1831 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1833 rb->flags |= RAM_UF_ZEROPAGE;
1836 /* Called with iothread lock held. */
1837 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1839 RAMBlock *block;
1841 assert(new_block);
1842 assert(!new_block->idstr[0]);
1844 if (dev) {
1845 char *id = qdev_get_dev_path(dev);
1846 if (id) {
1847 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1848 g_free(id);
1851 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1853 rcu_read_lock();
1854 RAMBLOCK_FOREACH(block) {
1855 if (block != new_block &&
1856 !strcmp(block->idstr, new_block->idstr)) {
1857 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1858 new_block->idstr);
1859 abort();
1862 rcu_read_unlock();
1865 /* Called with iothread lock held. */
1866 void qemu_ram_unset_idstr(RAMBlock *block)
1868 /* FIXME: arch_init.c assumes that this is not called throughout
1869 * migration. Ignore the problem since hot-unplug during migration
1870 * does not work anyway.
1872 if (block) {
1873 memset(block->idstr, 0, sizeof(block->idstr));
1877 size_t qemu_ram_pagesize(RAMBlock *rb)
1879 return rb->page_size;
1882 /* Returns the largest size of page in use */
1883 size_t qemu_ram_pagesize_largest(void)
1885 RAMBlock *block;
1886 size_t largest = 0;
1888 RAMBLOCK_FOREACH(block) {
1889 largest = MAX(largest, qemu_ram_pagesize(block));
1892 return largest;
1895 static int memory_try_enable_merging(void *addr, size_t len)
1897 if (!machine_mem_merge(current_machine)) {
1898 /* disabled by the user */
1899 return 0;
1902 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1905 /* Only legal before guest might have detected the memory size: e.g. on
1906 * incoming migration, or right after reset.
1908 * As memory core doesn't know how is memory accessed, it is up to
1909 * resize callback to update device state and/or add assertions to detect
1910 * misuse, if necessary.
1912 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1914 assert(block);
1916 newsize = HOST_PAGE_ALIGN(newsize);
1918 if (block->used_length == newsize) {
1919 return 0;
1922 if (!(block->flags & RAM_RESIZEABLE)) {
1923 error_setg_errno(errp, EINVAL,
1924 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1925 " in != 0x" RAM_ADDR_FMT, block->idstr,
1926 newsize, block->used_length);
1927 return -EINVAL;
1930 if (block->max_length < newsize) {
1931 error_setg_errno(errp, EINVAL,
1932 "Length too large: %s: 0x" RAM_ADDR_FMT
1933 " > 0x" RAM_ADDR_FMT, block->idstr,
1934 newsize, block->max_length);
1935 return -EINVAL;
1938 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1939 block->used_length = newsize;
1940 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1941 DIRTY_CLIENTS_ALL);
1942 memory_region_set_size(block->mr, newsize);
1943 if (block->resized) {
1944 block->resized(block->idstr, newsize, block->host);
1946 return 0;
1949 /* Called with ram_list.mutex held */
1950 static void dirty_memory_extend(ram_addr_t old_ram_size,
1951 ram_addr_t new_ram_size)
1953 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1954 DIRTY_MEMORY_BLOCK_SIZE);
1955 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1956 DIRTY_MEMORY_BLOCK_SIZE);
1957 int i;
1959 /* Only need to extend if block count increased */
1960 if (new_num_blocks <= old_num_blocks) {
1961 return;
1964 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1965 DirtyMemoryBlocks *old_blocks;
1966 DirtyMemoryBlocks *new_blocks;
1967 int j;
1969 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1970 new_blocks = g_malloc(sizeof(*new_blocks) +
1971 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1973 if (old_num_blocks) {
1974 memcpy(new_blocks->blocks, old_blocks->blocks,
1975 old_num_blocks * sizeof(old_blocks->blocks[0]));
1978 for (j = old_num_blocks; j < new_num_blocks; j++) {
1979 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1982 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1984 if (old_blocks) {
1985 g_free_rcu(old_blocks, rcu);
1990 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
1992 RAMBlock *block;
1993 RAMBlock *last_block = NULL;
1994 ram_addr_t old_ram_size, new_ram_size;
1995 Error *err = NULL;
1997 old_ram_size = last_ram_page();
1999 qemu_mutex_lock_ramlist();
2000 new_block->offset = find_ram_offset(new_block->max_length);
2002 if (!new_block->host) {
2003 if (xen_enabled()) {
2004 xen_ram_alloc(new_block->offset, new_block->max_length,
2005 new_block->mr, &err);
2006 if (err) {
2007 error_propagate(errp, err);
2008 qemu_mutex_unlock_ramlist();
2009 return;
2011 } else {
2012 new_block->host = phys_mem_alloc(new_block->max_length,
2013 &new_block->mr->align, shared);
2014 if (!new_block->host) {
2015 error_setg_errno(errp, errno,
2016 "cannot set up guest memory '%s'",
2017 memory_region_name(new_block->mr));
2018 qemu_mutex_unlock_ramlist();
2019 return;
2021 memory_try_enable_merging(new_block->host, new_block->max_length);
2025 new_ram_size = MAX(old_ram_size,
2026 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2027 if (new_ram_size > old_ram_size) {
2028 dirty_memory_extend(old_ram_size, new_ram_size);
2030 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2031 * QLIST (which has an RCU-friendly variant) does not have insertion at
2032 * tail, so save the last element in last_block.
2034 RAMBLOCK_FOREACH(block) {
2035 last_block = block;
2036 if (block->max_length < new_block->max_length) {
2037 break;
2040 if (block) {
2041 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2042 } else if (last_block) {
2043 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2044 } else { /* list is empty */
2045 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2047 ram_list.mru_block = NULL;
2049 /* Write list before version */
2050 smp_wmb();
2051 ram_list.version++;
2052 qemu_mutex_unlock_ramlist();
2054 cpu_physical_memory_set_dirty_range(new_block->offset,
2055 new_block->used_length,
2056 DIRTY_CLIENTS_ALL);
2058 if (new_block->host) {
2059 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2060 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2061 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2062 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2063 ram_block_notify_add(new_block->host, new_block->max_length);
2067 #ifdef __linux__
2068 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2069 bool share, int fd,
2070 Error **errp)
2072 RAMBlock *new_block;
2073 Error *local_err = NULL;
2074 int64_t file_size;
2076 if (xen_enabled()) {
2077 error_setg(errp, "-mem-path not supported with Xen");
2078 return NULL;
2081 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2082 error_setg(errp,
2083 "host lacks kvm mmu notifiers, -mem-path unsupported");
2084 return NULL;
2087 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2089 * file_ram_alloc() needs to allocate just like
2090 * phys_mem_alloc, but we haven't bothered to provide
2091 * a hook there.
2093 error_setg(errp,
2094 "-mem-path not supported with this accelerator");
2095 return NULL;
2098 size = HOST_PAGE_ALIGN(size);
2099 file_size = get_file_size(fd);
2100 if (file_size > 0 && file_size < size) {
2101 error_setg(errp, "backing store %s size 0x%" PRIx64
2102 " does not match 'size' option 0x" RAM_ADDR_FMT,
2103 mem_path, file_size, size);
2104 return NULL;
2107 new_block = g_malloc0(sizeof(*new_block));
2108 new_block->mr = mr;
2109 new_block->used_length = size;
2110 new_block->max_length = size;
2111 new_block->flags = share ? RAM_SHARED : 0;
2112 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2113 if (!new_block->host) {
2114 g_free(new_block);
2115 return NULL;
2118 ram_block_add(new_block, &local_err, share);
2119 if (local_err) {
2120 g_free(new_block);
2121 error_propagate(errp, local_err);
2122 return NULL;
2124 return new_block;
2129 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2130 bool share, const char *mem_path,
2131 Error **errp)
2133 int fd;
2134 bool created;
2135 RAMBlock *block;
2137 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2138 if (fd < 0) {
2139 return NULL;
2142 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2143 if (!block) {
2144 if (created) {
2145 unlink(mem_path);
2147 close(fd);
2148 return NULL;
2151 return block;
2153 #endif
2155 static
2156 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2157 void (*resized)(const char*,
2158 uint64_t length,
2159 void *host),
2160 void *host, bool resizeable, bool share,
2161 MemoryRegion *mr, Error **errp)
2163 RAMBlock *new_block;
2164 Error *local_err = NULL;
2166 size = HOST_PAGE_ALIGN(size);
2167 max_size = HOST_PAGE_ALIGN(max_size);
2168 new_block = g_malloc0(sizeof(*new_block));
2169 new_block->mr = mr;
2170 new_block->resized = resized;
2171 new_block->used_length = size;
2172 new_block->max_length = max_size;
2173 assert(max_size >= size);
2174 new_block->fd = -1;
2175 new_block->page_size = getpagesize();
2176 new_block->host = host;
2177 if (host) {
2178 new_block->flags |= RAM_PREALLOC;
2180 if (resizeable) {
2181 new_block->flags |= RAM_RESIZEABLE;
2183 ram_block_add(new_block, &local_err, share);
2184 if (local_err) {
2185 g_free(new_block);
2186 error_propagate(errp, local_err);
2187 return NULL;
2189 return new_block;
2192 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2193 MemoryRegion *mr, Error **errp)
2195 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2196 false, mr, errp);
2199 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2200 MemoryRegion *mr, Error **errp)
2202 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2203 share, mr, errp);
2206 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2207 void (*resized)(const char*,
2208 uint64_t length,
2209 void *host),
2210 MemoryRegion *mr, Error **errp)
2212 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2213 false, mr, errp);
2216 static void reclaim_ramblock(RAMBlock *block)
2218 if (block->flags & RAM_PREALLOC) {
2220 } else if (xen_enabled()) {
2221 xen_invalidate_map_cache_entry(block->host);
2222 #ifndef _WIN32
2223 } else if (block->fd >= 0) {
2224 qemu_ram_munmap(block->host, block->max_length);
2225 close(block->fd);
2226 #endif
2227 } else {
2228 qemu_anon_ram_free(block->host, block->max_length);
2230 g_free(block);
2233 void qemu_ram_free(RAMBlock *block)
2235 if (!block) {
2236 return;
2239 if (block->host) {
2240 ram_block_notify_remove(block->host, block->max_length);
2243 qemu_mutex_lock_ramlist();
2244 QLIST_REMOVE_RCU(block, next);
2245 ram_list.mru_block = NULL;
2246 /* Write list before version */
2247 smp_wmb();
2248 ram_list.version++;
2249 call_rcu(block, reclaim_ramblock, rcu);
2250 qemu_mutex_unlock_ramlist();
2253 #ifndef _WIN32
2254 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2256 RAMBlock *block;
2257 ram_addr_t offset;
2258 int flags;
2259 void *area, *vaddr;
2261 RAMBLOCK_FOREACH(block) {
2262 offset = addr - block->offset;
2263 if (offset < block->max_length) {
2264 vaddr = ramblock_ptr(block, offset);
2265 if (block->flags & RAM_PREALLOC) {
2267 } else if (xen_enabled()) {
2268 abort();
2269 } else {
2270 flags = MAP_FIXED;
2271 if (block->fd >= 0) {
2272 flags |= (block->flags & RAM_SHARED ?
2273 MAP_SHARED : MAP_PRIVATE);
2274 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2275 flags, block->fd, offset);
2276 } else {
2278 * Remap needs to match alloc. Accelerators that
2279 * set phys_mem_alloc never remap. If they did,
2280 * we'd need a remap hook here.
2282 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2284 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2285 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2286 flags, -1, 0);
2288 if (area != vaddr) {
2289 error_report("Could not remap addr: "
2290 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2291 length, addr);
2292 exit(1);
2294 memory_try_enable_merging(vaddr, length);
2295 qemu_ram_setup_dump(vaddr, length);
2300 #endif /* !_WIN32 */
2302 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2303 * This should not be used for general purpose DMA. Use address_space_map
2304 * or address_space_rw instead. For local memory (e.g. video ram) that the
2305 * device owns, use memory_region_get_ram_ptr.
2307 * Called within RCU critical section.
2309 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2311 RAMBlock *block = ram_block;
2313 if (block == NULL) {
2314 block = qemu_get_ram_block(addr);
2315 addr -= block->offset;
2318 if (xen_enabled() && block->host == NULL) {
2319 /* We need to check if the requested address is in the RAM
2320 * because we don't want to map the entire memory in QEMU.
2321 * In that case just map until the end of the page.
2323 if (block->offset == 0) {
2324 return xen_map_cache(addr, 0, 0, false);
2327 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2329 return ramblock_ptr(block, addr);
2332 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2333 * but takes a size argument.
2335 * Called within RCU critical section.
2337 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2338 hwaddr *size, bool lock)
2340 RAMBlock *block = ram_block;
2341 if (*size == 0) {
2342 return NULL;
2345 if (block == NULL) {
2346 block = qemu_get_ram_block(addr);
2347 addr -= block->offset;
2349 *size = MIN(*size, block->max_length - addr);
2351 if (xen_enabled() && block->host == NULL) {
2352 /* We need to check if the requested address is in the RAM
2353 * because we don't want to map the entire memory in QEMU.
2354 * In that case just map the requested area.
2356 if (block->offset == 0) {
2357 return xen_map_cache(addr, *size, lock, lock);
2360 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2363 return ramblock_ptr(block, addr);
2366 /* Return the offset of a hostpointer within a ramblock */
2367 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2369 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2370 assert((uintptr_t)host >= (uintptr_t)rb->host);
2371 assert(res < rb->max_length);
2373 return res;
2377 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2378 * in that RAMBlock.
2380 * ptr: Host pointer to look up
2381 * round_offset: If true round the result offset down to a page boundary
2382 * *ram_addr: set to result ram_addr
2383 * *offset: set to result offset within the RAMBlock
2385 * Returns: RAMBlock (or NULL if not found)
2387 * By the time this function returns, the returned pointer is not protected
2388 * by RCU anymore. If the caller is not within an RCU critical section and
2389 * does not hold the iothread lock, it must have other means of protecting the
2390 * pointer, such as a reference to the region that includes the incoming
2391 * ram_addr_t.
2393 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2394 ram_addr_t *offset)
2396 RAMBlock *block;
2397 uint8_t *host = ptr;
2399 if (xen_enabled()) {
2400 ram_addr_t ram_addr;
2401 rcu_read_lock();
2402 ram_addr = xen_ram_addr_from_mapcache(ptr);
2403 block = qemu_get_ram_block(ram_addr);
2404 if (block) {
2405 *offset = ram_addr - block->offset;
2407 rcu_read_unlock();
2408 return block;
2411 rcu_read_lock();
2412 block = atomic_rcu_read(&ram_list.mru_block);
2413 if (block && block->host && host - block->host < block->max_length) {
2414 goto found;
2417 RAMBLOCK_FOREACH(block) {
2418 /* This case append when the block is not mapped. */
2419 if (block->host == NULL) {
2420 continue;
2422 if (host - block->host < block->max_length) {
2423 goto found;
2427 rcu_read_unlock();
2428 return NULL;
2430 found:
2431 *offset = (host - block->host);
2432 if (round_offset) {
2433 *offset &= TARGET_PAGE_MASK;
2435 rcu_read_unlock();
2436 return block;
2440 * Finds the named RAMBlock
2442 * name: The name of RAMBlock to find
2444 * Returns: RAMBlock (or NULL if not found)
2446 RAMBlock *qemu_ram_block_by_name(const char *name)
2448 RAMBlock *block;
2450 RAMBLOCK_FOREACH(block) {
2451 if (!strcmp(name, block->idstr)) {
2452 return block;
2456 return NULL;
2459 /* Some of the softmmu routines need to translate from a host pointer
2460 (typically a TLB entry) back to a ram offset. */
2461 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2463 RAMBlock *block;
2464 ram_addr_t offset;
2466 block = qemu_ram_block_from_host(ptr, false, &offset);
2467 if (!block) {
2468 return RAM_ADDR_INVALID;
2471 return block->offset + offset;
2474 /* Called within RCU critical section. */
2475 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2476 CPUState *cpu,
2477 vaddr mem_vaddr,
2478 ram_addr_t ram_addr,
2479 unsigned size)
2481 ndi->cpu = cpu;
2482 ndi->ram_addr = ram_addr;
2483 ndi->mem_vaddr = mem_vaddr;
2484 ndi->size = size;
2485 ndi->locked = false;
2487 assert(tcg_enabled());
2488 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2489 ndi->locked = true;
2490 tb_lock();
2491 tb_invalidate_phys_page_fast(ram_addr, size);
2495 /* Called within RCU critical section. */
2496 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2498 if (ndi->locked) {
2499 tb_unlock();
2502 /* Set both VGA and migration bits for simplicity and to remove
2503 * the notdirty callback faster.
2505 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2506 DIRTY_CLIENTS_NOCODE);
2507 /* we remove the notdirty callback only if the code has been
2508 flushed */
2509 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2510 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2514 /* Called within RCU critical section. */
2515 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2516 uint64_t val, unsigned size)
2518 NotDirtyInfo ndi;
2520 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2521 ram_addr, size);
2523 switch (size) {
2524 case 1:
2525 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2526 break;
2527 case 2:
2528 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2529 break;
2530 case 4:
2531 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2532 break;
2533 case 8:
2534 stq_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2535 break;
2536 default:
2537 abort();
2539 memory_notdirty_write_complete(&ndi);
2542 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2543 unsigned size, bool is_write)
2545 return is_write;
2548 static const MemoryRegionOps notdirty_mem_ops = {
2549 .write = notdirty_mem_write,
2550 .valid.accepts = notdirty_mem_accepts,
2551 .endianness = DEVICE_NATIVE_ENDIAN,
2552 .valid = {
2553 .min_access_size = 1,
2554 .max_access_size = 8,
2555 .unaligned = false,
2557 .impl = {
2558 .min_access_size = 1,
2559 .max_access_size = 8,
2560 .unaligned = false,
2564 /* Generate a debug exception if a watchpoint has been hit. */
2565 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2567 CPUState *cpu = current_cpu;
2568 CPUClass *cc = CPU_GET_CLASS(cpu);
2569 target_ulong vaddr;
2570 CPUWatchpoint *wp;
2572 assert(tcg_enabled());
2573 if (cpu->watchpoint_hit) {
2574 /* We re-entered the check after replacing the TB. Now raise
2575 * the debug interrupt so that is will trigger after the
2576 * current instruction. */
2577 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2578 return;
2580 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2581 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2582 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2583 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2584 && (wp->flags & flags)) {
2585 if (flags == BP_MEM_READ) {
2586 wp->flags |= BP_WATCHPOINT_HIT_READ;
2587 } else {
2588 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2590 wp->hitaddr = vaddr;
2591 wp->hitattrs = attrs;
2592 if (!cpu->watchpoint_hit) {
2593 if (wp->flags & BP_CPU &&
2594 !cc->debug_check_watchpoint(cpu, wp)) {
2595 wp->flags &= ~BP_WATCHPOINT_HIT;
2596 continue;
2598 cpu->watchpoint_hit = wp;
2600 /* Both tb_lock and iothread_mutex will be reset when
2601 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2602 * back into the cpu_exec main loop.
2604 tb_lock();
2605 tb_check_watchpoint(cpu);
2606 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2607 cpu->exception_index = EXCP_DEBUG;
2608 cpu_loop_exit(cpu);
2609 } else {
2610 /* Force execution of one insn next time. */
2611 cpu->cflags_next_tb = 1 | curr_cflags();
2612 cpu_loop_exit_noexc(cpu);
2615 } else {
2616 wp->flags &= ~BP_WATCHPOINT_HIT;
2621 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2622 so these check for a hit then pass through to the normal out-of-line
2623 phys routines. */
2624 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2625 unsigned size, MemTxAttrs attrs)
2627 MemTxResult res;
2628 uint64_t data;
2629 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2630 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2632 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2633 switch (size) {
2634 case 1:
2635 data = address_space_ldub(as, addr, attrs, &res);
2636 break;
2637 case 2:
2638 data = address_space_lduw(as, addr, attrs, &res);
2639 break;
2640 case 4:
2641 data = address_space_ldl(as, addr, attrs, &res);
2642 break;
2643 case 8:
2644 data = address_space_ldq(as, addr, attrs, &res);
2645 break;
2646 default: abort();
2648 *pdata = data;
2649 return res;
2652 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2653 uint64_t val, unsigned size,
2654 MemTxAttrs attrs)
2656 MemTxResult res;
2657 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2658 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2660 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2661 switch (size) {
2662 case 1:
2663 address_space_stb(as, addr, val, attrs, &res);
2664 break;
2665 case 2:
2666 address_space_stw(as, addr, val, attrs, &res);
2667 break;
2668 case 4:
2669 address_space_stl(as, addr, val, attrs, &res);
2670 break;
2671 case 8:
2672 address_space_stq(as, addr, val, attrs, &res);
2673 break;
2674 default: abort();
2676 return res;
2679 static const MemoryRegionOps watch_mem_ops = {
2680 .read_with_attrs = watch_mem_read,
2681 .write_with_attrs = watch_mem_write,
2682 .endianness = DEVICE_NATIVE_ENDIAN,
2683 .valid = {
2684 .min_access_size = 1,
2685 .max_access_size = 8,
2686 .unaligned = false,
2688 .impl = {
2689 .min_access_size = 1,
2690 .max_access_size = 8,
2691 .unaligned = false,
2695 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2696 MemTxAttrs attrs, uint8_t *buf, int len);
2697 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2698 const uint8_t *buf, int len);
2699 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2700 bool is_write);
2702 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2703 unsigned len, MemTxAttrs attrs)
2705 subpage_t *subpage = opaque;
2706 uint8_t buf[8];
2707 MemTxResult res;
2709 #if defined(DEBUG_SUBPAGE)
2710 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2711 subpage, len, addr);
2712 #endif
2713 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2714 if (res) {
2715 return res;
2717 switch (len) {
2718 case 1:
2719 *data = ldub_p(buf);
2720 return MEMTX_OK;
2721 case 2:
2722 *data = lduw_p(buf);
2723 return MEMTX_OK;
2724 case 4:
2725 *data = ldl_p(buf);
2726 return MEMTX_OK;
2727 case 8:
2728 *data = ldq_p(buf);
2729 return MEMTX_OK;
2730 default:
2731 abort();
2735 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2736 uint64_t value, unsigned len, MemTxAttrs attrs)
2738 subpage_t *subpage = opaque;
2739 uint8_t buf[8];
2741 #if defined(DEBUG_SUBPAGE)
2742 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2743 " value %"PRIx64"\n",
2744 __func__, subpage, len, addr, value);
2745 #endif
2746 switch (len) {
2747 case 1:
2748 stb_p(buf, value);
2749 break;
2750 case 2:
2751 stw_p(buf, value);
2752 break;
2753 case 4:
2754 stl_p(buf, value);
2755 break;
2756 case 8:
2757 stq_p(buf, value);
2758 break;
2759 default:
2760 abort();
2762 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2765 static bool subpage_accepts(void *opaque, hwaddr addr,
2766 unsigned len, bool is_write)
2768 subpage_t *subpage = opaque;
2769 #if defined(DEBUG_SUBPAGE)
2770 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2771 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2772 #endif
2774 return flatview_access_valid(subpage->fv, addr + subpage->base,
2775 len, is_write);
2778 static const MemoryRegionOps subpage_ops = {
2779 .read_with_attrs = subpage_read,
2780 .write_with_attrs = subpage_write,
2781 .impl.min_access_size = 1,
2782 .impl.max_access_size = 8,
2783 .valid.min_access_size = 1,
2784 .valid.max_access_size = 8,
2785 .valid.accepts = subpage_accepts,
2786 .endianness = DEVICE_NATIVE_ENDIAN,
2789 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2790 uint16_t section)
2792 int idx, eidx;
2794 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2795 return -1;
2796 idx = SUBPAGE_IDX(start);
2797 eidx = SUBPAGE_IDX(end);
2798 #if defined(DEBUG_SUBPAGE)
2799 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2800 __func__, mmio, start, end, idx, eidx, section);
2801 #endif
2802 for (; idx <= eidx; idx++) {
2803 mmio->sub_section[idx] = section;
2806 return 0;
2809 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2811 subpage_t *mmio;
2813 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2814 mmio->fv = fv;
2815 mmio->base = base;
2816 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2817 NULL, TARGET_PAGE_SIZE);
2818 mmio->iomem.subpage = true;
2819 #if defined(DEBUG_SUBPAGE)
2820 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2821 mmio, base, TARGET_PAGE_SIZE);
2822 #endif
2823 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2825 return mmio;
2828 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2830 assert(fv);
2831 MemoryRegionSection section = {
2832 .fv = fv,
2833 .mr = mr,
2834 .offset_within_address_space = 0,
2835 .offset_within_region = 0,
2836 .size = int128_2_64(),
2839 return phys_section_add(map, &section);
2842 static void readonly_mem_write(void *opaque, hwaddr addr,
2843 uint64_t val, unsigned size)
2845 /* Ignore any write to ROM. */
2848 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2849 unsigned size, bool is_write)
2851 return is_write;
2854 /* This will only be used for writes, because reads are special cased
2855 * to directly access the underlying host ram.
2857 static const MemoryRegionOps readonly_mem_ops = {
2858 .write = readonly_mem_write,
2859 .valid.accepts = readonly_mem_accepts,
2860 .endianness = DEVICE_NATIVE_ENDIAN,
2861 .valid = {
2862 .min_access_size = 1,
2863 .max_access_size = 8,
2864 .unaligned = false,
2866 .impl = {
2867 .min_access_size = 1,
2868 .max_access_size = 8,
2869 .unaligned = false,
2873 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2875 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2876 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2877 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2878 MemoryRegionSection *sections = d->map.sections;
2880 return sections[index & ~TARGET_PAGE_MASK].mr;
2883 static void io_mem_init(void)
2885 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
2886 NULL, NULL, UINT64_MAX);
2887 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2888 NULL, UINT64_MAX);
2890 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2891 * which can be called without the iothread mutex.
2893 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2894 NULL, UINT64_MAX);
2895 memory_region_clear_global_locking(&io_mem_notdirty);
2897 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2898 NULL, UINT64_MAX);
2901 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2903 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2904 uint16_t n;
2906 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2907 assert(n == PHYS_SECTION_UNASSIGNED);
2908 n = dummy_section(&d->map, fv, &io_mem_notdirty);
2909 assert(n == PHYS_SECTION_NOTDIRTY);
2910 n = dummy_section(&d->map, fv, &io_mem_rom);
2911 assert(n == PHYS_SECTION_ROM);
2912 n = dummy_section(&d->map, fv, &io_mem_watch);
2913 assert(n == PHYS_SECTION_WATCH);
2915 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2917 return d;
2920 void address_space_dispatch_free(AddressSpaceDispatch *d)
2922 phys_sections_free(&d->map);
2923 g_free(d);
2926 static void tcg_commit(MemoryListener *listener)
2928 CPUAddressSpace *cpuas;
2929 AddressSpaceDispatch *d;
2931 /* since each CPU stores ram addresses in its TLB cache, we must
2932 reset the modified entries */
2933 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2934 cpu_reloading_memory_map();
2935 /* The CPU and TLB are protected by the iothread lock.
2936 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2937 * may have split the RCU critical section.
2939 d = address_space_to_dispatch(cpuas->as);
2940 atomic_rcu_set(&cpuas->memory_dispatch, d);
2941 tlb_flush(cpuas->cpu);
2944 static void memory_map_init(void)
2946 system_memory = g_malloc(sizeof(*system_memory));
2948 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2949 address_space_init(&address_space_memory, system_memory, "memory");
2951 system_io = g_malloc(sizeof(*system_io));
2952 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2953 65536);
2954 address_space_init(&address_space_io, system_io, "I/O");
2957 MemoryRegion *get_system_memory(void)
2959 return system_memory;
2962 MemoryRegion *get_system_io(void)
2964 return system_io;
2967 #endif /* !defined(CONFIG_USER_ONLY) */
2969 /* physical memory access (slow version, mainly for debug) */
2970 #if defined(CONFIG_USER_ONLY)
2971 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2972 uint8_t *buf, int len, int is_write)
2974 int l, flags;
2975 target_ulong page;
2976 void * p;
2978 while (len > 0) {
2979 page = addr & TARGET_PAGE_MASK;
2980 l = (page + TARGET_PAGE_SIZE) - addr;
2981 if (l > len)
2982 l = len;
2983 flags = page_get_flags(page);
2984 if (!(flags & PAGE_VALID))
2985 return -1;
2986 if (is_write) {
2987 if (!(flags & PAGE_WRITE))
2988 return -1;
2989 /* XXX: this code should not depend on lock_user */
2990 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2991 return -1;
2992 memcpy(p, buf, l);
2993 unlock_user(p, addr, l);
2994 } else {
2995 if (!(flags & PAGE_READ))
2996 return -1;
2997 /* XXX: this code should not depend on lock_user */
2998 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2999 return -1;
3000 memcpy(buf, p, l);
3001 unlock_user(p, addr, 0);
3003 len -= l;
3004 buf += l;
3005 addr += l;
3007 return 0;
3010 #else
3012 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3013 hwaddr length)
3015 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3016 addr += memory_region_get_ram_addr(mr);
3018 /* No early return if dirty_log_mask is or becomes 0, because
3019 * cpu_physical_memory_set_dirty_range will still call
3020 * xen_modified_memory.
3022 if (dirty_log_mask) {
3023 dirty_log_mask =
3024 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3026 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3027 assert(tcg_enabled());
3028 tb_lock();
3029 tb_invalidate_phys_range(addr, addr + length);
3030 tb_unlock();
3031 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3033 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3036 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3038 unsigned access_size_max = mr->ops->valid.max_access_size;
3040 /* Regions are assumed to support 1-4 byte accesses unless
3041 otherwise specified. */
3042 if (access_size_max == 0) {
3043 access_size_max = 4;
3046 /* Bound the maximum access by the alignment of the address. */
3047 if (!mr->ops->impl.unaligned) {
3048 unsigned align_size_max = addr & -addr;
3049 if (align_size_max != 0 && align_size_max < access_size_max) {
3050 access_size_max = align_size_max;
3054 /* Don't attempt accesses larger than the maximum. */
3055 if (l > access_size_max) {
3056 l = access_size_max;
3058 l = pow2floor(l);
3060 return l;
3063 static bool prepare_mmio_access(MemoryRegion *mr)
3065 bool unlocked = !qemu_mutex_iothread_locked();
3066 bool release_lock = false;
3068 if (unlocked && mr->global_locking) {
3069 qemu_mutex_lock_iothread();
3070 unlocked = false;
3071 release_lock = true;
3073 if (mr->flush_coalesced_mmio) {
3074 if (unlocked) {
3075 qemu_mutex_lock_iothread();
3077 qemu_flush_coalesced_mmio_buffer();
3078 if (unlocked) {
3079 qemu_mutex_unlock_iothread();
3083 return release_lock;
3086 /* Called within RCU critical section. */
3087 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3088 MemTxAttrs attrs,
3089 const uint8_t *buf,
3090 int len, hwaddr addr1,
3091 hwaddr l, MemoryRegion *mr)
3093 uint8_t *ptr;
3094 uint64_t val;
3095 MemTxResult result = MEMTX_OK;
3096 bool release_lock = false;
3098 for (;;) {
3099 if (!memory_access_is_direct(mr, true)) {
3100 release_lock |= prepare_mmio_access(mr);
3101 l = memory_access_size(mr, l, addr1);
3102 /* XXX: could force current_cpu to NULL to avoid
3103 potential bugs */
3104 switch (l) {
3105 case 8:
3106 /* 64 bit write access */
3107 val = ldq_p(buf);
3108 result |= memory_region_dispatch_write(mr, addr1, val, 8,
3109 attrs);
3110 break;
3111 case 4:
3112 /* 32 bit write access */
3113 val = (uint32_t)ldl_p(buf);
3114 result |= memory_region_dispatch_write(mr, addr1, val, 4,
3115 attrs);
3116 break;
3117 case 2:
3118 /* 16 bit write access */
3119 val = lduw_p(buf);
3120 result |= memory_region_dispatch_write(mr, addr1, val, 2,
3121 attrs);
3122 break;
3123 case 1:
3124 /* 8 bit write access */
3125 val = ldub_p(buf);
3126 result |= memory_region_dispatch_write(mr, addr1, val, 1,
3127 attrs);
3128 break;
3129 default:
3130 abort();
3132 } else {
3133 /* RAM case */
3134 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3135 memcpy(ptr, buf, l);
3136 invalidate_and_set_dirty(mr, addr1, l);
3139 if (release_lock) {
3140 qemu_mutex_unlock_iothread();
3141 release_lock = false;
3144 len -= l;
3145 buf += l;
3146 addr += l;
3148 if (!len) {
3149 break;
3152 l = len;
3153 mr = flatview_translate(fv, addr, &addr1, &l, true);
3156 return result;
3159 /* Called from RCU critical section. */
3160 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3161 const uint8_t *buf, int len)
3163 hwaddr l;
3164 hwaddr addr1;
3165 MemoryRegion *mr;
3166 MemTxResult result = MEMTX_OK;
3168 l = len;
3169 mr = flatview_translate(fv, addr, &addr1, &l, true);
3170 result = flatview_write_continue(fv, addr, attrs, buf, len,
3171 addr1, l, mr);
3173 return result;
3176 /* Called within RCU critical section. */
3177 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3178 MemTxAttrs attrs, uint8_t *buf,
3179 int len, hwaddr addr1, hwaddr l,
3180 MemoryRegion *mr)
3182 uint8_t *ptr;
3183 uint64_t val;
3184 MemTxResult result = MEMTX_OK;
3185 bool release_lock = false;
3187 for (;;) {
3188 if (!memory_access_is_direct(mr, false)) {
3189 /* I/O case */
3190 release_lock |= prepare_mmio_access(mr);
3191 l = memory_access_size(mr, l, addr1);
3192 switch (l) {
3193 case 8:
3194 /* 64 bit read access */
3195 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3196 attrs);
3197 stq_p(buf, val);
3198 break;
3199 case 4:
3200 /* 32 bit read access */
3201 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3202 attrs);
3203 stl_p(buf, val);
3204 break;
3205 case 2:
3206 /* 16 bit read access */
3207 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3208 attrs);
3209 stw_p(buf, val);
3210 break;
3211 case 1:
3212 /* 8 bit read access */
3213 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3214 attrs);
3215 stb_p(buf, val);
3216 break;
3217 default:
3218 abort();
3220 } else {
3221 /* RAM case */
3222 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3223 memcpy(buf, ptr, l);
3226 if (release_lock) {
3227 qemu_mutex_unlock_iothread();
3228 release_lock = false;
3231 len -= l;
3232 buf += l;
3233 addr += l;
3235 if (!len) {
3236 break;
3239 l = len;
3240 mr = flatview_translate(fv, addr, &addr1, &l, false);
3243 return result;
3246 /* Called from RCU critical section. */
3247 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3248 MemTxAttrs attrs, uint8_t *buf, int len)
3250 hwaddr l;
3251 hwaddr addr1;
3252 MemoryRegion *mr;
3254 l = len;
3255 mr = flatview_translate(fv, addr, &addr1, &l, false);
3256 return flatview_read_continue(fv, addr, attrs, buf, len,
3257 addr1, l, mr);
3260 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3261 MemTxAttrs attrs, uint8_t *buf, int len)
3263 MemTxResult result = MEMTX_OK;
3264 FlatView *fv;
3266 if (len > 0) {
3267 rcu_read_lock();
3268 fv = address_space_to_flatview(as);
3269 result = flatview_read(fv, addr, attrs, buf, len);
3270 rcu_read_unlock();
3273 return result;
3276 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3277 MemTxAttrs attrs,
3278 const uint8_t *buf, int len)
3280 MemTxResult result = MEMTX_OK;
3281 FlatView *fv;
3283 if (len > 0) {
3284 rcu_read_lock();
3285 fv = address_space_to_flatview(as);
3286 result = flatview_write(fv, addr, attrs, buf, len);
3287 rcu_read_unlock();
3290 return result;
3293 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3294 uint8_t *buf, int len, bool is_write)
3296 if (is_write) {
3297 return address_space_write(as, addr, attrs, buf, len);
3298 } else {
3299 return address_space_read_full(as, addr, attrs, buf, len);
3303 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3304 int len, int is_write)
3306 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3307 buf, len, is_write);
3310 enum write_rom_type {
3311 WRITE_DATA,
3312 FLUSH_CACHE,
3315 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3316 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3318 hwaddr l;
3319 uint8_t *ptr;
3320 hwaddr addr1;
3321 MemoryRegion *mr;
3323 rcu_read_lock();
3324 while (len > 0) {
3325 l = len;
3326 mr = address_space_translate(as, addr, &addr1, &l, true);
3328 if (!(memory_region_is_ram(mr) ||
3329 memory_region_is_romd(mr))) {
3330 l = memory_access_size(mr, l, addr1);
3331 } else {
3332 /* ROM/RAM case */
3333 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3334 switch (type) {
3335 case WRITE_DATA:
3336 memcpy(ptr, buf, l);
3337 invalidate_and_set_dirty(mr, addr1, l);
3338 break;
3339 case FLUSH_CACHE:
3340 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3341 break;
3344 len -= l;
3345 buf += l;
3346 addr += l;
3348 rcu_read_unlock();
3351 /* used for ROM loading : can write in RAM and ROM */
3352 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3353 const uint8_t *buf, int len)
3355 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3358 void cpu_flush_icache_range(hwaddr start, int len)
3361 * This function should do the same thing as an icache flush that was
3362 * triggered from within the guest. For TCG we are always cache coherent,
3363 * so there is no need to flush anything. For KVM / Xen we need to flush
3364 * the host's instruction cache at least.
3366 if (tcg_enabled()) {
3367 return;
3370 cpu_physical_memory_write_rom_internal(&address_space_memory,
3371 start, NULL, len, FLUSH_CACHE);
3374 typedef struct {
3375 MemoryRegion *mr;
3376 void *buffer;
3377 hwaddr addr;
3378 hwaddr len;
3379 bool in_use;
3380 } BounceBuffer;
3382 static BounceBuffer bounce;
3384 typedef struct MapClient {
3385 QEMUBH *bh;
3386 QLIST_ENTRY(MapClient) link;
3387 } MapClient;
3389 QemuMutex map_client_list_lock;
3390 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3391 = QLIST_HEAD_INITIALIZER(map_client_list);
3393 static void cpu_unregister_map_client_do(MapClient *client)
3395 QLIST_REMOVE(client, link);
3396 g_free(client);
3399 static void cpu_notify_map_clients_locked(void)
3401 MapClient *client;
3403 while (!QLIST_EMPTY(&map_client_list)) {
3404 client = QLIST_FIRST(&map_client_list);
3405 qemu_bh_schedule(client->bh);
3406 cpu_unregister_map_client_do(client);
3410 void cpu_register_map_client(QEMUBH *bh)
3412 MapClient *client = g_malloc(sizeof(*client));
3414 qemu_mutex_lock(&map_client_list_lock);
3415 client->bh = bh;
3416 QLIST_INSERT_HEAD(&map_client_list, client, link);
3417 if (!atomic_read(&bounce.in_use)) {
3418 cpu_notify_map_clients_locked();
3420 qemu_mutex_unlock(&map_client_list_lock);
3423 void cpu_exec_init_all(void)
3425 qemu_mutex_init(&ram_list.mutex);
3426 /* The data structures we set up here depend on knowing the page size,
3427 * so no more changes can be made after this point.
3428 * In an ideal world, nothing we did before we had finished the
3429 * machine setup would care about the target page size, and we could
3430 * do this much later, rather than requiring board models to state
3431 * up front what their requirements are.
3433 finalize_target_page_bits();
3434 io_mem_init();
3435 memory_map_init();
3436 qemu_mutex_init(&map_client_list_lock);
3439 void cpu_unregister_map_client(QEMUBH *bh)
3441 MapClient *client;
3443 qemu_mutex_lock(&map_client_list_lock);
3444 QLIST_FOREACH(client, &map_client_list, link) {
3445 if (client->bh == bh) {
3446 cpu_unregister_map_client_do(client);
3447 break;
3450 qemu_mutex_unlock(&map_client_list_lock);
3453 static void cpu_notify_map_clients(void)
3455 qemu_mutex_lock(&map_client_list_lock);
3456 cpu_notify_map_clients_locked();
3457 qemu_mutex_unlock(&map_client_list_lock);
3460 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3461 bool is_write)
3463 MemoryRegion *mr;
3464 hwaddr l, xlat;
3466 while (len > 0) {
3467 l = len;
3468 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3469 if (!memory_access_is_direct(mr, is_write)) {
3470 l = memory_access_size(mr, l, addr);
3471 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
3472 return false;
3476 len -= l;
3477 addr += l;
3479 return true;
3482 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3483 int len, bool is_write)
3485 FlatView *fv;
3486 bool result;
3488 rcu_read_lock();
3489 fv = address_space_to_flatview(as);
3490 result = flatview_access_valid(fv, addr, len, is_write);
3491 rcu_read_unlock();
3492 return result;
3495 static hwaddr
3496 flatview_extend_translation(FlatView *fv, hwaddr addr,
3497 hwaddr target_len,
3498 MemoryRegion *mr, hwaddr base, hwaddr len,
3499 bool is_write)
3501 hwaddr done = 0;
3502 hwaddr xlat;
3503 MemoryRegion *this_mr;
3505 for (;;) {
3506 target_len -= len;
3507 addr += len;
3508 done += len;
3509 if (target_len == 0) {
3510 return done;
3513 len = target_len;
3514 this_mr = flatview_translate(fv, addr, &xlat,
3515 &len, is_write);
3516 if (this_mr != mr || xlat != base + done) {
3517 return done;
3522 /* Map a physical memory region into a host virtual address.
3523 * May map a subset of the requested range, given by and returned in *plen.
3524 * May return NULL if resources needed to perform the mapping are exhausted.
3525 * Use only for reads OR writes - not for read-modify-write operations.
3526 * Use cpu_register_map_client() to know when retrying the map operation is
3527 * likely to succeed.
3529 void *address_space_map(AddressSpace *as,
3530 hwaddr addr,
3531 hwaddr *plen,
3532 bool is_write)
3534 hwaddr len = *plen;
3535 hwaddr l, xlat;
3536 MemoryRegion *mr;
3537 void *ptr;
3538 FlatView *fv;
3540 if (len == 0) {
3541 return NULL;
3544 l = len;
3545 rcu_read_lock();
3546 fv = address_space_to_flatview(as);
3547 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3549 if (!memory_access_is_direct(mr, is_write)) {
3550 if (atomic_xchg(&bounce.in_use, true)) {
3551 rcu_read_unlock();
3552 return NULL;
3554 /* Avoid unbounded allocations */
3555 l = MIN(l, TARGET_PAGE_SIZE);
3556 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3557 bounce.addr = addr;
3558 bounce.len = l;
3560 memory_region_ref(mr);
3561 bounce.mr = mr;
3562 if (!is_write) {
3563 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3564 bounce.buffer, l);
3567 rcu_read_unlock();
3568 *plen = l;
3569 return bounce.buffer;
3573 memory_region_ref(mr);
3574 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3575 l, is_write);
3576 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3577 rcu_read_unlock();
3579 return ptr;
3582 /* Unmaps a memory region previously mapped by address_space_map().
3583 * Will also mark the memory as dirty if is_write == 1. access_len gives
3584 * the amount of memory that was actually read or written by the caller.
3586 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3587 int is_write, hwaddr access_len)
3589 if (buffer != bounce.buffer) {
3590 MemoryRegion *mr;
3591 ram_addr_t addr1;
3593 mr = memory_region_from_host(buffer, &addr1);
3594 assert(mr != NULL);
3595 if (is_write) {
3596 invalidate_and_set_dirty(mr, addr1, access_len);
3598 if (xen_enabled()) {
3599 xen_invalidate_map_cache_entry(buffer);
3601 memory_region_unref(mr);
3602 return;
3604 if (is_write) {
3605 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3606 bounce.buffer, access_len);
3608 qemu_vfree(bounce.buffer);
3609 bounce.buffer = NULL;
3610 memory_region_unref(bounce.mr);
3611 atomic_mb_set(&bounce.in_use, false);
3612 cpu_notify_map_clients();
3615 void *cpu_physical_memory_map(hwaddr addr,
3616 hwaddr *plen,
3617 int is_write)
3619 return address_space_map(&address_space_memory, addr, plen, is_write);
3622 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3623 int is_write, hwaddr access_len)
3625 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3628 #define ARG1_DECL AddressSpace *as
3629 #define ARG1 as
3630 #define SUFFIX
3631 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3632 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3633 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3634 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3635 #define RCU_READ_LOCK(...) rcu_read_lock()
3636 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3637 #include "memory_ldst.inc.c"
3639 int64_t address_space_cache_init(MemoryRegionCache *cache,
3640 AddressSpace *as,
3641 hwaddr addr,
3642 hwaddr len,
3643 bool is_write)
3645 AddressSpaceDispatch *d;
3646 hwaddr l;
3647 MemoryRegion *mr;
3649 assert(len > 0);
3651 l = len;
3652 cache->fv = address_space_get_flatview(as);
3653 d = flatview_to_dispatch(cache->fv);
3654 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3656 mr = cache->mrs.mr;
3657 memory_region_ref(mr);
3658 if (memory_access_is_direct(mr, is_write)) {
3659 l = flatview_extend_translation(cache->fv, addr, len, mr,
3660 cache->xlat, l, is_write);
3661 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3662 } else {
3663 cache->ptr = NULL;
3666 cache->len = l;
3667 cache->is_write = is_write;
3668 return l;
3671 void address_space_cache_invalidate(MemoryRegionCache *cache,
3672 hwaddr addr,
3673 hwaddr access_len)
3675 assert(cache->is_write);
3676 if (likely(cache->ptr)) {
3677 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3681 void address_space_cache_destroy(MemoryRegionCache *cache)
3683 if (!cache->mrs.mr) {
3684 return;
3687 if (xen_enabled()) {
3688 xen_invalidate_map_cache_entry(cache->ptr);
3690 memory_region_unref(cache->mrs.mr);
3691 flatview_unref(cache->fv);
3692 cache->mrs.mr = NULL;
3693 cache->fv = NULL;
3696 /* Called from RCU critical section. This function has the same
3697 * semantics as address_space_translate, but it only works on a
3698 * predefined range of a MemoryRegion that was mapped with
3699 * address_space_cache_init.
3701 static inline MemoryRegion *address_space_translate_cached(
3702 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3703 hwaddr *plen, bool is_write)
3705 MemoryRegionSection section;
3706 MemoryRegion *mr;
3707 IOMMUMemoryRegion *iommu_mr;
3708 AddressSpace *target_as;
3710 assert(!cache->ptr);
3711 *xlat = addr + cache->xlat;
3713 mr = cache->mrs.mr;
3714 iommu_mr = memory_region_get_iommu(mr);
3715 if (!iommu_mr) {
3716 /* MMIO region. */
3717 return mr;
3720 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3721 NULL, is_write, true,
3722 &target_as);
3723 return section.mr;
3726 /* Called from RCU critical section. address_space_read_cached uses this
3727 * out of line function when the target is an MMIO or IOMMU region.
3729 void
3730 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3731 void *buf, int len)
3733 hwaddr addr1, l;
3734 MemoryRegion *mr;
3736 l = len;
3737 mr = address_space_translate_cached(cache, addr, &addr1, &l, false);
3738 flatview_read_continue(cache->fv,
3739 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3740 addr1, l, mr);
3743 /* Called from RCU critical section. address_space_write_cached uses this
3744 * out of line function when the target is an MMIO or IOMMU region.
3746 void
3747 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3748 const void *buf, int len)
3750 hwaddr addr1, l;
3751 MemoryRegion *mr;
3753 l = len;
3754 mr = address_space_translate_cached(cache, addr, &addr1, &l, true);
3755 flatview_write_continue(cache->fv,
3756 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3757 addr1, l, mr);
3760 #define ARG1_DECL MemoryRegionCache *cache
3761 #define ARG1 cache
3762 #define SUFFIX _cached_slow
3763 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3764 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3765 #define MAP_RAM(mr, ofs) (cache->ptr + (ofs - cache->xlat))
3766 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3767 #define RCU_READ_LOCK() ((void)0)
3768 #define RCU_READ_UNLOCK() ((void)0)
3769 #include "memory_ldst.inc.c"
3771 /* virtual memory access for debug (includes writing to ROM) */
3772 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3773 uint8_t *buf, int len, int is_write)
3775 int l;
3776 hwaddr phys_addr;
3777 target_ulong page;
3779 cpu_synchronize_state(cpu);
3780 while (len > 0) {
3781 int asidx;
3782 MemTxAttrs attrs;
3784 page = addr & TARGET_PAGE_MASK;
3785 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3786 asidx = cpu_asidx_from_attrs(cpu, attrs);
3787 /* if no physical page mapped, return an error */
3788 if (phys_addr == -1)
3789 return -1;
3790 l = (page + TARGET_PAGE_SIZE) - addr;
3791 if (l > len)
3792 l = len;
3793 phys_addr += (addr & ~TARGET_PAGE_MASK);
3794 if (is_write) {
3795 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3796 phys_addr, buf, l);
3797 } else {
3798 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3799 MEMTXATTRS_UNSPECIFIED,
3800 buf, l, 0);
3802 len -= l;
3803 buf += l;
3804 addr += l;
3806 return 0;
3810 * Allows code that needs to deal with migration bitmaps etc to still be built
3811 * target independent.
3813 size_t qemu_target_page_size(void)
3815 return TARGET_PAGE_SIZE;
3818 int qemu_target_page_bits(void)
3820 return TARGET_PAGE_BITS;
3823 int qemu_target_page_bits_min(void)
3825 return TARGET_PAGE_BITS_MIN;
3827 #endif
3830 * A helper function for the _utterly broken_ virtio device model to find out if
3831 * it's running on a big endian machine. Don't do this at home kids!
3833 bool target_words_bigendian(void);
3834 bool target_words_bigendian(void)
3836 #if defined(TARGET_WORDS_BIGENDIAN)
3837 return true;
3838 #else
3839 return false;
3840 #endif
3843 #ifndef CONFIG_USER_ONLY
3844 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3846 MemoryRegion*mr;
3847 hwaddr l = 1;
3848 bool res;
3850 rcu_read_lock();
3851 mr = address_space_translate(&address_space_memory,
3852 phys_addr, &phys_addr, &l, false);
3854 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3855 rcu_read_unlock();
3856 return res;
3859 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3861 RAMBlock *block;
3862 int ret = 0;
3864 rcu_read_lock();
3865 RAMBLOCK_FOREACH(block) {
3866 ret = func(block->idstr, block->host, block->offset,
3867 block->used_length, opaque);
3868 if (ret) {
3869 break;
3872 rcu_read_unlock();
3873 return ret;
3877 * Unmap pages of memory from start to start+length such that
3878 * they a) read as 0, b) Trigger whatever fault mechanism
3879 * the OS provides for postcopy.
3880 * The pages must be unmapped by the end of the function.
3881 * Returns: 0 on success, none-0 on failure
3884 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3886 int ret = -1;
3888 uint8_t *host_startaddr = rb->host + start;
3890 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3891 error_report("ram_block_discard_range: Unaligned start address: %p",
3892 host_startaddr);
3893 goto err;
3896 if ((start + length) <= rb->used_length) {
3897 bool need_madvise, need_fallocate;
3898 uint8_t *host_endaddr = host_startaddr + length;
3899 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3900 error_report("ram_block_discard_range: Unaligned end address: %p",
3901 host_endaddr);
3902 goto err;
3905 errno = ENOTSUP; /* If we are missing MADVISE etc */
3907 /* The logic here is messy;
3908 * madvise DONTNEED fails for hugepages
3909 * fallocate works on hugepages and shmem
3911 need_madvise = (rb->page_size == qemu_host_page_size);
3912 need_fallocate = rb->fd != -1;
3913 if (need_fallocate) {
3914 /* For a file, this causes the area of the file to be zero'd
3915 * if read, and for hugetlbfs also causes it to be unmapped
3916 * so a userfault will trigger.
3918 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3919 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3920 start, length);
3921 if (ret) {
3922 ret = -errno;
3923 error_report("ram_block_discard_range: Failed to fallocate "
3924 "%s:%" PRIx64 " +%zx (%d)",
3925 rb->idstr, start, length, ret);
3926 goto err;
3928 #else
3929 ret = -ENOSYS;
3930 error_report("ram_block_discard_range: fallocate not available/file"
3931 "%s:%" PRIx64 " +%zx (%d)",
3932 rb->idstr, start, length, ret);
3933 goto err;
3934 #endif
3936 if (need_madvise) {
3937 /* For normal RAM this causes it to be unmapped,
3938 * for shared memory it causes the local mapping to disappear
3939 * and to fall back on the file contents (which we just
3940 * fallocate'd away).
3942 #if defined(CONFIG_MADVISE)
3943 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3944 if (ret) {
3945 ret = -errno;
3946 error_report("ram_block_discard_range: Failed to discard range "
3947 "%s:%" PRIx64 " +%zx (%d)",
3948 rb->idstr, start, length, ret);
3949 goto err;
3951 #else
3952 ret = -ENOSYS;
3953 error_report("ram_block_discard_range: MADVISE not available"
3954 "%s:%" PRIx64 " +%zx (%d)",
3955 rb->idstr, start, length, ret);
3956 goto err;
3957 #endif
3959 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3960 need_madvise, need_fallocate, ret);
3961 } else {
3962 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3963 "/%zx/" RAM_ADDR_FMT")",
3964 rb->idstr, start, length, rb->used_length);
3967 err:
3968 return ret;
3971 #endif
3973 void page_size_init(void)
3975 /* NOTE: we can always suppose that qemu_host_page_size >=
3976 TARGET_PAGE_SIZE */
3977 if (qemu_host_page_size == 0) {
3978 qemu_host_page_size = qemu_real_host_page_size;
3980 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3981 qemu_host_page_size = TARGET_PAGE_SIZE;
3983 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3986 #if !defined(CONFIG_USER_ONLY)
3988 static void mtree_print_phys_entries(fprintf_function mon, void *f,
3989 int start, int end, int skip, int ptr)
3991 if (start == end - 1) {
3992 mon(f, "\t%3d ", start);
3993 } else {
3994 mon(f, "\t%3d..%-3d ", start, end - 1);
3996 mon(f, " skip=%d ", skip);
3997 if (ptr == PHYS_MAP_NODE_NIL) {
3998 mon(f, " ptr=NIL");
3999 } else if (!skip) {
4000 mon(f, " ptr=#%d", ptr);
4001 } else {
4002 mon(f, " ptr=[%d]", ptr);
4004 mon(f, "\n");
4007 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4008 int128_sub((size), int128_one())) : 0)
4010 void mtree_print_dispatch(fprintf_function mon, void *f,
4011 AddressSpaceDispatch *d, MemoryRegion *root)
4013 int i;
4015 mon(f, " Dispatch\n");
4016 mon(f, " Physical sections\n");
4018 for (i = 0; i < d->map.sections_nb; ++i) {
4019 MemoryRegionSection *s = d->map.sections + i;
4020 const char *names[] = { " [unassigned]", " [not dirty]",
4021 " [ROM]", " [watch]" };
4023 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
4025 s->offset_within_address_space,
4026 s->offset_within_address_space + MR_SIZE(s->mr->size),
4027 s->mr->name ? s->mr->name : "(noname)",
4028 i < ARRAY_SIZE(names) ? names[i] : "",
4029 s->mr == root ? " [ROOT]" : "",
4030 s == d->mru_section ? " [MRU]" : "",
4031 s->mr->is_iommu ? " [iommu]" : "");
4033 if (s->mr->alias) {
4034 mon(f, " alias=%s", s->mr->alias->name ?
4035 s->mr->alias->name : "noname");
4037 mon(f, "\n");
4040 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4041 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4042 for (i = 0; i < d->map.nodes_nb; ++i) {
4043 int j, jprev;
4044 PhysPageEntry prev;
4045 Node *n = d->map.nodes + i;
4047 mon(f, " [%d]\n", i);
4049 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4050 PhysPageEntry *pe = *n + j;
4052 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4053 continue;
4056 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4058 jprev = j;
4059 prev = *pe;
4062 if (jprev != ARRAY_SIZE(*n)) {
4063 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4068 #endif