1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
5 #include <sys/resource.h>
9 #include "user-internals.h"
10 #include "signal-common.h"
12 #include "user-mmap.h"
13 #include "disas/disas.h"
14 #include "qemu/bitops.h"
15 #include "qemu/path.h"
16 #include "qemu/queue.h"
17 #include "qemu/guest-random.h"
18 #include "qemu/units.h"
19 #include "qemu/selfmap.h"
20 #include "qemu/lockable.h"
21 #include "qapi/error.h"
22 #include "qemu/error-report.h"
23 #include "target_signal.h"
24 #include "accel/tcg/debuginfo.h"
27 #include "target/arm/cpu-features.h"
40 #ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE
41 #define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0
46 const uint32_t *relocs
;
49 unsigned sigreturn_ofs
;
50 unsigned rt_sigreturn_ofs
;
53 #define ELF_OSABI ELFOSABI_SYSV
55 /* from personality.h */
58 * Flags for bug emulation.
60 * These occupy the top three bytes.
63 ADDR_NO_RANDOMIZE
= 0x0040000, /* disable randomization of VA space */
64 FDPIC_FUNCPTRS
= 0x0080000, /* userspace function ptrs point to
65 descriptors (signal handling) */
66 MMAP_PAGE_ZERO
= 0x0100000,
67 ADDR_COMPAT_LAYOUT
= 0x0200000,
68 READ_IMPLIES_EXEC
= 0x0400000,
69 ADDR_LIMIT_32BIT
= 0x0800000,
70 SHORT_INODE
= 0x1000000,
71 WHOLE_SECONDS
= 0x2000000,
72 STICKY_TIMEOUTS
= 0x4000000,
73 ADDR_LIMIT_3GB
= 0x8000000,
79 * These go in the low byte. Avoid using the top bit, it will
80 * conflict with error returns.
84 PER_LINUX_32BIT
= 0x0000 | ADDR_LIMIT_32BIT
,
85 PER_LINUX_FDPIC
= 0x0000 | FDPIC_FUNCPTRS
,
86 PER_SVR4
= 0x0001 | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
87 PER_SVR3
= 0x0002 | STICKY_TIMEOUTS
| SHORT_INODE
,
88 PER_SCOSVR3
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
| SHORT_INODE
,
89 PER_OSR5
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
,
90 PER_WYSEV386
= 0x0004 | STICKY_TIMEOUTS
| SHORT_INODE
,
91 PER_ISCR4
= 0x0005 | STICKY_TIMEOUTS
,
93 PER_SUNOS
= 0x0006 | STICKY_TIMEOUTS
,
94 PER_XENIX
= 0x0007 | STICKY_TIMEOUTS
| SHORT_INODE
,
96 PER_LINUX32_3GB
= 0x0008 | ADDR_LIMIT_3GB
,
97 PER_IRIX32
= 0x0009 | STICKY_TIMEOUTS
,/* IRIX5 32-bit */
98 PER_IRIXN32
= 0x000a | STICKY_TIMEOUTS
,/* IRIX6 new 32-bit */
99 PER_IRIX64
= 0x000b | STICKY_TIMEOUTS
,/* IRIX6 64-bit */
101 PER_SOLARIS
= 0x000d | STICKY_TIMEOUTS
,
102 PER_UW7
= 0x000e | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
103 PER_OSF4
= 0x000f, /* OSF/1 v4 */
109 * Return the base personality without flags.
111 #define personality(pers) (pers & PER_MASK)
113 int info_is_fdpic(struct image_info
*info
)
115 return info
->personality
== PER_LINUX_FDPIC
;
118 /* this flag is uneffective under linux too, should be deleted */
119 #ifndef MAP_DENYWRITE
120 #define MAP_DENYWRITE 0
123 /* should probably go in elf.h */
128 #if TARGET_BIG_ENDIAN
129 #define ELF_DATA ELFDATA2MSB
131 #define ELF_DATA ELFDATA2LSB
134 #ifdef TARGET_ABI_MIPSN32
135 typedef abi_ullong target_elf_greg_t
;
136 #define tswapreg(ptr) tswap64(ptr)
138 typedef abi_ulong target_elf_greg_t
;
139 #define tswapreg(ptr) tswapal(ptr)
143 typedef abi_ushort target_uid_t
;
144 typedef abi_ushort target_gid_t
;
146 typedef abi_uint target_uid_t
;
147 typedef abi_uint target_gid_t
;
149 typedef abi_int target_pid_t
;
153 #define ELF_HWCAP get_elf_hwcap()
155 static uint32_t get_elf_hwcap(void)
157 X86CPU
*cpu
= X86_CPU(thread_cpu
);
159 return cpu
->env
.features
[FEAT_1_EDX
];
163 #define ELF_CLASS ELFCLASS64
164 #define ELF_ARCH EM_X86_64
166 #define ELF_PLATFORM "x86_64"
168 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
171 regs
->rsp
= infop
->start_stack
;
172 regs
->rip
= infop
->entry
;
176 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
179 * Note that ELF_NREG should be 29 as there should be place for
180 * TRAPNO and ERR "registers" as well but linux doesn't dump
183 * See linux kernel: arch/x86/include/asm/elf.h
185 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
187 (*regs
)[0] = tswapreg(env
->regs
[15]);
188 (*regs
)[1] = tswapreg(env
->regs
[14]);
189 (*regs
)[2] = tswapreg(env
->regs
[13]);
190 (*regs
)[3] = tswapreg(env
->regs
[12]);
191 (*regs
)[4] = tswapreg(env
->regs
[R_EBP
]);
192 (*regs
)[5] = tswapreg(env
->regs
[R_EBX
]);
193 (*regs
)[6] = tswapreg(env
->regs
[11]);
194 (*regs
)[7] = tswapreg(env
->regs
[10]);
195 (*regs
)[8] = tswapreg(env
->regs
[9]);
196 (*regs
)[9] = tswapreg(env
->regs
[8]);
197 (*regs
)[10] = tswapreg(env
->regs
[R_EAX
]);
198 (*regs
)[11] = tswapreg(env
->regs
[R_ECX
]);
199 (*regs
)[12] = tswapreg(env
->regs
[R_EDX
]);
200 (*regs
)[13] = tswapreg(env
->regs
[R_ESI
]);
201 (*regs
)[14] = tswapreg(env
->regs
[R_EDI
]);
202 (*regs
)[15] = tswapreg(env
->regs
[R_EAX
]); /* XXX */
203 (*regs
)[16] = tswapreg(env
->eip
);
204 (*regs
)[17] = tswapreg(env
->segs
[R_CS
].selector
& 0xffff);
205 (*regs
)[18] = tswapreg(env
->eflags
);
206 (*regs
)[19] = tswapreg(env
->regs
[R_ESP
]);
207 (*regs
)[20] = tswapreg(env
->segs
[R_SS
].selector
& 0xffff);
208 (*regs
)[21] = tswapreg(env
->segs
[R_FS
].selector
& 0xffff);
209 (*regs
)[22] = tswapreg(env
->segs
[R_GS
].selector
& 0xffff);
210 (*regs
)[23] = tswapreg(env
->segs
[R_DS
].selector
& 0xffff);
211 (*regs
)[24] = tswapreg(env
->segs
[R_ES
].selector
& 0xffff);
212 (*regs
)[25] = tswapreg(env
->segs
[R_FS
].selector
& 0xffff);
213 (*regs
)[26] = tswapreg(env
->segs
[R_GS
].selector
& 0xffff);
216 #if ULONG_MAX > UINT32_MAX
217 #define INIT_GUEST_COMMPAGE
218 static bool init_guest_commpage(void)
221 * The vsyscall page is at a high negative address aka kernel space,
222 * which means that we cannot actually allocate it with target_mmap.
223 * We still should be able to use page_set_flags, unless the user
224 * has specified -R reserved_va, which would trigger an assert().
226 if (reserved_va
!= 0 &&
227 TARGET_VSYSCALL_PAGE
+ TARGET_PAGE_SIZE
- 1 > reserved_va
) {
228 error_report("Cannot allocate vsyscall page");
231 page_set_flags(TARGET_VSYSCALL_PAGE
,
232 TARGET_VSYSCALL_PAGE
| ~TARGET_PAGE_MASK
,
233 PAGE_EXEC
| PAGE_VALID
);
240 * This is used to ensure we don't load something for the wrong architecture.
242 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
245 * These are used to set parameters in the core dumps.
247 #define ELF_CLASS ELFCLASS32
248 #define ELF_ARCH EM_386
250 #define ELF_PLATFORM get_elf_platform()
251 #define EXSTACK_DEFAULT true
253 static const char *get_elf_platform(void)
255 static char elf_platform
[] = "i386";
256 int family
= object_property_get_int(OBJECT(thread_cpu
), "family", NULL
);
261 elf_platform
[1] = '0' + family
;
266 static inline void init_thread(struct target_pt_regs
*regs
,
267 struct image_info
*infop
)
269 regs
->esp
= infop
->start_stack
;
270 regs
->eip
= infop
->entry
;
272 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
273 starts %edx contains a pointer to a function which might be
274 registered using `atexit'. This provides a mean for the
275 dynamic linker to call DT_FINI functions for shared libraries
276 that have been loaded before the code runs.
278 A value of 0 tells we have no such handler. */
283 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
286 * Note that ELF_NREG should be 19 as there should be place for
287 * TRAPNO and ERR "registers" as well but linux doesn't dump
290 * See linux kernel: arch/x86/include/asm/elf.h
292 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
294 (*regs
)[0] = tswapreg(env
->regs
[R_EBX
]);
295 (*regs
)[1] = tswapreg(env
->regs
[R_ECX
]);
296 (*regs
)[2] = tswapreg(env
->regs
[R_EDX
]);
297 (*regs
)[3] = tswapreg(env
->regs
[R_ESI
]);
298 (*regs
)[4] = tswapreg(env
->regs
[R_EDI
]);
299 (*regs
)[5] = tswapreg(env
->regs
[R_EBP
]);
300 (*regs
)[6] = tswapreg(env
->regs
[R_EAX
]);
301 (*regs
)[7] = tswapreg(env
->segs
[R_DS
].selector
& 0xffff);
302 (*regs
)[8] = tswapreg(env
->segs
[R_ES
].selector
& 0xffff);
303 (*regs
)[9] = tswapreg(env
->segs
[R_FS
].selector
& 0xffff);
304 (*regs
)[10] = tswapreg(env
->segs
[R_GS
].selector
& 0xffff);
305 (*regs
)[11] = tswapreg(env
->regs
[R_EAX
]); /* XXX */
306 (*regs
)[12] = tswapreg(env
->eip
);
307 (*regs
)[13] = tswapreg(env
->segs
[R_CS
].selector
& 0xffff);
308 (*regs
)[14] = tswapreg(env
->eflags
);
309 (*regs
)[15] = tswapreg(env
->regs
[R_ESP
]);
310 (*regs
)[16] = tswapreg(env
->segs
[R_SS
].selector
& 0xffff);
314 * i386 is the only target which supplies AT_SYSINFO for the vdso.
315 * All others only supply AT_SYSINFO_EHDR.
317 #define DLINFO_ARCH_ITEMS (vdso_info != NULL)
318 #define ARCH_DLINFO \
321 NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry); \
325 #endif /* TARGET_X86_64 */
327 #define VDSO_HEADER "vdso.c.inc"
329 #define USE_ELF_CORE_DUMP
330 #define ELF_EXEC_PAGESIZE 4096
332 #endif /* TARGET_I386 */
336 #ifndef TARGET_AARCH64
337 /* 32 bit ARM definitions */
339 #define ELF_ARCH EM_ARM
340 #define ELF_CLASS ELFCLASS32
341 #define EXSTACK_DEFAULT true
343 static inline void init_thread(struct target_pt_regs
*regs
,
344 struct image_info
*infop
)
346 abi_long stack
= infop
->start_stack
;
347 memset(regs
, 0, sizeof(*regs
));
349 regs
->uregs
[16] = ARM_CPU_MODE_USR
;
350 if (infop
->entry
& 1) {
351 regs
->uregs
[16] |= CPSR_T
;
353 regs
->uregs
[15] = infop
->entry
& 0xfffffffe;
354 regs
->uregs
[13] = infop
->start_stack
;
355 /* FIXME - what to for failure of get_user()? */
356 get_user_ual(regs
->uregs
[2], stack
+ 8); /* envp */
357 get_user_ual(regs
->uregs
[1], stack
+ 4); /* envp */
358 /* XXX: it seems that r0 is zeroed after ! */
360 /* For uClinux PIC binaries. */
361 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
362 regs
->uregs
[10] = infop
->start_data
;
364 /* Support ARM FDPIC. */
365 if (info_is_fdpic(infop
)) {
366 /* As described in the ABI document, r7 points to the loadmap info
367 * prepared by the kernel. If an interpreter is needed, r8 points
368 * to the interpreter loadmap and r9 points to the interpreter
369 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
370 * r9 points to the main program PT_DYNAMIC info.
372 regs
->uregs
[7] = infop
->loadmap_addr
;
373 if (infop
->interpreter_loadmap_addr
) {
374 /* Executable is dynamically loaded. */
375 regs
->uregs
[8] = infop
->interpreter_loadmap_addr
;
376 regs
->uregs
[9] = infop
->interpreter_pt_dynamic_addr
;
379 regs
->uregs
[9] = infop
->pt_dynamic_addr
;
385 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
387 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUARMState
*env
)
389 (*regs
)[0] = tswapreg(env
->regs
[0]);
390 (*regs
)[1] = tswapreg(env
->regs
[1]);
391 (*regs
)[2] = tswapreg(env
->regs
[2]);
392 (*regs
)[3] = tswapreg(env
->regs
[3]);
393 (*regs
)[4] = tswapreg(env
->regs
[4]);
394 (*regs
)[5] = tswapreg(env
->regs
[5]);
395 (*regs
)[6] = tswapreg(env
->regs
[6]);
396 (*regs
)[7] = tswapreg(env
->regs
[7]);
397 (*regs
)[8] = tswapreg(env
->regs
[8]);
398 (*regs
)[9] = tswapreg(env
->regs
[9]);
399 (*regs
)[10] = tswapreg(env
->regs
[10]);
400 (*regs
)[11] = tswapreg(env
->regs
[11]);
401 (*regs
)[12] = tswapreg(env
->regs
[12]);
402 (*regs
)[13] = tswapreg(env
->regs
[13]);
403 (*regs
)[14] = tswapreg(env
->regs
[14]);
404 (*regs
)[15] = tswapreg(env
->regs
[15]);
406 (*regs
)[16] = tswapreg(cpsr_read((CPUARMState
*)env
));
407 (*regs
)[17] = tswapreg(env
->regs
[0]); /* XXX */
410 #define USE_ELF_CORE_DUMP
411 #define ELF_EXEC_PAGESIZE 4096
415 ARM_HWCAP_ARM_SWP
= 1 << 0,
416 ARM_HWCAP_ARM_HALF
= 1 << 1,
417 ARM_HWCAP_ARM_THUMB
= 1 << 2,
418 ARM_HWCAP_ARM_26BIT
= 1 << 3,
419 ARM_HWCAP_ARM_FAST_MULT
= 1 << 4,
420 ARM_HWCAP_ARM_FPA
= 1 << 5,
421 ARM_HWCAP_ARM_VFP
= 1 << 6,
422 ARM_HWCAP_ARM_EDSP
= 1 << 7,
423 ARM_HWCAP_ARM_JAVA
= 1 << 8,
424 ARM_HWCAP_ARM_IWMMXT
= 1 << 9,
425 ARM_HWCAP_ARM_CRUNCH
= 1 << 10,
426 ARM_HWCAP_ARM_THUMBEE
= 1 << 11,
427 ARM_HWCAP_ARM_NEON
= 1 << 12,
428 ARM_HWCAP_ARM_VFPv3
= 1 << 13,
429 ARM_HWCAP_ARM_VFPv3D16
= 1 << 14,
430 ARM_HWCAP_ARM_TLS
= 1 << 15,
431 ARM_HWCAP_ARM_VFPv4
= 1 << 16,
432 ARM_HWCAP_ARM_IDIVA
= 1 << 17,
433 ARM_HWCAP_ARM_IDIVT
= 1 << 18,
434 ARM_HWCAP_ARM_VFPD32
= 1 << 19,
435 ARM_HWCAP_ARM_LPAE
= 1 << 20,
436 ARM_HWCAP_ARM_EVTSTRM
= 1 << 21,
437 ARM_HWCAP_ARM_FPHP
= 1 << 22,
438 ARM_HWCAP_ARM_ASIMDHP
= 1 << 23,
439 ARM_HWCAP_ARM_ASIMDDP
= 1 << 24,
440 ARM_HWCAP_ARM_ASIMDFHM
= 1 << 25,
441 ARM_HWCAP_ARM_ASIMDBF16
= 1 << 26,
442 ARM_HWCAP_ARM_I8MM
= 1 << 27,
446 ARM_HWCAP2_ARM_AES
= 1 << 0,
447 ARM_HWCAP2_ARM_PMULL
= 1 << 1,
448 ARM_HWCAP2_ARM_SHA1
= 1 << 2,
449 ARM_HWCAP2_ARM_SHA2
= 1 << 3,
450 ARM_HWCAP2_ARM_CRC32
= 1 << 4,
451 ARM_HWCAP2_ARM_SB
= 1 << 5,
452 ARM_HWCAP2_ARM_SSBS
= 1 << 6,
455 /* The commpage only exists for 32 bit kernels */
457 #define HI_COMMPAGE (intptr_t)0xffff0f00u
459 static bool init_guest_commpage(void)
461 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
467 * M-profile allocates maximum of 2GB address space, so can never
468 * allocate the commpage. Skip it.
470 if (arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
474 commpage
= HI_COMMPAGE
& -qemu_host_page_size
;
475 want
= g2h_untagged(commpage
);
476 addr
= mmap(want
, qemu_host_page_size
, PROT_READ
| PROT_WRITE
,
477 MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_FIXED
, -1, 0);
479 if (addr
== MAP_FAILED
) {
480 perror("Allocating guest commpage");
487 /* Set kernel helper versions; rest of page is 0. */
488 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu
));
490 if (mprotect(addr
, qemu_host_page_size
, PROT_READ
)) {
491 perror("Protecting guest commpage");
495 page_set_flags(commpage
, commpage
| ~qemu_host_page_mask
,
496 PAGE_READ
| PAGE_EXEC
| PAGE_VALID
);
500 #define ELF_HWCAP get_elf_hwcap()
501 #define ELF_HWCAP2 get_elf_hwcap2()
503 uint32_t get_elf_hwcap(void)
505 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
508 hwcaps
|= ARM_HWCAP_ARM_SWP
;
509 hwcaps
|= ARM_HWCAP_ARM_HALF
;
510 hwcaps
|= ARM_HWCAP_ARM_THUMB
;
511 hwcaps
|= ARM_HWCAP_ARM_FAST_MULT
;
513 /* probe for the extra features */
514 #define GET_FEATURE(feat, hwcap) \
515 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
517 #define GET_FEATURE_ID(feat, hwcap) \
518 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
520 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
521 GET_FEATURE(ARM_FEATURE_V5
, ARM_HWCAP_ARM_EDSP
);
522 GET_FEATURE(ARM_FEATURE_IWMMXT
, ARM_HWCAP_ARM_IWMMXT
);
523 GET_FEATURE(ARM_FEATURE_THUMB2EE
, ARM_HWCAP_ARM_THUMBEE
);
524 GET_FEATURE(ARM_FEATURE_NEON
, ARM_HWCAP_ARM_NEON
);
525 GET_FEATURE(ARM_FEATURE_V6K
, ARM_HWCAP_ARM_TLS
);
526 GET_FEATURE(ARM_FEATURE_LPAE
, ARM_HWCAP_ARM_LPAE
);
527 GET_FEATURE_ID(aa32_arm_div
, ARM_HWCAP_ARM_IDIVA
);
528 GET_FEATURE_ID(aa32_thumb_div
, ARM_HWCAP_ARM_IDIVT
);
529 GET_FEATURE_ID(aa32_vfp
, ARM_HWCAP_ARM_VFP
);
531 if (cpu_isar_feature(aa32_fpsp_v3
, cpu
) ||
532 cpu_isar_feature(aa32_fpdp_v3
, cpu
)) {
533 hwcaps
|= ARM_HWCAP_ARM_VFPv3
;
534 if (cpu_isar_feature(aa32_simd_r32
, cpu
)) {
535 hwcaps
|= ARM_HWCAP_ARM_VFPD32
;
537 hwcaps
|= ARM_HWCAP_ARM_VFPv3D16
;
540 GET_FEATURE_ID(aa32_simdfmac
, ARM_HWCAP_ARM_VFPv4
);
542 * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same
543 * isar_feature function for both. The kernel reports them as two hwcaps.
545 GET_FEATURE_ID(aa32_fp16_arith
, ARM_HWCAP_ARM_FPHP
);
546 GET_FEATURE_ID(aa32_fp16_arith
, ARM_HWCAP_ARM_ASIMDHP
);
547 GET_FEATURE_ID(aa32_dp
, ARM_HWCAP_ARM_ASIMDDP
);
548 GET_FEATURE_ID(aa32_fhm
, ARM_HWCAP_ARM_ASIMDFHM
);
549 GET_FEATURE_ID(aa32_bf16
, ARM_HWCAP_ARM_ASIMDBF16
);
550 GET_FEATURE_ID(aa32_i8mm
, ARM_HWCAP_ARM_I8MM
);
555 uint32_t get_elf_hwcap2(void)
557 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
560 GET_FEATURE_ID(aa32_aes
, ARM_HWCAP2_ARM_AES
);
561 GET_FEATURE_ID(aa32_pmull
, ARM_HWCAP2_ARM_PMULL
);
562 GET_FEATURE_ID(aa32_sha1
, ARM_HWCAP2_ARM_SHA1
);
563 GET_FEATURE_ID(aa32_sha2
, ARM_HWCAP2_ARM_SHA2
);
564 GET_FEATURE_ID(aa32_crc32
, ARM_HWCAP2_ARM_CRC32
);
565 GET_FEATURE_ID(aa32_sb
, ARM_HWCAP2_ARM_SB
);
566 GET_FEATURE_ID(aa32_ssbs
, ARM_HWCAP2_ARM_SSBS
);
570 const char *elf_hwcap_str(uint32_t bit
)
572 static const char *hwcap_str
[] = {
573 [__builtin_ctz(ARM_HWCAP_ARM_SWP
)] = "swp",
574 [__builtin_ctz(ARM_HWCAP_ARM_HALF
)] = "half",
575 [__builtin_ctz(ARM_HWCAP_ARM_THUMB
)] = "thumb",
576 [__builtin_ctz(ARM_HWCAP_ARM_26BIT
)] = "26bit",
577 [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT
)] = "fast_mult",
578 [__builtin_ctz(ARM_HWCAP_ARM_FPA
)] = "fpa",
579 [__builtin_ctz(ARM_HWCAP_ARM_VFP
)] = "vfp",
580 [__builtin_ctz(ARM_HWCAP_ARM_EDSP
)] = "edsp",
581 [__builtin_ctz(ARM_HWCAP_ARM_JAVA
)] = "java",
582 [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT
)] = "iwmmxt",
583 [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH
)] = "crunch",
584 [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE
)] = "thumbee",
585 [__builtin_ctz(ARM_HWCAP_ARM_NEON
)] = "neon",
586 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3
)] = "vfpv3",
587 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16
)] = "vfpv3d16",
588 [__builtin_ctz(ARM_HWCAP_ARM_TLS
)] = "tls",
589 [__builtin_ctz(ARM_HWCAP_ARM_VFPv4
)] = "vfpv4",
590 [__builtin_ctz(ARM_HWCAP_ARM_IDIVA
)] = "idiva",
591 [__builtin_ctz(ARM_HWCAP_ARM_IDIVT
)] = "idivt",
592 [__builtin_ctz(ARM_HWCAP_ARM_VFPD32
)] = "vfpd32",
593 [__builtin_ctz(ARM_HWCAP_ARM_LPAE
)] = "lpae",
594 [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM
)] = "evtstrm",
595 [__builtin_ctz(ARM_HWCAP_ARM_FPHP
)] = "fphp",
596 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP
)] = "asimdhp",
597 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP
)] = "asimddp",
598 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM
)] = "asimdfhm",
599 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16
)] = "asimdbf16",
600 [__builtin_ctz(ARM_HWCAP_ARM_I8MM
)] = "i8mm",
603 return bit
< ARRAY_SIZE(hwcap_str
) ? hwcap_str
[bit
] : NULL
;
606 const char *elf_hwcap2_str(uint32_t bit
)
608 static const char *hwcap_str
[] = {
609 [__builtin_ctz(ARM_HWCAP2_ARM_AES
)] = "aes",
610 [__builtin_ctz(ARM_HWCAP2_ARM_PMULL
)] = "pmull",
611 [__builtin_ctz(ARM_HWCAP2_ARM_SHA1
)] = "sha1",
612 [__builtin_ctz(ARM_HWCAP2_ARM_SHA2
)] = "sha2",
613 [__builtin_ctz(ARM_HWCAP2_ARM_CRC32
)] = "crc32",
614 [__builtin_ctz(ARM_HWCAP2_ARM_SB
)] = "sb",
615 [__builtin_ctz(ARM_HWCAP2_ARM_SSBS
)] = "ssbs",
618 return bit
< ARRAY_SIZE(hwcap_str
) ? hwcap_str
[bit
] : NULL
;
622 #undef GET_FEATURE_ID
624 #define ELF_PLATFORM get_elf_platform()
626 static const char *get_elf_platform(void)
628 CPUARMState
*env
= cpu_env(thread_cpu
);
630 #if TARGET_BIG_ENDIAN
636 if (arm_feature(env
, ARM_FEATURE_V8
)) {
638 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
639 if (arm_feature(env
, ARM_FEATURE_M
)) {
644 } else if (arm_feature(env
, ARM_FEATURE_V6
)) {
646 } else if (arm_feature(env
, ARM_FEATURE_V5
)) {
656 /* 64 bit ARM definitions */
658 #define ELF_ARCH EM_AARCH64
659 #define ELF_CLASS ELFCLASS64
660 #if TARGET_BIG_ENDIAN
661 # define ELF_PLATFORM "aarch64_be"
663 # define ELF_PLATFORM "aarch64"
666 static inline void init_thread(struct target_pt_regs
*regs
,
667 struct image_info
*infop
)
669 abi_long stack
= infop
->start_stack
;
670 memset(regs
, 0, sizeof(*regs
));
672 regs
->pc
= infop
->entry
& ~0x3ULL
;
677 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
679 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
680 const CPUARMState
*env
)
684 for (i
= 0; i
< 32; i
++) {
685 (*regs
)[i
] = tswapreg(env
->xregs
[i
]);
687 (*regs
)[32] = tswapreg(env
->pc
);
688 (*regs
)[33] = tswapreg(pstate_read((CPUARMState
*)env
));
691 #define USE_ELF_CORE_DUMP
692 #define ELF_EXEC_PAGESIZE 4096
695 ARM_HWCAP_A64_FP
= 1 << 0,
696 ARM_HWCAP_A64_ASIMD
= 1 << 1,
697 ARM_HWCAP_A64_EVTSTRM
= 1 << 2,
698 ARM_HWCAP_A64_AES
= 1 << 3,
699 ARM_HWCAP_A64_PMULL
= 1 << 4,
700 ARM_HWCAP_A64_SHA1
= 1 << 5,
701 ARM_HWCAP_A64_SHA2
= 1 << 6,
702 ARM_HWCAP_A64_CRC32
= 1 << 7,
703 ARM_HWCAP_A64_ATOMICS
= 1 << 8,
704 ARM_HWCAP_A64_FPHP
= 1 << 9,
705 ARM_HWCAP_A64_ASIMDHP
= 1 << 10,
706 ARM_HWCAP_A64_CPUID
= 1 << 11,
707 ARM_HWCAP_A64_ASIMDRDM
= 1 << 12,
708 ARM_HWCAP_A64_JSCVT
= 1 << 13,
709 ARM_HWCAP_A64_FCMA
= 1 << 14,
710 ARM_HWCAP_A64_LRCPC
= 1 << 15,
711 ARM_HWCAP_A64_DCPOP
= 1 << 16,
712 ARM_HWCAP_A64_SHA3
= 1 << 17,
713 ARM_HWCAP_A64_SM3
= 1 << 18,
714 ARM_HWCAP_A64_SM4
= 1 << 19,
715 ARM_HWCAP_A64_ASIMDDP
= 1 << 20,
716 ARM_HWCAP_A64_SHA512
= 1 << 21,
717 ARM_HWCAP_A64_SVE
= 1 << 22,
718 ARM_HWCAP_A64_ASIMDFHM
= 1 << 23,
719 ARM_HWCAP_A64_DIT
= 1 << 24,
720 ARM_HWCAP_A64_USCAT
= 1 << 25,
721 ARM_HWCAP_A64_ILRCPC
= 1 << 26,
722 ARM_HWCAP_A64_FLAGM
= 1 << 27,
723 ARM_HWCAP_A64_SSBS
= 1 << 28,
724 ARM_HWCAP_A64_SB
= 1 << 29,
725 ARM_HWCAP_A64_PACA
= 1 << 30,
726 ARM_HWCAP_A64_PACG
= 1UL << 31,
728 ARM_HWCAP2_A64_DCPODP
= 1 << 0,
729 ARM_HWCAP2_A64_SVE2
= 1 << 1,
730 ARM_HWCAP2_A64_SVEAES
= 1 << 2,
731 ARM_HWCAP2_A64_SVEPMULL
= 1 << 3,
732 ARM_HWCAP2_A64_SVEBITPERM
= 1 << 4,
733 ARM_HWCAP2_A64_SVESHA3
= 1 << 5,
734 ARM_HWCAP2_A64_SVESM4
= 1 << 6,
735 ARM_HWCAP2_A64_FLAGM2
= 1 << 7,
736 ARM_HWCAP2_A64_FRINT
= 1 << 8,
737 ARM_HWCAP2_A64_SVEI8MM
= 1 << 9,
738 ARM_HWCAP2_A64_SVEF32MM
= 1 << 10,
739 ARM_HWCAP2_A64_SVEF64MM
= 1 << 11,
740 ARM_HWCAP2_A64_SVEBF16
= 1 << 12,
741 ARM_HWCAP2_A64_I8MM
= 1 << 13,
742 ARM_HWCAP2_A64_BF16
= 1 << 14,
743 ARM_HWCAP2_A64_DGH
= 1 << 15,
744 ARM_HWCAP2_A64_RNG
= 1 << 16,
745 ARM_HWCAP2_A64_BTI
= 1 << 17,
746 ARM_HWCAP2_A64_MTE
= 1 << 18,
747 ARM_HWCAP2_A64_ECV
= 1 << 19,
748 ARM_HWCAP2_A64_AFP
= 1 << 20,
749 ARM_HWCAP2_A64_RPRES
= 1 << 21,
750 ARM_HWCAP2_A64_MTE3
= 1 << 22,
751 ARM_HWCAP2_A64_SME
= 1 << 23,
752 ARM_HWCAP2_A64_SME_I16I64
= 1 << 24,
753 ARM_HWCAP2_A64_SME_F64F64
= 1 << 25,
754 ARM_HWCAP2_A64_SME_I8I32
= 1 << 26,
755 ARM_HWCAP2_A64_SME_F16F32
= 1 << 27,
756 ARM_HWCAP2_A64_SME_B16F32
= 1 << 28,
757 ARM_HWCAP2_A64_SME_F32F32
= 1 << 29,
758 ARM_HWCAP2_A64_SME_FA64
= 1 << 30,
759 ARM_HWCAP2_A64_WFXT
= 1ULL << 31,
760 ARM_HWCAP2_A64_EBF16
= 1ULL << 32,
761 ARM_HWCAP2_A64_SVE_EBF16
= 1ULL << 33,
762 ARM_HWCAP2_A64_CSSC
= 1ULL << 34,
763 ARM_HWCAP2_A64_RPRFM
= 1ULL << 35,
764 ARM_HWCAP2_A64_SVE2P1
= 1ULL << 36,
765 ARM_HWCAP2_A64_SME2
= 1ULL << 37,
766 ARM_HWCAP2_A64_SME2P1
= 1ULL << 38,
767 ARM_HWCAP2_A64_SME_I16I32
= 1ULL << 39,
768 ARM_HWCAP2_A64_SME_BI32I32
= 1ULL << 40,
769 ARM_HWCAP2_A64_SME_B16B16
= 1ULL << 41,
770 ARM_HWCAP2_A64_SME_F16F16
= 1ULL << 42,
771 ARM_HWCAP2_A64_MOPS
= 1ULL << 43,
772 ARM_HWCAP2_A64_HBC
= 1ULL << 44,
775 #define ELF_HWCAP get_elf_hwcap()
776 #define ELF_HWCAP2 get_elf_hwcap2()
778 #define GET_FEATURE_ID(feat, hwcap) \
779 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
781 uint32_t get_elf_hwcap(void)
783 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
786 hwcaps
|= ARM_HWCAP_A64_FP
;
787 hwcaps
|= ARM_HWCAP_A64_ASIMD
;
788 hwcaps
|= ARM_HWCAP_A64_CPUID
;
790 /* probe for the extra features */
792 GET_FEATURE_ID(aa64_aes
, ARM_HWCAP_A64_AES
);
793 GET_FEATURE_ID(aa64_pmull
, ARM_HWCAP_A64_PMULL
);
794 GET_FEATURE_ID(aa64_sha1
, ARM_HWCAP_A64_SHA1
);
795 GET_FEATURE_ID(aa64_sha256
, ARM_HWCAP_A64_SHA2
);
796 GET_FEATURE_ID(aa64_sha512
, ARM_HWCAP_A64_SHA512
);
797 GET_FEATURE_ID(aa64_crc32
, ARM_HWCAP_A64_CRC32
);
798 GET_FEATURE_ID(aa64_sha3
, ARM_HWCAP_A64_SHA3
);
799 GET_FEATURE_ID(aa64_sm3
, ARM_HWCAP_A64_SM3
);
800 GET_FEATURE_ID(aa64_sm4
, ARM_HWCAP_A64_SM4
);
801 GET_FEATURE_ID(aa64_fp16
, ARM_HWCAP_A64_FPHP
| ARM_HWCAP_A64_ASIMDHP
);
802 GET_FEATURE_ID(aa64_atomics
, ARM_HWCAP_A64_ATOMICS
);
803 GET_FEATURE_ID(aa64_rdm
, ARM_HWCAP_A64_ASIMDRDM
);
804 GET_FEATURE_ID(aa64_dp
, ARM_HWCAP_A64_ASIMDDP
);
805 GET_FEATURE_ID(aa64_fcma
, ARM_HWCAP_A64_FCMA
);
806 GET_FEATURE_ID(aa64_sve
, ARM_HWCAP_A64_SVE
);
807 GET_FEATURE_ID(aa64_pauth
, ARM_HWCAP_A64_PACA
| ARM_HWCAP_A64_PACG
);
808 GET_FEATURE_ID(aa64_fhm
, ARM_HWCAP_A64_ASIMDFHM
);
809 GET_FEATURE_ID(aa64_jscvt
, ARM_HWCAP_A64_JSCVT
);
810 GET_FEATURE_ID(aa64_sb
, ARM_HWCAP_A64_SB
);
811 GET_FEATURE_ID(aa64_condm_4
, ARM_HWCAP_A64_FLAGM
);
812 GET_FEATURE_ID(aa64_dcpop
, ARM_HWCAP_A64_DCPOP
);
813 GET_FEATURE_ID(aa64_rcpc_8_3
, ARM_HWCAP_A64_LRCPC
);
814 GET_FEATURE_ID(aa64_rcpc_8_4
, ARM_HWCAP_A64_ILRCPC
);
819 uint32_t get_elf_hwcap2(void)
821 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
824 GET_FEATURE_ID(aa64_dcpodp
, ARM_HWCAP2_A64_DCPODP
);
825 GET_FEATURE_ID(aa64_sve2
, ARM_HWCAP2_A64_SVE2
);
826 GET_FEATURE_ID(aa64_sve2_aes
, ARM_HWCAP2_A64_SVEAES
);
827 GET_FEATURE_ID(aa64_sve2_pmull128
, ARM_HWCAP2_A64_SVEPMULL
);
828 GET_FEATURE_ID(aa64_sve2_bitperm
, ARM_HWCAP2_A64_SVEBITPERM
);
829 GET_FEATURE_ID(aa64_sve2_sha3
, ARM_HWCAP2_A64_SVESHA3
);
830 GET_FEATURE_ID(aa64_sve2_sm4
, ARM_HWCAP2_A64_SVESM4
);
831 GET_FEATURE_ID(aa64_condm_5
, ARM_HWCAP2_A64_FLAGM2
);
832 GET_FEATURE_ID(aa64_frint
, ARM_HWCAP2_A64_FRINT
);
833 GET_FEATURE_ID(aa64_sve_i8mm
, ARM_HWCAP2_A64_SVEI8MM
);
834 GET_FEATURE_ID(aa64_sve_f32mm
, ARM_HWCAP2_A64_SVEF32MM
);
835 GET_FEATURE_ID(aa64_sve_f64mm
, ARM_HWCAP2_A64_SVEF64MM
);
836 GET_FEATURE_ID(aa64_sve_bf16
, ARM_HWCAP2_A64_SVEBF16
);
837 GET_FEATURE_ID(aa64_i8mm
, ARM_HWCAP2_A64_I8MM
);
838 GET_FEATURE_ID(aa64_bf16
, ARM_HWCAP2_A64_BF16
);
839 GET_FEATURE_ID(aa64_rndr
, ARM_HWCAP2_A64_RNG
);
840 GET_FEATURE_ID(aa64_bti
, ARM_HWCAP2_A64_BTI
);
841 GET_FEATURE_ID(aa64_mte
, ARM_HWCAP2_A64_MTE
);
842 GET_FEATURE_ID(aa64_sme
, (ARM_HWCAP2_A64_SME
|
843 ARM_HWCAP2_A64_SME_F32F32
|
844 ARM_HWCAP2_A64_SME_B16F32
|
845 ARM_HWCAP2_A64_SME_F16F32
|
846 ARM_HWCAP2_A64_SME_I8I32
));
847 GET_FEATURE_ID(aa64_sme_f64f64
, ARM_HWCAP2_A64_SME_F64F64
);
848 GET_FEATURE_ID(aa64_sme_i16i64
, ARM_HWCAP2_A64_SME_I16I64
);
849 GET_FEATURE_ID(aa64_sme_fa64
, ARM_HWCAP2_A64_SME_FA64
);
850 GET_FEATURE_ID(aa64_hbc
, ARM_HWCAP2_A64_HBC
);
851 GET_FEATURE_ID(aa64_mops
, ARM_HWCAP2_A64_MOPS
);
856 const char *elf_hwcap_str(uint32_t bit
)
858 static const char *hwcap_str
[] = {
859 [__builtin_ctz(ARM_HWCAP_A64_FP
)] = "fp",
860 [__builtin_ctz(ARM_HWCAP_A64_ASIMD
)] = "asimd",
861 [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM
)] = "evtstrm",
862 [__builtin_ctz(ARM_HWCAP_A64_AES
)] = "aes",
863 [__builtin_ctz(ARM_HWCAP_A64_PMULL
)] = "pmull",
864 [__builtin_ctz(ARM_HWCAP_A64_SHA1
)] = "sha1",
865 [__builtin_ctz(ARM_HWCAP_A64_SHA2
)] = "sha2",
866 [__builtin_ctz(ARM_HWCAP_A64_CRC32
)] = "crc32",
867 [__builtin_ctz(ARM_HWCAP_A64_ATOMICS
)] = "atomics",
868 [__builtin_ctz(ARM_HWCAP_A64_FPHP
)] = "fphp",
869 [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP
)] = "asimdhp",
870 [__builtin_ctz(ARM_HWCAP_A64_CPUID
)] = "cpuid",
871 [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM
)] = "asimdrdm",
872 [__builtin_ctz(ARM_HWCAP_A64_JSCVT
)] = "jscvt",
873 [__builtin_ctz(ARM_HWCAP_A64_FCMA
)] = "fcma",
874 [__builtin_ctz(ARM_HWCAP_A64_LRCPC
)] = "lrcpc",
875 [__builtin_ctz(ARM_HWCAP_A64_DCPOP
)] = "dcpop",
876 [__builtin_ctz(ARM_HWCAP_A64_SHA3
)] = "sha3",
877 [__builtin_ctz(ARM_HWCAP_A64_SM3
)] = "sm3",
878 [__builtin_ctz(ARM_HWCAP_A64_SM4
)] = "sm4",
879 [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP
)] = "asimddp",
880 [__builtin_ctz(ARM_HWCAP_A64_SHA512
)] = "sha512",
881 [__builtin_ctz(ARM_HWCAP_A64_SVE
)] = "sve",
882 [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM
)] = "asimdfhm",
883 [__builtin_ctz(ARM_HWCAP_A64_DIT
)] = "dit",
884 [__builtin_ctz(ARM_HWCAP_A64_USCAT
)] = "uscat",
885 [__builtin_ctz(ARM_HWCAP_A64_ILRCPC
)] = "ilrcpc",
886 [__builtin_ctz(ARM_HWCAP_A64_FLAGM
)] = "flagm",
887 [__builtin_ctz(ARM_HWCAP_A64_SSBS
)] = "ssbs",
888 [__builtin_ctz(ARM_HWCAP_A64_SB
)] = "sb",
889 [__builtin_ctz(ARM_HWCAP_A64_PACA
)] = "paca",
890 [__builtin_ctz(ARM_HWCAP_A64_PACG
)] = "pacg",
893 return bit
< ARRAY_SIZE(hwcap_str
) ? hwcap_str
[bit
] : NULL
;
896 const char *elf_hwcap2_str(uint32_t bit
)
898 static const char *hwcap_str
[] = {
899 [__builtin_ctz(ARM_HWCAP2_A64_DCPODP
)] = "dcpodp",
900 [__builtin_ctz(ARM_HWCAP2_A64_SVE2
)] = "sve2",
901 [__builtin_ctz(ARM_HWCAP2_A64_SVEAES
)] = "sveaes",
902 [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL
)] = "svepmull",
903 [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM
)] = "svebitperm",
904 [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3
)] = "svesha3",
905 [__builtin_ctz(ARM_HWCAP2_A64_SVESM4
)] = "svesm4",
906 [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2
)] = "flagm2",
907 [__builtin_ctz(ARM_HWCAP2_A64_FRINT
)] = "frint",
908 [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM
)] = "svei8mm",
909 [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM
)] = "svef32mm",
910 [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM
)] = "svef64mm",
911 [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16
)] = "svebf16",
912 [__builtin_ctz(ARM_HWCAP2_A64_I8MM
)] = "i8mm",
913 [__builtin_ctz(ARM_HWCAP2_A64_BF16
)] = "bf16",
914 [__builtin_ctz(ARM_HWCAP2_A64_DGH
)] = "dgh",
915 [__builtin_ctz(ARM_HWCAP2_A64_RNG
)] = "rng",
916 [__builtin_ctz(ARM_HWCAP2_A64_BTI
)] = "bti",
917 [__builtin_ctz(ARM_HWCAP2_A64_MTE
)] = "mte",
918 [__builtin_ctz(ARM_HWCAP2_A64_ECV
)] = "ecv",
919 [__builtin_ctz(ARM_HWCAP2_A64_AFP
)] = "afp",
920 [__builtin_ctz(ARM_HWCAP2_A64_RPRES
)] = "rpres",
921 [__builtin_ctz(ARM_HWCAP2_A64_MTE3
)] = "mte3",
922 [__builtin_ctz(ARM_HWCAP2_A64_SME
)] = "sme",
923 [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64
)] = "smei16i64",
924 [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64
)] = "smef64f64",
925 [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32
)] = "smei8i32",
926 [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32
)] = "smef16f32",
927 [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32
)] = "smeb16f32",
928 [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32
)] = "smef32f32",
929 [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64
)] = "smefa64",
930 [__builtin_ctz(ARM_HWCAP2_A64_WFXT
)] = "wfxt",
931 [__builtin_ctzll(ARM_HWCAP2_A64_EBF16
)] = "ebf16",
932 [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16
)] = "sveebf16",
933 [__builtin_ctzll(ARM_HWCAP2_A64_CSSC
)] = "cssc",
934 [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM
)] = "rprfm",
935 [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1
)] = "sve2p1",
936 [__builtin_ctzll(ARM_HWCAP2_A64_SME2
)] = "sme2",
937 [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1
)] = "sme2p1",
938 [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32
)] = "smei16i32",
939 [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32
)] = "smebi32i32",
940 [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16
)] = "smeb16b16",
941 [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16
)] = "smef16f16",
942 [__builtin_ctzll(ARM_HWCAP2_A64_MOPS
)] = "mops",
943 [__builtin_ctzll(ARM_HWCAP2_A64_HBC
)] = "hbc",
946 return bit
< ARRAY_SIZE(hwcap_str
) ? hwcap_str
[bit
] : NULL
;
949 #undef GET_FEATURE_ID
951 #endif /* not TARGET_AARCH64 */
953 #if TARGET_BIG_ENDIAN
954 # define VDSO_HEADER "vdso-be.c.inc"
956 # define VDSO_HEADER "vdso-le.c.inc"
959 #endif /* TARGET_ARM */
962 #ifdef TARGET_SPARC64
964 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
965 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
967 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
969 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
972 #define ELF_CLASS ELFCLASS64
973 #define ELF_ARCH EM_SPARCV9
975 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
976 | HWCAP_SPARC_MULDIV)
977 #define ELF_CLASS ELFCLASS32
978 #define ELF_ARCH EM_SPARC
979 #endif /* TARGET_SPARC64 */
981 static inline void init_thread(struct target_pt_regs
*regs
,
982 struct image_info
*infop
)
984 /* Note that target_cpu_copy_regs does not read psr/tstate. */
985 regs
->pc
= infop
->entry
;
986 regs
->npc
= regs
->pc
+ 4;
988 regs
->u_regs
[14] = (infop
->start_stack
- 16 * sizeof(abi_ulong
)
989 - TARGET_STACK_BIAS
);
991 #endif /* TARGET_SPARC */
995 #define ELF_MACHINE PPC_ELF_MACHINE
997 #if defined(TARGET_PPC64)
999 #define elf_check_arch(x) ( (x) == EM_PPC64 )
1001 #define ELF_CLASS ELFCLASS64
1005 #define ELF_CLASS ELFCLASS32
1006 #define EXSTACK_DEFAULT true
1010 #define ELF_ARCH EM_PPC
1012 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
1013 See arch/powerpc/include/asm/cputable.h. */
1015 QEMU_PPC_FEATURE_32
= 0x80000000,
1016 QEMU_PPC_FEATURE_64
= 0x40000000,
1017 QEMU_PPC_FEATURE_601_INSTR
= 0x20000000,
1018 QEMU_PPC_FEATURE_HAS_ALTIVEC
= 0x10000000,
1019 QEMU_PPC_FEATURE_HAS_FPU
= 0x08000000,
1020 QEMU_PPC_FEATURE_HAS_MMU
= 0x04000000,
1021 QEMU_PPC_FEATURE_HAS_4xxMAC
= 0x02000000,
1022 QEMU_PPC_FEATURE_UNIFIED_CACHE
= 0x01000000,
1023 QEMU_PPC_FEATURE_HAS_SPE
= 0x00800000,
1024 QEMU_PPC_FEATURE_HAS_EFP_SINGLE
= 0x00400000,
1025 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
= 0x00200000,
1026 QEMU_PPC_FEATURE_NO_TB
= 0x00100000,
1027 QEMU_PPC_FEATURE_POWER4
= 0x00080000,
1028 QEMU_PPC_FEATURE_POWER5
= 0x00040000,
1029 QEMU_PPC_FEATURE_POWER5_PLUS
= 0x00020000,
1030 QEMU_PPC_FEATURE_CELL
= 0x00010000,
1031 QEMU_PPC_FEATURE_BOOKE
= 0x00008000,
1032 QEMU_PPC_FEATURE_SMT
= 0x00004000,
1033 QEMU_PPC_FEATURE_ICACHE_SNOOP
= 0x00002000,
1034 QEMU_PPC_FEATURE_ARCH_2_05
= 0x00001000,
1035 QEMU_PPC_FEATURE_PA6T
= 0x00000800,
1036 QEMU_PPC_FEATURE_HAS_DFP
= 0x00000400,
1037 QEMU_PPC_FEATURE_POWER6_EXT
= 0x00000200,
1038 QEMU_PPC_FEATURE_ARCH_2_06
= 0x00000100,
1039 QEMU_PPC_FEATURE_HAS_VSX
= 0x00000080,
1040 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT
= 0x00000040,
1042 QEMU_PPC_FEATURE_TRUE_LE
= 0x00000002,
1043 QEMU_PPC_FEATURE_PPC_LE
= 0x00000001,
1045 /* Feature definitions in AT_HWCAP2. */
1046 QEMU_PPC_FEATURE2_ARCH_2_07
= 0x80000000, /* ISA 2.07 */
1047 QEMU_PPC_FEATURE2_HAS_HTM
= 0x40000000, /* Hardware Transactional Memory */
1048 QEMU_PPC_FEATURE2_HAS_DSCR
= 0x20000000, /* Data Stream Control Register */
1049 QEMU_PPC_FEATURE2_HAS_EBB
= 0x10000000, /* Event Base Branching */
1050 QEMU_PPC_FEATURE2_HAS_ISEL
= 0x08000000, /* Integer Select */
1051 QEMU_PPC_FEATURE2_HAS_TAR
= 0x04000000, /* Target Address Register */
1052 QEMU_PPC_FEATURE2_VEC_CRYPTO
= 0x02000000,
1053 QEMU_PPC_FEATURE2_HTM_NOSC
= 0x01000000,
1054 QEMU_PPC_FEATURE2_ARCH_3_00
= 0x00800000, /* ISA 3.00 */
1055 QEMU_PPC_FEATURE2_HAS_IEEE128
= 0x00400000, /* VSX IEEE Bin Float 128-bit */
1056 QEMU_PPC_FEATURE2_DARN
= 0x00200000, /* darn random number insn */
1057 QEMU_PPC_FEATURE2_SCV
= 0x00100000, /* scv syscall */
1058 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND
= 0x00080000, /* TM w/o suspended state */
1059 QEMU_PPC_FEATURE2_ARCH_3_1
= 0x00040000, /* ISA 3.1 */
1060 QEMU_PPC_FEATURE2_MMA
= 0x00020000, /* Matrix-Multiply Assist */
1063 #define ELF_HWCAP get_elf_hwcap()
1065 static uint32_t get_elf_hwcap(void)
1067 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
1068 uint32_t features
= 0;
1070 /* We don't have to be terribly complete here; the high points are
1071 Altivec/FP/SPE support. Anything else is just a bonus. */
1072 #define GET_FEATURE(flag, feature) \
1073 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1074 #define GET_FEATURE2(flags, feature) \
1076 if ((cpu->env.insns_flags2 & flags) == flags) { \
1077 features |= feature; \
1080 GET_FEATURE(PPC_64B
, QEMU_PPC_FEATURE_64
);
1081 GET_FEATURE(PPC_FLOAT
, QEMU_PPC_FEATURE_HAS_FPU
);
1082 GET_FEATURE(PPC_ALTIVEC
, QEMU_PPC_FEATURE_HAS_ALTIVEC
);
1083 GET_FEATURE(PPC_SPE
, QEMU_PPC_FEATURE_HAS_SPE
);
1084 GET_FEATURE(PPC_SPE_SINGLE
, QEMU_PPC_FEATURE_HAS_EFP_SINGLE
);
1085 GET_FEATURE(PPC_SPE_DOUBLE
, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
);
1086 GET_FEATURE(PPC_BOOKE
, QEMU_PPC_FEATURE_BOOKE
);
1087 GET_FEATURE(PPC_405_MAC
, QEMU_PPC_FEATURE_HAS_4xxMAC
);
1088 GET_FEATURE2(PPC2_DFP
, QEMU_PPC_FEATURE_HAS_DFP
);
1089 GET_FEATURE2(PPC2_VSX
, QEMU_PPC_FEATURE_HAS_VSX
);
1090 GET_FEATURE2((PPC2_PERM_ISA206
| PPC2_DIVE_ISA206
| PPC2_ATOMIC_ISA206
|
1091 PPC2_FP_CVT_ISA206
| PPC2_FP_TST_ISA206
),
1092 QEMU_PPC_FEATURE_ARCH_2_06
);
1099 #define ELF_HWCAP2 get_elf_hwcap2()
1101 static uint32_t get_elf_hwcap2(void)
1103 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
1104 uint32_t features
= 0;
1106 #define GET_FEATURE(flag, feature) \
1107 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1108 #define GET_FEATURE2(flag, feature) \
1109 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
1111 GET_FEATURE(PPC_ISEL
, QEMU_PPC_FEATURE2_HAS_ISEL
);
1112 GET_FEATURE2(PPC2_BCTAR_ISA207
, QEMU_PPC_FEATURE2_HAS_TAR
);
1113 GET_FEATURE2((PPC2_BCTAR_ISA207
| PPC2_LSQ_ISA207
| PPC2_ALTIVEC_207
|
1114 PPC2_ISA207S
), QEMU_PPC_FEATURE2_ARCH_2_07
|
1115 QEMU_PPC_FEATURE2_VEC_CRYPTO
);
1116 GET_FEATURE2(PPC2_ISA300
, QEMU_PPC_FEATURE2_ARCH_3_00
|
1117 QEMU_PPC_FEATURE2_DARN
| QEMU_PPC_FEATURE2_HAS_IEEE128
);
1118 GET_FEATURE2(PPC2_ISA310
, QEMU_PPC_FEATURE2_ARCH_3_1
|
1119 QEMU_PPC_FEATURE2_MMA
);
1128 * The requirements here are:
1129 * - keep the final alignment of sp (sp & 0xf)
1130 * - make sure the 32-bit value at the first 16 byte aligned position of
1131 * AUXV is greater than 16 for glibc compatibility.
1132 * AT_IGNOREPPC is used for that.
1133 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
1134 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
1136 #define DLINFO_ARCH_ITEMS 5
1137 #define ARCH_DLINFO \
1139 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
1141 * Handle glibc compatibility: these magic entries must \
1142 * be at the lowest addresses in the final auxv. \
1144 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
1145 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
1146 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
1147 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
1148 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
1151 static inline void init_thread(struct target_pt_regs
*_regs
, struct image_info
*infop
)
1153 _regs
->gpr
[1] = infop
->start_stack
;
1154 #if defined(TARGET_PPC64)
1155 if (get_ppc64_abi(infop
) < 2) {
1157 get_user_u64(val
, infop
->entry
+ 8);
1158 _regs
->gpr
[2] = val
+ infop
->load_bias
;
1159 get_user_u64(val
, infop
->entry
);
1160 infop
->entry
= val
+ infop
->load_bias
;
1162 _regs
->gpr
[12] = infop
->entry
; /* r12 set to global entry address */
1165 _regs
->nip
= infop
->entry
;
1168 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
1170 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1172 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUPPCState
*env
)
1175 target_ulong ccr
= 0;
1177 for (i
= 0; i
< ARRAY_SIZE(env
->gpr
); i
++) {
1178 (*regs
)[i
] = tswapreg(env
->gpr
[i
]);
1181 (*regs
)[32] = tswapreg(env
->nip
);
1182 (*regs
)[33] = tswapreg(env
->msr
);
1183 (*regs
)[35] = tswapreg(env
->ctr
);
1184 (*regs
)[36] = tswapreg(env
->lr
);
1185 (*regs
)[37] = tswapreg(cpu_read_xer(env
));
1187 ccr
= ppc_get_cr(env
);
1188 (*regs
)[38] = tswapreg(ccr
);
1191 #define USE_ELF_CORE_DUMP
1192 #define ELF_EXEC_PAGESIZE 4096
1194 #ifndef TARGET_PPC64
1195 # define VDSO_HEADER "vdso-32.c.inc"
1196 #elif TARGET_BIG_ENDIAN
1197 # define VDSO_HEADER "vdso-64.c.inc"
1199 # define VDSO_HEADER "vdso-64le.c.inc"
1204 #ifdef TARGET_LOONGARCH64
1206 #define ELF_CLASS ELFCLASS64
1207 #define ELF_ARCH EM_LOONGARCH
1208 #define EXSTACK_DEFAULT true
1210 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
1212 #define VDSO_HEADER "vdso.c.inc"
1214 static inline void init_thread(struct target_pt_regs
*regs
,
1215 struct image_info
*infop
)
1217 /*Set crmd PG,DA = 1,0 */
1218 regs
->csr
.crmd
= 2 << 3;
1219 regs
->csr
.era
= infop
->entry
;
1220 regs
->regs
[3] = infop
->start_stack
;
1223 /* See linux kernel: arch/loongarch/include/asm/elf.h */
1225 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1229 TARGET_EF_CSR_ERA
= TARGET_EF_R0
+ 33,
1230 TARGET_EF_CSR_BADV
= TARGET_EF_R0
+ 34,
1233 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1234 const CPULoongArchState
*env
)
1238 (*regs
)[TARGET_EF_R0
] = 0;
1240 for (i
= 1; i
< ARRAY_SIZE(env
->gpr
); i
++) {
1241 (*regs
)[TARGET_EF_R0
+ i
] = tswapreg(env
->gpr
[i
]);
1244 (*regs
)[TARGET_EF_CSR_ERA
] = tswapreg(env
->pc
);
1245 (*regs
)[TARGET_EF_CSR_BADV
] = tswapreg(env
->CSR_BADV
);
1248 #define USE_ELF_CORE_DUMP
1249 #define ELF_EXEC_PAGESIZE 4096
1251 #define ELF_HWCAP get_elf_hwcap()
1253 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1255 HWCAP_LOONGARCH_CPUCFG
= (1 << 0),
1256 HWCAP_LOONGARCH_LAM
= (1 << 1),
1257 HWCAP_LOONGARCH_UAL
= (1 << 2),
1258 HWCAP_LOONGARCH_FPU
= (1 << 3),
1259 HWCAP_LOONGARCH_LSX
= (1 << 4),
1260 HWCAP_LOONGARCH_LASX
= (1 << 5),
1261 HWCAP_LOONGARCH_CRC32
= (1 << 6),
1262 HWCAP_LOONGARCH_COMPLEX
= (1 << 7),
1263 HWCAP_LOONGARCH_CRYPTO
= (1 << 8),
1264 HWCAP_LOONGARCH_LVZ
= (1 << 9),
1265 HWCAP_LOONGARCH_LBT_X86
= (1 << 10),
1266 HWCAP_LOONGARCH_LBT_ARM
= (1 << 11),
1267 HWCAP_LOONGARCH_LBT_MIPS
= (1 << 12),
1270 static uint32_t get_elf_hwcap(void)
1272 LoongArchCPU
*cpu
= LOONGARCH_CPU(thread_cpu
);
1273 uint32_t hwcaps
= 0;
1275 hwcaps
|= HWCAP_LOONGARCH_CRC32
;
1277 if (FIELD_EX32(cpu
->env
.cpucfg
[1], CPUCFG1
, UAL
)) {
1278 hwcaps
|= HWCAP_LOONGARCH_UAL
;
1281 if (FIELD_EX32(cpu
->env
.cpucfg
[2], CPUCFG2
, FP
)) {
1282 hwcaps
|= HWCAP_LOONGARCH_FPU
;
1285 if (FIELD_EX32(cpu
->env
.cpucfg
[2], CPUCFG2
, LAM
)) {
1286 hwcaps
|= HWCAP_LOONGARCH_LAM
;
1289 if (FIELD_EX32(cpu
->env
.cpucfg
[2], CPUCFG2
, LSX
)) {
1290 hwcaps
|= HWCAP_LOONGARCH_LSX
;
1293 if (FIELD_EX32(cpu
->env
.cpucfg
[2], CPUCFG2
, LASX
)) {
1294 hwcaps
|= HWCAP_LOONGARCH_LASX
;
1300 #define ELF_PLATFORM "loongarch"
1302 #endif /* TARGET_LOONGARCH64 */
1306 #ifdef TARGET_MIPS64
1307 #define ELF_CLASS ELFCLASS64
1309 #define ELF_CLASS ELFCLASS32
1311 #define ELF_ARCH EM_MIPS
1312 #define EXSTACK_DEFAULT true
1314 #ifdef TARGET_ABI_MIPSN32
1315 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1317 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1320 #define ELF_BASE_PLATFORM get_elf_base_platform()
1322 #define MATCH_PLATFORM_INSN(_flags, _base_platform) \
1323 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1324 { return _base_platform; } } while (0)
1326 static const char *get_elf_base_platform(void)
1328 MIPSCPU
*cpu
= MIPS_CPU(thread_cpu
);
1330 /* 64 bit ISAs goes first */
1331 MATCH_PLATFORM_INSN(CPU_MIPS64R6
, "mips64r6");
1332 MATCH_PLATFORM_INSN(CPU_MIPS64R5
, "mips64r5");
1333 MATCH_PLATFORM_INSN(CPU_MIPS64R2
, "mips64r2");
1334 MATCH_PLATFORM_INSN(CPU_MIPS64R1
, "mips64");
1335 MATCH_PLATFORM_INSN(CPU_MIPS5
, "mips5");
1336 MATCH_PLATFORM_INSN(CPU_MIPS4
, "mips4");
1337 MATCH_PLATFORM_INSN(CPU_MIPS3
, "mips3");
1340 MATCH_PLATFORM_INSN(CPU_MIPS32R6
, "mips32r6");
1341 MATCH_PLATFORM_INSN(CPU_MIPS32R5
, "mips32r5");
1342 MATCH_PLATFORM_INSN(CPU_MIPS32R2
, "mips32r2");
1343 MATCH_PLATFORM_INSN(CPU_MIPS32R1
, "mips32");
1344 MATCH_PLATFORM_INSN(CPU_MIPS2
, "mips2");
1349 #undef MATCH_PLATFORM_INSN
1351 static inline void init_thread(struct target_pt_regs
*regs
,
1352 struct image_info
*infop
)
1354 regs
->cp0_status
= 2 << CP0St_KSU
;
1355 regs
->cp0_epc
= infop
->entry
;
1356 regs
->regs
[29] = infop
->start_stack
;
1359 /* See linux kernel: arch/mips/include/asm/elf.h. */
1361 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1363 /* See linux kernel: arch/mips/include/asm/reg.h. */
1365 #ifdef TARGET_MIPS64
1370 TARGET_EF_R26
= TARGET_EF_R0
+ 26,
1371 TARGET_EF_R27
= TARGET_EF_R0
+ 27,
1372 TARGET_EF_LO
= TARGET_EF_R0
+ 32,
1373 TARGET_EF_HI
= TARGET_EF_R0
+ 33,
1374 TARGET_EF_CP0_EPC
= TARGET_EF_R0
+ 34,
1375 TARGET_EF_CP0_BADVADDR
= TARGET_EF_R0
+ 35,
1376 TARGET_EF_CP0_STATUS
= TARGET_EF_R0
+ 36,
1377 TARGET_EF_CP0_CAUSE
= TARGET_EF_R0
+ 37
1380 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1381 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMIPSState
*env
)
1385 for (i
= 0; i
< TARGET_EF_R0
; i
++) {
1388 (*regs
)[TARGET_EF_R0
] = 0;
1390 for (i
= 1; i
< ARRAY_SIZE(env
->active_tc
.gpr
); i
++) {
1391 (*regs
)[TARGET_EF_R0
+ i
] = tswapreg(env
->active_tc
.gpr
[i
]);
1394 (*regs
)[TARGET_EF_R26
] = 0;
1395 (*regs
)[TARGET_EF_R27
] = 0;
1396 (*regs
)[TARGET_EF_LO
] = tswapreg(env
->active_tc
.LO
[0]);
1397 (*regs
)[TARGET_EF_HI
] = tswapreg(env
->active_tc
.HI
[0]);
1398 (*regs
)[TARGET_EF_CP0_EPC
] = tswapreg(env
->active_tc
.PC
);
1399 (*regs
)[TARGET_EF_CP0_BADVADDR
] = tswapreg(env
->CP0_BadVAddr
);
1400 (*regs
)[TARGET_EF_CP0_STATUS
] = tswapreg(env
->CP0_Status
);
1401 (*regs
)[TARGET_EF_CP0_CAUSE
] = tswapreg(env
->CP0_Cause
);
1404 #define USE_ELF_CORE_DUMP
1405 #define ELF_EXEC_PAGESIZE 4096
1407 /* See arch/mips/include/uapi/asm/hwcap.h. */
1409 HWCAP_MIPS_R6
= (1 << 0),
1410 HWCAP_MIPS_MSA
= (1 << 1),
1411 HWCAP_MIPS_CRC32
= (1 << 2),
1412 HWCAP_MIPS_MIPS16
= (1 << 3),
1413 HWCAP_MIPS_MDMX
= (1 << 4),
1414 HWCAP_MIPS_MIPS3D
= (1 << 5),
1415 HWCAP_MIPS_SMARTMIPS
= (1 << 6),
1416 HWCAP_MIPS_DSP
= (1 << 7),
1417 HWCAP_MIPS_DSP2
= (1 << 8),
1418 HWCAP_MIPS_DSP3
= (1 << 9),
1419 HWCAP_MIPS_MIPS16E2
= (1 << 10),
1420 HWCAP_LOONGSON_MMI
= (1 << 11),
1421 HWCAP_LOONGSON_EXT
= (1 << 12),
1422 HWCAP_LOONGSON_EXT2
= (1 << 13),
1423 HWCAP_LOONGSON_CPUCFG
= (1 << 14),
1426 #define ELF_HWCAP get_elf_hwcap()
1428 #define GET_FEATURE_INSN(_flag, _hwcap) \
1429 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1431 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1432 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1434 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1436 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1441 static uint32_t get_elf_hwcap(void)
1443 MIPSCPU
*cpu
= MIPS_CPU(thread_cpu
);
1444 uint32_t hwcaps
= 0;
1446 GET_FEATURE_REG_EQU(CP0_Config0
, CP0C0_AR
, CP0C0_AR_LENGTH
,
1448 GET_FEATURE_REG_SET(CP0_Config3
, 1 << CP0C3_MSAP
, HWCAP_MIPS_MSA
);
1449 GET_FEATURE_INSN(ASE_LMMI
, HWCAP_LOONGSON_MMI
);
1450 GET_FEATURE_INSN(ASE_LEXT
, HWCAP_LOONGSON_EXT
);
1455 #undef GET_FEATURE_REG_EQU
1456 #undef GET_FEATURE_REG_SET
1457 #undef GET_FEATURE_INSN
1459 #endif /* TARGET_MIPS */
1461 #ifdef TARGET_MICROBLAZE
1463 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1465 #define ELF_CLASS ELFCLASS32
1466 #define ELF_ARCH EM_MICROBLAZE
1468 static inline void init_thread(struct target_pt_regs
*regs
,
1469 struct image_info
*infop
)
1471 regs
->pc
= infop
->entry
;
1472 regs
->r1
= infop
->start_stack
;
1476 #define ELF_EXEC_PAGESIZE 4096
1478 #define USE_ELF_CORE_DUMP
1480 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1482 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1483 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMBState
*env
)
1487 for (i
= 0; i
< 32; i
++) {
1488 (*regs
)[pos
++] = tswapreg(env
->regs
[i
]);
1491 (*regs
)[pos
++] = tswapreg(env
->pc
);
1492 (*regs
)[pos
++] = tswapreg(mb_cpu_read_msr(env
));
1494 (*regs
)[pos
++] = tswapreg(env
->ear
);
1496 (*regs
)[pos
++] = tswapreg(env
->esr
);
1499 #endif /* TARGET_MICROBLAZE */
1503 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1505 #define ELF_CLASS ELFCLASS32
1506 #define ELF_ARCH EM_ALTERA_NIOS2
1508 static void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
1510 regs
->ea
= infop
->entry
;
1511 regs
->sp
= infop
->start_stack
;
1514 #define LO_COMMPAGE TARGET_PAGE_SIZE
1516 static bool init_guest_commpage(void)
1518 static const uint8_t kuser_page
[4 + 2 * 64] = {
1519 /* __kuser_helper_version */
1520 [0x00] = 0x02, 0x00, 0x00, 0x00,
1522 /* __kuser_cmpxchg */
1523 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */
1524 0x3a, 0x28, 0x00, 0xf8, /* ret */
1526 /* __kuser_sigtramp */
1527 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */
1528 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */
1531 void *want
= g2h_untagged(LO_COMMPAGE
& -qemu_host_page_size
);
1532 void *addr
= mmap(want
, qemu_host_page_size
, PROT_READ
| PROT_WRITE
,
1533 MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_FIXED
, -1, 0);
1535 if (addr
== MAP_FAILED
) {
1536 perror("Allocating guest commpage");
1543 memcpy(addr
, kuser_page
, sizeof(kuser_page
));
1545 if (mprotect(addr
, qemu_host_page_size
, PROT_READ
)) {
1546 perror("Protecting guest commpage");
1550 page_set_flags(LO_COMMPAGE
, LO_COMMPAGE
| ~TARGET_PAGE_MASK
,
1551 PAGE_READ
| PAGE_EXEC
| PAGE_VALID
);
1555 #define ELF_EXEC_PAGESIZE 4096
1557 #define USE_ELF_CORE_DUMP
1559 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1561 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1562 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1563 const CPUNios2State
*env
)
1568 for (i
= 1; i
< 8; i
++) /* r0-r7 */
1569 (*regs
)[i
] = tswapreg(env
->regs
[i
+ 7]);
1571 for (i
= 8; i
< 16; i
++) /* r8-r15 */
1572 (*regs
)[i
] = tswapreg(env
->regs
[i
- 8]);
1574 for (i
= 16; i
< 24; i
++) /* r16-r23 */
1575 (*regs
)[i
] = tswapreg(env
->regs
[i
+ 7]);
1576 (*regs
)[24] = -1; /* R_ET */
1577 (*regs
)[25] = -1; /* R_BT */
1578 (*regs
)[26] = tswapreg(env
->regs
[R_GP
]);
1579 (*regs
)[27] = tswapreg(env
->regs
[R_SP
]);
1580 (*regs
)[28] = tswapreg(env
->regs
[R_FP
]);
1581 (*regs
)[29] = tswapreg(env
->regs
[R_EA
]);
1582 (*regs
)[30] = -1; /* R_SSTATUS */
1583 (*regs
)[31] = tswapreg(env
->regs
[R_RA
]);
1585 (*regs
)[32] = tswapreg(env
->pc
);
1587 (*regs
)[33] = -1; /* R_STATUS */
1588 (*regs
)[34] = tswapreg(env
->regs
[CR_ESTATUS
]);
1590 for (i
= 35; i
< 49; i
++) /* ... */
1594 #endif /* TARGET_NIOS2 */
1596 #ifdef TARGET_OPENRISC
1598 #define ELF_ARCH EM_OPENRISC
1599 #define ELF_CLASS ELFCLASS32
1600 #define ELF_DATA ELFDATA2MSB
1602 static inline void init_thread(struct target_pt_regs
*regs
,
1603 struct image_info
*infop
)
1605 regs
->pc
= infop
->entry
;
1606 regs
->gpr
[1] = infop
->start_stack
;
1609 #define USE_ELF_CORE_DUMP
1610 #define ELF_EXEC_PAGESIZE 8192
1612 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1613 #define ELF_NREG 34 /* gprs and pc, sr */
1614 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1616 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1617 const CPUOpenRISCState
*env
)
1621 for (i
= 0; i
< 32; i
++) {
1622 (*regs
)[i
] = tswapreg(cpu_get_gpr(env
, i
));
1624 (*regs
)[32] = tswapreg(env
->pc
);
1625 (*regs
)[33] = tswapreg(cpu_get_sr(env
));
1628 #define ELF_PLATFORM NULL
1630 #endif /* TARGET_OPENRISC */
1634 #define ELF_CLASS ELFCLASS32
1635 #define ELF_ARCH EM_SH
1637 static inline void init_thread(struct target_pt_regs
*regs
,
1638 struct image_info
*infop
)
1640 /* Check other registers XXXXX */
1641 regs
->pc
= infop
->entry
;
1642 regs
->regs
[15] = infop
->start_stack
;
1645 /* See linux kernel: arch/sh/include/asm/elf.h. */
1647 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1649 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1654 TARGET_REG_GBR
= 19,
1655 TARGET_REG_MACH
= 20,
1656 TARGET_REG_MACL
= 21,
1657 TARGET_REG_SYSCALL
= 22
1660 static inline void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1661 const CPUSH4State
*env
)
1665 for (i
= 0; i
< 16; i
++) {
1666 (*regs
)[i
] = tswapreg(env
->gregs
[i
]);
1669 (*regs
)[TARGET_REG_PC
] = tswapreg(env
->pc
);
1670 (*regs
)[TARGET_REG_PR
] = tswapreg(env
->pr
);
1671 (*regs
)[TARGET_REG_SR
] = tswapreg(env
->sr
);
1672 (*regs
)[TARGET_REG_GBR
] = tswapreg(env
->gbr
);
1673 (*regs
)[TARGET_REG_MACH
] = tswapreg(env
->mach
);
1674 (*regs
)[TARGET_REG_MACL
] = tswapreg(env
->macl
);
1675 (*regs
)[TARGET_REG_SYSCALL
] = 0; /* FIXME */
1678 #define USE_ELF_CORE_DUMP
1679 #define ELF_EXEC_PAGESIZE 4096
1682 SH_CPU_HAS_FPU
= 0x0001, /* Hardware FPU support */
1683 SH_CPU_HAS_P2_FLUSH_BUG
= 0x0002, /* Need to flush the cache in P2 area */
1684 SH_CPU_HAS_MMU_PAGE_ASSOC
= 0x0004, /* SH3: TLB way selection bit support */
1685 SH_CPU_HAS_DSP
= 0x0008, /* SH-DSP: DSP support */
1686 SH_CPU_HAS_PERF_COUNTER
= 0x0010, /* Hardware performance counters */
1687 SH_CPU_HAS_PTEA
= 0x0020, /* PTEA register */
1688 SH_CPU_HAS_LLSC
= 0x0040, /* movli.l/movco.l */
1689 SH_CPU_HAS_L2_CACHE
= 0x0080, /* Secondary cache / URAM */
1690 SH_CPU_HAS_OP32
= 0x0100, /* 32-bit instruction support */
1691 SH_CPU_HAS_PTEAEX
= 0x0200, /* PTE ASID Extension support */
1694 #define ELF_HWCAP get_elf_hwcap()
1696 static uint32_t get_elf_hwcap(void)
1698 SuperHCPU
*cpu
= SUPERH_CPU(thread_cpu
);
1701 hwcap
|= SH_CPU_HAS_FPU
;
1703 if (cpu
->env
.features
& SH_FEATURE_SH4A
) {
1704 hwcap
|= SH_CPU_HAS_LLSC
;
1714 #define ELF_CLASS ELFCLASS32
1715 #define ELF_ARCH EM_CRIS
1717 static inline void init_thread(struct target_pt_regs
*regs
,
1718 struct image_info
*infop
)
1720 regs
->erp
= infop
->entry
;
1723 #define ELF_EXEC_PAGESIZE 8192
1729 #define ELF_CLASS ELFCLASS32
1730 #define ELF_ARCH EM_68K
1732 /* ??? Does this need to do anything?
1733 #define ELF_PLAT_INIT(_r) */
1735 static inline void init_thread(struct target_pt_regs
*regs
,
1736 struct image_info
*infop
)
1738 regs
->usp
= infop
->start_stack
;
1740 regs
->pc
= infop
->entry
;
1743 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1745 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1747 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUM68KState
*env
)
1749 (*regs
)[0] = tswapreg(env
->dregs
[1]);
1750 (*regs
)[1] = tswapreg(env
->dregs
[2]);
1751 (*regs
)[2] = tswapreg(env
->dregs
[3]);
1752 (*regs
)[3] = tswapreg(env
->dregs
[4]);
1753 (*regs
)[4] = tswapreg(env
->dregs
[5]);
1754 (*regs
)[5] = tswapreg(env
->dregs
[6]);
1755 (*regs
)[6] = tswapreg(env
->dregs
[7]);
1756 (*regs
)[7] = tswapreg(env
->aregs
[0]);
1757 (*regs
)[8] = tswapreg(env
->aregs
[1]);
1758 (*regs
)[9] = tswapreg(env
->aregs
[2]);
1759 (*regs
)[10] = tswapreg(env
->aregs
[3]);
1760 (*regs
)[11] = tswapreg(env
->aregs
[4]);
1761 (*regs
)[12] = tswapreg(env
->aregs
[5]);
1762 (*regs
)[13] = tswapreg(env
->aregs
[6]);
1763 (*regs
)[14] = tswapreg(env
->dregs
[0]);
1764 (*regs
)[15] = tswapreg(env
->aregs
[7]);
1765 (*regs
)[16] = tswapreg(env
->dregs
[0]); /* FIXME: orig_d0 */
1766 (*regs
)[17] = tswapreg(env
->sr
);
1767 (*regs
)[18] = tswapreg(env
->pc
);
1768 (*regs
)[19] = 0; /* FIXME: regs->format | regs->vector */
1771 #define USE_ELF_CORE_DUMP
1772 #define ELF_EXEC_PAGESIZE 8192
1778 #define ELF_CLASS ELFCLASS64
1779 #define ELF_ARCH EM_ALPHA
1781 static inline void init_thread(struct target_pt_regs
*regs
,
1782 struct image_info
*infop
)
1784 regs
->pc
= infop
->entry
;
1786 regs
->usp
= infop
->start_stack
;
1789 #define ELF_EXEC_PAGESIZE 8192
1791 #endif /* TARGET_ALPHA */
1795 #define ELF_CLASS ELFCLASS64
1796 #define ELF_DATA ELFDATA2MSB
1797 #define ELF_ARCH EM_S390
1801 #define ELF_HWCAP get_elf_hwcap()
1803 #define GET_FEATURE(_feat, _hwcap) \
1804 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1806 uint32_t get_elf_hwcap(void)
1809 * Let's assume we always have esan3 and zarch.
1810 * 31-bit processes can use 64-bit registers (high gprs).
1812 uint32_t hwcap
= HWCAP_S390_ESAN3
| HWCAP_S390_ZARCH
| HWCAP_S390_HIGH_GPRS
;
1814 GET_FEATURE(S390_FEAT_STFLE
, HWCAP_S390_STFLE
);
1815 GET_FEATURE(S390_FEAT_MSA
, HWCAP_S390_MSA
);
1816 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT
, HWCAP_S390_LDISP
);
1817 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE
, HWCAP_S390_EIMM
);
1818 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3
) &&
1819 s390_has_feat(S390_FEAT_ETF3_ENH
)) {
1820 hwcap
|= HWCAP_S390_ETF3EH
;
1822 GET_FEATURE(S390_FEAT_VECTOR
, HWCAP_S390_VXRS
);
1823 GET_FEATURE(S390_FEAT_VECTOR_ENH
, HWCAP_S390_VXRS_EXT
);
1824 GET_FEATURE(S390_FEAT_VECTOR_ENH2
, HWCAP_S390_VXRS_EXT2
);
1829 const char *elf_hwcap_str(uint32_t bit
)
1831 static const char *hwcap_str
[] = {
1832 [HWCAP_S390_NR_ESAN3
] = "esan3",
1833 [HWCAP_S390_NR_ZARCH
] = "zarch",
1834 [HWCAP_S390_NR_STFLE
] = "stfle",
1835 [HWCAP_S390_NR_MSA
] = "msa",
1836 [HWCAP_S390_NR_LDISP
] = "ldisp",
1837 [HWCAP_S390_NR_EIMM
] = "eimm",
1838 [HWCAP_S390_NR_DFP
] = "dfp",
1839 [HWCAP_S390_NR_HPAGE
] = "edat",
1840 [HWCAP_S390_NR_ETF3EH
] = "etf3eh",
1841 [HWCAP_S390_NR_HIGH_GPRS
] = "highgprs",
1842 [HWCAP_S390_NR_TE
] = "te",
1843 [HWCAP_S390_NR_VXRS
] = "vx",
1844 [HWCAP_S390_NR_VXRS_BCD
] = "vxd",
1845 [HWCAP_S390_NR_VXRS_EXT
] = "vxe",
1846 [HWCAP_S390_NR_GS
] = "gs",
1847 [HWCAP_S390_NR_VXRS_EXT2
] = "vxe2",
1848 [HWCAP_S390_NR_VXRS_PDE
] = "vxp",
1849 [HWCAP_S390_NR_SORT
] = "sort",
1850 [HWCAP_S390_NR_DFLT
] = "dflt",
1851 [HWCAP_S390_NR_NNPA
] = "nnpa",
1852 [HWCAP_S390_NR_PCI_MIO
] = "pcimio",
1853 [HWCAP_S390_NR_SIE
] = "sie",
1856 return bit
< ARRAY_SIZE(hwcap_str
) ? hwcap_str
[bit
] : NULL
;
1859 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
1861 regs
->psw
.addr
= infop
->entry
;
1862 regs
->psw
.mask
= PSW_MASK_DAT
| PSW_MASK_IO
| PSW_MASK_EXT
| \
1863 PSW_MASK_MCHECK
| PSW_MASK_PSTATE
| PSW_MASK_64
| \
1865 regs
->gprs
[15] = infop
->start_stack
;
1868 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
1870 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1873 TARGET_REG_PSWM
= 0,
1874 TARGET_REG_PSWA
= 1,
1875 TARGET_REG_GPRS
= 2,
1876 TARGET_REG_ARS
= 18,
1877 TARGET_REG_ORIG_R2
= 26,
1880 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1881 const CPUS390XState
*env
)
1886 (*regs
)[TARGET_REG_PSWM
] = tswapreg(env
->psw
.mask
);
1887 (*regs
)[TARGET_REG_PSWA
] = tswapreg(env
->psw
.addr
);
1888 for (i
= 0; i
< 16; i
++) {
1889 (*regs
)[TARGET_REG_GPRS
+ i
] = tswapreg(env
->regs
[i
]);
1891 aregs
= (uint32_t *)&((*regs
)[TARGET_REG_ARS
]);
1892 for (i
= 0; i
< 16; i
++) {
1893 aregs
[i
] = tswap32(env
->aregs
[i
]);
1895 (*regs
)[TARGET_REG_ORIG_R2
] = 0;
1898 #define USE_ELF_CORE_DUMP
1899 #define ELF_EXEC_PAGESIZE 4096
1901 #define VDSO_HEADER "vdso.c.inc"
1903 #endif /* TARGET_S390X */
1907 #define ELF_ARCH EM_RISCV
1909 #ifdef TARGET_RISCV32
1910 #define ELF_CLASS ELFCLASS32
1911 #define VDSO_HEADER "vdso-32.c.inc"
1913 #define ELF_CLASS ELFCLASS64
1914 #define VDSO_HEADER "vdso-64.c.inc"
1917 #define ELF_HWCAP get_elf_hwcap()
1919 static uint32_t get_elf_hwcap(void)
1921 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1922 RISCVCPU
*cpu
= RISCV_CPU(thread_cpu
);
1923 uint32_t mask
= MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1924 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
1927 return cpu
->env
.misa_ext
& mask
;
1931 static inline void init_thread(struct target_pt_regs
*regs
,
1932 struct image_info
*infop
)
1934 regs
->sepc
= infop
->entry
;
1935 regs
->sp
= infop
->start_stack
;
1938 #define ELF_EXEC_PAGESIZE 4096
1940 #endif /* TARGET_RISCV */
1944 #define ELF_CLASS ELFCLASS32
1945 #define ELF_ARCH EM_PARISC
1946 #define ELF_PLATFORM "PARISC"
1947 #define STACK_GROWS_DOWN 0
1948 #define STACK_ALIGNMENT 64
1950 #define VDSO_HEADER "vdso.c.inc"
1952 static inline void init_thread(struct target_pt_regs
*regs
,
1953 struct image_info
*infop
)
1955 regs
->iaoq
[0] = infop
->entry
;
1956 regs
->iaoq
[1] = infop
->entry
+ 4;
1958 regs
->gr
[24] = infop
->argv
;
1959 regs
->gr
[25] = infop
->argc
;
1960 /* The top-of-stack contains a linkage buffer. */
1961 regs
->gr
[30] = infop
->start_stack
+ 64;
1962 regs
->gr
[31] = infop
->entry
;
1965 #define LO_COMMPAGE 0
1967 static bool init_guest_commpage(void)
1969 void *want
= g2h_untagged(LO_COMMPAGE
);
1970 void *addr
= mmap(want
, qemu_host_page_size
, PROT_NONE
,
1971 MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_FIXED
, -1, 0);
1973 if (addr
== MAP_FAILED
) {
1974 perror("Allocating guest commpage");
1982 * On Linux, page zero is normally marked execute only + gateway.
1983 * Normal read or write is supposed to fail (thus PROT_NONE above),
1984 * but specific offsets have kernel code mapped to raise permissions
1985 * and implement syscalls. Here, simply mark the page executable.
1986 * Special case the entry points during translation (see do_page_zero).
1988 page_set_flags(LO_COMMPAGE
, LO_COMMPAGE
| ~TARGET_PAGE_MASK
,
1989 PAGE_EXEC
| PAGE_VALID
);
1993 #endif /* TARGET_HPPA */
1995 #ifdef TARGET_XTENSA
1997 #define ELF_CLASS ELFCLASS32
1998 #define ELF_ARCH EM_XTENSA
2000 static inline void init_thread(struct target_pt_regs
*regs
,
2001 struct image_info
*infop
)
2003 regs
->windowbase
= 0;
2004 regs
->windowstart
= 1;
2005 regs
->areg
[1] = infop
->start_stack
;
2006 regs
->pc
= infop
->entry
;
2007 if (info_is_fdpic(infop
)) {
2008 regs
->areg
[4] = infop
->loadmap_addr
;
2009 regs
->areg
[5] = infop
->interpreter_loadmap_addr
;
2010 if (infop
->interpreter_loadmap_addr
) {
2011 regs
->areg
[6] = infop
->interpreter_pt_dynamic_addr
;
2013 regs
->areg
[6] = infop
->pt_dynamic_addr
;
2018 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
2019 #define ELF_NREG 128
2020 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
2029 TARGET_REG_WINDOWSTART
,
2030 TARGET_REG_WINDOWBASE
,
2031 TARGET_REG_THREADPTR
,
2032 TARGET_REG_AR0
= 64,
2035 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
2036 const CPUXtensaState
*env
)
2040 (*regs
)[TARGET_REG_PC
] = tswapreg(env
->pc
);
2041 (*regs
)[TARGET_REG_PS
] = tswapreg(env
->sregs
[PS
] & ~PS_EXCM
);
2042 (*regs
)[TARGET_REG_LBEG
] = tswapreg(env
->sregs
[LBEG
]);
2043 (*regs
)[TARGET_REG_LEND
] = tswapreg(env
->sregs
[LEND
]);
2044 (*regs
)[TARGET_REG_LCOUNT
] = tswapreg(env
->sregs
[LCOUNT
]);
2045 (*regs
)[TARGET_REG_SAR
] = tswapreg(env
->sregs
[SAR
]);
2046 (*regs
)[TARGET_REG_WINDOWSTART
] = tswapreg(env
->sregs
[WINDOW_START
]);
2047 (*regs
)[TARGET_REG_WINDOWBASE
] = tswapreg(env
->sregs
[WINDOW_BASE
]);
2048 (*regs
)[TARGET_REG_THREADPTR
] = tswapreg(env
->uregs
[THREADPTR
]);
2049 xtensa_sync_phys_from_window((CPUXtensaState
*)env
);
2050 for (i
= 0; i
< env
->config
->nareg
; ++i
) {
2051 (*regs
)[TARGET_REG_AR0
+ i
] = tswapreg(env
->phys_regs
[i
]);
2055 #define USE_ELF_CORE_DUMP
2056 #define ELF_EXEC_PAGESIZE 4096
2058 #endif /* TARGET_XTENSA */
2060 #ifdef TARGET_HEXAGON
2062 #define ELF_CLASS ELFCLASS32
2063 #define ELF_ARCH EM_HEXAGON
2065 static inline void init_thread(struct target_pt_regs
*regs
,
2066 struct image_info
*infop
)
2068 regs
->sepc
= infop
->entry
;
2069 regs
->sp
= infop
->start_stack
;
2072 #endif /* TARGET_HEXAGON */
2074 #ifndef ELF_BASE_PLATFORM
2075 #define ELF_BASE_PLATFORM (NULL)
2078 #ifndef ELF_PLATFORM
2079 #define ELF_PLATFORM (NULL)
2083 #define ELF_MACHINE ELF_ARCH
2086 #ifndef elf_check_arch
2087 #define elf_check_arch(x) ((x) == ELF_ARCH)
2090 #ifndef elf_check_abi
2091 #define elf_check_abi(x) (1)
2098 #ifndef STACK_GROWS_DOWN
2099 #define STACK_GROWS_DOWN 1
2102 #ifndef STACK_ALIGNMENT
2103 #define STACK_ALIGNMENT 16
2108 #define ELF_CLASS ELFCLASS32
2110 #define bswaptls(ptr) bswap32s(ptr)
2113 #ifndef EXSTACK_DEFAULT
2114 #define EXSTACK_DEFAULT false
2119 /* We must delay the following stanzas until after "elf.h". */
2120 #if defined(TARGET_AARCH64)
2122 static bool arch_parse_elf_property(uint32_t pr_type
, uint32_t pr_datasz
,
2123 const uint32_t *data
,
2124 struct image_info
*info
,
2127 if (pr_type
== GNU_PROPERTY_AARCH64_FEATURE_1_AND
) {
2128 if (pr_datasz
!= sizeof(uint32_t)) {
2129 error_setg(errp
, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
2132 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
2133 info
->note_flags
= *data
;
2137 #define ARCH_USE_GNU_PROPERTY 1
2141 static bool arch_parse_elf_property(uint32_t pr_type
, uint32_t pr_datasz
,
2142 const uint32_t *data
,
2143 struct image_info
*info
,
2146 g_assert_not_reached();
2148 #define ARCH_USE_GNU_PROPERTY 0
2154 unsigned int a_info
; /* Use macros N_MAGIC, etc for access */
2155 unsigned int a_text
; /* length of text, in bytes */
2156 unsigned int a_data
; /* length of data, in bytes */
2157 unsigned int a_bss
; /* length of uninitialized data area, in bytes */
2158 unsigned int a_syms
; /* length of symbol table data in file, in bytes */
2159 unsigned int a_entry
; /* start address */
2160 unsigned int a_trsize
; /* length of relocation info for text, in bytes */
2161 unsigned int a_drsize
; /* length of relocation info for data, in bytes */
2165 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
2171 #define DLINFO_ITEMS 16
2173 static inline void memcpy_fromfs(void * to
, const void * from
, unsigned long n
)
2175 memcpy(to
, from
, n
);
2179 static void bswap_ehdr(struct elfhdr
*ehdr
)
2181 bswap16s(&ehdr
->e_type
); /* Object file type */
2182 bswap16s(&ehdr
->e_machine
); /* Architecture */
2183 bswap32s(&ehdr
->e_version
); /* Object file version */
2184 bswaptls(&ehdr
->e_entry
); /* Entry point virtual address */
2185 bswaptls(&ehdr
->e_phoff
); /* Program header table file offset */
2186 bswaptls(&ehdr
->e_shoff
); /* Section header table file offset */
2187 bswap32s(&ehdr
->e_flags
); /* Processor-specific flags */
2188 bswap16s(&ehdr
->e_ehsize
); /* ELF header size in bytes */
2189 bswap16s(&ehdr
->e_phentsize
); /* Program header table entry size */
2190 bswap16s(&ehdr
->e_phnum
); /* Program header table entry count */
2191 bswap16s(&ehdr
->e_shentsize
); /* Section header table entry size */
2192 bswap16s(&ehdr
->e_shnum
); /* Section header table entry count */
2193 bswap16s(&ehdr
->e_shstrndx
); /* Section header string table index */
2196 static void bswap_phdr(struct elf_phdr
*phdr
, int phnum
)
2199 for (i
= 0; i
< phnum
; ++i
, ++phdr
) {
2200 bswap32s(&phdr
->p_type
); /* Segment type */
2201 bswap32s(&phdr
->p_flags
); /* Segment flags */
2202 bswaptls(&phdr
->p_offset
); /* Segment file offset */
2203 bswaptls(&phdr
->p_vaddr
); /* Segment virtual address */
2204 bswaptls(&phdr
->p_paddr
); /* Segment physical address */
2205 bswaptls(&phdr
->p_filesz
); /* Segment size in file */
2206 bswaptls(&phdr
->p_memsz
); /* Segment size in memory */
2207 bswaptls(&phdr
->p_align
); /* Segment alignment */
2211 static void bswap_shdr(struct elf_shdr
*shdr
, int shnum
)
2214 for (i
= 0; i
< shnum
; ++i
, ++shdr
) {
2215 bswap32s(&shdr
->sh_name
);
2216 bswap32s(&shdr
->sh_type
);
2217 bswaptls(&shdr
->sh_flags
);
2218 bswaptls(&shdr
->sh_addr
);
2219 bswaptls(&shdr
->sh_offset
);
2220 bswaptls(&shdr
->sh_size
);
2221 bswap32s(&shdr
->sh_link
);
2222 bswap32s(&shdr
->sh_info
);
2223 bswaptls(&shdr
->sh_addralign
);
2224 bswaptls(&shdr
->sh_entsize
);
2228 static void bswap_sym(struct elf_sym
*sym
)
2230 bswap32s(&sym
->st_name
);
2231 bswaptls(&sym
->st_value
);
2232 bswaptls(&sym
->st_size
);
2233 bswap16s(&sym
->st_shndx
);
2237 static void bswap_mips_abiflags(Mips_elf_abiflags_v0
*abiflags
)
2239 bswap16s(&abiflags
->version
);
2240 bswap32s(&abiflags
->ases
);
2241 bswap32s(&abiflags
->isa_ext
);
2242 bswap32s(&abiflags
->flags1
);
2243 bswap32s(&abiflags
->flags2
);
2247 static inline void bswap_ehdr(struct elfhdr
*ehdr
) { }
2248 static inline void bswap_phdr(struct elf_phdr
*phdr
, int phnum
) { }
2249 static inline void bswap_shdr(struct elf_shdr
*shdr
, int shnum
) { }
2250 static inline void bswap_sym(struct elf_sym
*sym
) { }
2252 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0
*abiflags
) { }
2256 #ifdef USE_ELF_CORE_DUMP
2257 static int elf_core_dump(int, const CPUArchState
*);
2258 #endif /* USE_ELF_CORE_DUMP */
2259 static void load_symbols(struct elfhdr
*hdr
, const ImageSource
*src
,
2260 abi_ulong load_bias
);
2262 /* Verify the portions of EHDR within E_IDENT for the target.
2263 This can be performed before bswapping the entire header. */
2264 static bool elf_check_ident(struct elfhdr
*ehdr
)
2266 return (ehdr
->e_ident
[EI_MAG0
] == ELFMAG0
2267 && ehdr
->e_ident
[EI_MAG1
] == ELFMAG1
2268 && ehdr
->e_ident
[EI_MAG2
] == ELFMAG2
2269 && ehdr
->e_ident
[EI_MAG3
] == ELFMAG3
2270 && ehdr
->e_ident
[EI_CLASS
] == ELF_CLASS
2271 && ehdr
->e_ident
[EI_DATA
] == ELF_DATA
2272 && ehdr
->e_ident
[EI_VERSION
] == EV_CURRENT
);
2275 /* Verify the portions of EHDR outside of E_IDENT for the target.
2276 This has to wait until after bswapping the header. */
2277 static bool elf_check_ehdr(struct elfhdr
*ehdr
)
2279 return (elf_check_arch(ehdr
->e_machine
)
2280 && elf_check_abi(ehdr
->e_flags
)
2281 && ehdr
->e_ehsize
== sizeof(struct elfhdr
)
2282 && ehdr
->e_phentsize
== sizeof(struct elf_phdr
)
2283 && (ehdr
->e_type
== ET_EXEC
|| ehdr
->e_type
== ET_DYN
));
2287 * 'copy_elf_strings()' copies argument/envelope strings from user
2288 * memory to free pages in kernel mem. These are in a format ready
2289 * to be put directly into the top of new user memory.
2292 static abi_ulong
copy_elf_strings(int argc
, char **argv
, char *scratch
,
2293 abi_ulong p
, abi_ulong stack_limit
)
2300 return 0; /* bullet-proofing */
2303 if (STACK_GROWS_DOWN
) {
2304 int offset
= ((p
- 1) % TARGET_PAGE_SIZE
) + 1;
2305 for (i
= argc
- 1; i
>= 0; --i
) {
2308 fprintf(stderr
, "VFS: argc is wrong");
2311 len
= strlen(tmp
) + 1;
2314 if (len
> (p
- stack_limit
)) {
2318 int bytes_to_copy
= (len
> offset
) ? offset
: len
;
2319 tmp
-= bytes_to_copy
;
2321 offset
-= bytes_to_copy
;
2322 len
-= bytes_to_copy
;
2324 memcpy_fromfs(scratch
+ offset
, tmp
, bytes_to_copy
);
2327 memcpy_to_target(p
, scratch
, top
- p
);
2329 offset
= TARGET_PAGE_SIZE
;
2334 memcpy_to_target(p
, scratch
+ offset
, top
- p
);
2337 int remaining
= TARGET_PAGE_SIZE
- (p
% TARGET_PAGE_SIZE
);
2338 for (i
= 0; i
< argc
; ++i
) {
2341 fprintf(stderr
, "VFS: argc is wrong");
2344 len
= strlen(tmp
) + 1;
2345 if (len
> (stack_limit
- p
)) {
2349 int bytes_to_copy
= (len
> remaining
) ? remaining
: len
;
2351 memcpy_fromfs(scratch
+ (p
- top
), tmp
, bytes_to_copy
);
2353 tmp
+= bytes_to_copy
;
2354 remaining
-= bytes_to_copy
;
2356 len
-= bytes_to_copy
;
2358 if (remaining
== 0) {
2359 memcpy_to_target(top
, scratch
, p
- top
);
2361 remaining
= TARGET_PAGE_SIZE
;
2366 memcpy_to_target(top
, scratch
, p
- top
);
2373 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2374 * argument/environment space. Newer kernels (>2.6.33) allow more,
2375 * dependent on stack size, but guarantee at least 32 pages for
2376 * backwards compatibility.
2378 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2380 static abi_ulong
setup_arg_pages(struct linux_binprm
*bprm
,
2381 struct image_info
*info
)
2383 abi_ulong size
, error
, guard
;
2386 size
= guest_stack_size
;
2387 if (size
< STACK_LOWER_LIMIT
) {
2388 size
= STACK_LOWER_LIMIT
;
2391 if (STACK_GROWS_DOWN
) {
2392 guard
= TARGET_PAGE_SIZE
;
2393 if (guard
< qemu_real_host_page_size()) {
2394 guard
= qemu_real_host_page_size();
2397 /* no guard page for hppa target where stack grows upwards. */
2401 prot
= PROT_READ
| PROT_WRITE
;
2402 if (info
->exec_stack
) {
2405 error
= target_mmap(0, size
+ guard
, prot
,
2406 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
2408 perror("mmap stack");
2412 /* We reserve one extra page at the top of the stack as guard. */
2413 if (STACK_GROWS_DOWN
) {
2414 target_mprotect(error
, guard
, PROT_NONE
);
2415 info
->stack_limit
= error
+ guard
;
2416 return info
->stack_limit
+ size
- sizeof(void *);
2418 info
->stack_limit
= error
+ size
;
2426 * Map and zero the bss. We need to explicitly zero any fractional pages
2427 * after the data section (i.e. bss). Return false on mapping failure.
2429 static bool zero_bss(abi_ulong start_bss
, abi_ulong end_bss
,
2430 int prot
, Error
**errp
)
2432 abi_ulong align_bss
;
2434 /* We only expect writable bss; the code segment shouldn't need this. */
2435 if (!(prot
& PROT_WRITE
)) {
2436 error_setg(errp
, "PT_LOAD with non-writable bss");
2440 align_bss
= TARGET_PAGE_ALIGN(start_bss
);
2441 end_bss
= TARGET_PAGE_ALIGN(end_bss
);
2443 if (start_bss
< align_bss
) {
2444 int flags
= page_get_flags(start_bss
);
2446 if (!(flags
& PAGE_BITS
)) {
2448 * The whole address space of the executable was reserved
2449 * at the start, therefore all pages will be VALID.
2450 * But assuming there are no PROT_NONE PT_LOAD segments,
2451 * a PROT_NONE page means no data all bss, and we can
2452 * simply extend the new anon mapping back to the start
2453 * of the page of bss.
2455 align_bss
-= TARGET_PAGE_SIZE
;
2458 * The start of the bss shares a page with something.
2459 * The only thing that we expect is the data section,
2460 * which would already be marked writable.
2461 * Overlapping the RX code segment seems malformed.
2463 if (!(flags
& PAGE_WRITE
)) {
2464 error_setg(errp
, "PT_LOAD with bss overlapping "
2465 "non-writable page");
2469 /* The page is already mapped and writable. */
2470 memset(g2h_untagged(start_bss
), 0, align_bss
- start_bss
);
2474 if (align_bss
< end_bss
&&
2475 target_mmap(align_bss
, end_bss
- align_bss
, prot
,
2476 MAP_FIXED
| MAP_PRIVATE
| MAP_ANON
, -1, 0) == -1) {
2477 error_setg_errno(errp
, errno
, "Error mapping bss");
2483 #if defined(TARGET_ARM)
2484 static int elf_is_fdpic(struct elfhdr
*exec
)
2486 return exec
->e_ident
[EI_OSABI
] == ELFOSABI_ARM_FDPIC
;
2488 #elif defined(TARGET_XTENSA)
2489 static int elf_is_fdpic(struct elfhdr
*exec
)
2491 return exec
->e_ident
[EI_OSABI
] == ELFOSABI_XTENSA_FDPIC
;
2494 /* Default implementation, always false. */
2495 static int elf_is_fdpic(struct elfhdr
*exec
)
2501 static abi_ulong
loader_build_fdpic_loadmap(struct image_info
*info
, abi_ulong sp
)
2504 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
;
2506 /* elf32_fdpic_loadseg */
2510 put_user_u32(loadsegs
[n
].addr
, sp
+0);
2511 put_user_u32(loadsegs
[n
].p_vaddr
, sp
+4);
2512 put_user_u32(loadsegs
[n
].p_memsz
, sp
+8);
2515 /* elf32_fdpic_loadmap */
2517 put_user_u16(0, sp
+0); /* version */
2518 put_user_u16(info
->nsegs
, sp
+2); /* nsegs */
2520 info
->personality
= PER_LINUX_FDPIC
;
2521 info
->loadmap_addr
= sp
;
2526 static abi_ulong
create_elf_tables(abi_ulong p
, int argc
, int envc
,
2527 struct elfhdr
*exec
,
2528 struct image_info
*info
,
2529 struct image_info
*interp_info
,
2530 struct image_info
*vdso_info
)
2533 abi_ulong u_argc
, u_argv
, u_envp
, u_auxv
;
2536 abi_ulong u_rand_bytes
;
2537 uint8_t k_rand_bytes
[16];
2538 abi_ulong u_platform
, u_base_platform
;
2539 const char *k_platform
, *k_base_platform
;
2540 const int n
= sizeof(elf_addr_t
);
2544 /* Needs to be before we load the env/argc/... */
2545 if (elf_is_fdpic(exec
)) {
2546 /* Need 4 byte alignment for these structs */
2548 sp
= loader_build_fdpic_loadmap(info
, sp
);
2549 info
->other_info
= interp_info
;
2551 interp_info
->other_info
= info
;
2552 sp
= loader_build_fdpic_loadmap(interp_info
, sp
);
2553 info
->interpreter_loadmap_addr
= interp_info
->loadmap_addr
;
2554 info
->interpreter_pt_dynamic_addr
= interp_info
->pt_dynamic_addr
;
2556 info
->interpreter_loadmap_addr
= 0;
2557 info
->interpreter_pt_dynamic_addr
= 0;
2561 u_base_platform
= 0;
2562 k_base_platform
= ELF_BASE_PLATFORM
;
2563 if (k_base_platform
) {
2564 size_t len
= strlen(k_base_platform
) + 1;
2565 if (STACK_GROWS_DOWN
) {
2566 sp
-= (len
+ n
- 1) & ~(n
- 1);
2567 u_base_platform
= sp
;
2568 /* FIXME - check return value of memcpy_to_target() for failure */
2569 memcpy_to_target(sp
, k_base_platform
, len
);
2571 memcpy_to_target(sp
, k_base_platform
, len
);
2572 u_base_platform
= sp
;
2578 k_platform
= ELF_PLATFORM
;
2580 size_t len
= strlen(k_platform
) + 1;
2581 if (STACK_GROWS_DOWN
) {
2582 sp
-= (len
+ n
- 1) & ~(n
- 1);
2584 /* FIXME - check return value of memcpy_to_target() for failure */
2585 memcpy_to_target(sp
, k_platform
, len
);
2587 memcpy_to_target(sp
, k_platform
, len
);
2593 /* Provide 16 byte alignment for the PRNG, and basic alignment for
2594 * the argv and envp pointers.
2596 if (STACK_GROWS_DOWN
) {
2597 sp
= QEMU_ALIGN_DOWN(sp
, 16);
2599 sp
= QEMU_ALIGN_UP(sp
, 16);
2603 * Generate 16 random bytes for userspace PRNG seeding.
2605 qemu_guest_getrandom_nofail(k_rand_bytes
, sizeof(k_rand_bytes
));
2606 if (STACK_GROWS_DOWN
) {
2609 /* FIXME - check return value of memcpy_to_target() for failure */
2610 memcpy_to_target(sp
, k_rand_bytes
, 16);
2612 memcpy_to_target(sp
, k_rand_bytes
, 16);
2617 size
= (DLINFO_ITEMS
+ 1) * 2;
2618 if (k_base_platform
) {
2627 #ifdef DLINFO_ARCH_ITEMS
2628 size
+= DLINFO_ARCH_ITEMS
* 2;
2633 info
->auxv_len
= size
* n
;
2635 size
+= envc
+ argc
+ 2;
2636 size
+= 1; /* argc itself */
2639 /* Allocate space and finalize stack alignment for entry now. */
2640 if (STACK_GROWS_DOWN
) {
2641 u_argc
= QEMU_ALIGN_DOWN(sp
- size
, STACK_ALIGNMENT
);
2645 sp
= QEMU_ALIGN_UP(sp
+ size
, STACK_ALIGNMENT
);
2648 u_argv
= u_argc
+ n
;
2649 u_envp
= u_argv
+ (argc
+ 1) * n
;
2650 u_auxv
= u_envp
+ (envc
+ 1) * n
;
2651 info
->saved_auxv
= u_auxv
;
2654 info
->argv
= u_argv
;
2655 info
->envp
= u_envp
;
2657 /* This is correct because Linux defines
2658 * elf_addr_t as Elf32_Off / Elf64_Off
2660 #define NEW_AUX_ENT(id, val) do { \
2661 put_user_ual(id, u_auxv); u_auxv += n; \
2662 put_user_ual(val, u_auxv); u_auxv += n; \
2667 * ARCH_DLINFO must come first so platform specific code can enforce
2668 * special alignment requirements on the AUXV if necessary (eg. PPC).
2672 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2673 * on info->auxv_len will trigger.
2675 NEW_AUX_ENT(AT_PHDR
, (abi_ulong
)(info
->load_addr
+ exec
->e_phoff
));
2676 NEW_AUX_ENT(AT_PHENT
, (abi_ulong
)(sizeof (struct elf_phdr
)));
2677 NEW_AUX_ENT(AT_PHNUM
, (abi_ulong
)(exec
->e_phnum
));
2678 if ((info
->alignment
& ~qemu_host_page_mask
) != 0) {
2679 /* Target doesn't support host page size alignment */
2680 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(TARGET_PAGE_SIZE
));
2682 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(MAX(TARGET_PAGE_SIZE
,
2683 qemu_host_page_size
)));
2685 NEW_AUX_ENT(AT_BASE
, (abi_ulong
)(interp_info
? interp_info
->load_addr
: 0));
2686 NEW_AUX_ENT(AT_FLAGS
, (abi_ulong
)0);
2687 NEW_AUX_ENT(AT_ENTRY
, info
->entry
);
2688 NEW_AUX_ENT(AT_UID
, (abi_ulong
) getuid());
2689 NEW_AUX_ENT(AT_EUID
, (abi_ulong
) geteuid());
2690 NEW_AUX_ENT(AT_GID
, (abi_ulong
) getgid());
2691 NEW_AUX_ENT(AT_EGID
, (abi_ulong
) getegid());
2692 NEW_AUX_ENT(AT_HWCAP
, (abi_ulong
) ELF_HWCAP
);
2693 NEW_AUX_ENT(AT_CLKTCK
, (abi_ulong
) sysconf(_SC_CLK_TCK
));
2694 NEW_AUX_ENT(AT_RANDOM
, (abi_ulong
) u_rand_bytes
);
2695 NEW_AUX_ENT(AT_SECURE
, (abi_ulong
) qemu_getauxval(AT_SECURE
));
2696 NEW_AUX_ENT(AT_EXECFN
, info
->file_string
);
2699 NEW_AUX_ENT(AT_HWCAP2
, (abi_ulong
) ELF_HWCAP2
);
2702 if (u_base_platform
) {
2703 NEW_AUX_ENT(AT_BASE_PLATFORM
, u_base_platform
);
2706 NEW_AUX_ENT(AT_PLATFORM
, u_platform
);
2709 NEW_AUX_ENT(AT_SYSINFO_EHDR
, vdso_info
->load_addr
);
2711 NEW_AUX_ENT (AT_NULL
, 0);
2714 /* Check that our initial calculation of the auxv length matches how much
2715 * we actually put into it.
2717 assert(info
->auxv_len
== u_auxv
- info
->saved_auxv
);
2719 put_user_ual(argc
, u_argc
);
2721 p
= info
->arg_strings
;
2722 for (i
= 0; i
< argc
; ++i
) {
2723 put_user_ual(p
, u_argv
);
2725 p
+= target_strlen(p
) + 1;
2727 put_user_ual(0, u_argv
);
2729 p
= info
->env_strings
;
2730 for (i
= 0; i
< envc
; ++i
) {
2731 put_user_ual(p
, u_envp
);
2733 p
+= target_strlen(p
) + 1;
2735 put_user_ual(0, u_envp
);
2740 #if defined(HI_COMMPAGE)
2741 #define LO_COMMPAGE -1
2742 #elif defined(LO_COMMPAGE)
2743 #define HI_COMMPAGE 0
2745 #define HI_COMMPAGE 0
2746 #define LO_COMMPAGE -1
2747 #ifndef INIT_GUEST_COMMPAGE
2748 #define init_guest_commpage() true
2754 * @addr: host start address
2755 * @addr_last: host last address
2756 * @keep: do not unmap the probe region
2758 * Return 1 if [@addr, @addr_last] is not mapped in the host,
2759 * return 0 if it is not available to map, and -1 on mmap error.
2760 * If @keep, the region is left mapped on success, otherwise unmapped.
2762 static int pgb_try_mmap(uintptr_t addr
, uintptr_t addr_last
, bool keep
)
2764 size_t size
= addr_last
- addr
+ 1;
2765 void *p
= mmap((void *)addr
, size
, PROT_NONE
,
2766 MAP_ANONYMOUS
| MAP_PRIVATE
|
2767 MAP_NORESERVE
| MAP_FIXED_NOREPLACE
, -1, 0);
2770 if (p
== MAP_FAILED
) {
2771 return errno
== EEXIST
? 0 : -1;
2773 ret
= p
== (void *)addr
;
2774 if (!keep
|| !ret
) {
2781 * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk)
2782 * @addr: host address
2783 * @addr_last: host last address
2786 * Like pgb_try_mmap, but additionally reserve some memory following brk.
2788 static int pgb_try_mmap_skip_brk(uintptr_t addr
, uintptr_t addr_last
,
2789 uintptr_t brk
, bool keep
)
2791 uintptr_t brk_last
= brk
+ 16 * MiB
- 1;
2793 /* Do not map anything close to the host brk. */
2794 if (addr
<= brk_last
&& brk
<= addr_last
) {
2797 return pgb_try_mmap(addr
, addr_last
, keep
);
2802 * @ga: set of guest addrs
2806 * Return true if all @ga can be mapped by the host at @base.
2807 * On success, retain the mapping at index 0 for reserved_va.
2810 typedef struct PGBAddrs
{
2811 uintptr_t bounds
[3][2]; /* start/last pairs */
2815 static bool pgb_try_mmap_set(const PGBAddrs
*ga
, uintptr_t base
, uintptr_t brk
)
2817 for (int i
= ga
->nbounds
- 1; i
>= 0; --i
) {
2818 if (pgb_try_mmap_skip_brk(ga
->bounds
[i
][0] + base
,
2819 ga
->bounds
[i
][1] + base
,
2820 brk
, i
== 0 && reserved_va
) <= 0) {
2829 * @ga: output set of guest addrs
2830 * @guest_loaddr: guest image low address
2831 * @guest_loaddr: guest image high address
2832 * @identity: create for identity mapping
2834 * Fill in @ga with the image, COMMPAGE and NULL page.
2836 static bool pgb_addr_set(PGBAddrs
*ga
, abi_ulong guest_loaddr
,
2837 abi_ulong guest_hiaddr
, bool try_identity
)
2842 * With a low commpage, or a guest mapped very low,
2843 * we may not be able to use the identity map.
2846 if (LO_COMMPAGE
!= -1 && LO_COMMPAGE
< mmap_min_addr
) {
2849 if (guest_loaddr
!= 0 && guest_loaddr
< mmap_min_addr
) {
2854 memset(ga
, 0, sizeof(*ga
));
2858 ga
->bounds
[n
][0] = try_identity
? mmap_min_addr
: 0;
2859 ga
->bounds
[n
][1] = reserved_va
;
2861 /* LO_COMMPAGE and NULL handled by reserving from 0. */
2863 /* Add any LO_COMMPAGE or NULL page. */
2864 if (LO_COMMPAGE
!= -1) {
2865 ga
->bounds
[n
][0] = 0;
2866 ga
->bounds
[n
][1] = LO_COMMPAGE
+ TARGET_PAGE_SIZE
- 1;
2868 } else if (!try_identity
) {
2869 ga
->bounds
[n
][0] = 0;
2870 ga
->bounds
[n
][1] = TARGET_PAGE_SIZE
- 1;
2874 /* Add the guest image for ET_EXEC. */
2876 ga
->bounds
[n
][0] = guest_loaddr
;
2877 ga
->bounds
[n
][1] = guest_hiaddr
;
2883 * Temporarily disable
2884 * "comparison is always false due to limited range of data type"
2885 * due to comparison between unsigned and (possible) 0.
2887 #pragma GCC diagnostic push
2888 #pragma GCC diagnostic ignored "-Wtype-limits"
2890 /* Add any HI_COMMPAGE not covered by reserved_va. */
2891 if (reserved_va
< HI_COMMPAGE
) {
2892 ga
->bounds
[n
][0] = HI_COMMPAGE
& qemu_host_page_mask
;
2893 ga
->bounds
[n
][1] = HI_COMMPAGE
+ TARGET_PAGE_SIZE
- 1;
2897 #pragma GCC diagnostic pop
2903 static void pgb_fail_in_use(const char *image_name
)
2905 error_report("%s: requires virtual address space that is in use "
2906 "(omit the -B option or choose a different value)",
2911 static void pgb_fixed(const char *image_name
, uintptr_t guest_loaddr
,
2912 uintptr_t guest_hiaddr
, uintptr_t align
)
2915 uintptr_t brk
= (uintptr_t)sbrk(0);
2917 if (!QEMU_IS_ALIGNED(guest_base
, align
)) {
2918 fprintf(stderr
, "Requested guest base %p does not satisfy "
2919 "host minimum alignment (0x%" PRIxPTR
")\n",
2920 (void *)guest_base
, align
);
2924 if (!pgb_addr_set(&ga
, guest_loaddr
, guest_hiaddr
, !guest_base
)
2925 || !pgb_try_mmap_set(&ga
, guest_base
, brk
)) {
2926 pgb_fail_in_use(image_name
);
2931 * pgb_find_fallback:
2933 * This is a fallback method for finding holes in the host address space
2934 * if we don't have the benefit of being able to access /proc/self/map.
2935 * It can potentially take a very long time as we can only dumbly iterate
2936 * up the host address space seeing if the allocation would work.
2938 static uintptr_t pgb_find_fallback(const PGBAddrs
*ga
, uintptr_t align
,
2941 /* TODO: come up with a better estimate of how much to skip. */
2942 uintptr_t skip
= sizeof(uintptr_t) == 4 ? MiB
: GiB
;
2944 for (uintptr_t base
= skip
; ; base
+= skip
) {
2945 base
= ROUND_UP(base
, align
);
2946 if (pgb_try_mmap_set(ga
, base
, brk
)) {
2949 if (base
>= -skip
) {
2955 static uintptr_t pgb_try_itree(const PGBAddrs
*ga
, uintptr_t base
,
2956 IntervalTreeRoot
*root
)
2958 for (int i
= ga
->nbounds
- 1; i
>= 0; --i
) {
2959 uintptr_t s
= base
+ ga
->bounds
[i
][0];
2960 uintptr_t l
= base
+ ga
->bounds
[i
][1];
2961 IntervalTreeNode
*n
;
2964 /* Wraparound. Skip to advance S to mmap_min_addr. */
2965 return mmap_min_addr
- s
;
2968 n
= interval_tree_iter_first(root
, s
, l
);
2970 /* Conflict. Skip to advance S to LAST + 1. */
2971 return n
->last
- s
+ 1;
2974 return 0; /* success */
2977 static uintptr_t pgb_find_itree(const PGBAddrs
*ga
, IntervalTreeRoot
*root
,
2978 uintptr_t align
, uintptr_t brk
)
2980 uintptr_t last
= mmap_min_addr
;
2981 uintptr_t base
, skip
;
2984 base
= ROUND_UP(last
, align
);
2989 skip
= pgb_try_itree(ga
, base
, root
);
3001 * We've chosen 'base' based on holes in the interval tree,
3002 * but we don't yet know if it is a valid host address.
3003 * Because it is the first matching hole, if the host addresses
3004 * are invalid we know there are no further matches.
3006 return pgb_try_mmap_set(ga
, base
, brk
) ? base
: -1;
3009 static void pgb_dynamic(const char *image_name
, uintptr_t guest_loaddr
,
3010 uintptr_t guest_hiaddr
, uintptr_t align
)
3012 IntervalTreeRoot
*root
;
3016 assert(QEMU_IS_ALIGNED(guest_loaddr
, align
));
3018 /* Try the identity map first. */
3019 if (pgb_addr_set(&ga
, guest_loaddr
, guest_hiaddr
, true)) {
3020 brk
= (uintptr_t)sbrk(0);
3021 if (pgb_try_mmap_set(&ga
, 0, brk
)) {
3028 * Rebuild the address set for non-identity map.
3029 * This differs in the mapping of the guest NULL page.
3031 pgb_addr_set(&ga
, guest_loaddr
, guest_hiaddr
, false);
3033 root
= read_self_maps();
3035 /* Read brk after we've read the maps, which will malloc. */
3036 brk
= (uintptr_t)sbrk(0);
3039 ret
= pgb_find_fallback(&ga
, align
, brk
);
3042 * Reserve the area close to the host brk.
3043 * This will be freed with the rest of the tree.
3045 IntervalTreeNode
*b
= g_new0(IntervalTreeNode
, 1);
3047 b
->last
= brk
+ 16 * MiB
- 1;
3048 interval_tree_insert(b
, root
);
3050 ret
= pgb_find_itree(&ga
, root
, align
, brk
);
3051 free_self_maps(root
);
3055 int w
= TARGET_LONG_BITS
/ 4;
3057 error_report("%s: Unable to find a guest_base to satisfy all "
3058 "guest address mapping requirements", image_name
);
3060 for (int i
= 0; i
< ga
.nbounds
; ++i
) {
3061 error_printf(" %0*" PRIx64
"-%0*" PRIx64
"\n",
3062 w
, (uint64_t)ga
.bounds
[i
][0],
3063 w
, (uint64_t)ga
.bounds
[i
][1]);
3070 void probe_guest_base(const char *image_name
, abi_ulong guest_loaddr
,
3071 abi_ulong guest_hiaddr
)
3073 /* In order to use host shmat, we must be able to honor SHMLBA. */
3074 uintptr_t align
= MAX(SHMLBA
, qemu_host_page_size
);
3076 /* Sanity check the guest binary. */
3078 if (guest_hiaddr
> reserved_va
) {
3079 error_report("%s: requires more than reserved virtual "
3080 "address space (0x%" PRIx64
" > 0x%lx)",
3081 image_name
, (uint64_t)guest_hiaddr
, reserved_va
);
3085 if (guest_hiaddr
!= (uintptr_t)guest_hiaddr
) {
3086 error_report("%s: requires more virtual address space "
3087 "than the host can provide (0x%" PRIx64
")",
3088 image_name
, (uint64_t)guest_hiaddr
+ 1);
3093 if (have_guest_base
) {
3094 pgb_fixed(image_name
, guest_loaddr
, guest_hiaddr
, align
);
3096 pgb_dynamic(image_name
, guest_loaddr
, guest_hiaddr
, align
);
3099 /* Reserve and initialize the commpage. */
3100 if (!init_guest_commpage()) {
3101 /* We have already probed for the commpage being free. */
3102 g_assert_not_reached();
3105 assert(QEMU_IS_ALIGNED(guest_base
, align
));
3106 qemu_log_mask(CPU_LOG_PAGE
, "Locating guest address space "
3107 "@ 0x%" PRIx64
"\n", (uint64_t)guest_base
);
3111 /* The string "GNU\0" as a magic number. */
3112 GNU0_MAGIC
= const_le32('G' | 'N' << 8 | 'U' << 16),
3113 NOTE_DATA_SZ
= 1 * KiB
,
3115 ELF_GNU_PROPERTY_ALIGN
= ELF_CLASS
== ELFCLASS32
? 4 : 8,
3119 * Process a single gnu_property entry.
3120 * Return false for error.
3122 static bool parse_elf_property(const uint32_t *data
, int *off
, int datasz
,
3123 struct image_info
*info
, bool have_prev_type
,
3124 uint32_t *prev_type
, Error
**errp
)
3126 uint32_t pr_type
, pr_datasz
, step
;
3128 if (*off
> datasz
|| !QEMU_IS_ALIGNED(*off
, ELF_GNU_PROPERTY_ALIGN
)) {
3132 data
+= *off
/ sizeof(uint32_t);
3134 if (datasz
< 2 * sizeof(uint32_t)) {
3138 pr_datasz
= data
[1];
3140 datasz
-= 2 * sizeof(uint32_t);
3141 step
= ROUND_UP(pr_datasz
, ELF_GNU_PROPERTY_ALIGN
);
3142 if (step
> datasz
) {
3146 /* Properties are supposed to be unique and sorted on pr_type. */
3147 if (have_prev_type
&& pr_type
<= *prev_type
) {
3148 if (pr_type
== *prev_type
) {
3149 error_setg(errp
, "Duplicate property in PT_GNU_PROPERTY");
3151 error_setg(errp
, "Unsorted property in PT_GNU_PROPERTY");
3155 *prev_type
= pr_type
;
3157 if (!arch_parse_elf_property(pr_type
, pr_datasz
, data
, info
, errp
)) {
3161 *off
+= 2 * sizeof(uint32_t) + step
;
3165 error_setg(errp
, "Ill-formed property in PT_GNU_PROPERTY");
3169 /* Process NT_GNU_PROPERTY_TYPE_0. */
3170 static bool parse_elf_properties(const ImageSource
*src
,
3171 struct image_info
*info
,
3172 const struct elf_phdr
*phdr
,
3176 struct elf_note nhdr
;
3177 uint32_t data
[NOTE_DATA_SZ
/ sizeof(uint32_t)];
3181 bool have_prev_type
;
3184 /* Unless the arch requires properties, ignore them. */
3185 if (!ARCH_USE_GNU_PROPERTY
) {
3189 /* If the properties are crazy large, that's too bad. */
3191 if (n
> sizeof(note
)) {
3192 error_setg(errp
, "PT_GNU_PROPERTY too large");
3195 if (n
< sizeof(note
.nhdr
)) {
3196 error_setg(errp
, "PT_GNU_PROPERTY too small");
3200 if (!imgsrc_read(¬e
, phdr
->p_offset
, n
, src
, errp
)) {
3205 * The contents of a valid PT_GNU_PROPERTY is a sequence
3206 * of uint32_t -- swap them all now.
3209 for (int i
= 0; i
< n
/ 4; i
++) {
3210 bswap32s(note
.data
+ i
);
3215 * Note that nhdr is 3 words, and that the "name" described by namesz
3216 * immediately follows nhdr and is thus at the 4th word. Further, all
3217 * of the inputs to the kernel's round_up are multiples of 4.
3219 if (note
.nhdr
.n_type
!= NT_GNU_PROPERTY_TYPE_0
||
3220 note
.nhdr
.n_namesz
!= NOTE_NAME_SZ
||
3221 note
.data
[3] != GNU0_MAGIC
) {
3222 error_setg(errp
, "Invalid note in PT_GNU_PROPERTY");
3225 off
= sizeof(note
.nhdr
) + NOTE_NAME_SZ
;
3227 datasz
= note
.nhdr
.n_descsz
+ off
;
3229 error_setg(errp
, "Invalid note size in PT_GNU_PROPERTY");
3233 have_prev_type
= false;
3236 if (off
== datasz
) {
3237 return true; /* end, exit ok */
3239 if (!parse_elf_property(note
.data
, &off
, datasz
, info
,
3240 have_prev_type
, &prev_type
, errp
)) {
3243 have_prev_type
= true;
3248 * load_elf_image: Load an ELF image into the address space.
3249 * @image_name: the filename of the image, to use in error messages.
3250 * @src: the ImageSource from which to read.
3251 * @info: info collected from the loaded image.
3252 * @ehdr: the ELF header, not yet bswapped.
3253 * @pinterp_name: record any PT_INTERP string found.
3255 * On return: @info values will be filled in, as necessary or available.
3258 static void load_elf_image(const char *image_name
, const ImageSource
*src
,
3259 struct image_info
*info
, struct elfhdr
*ehdr
,
3260 char **pinterp_name
)
3262 g_autofree
struct elf_phdr
*phdr
= NULL
;
3263 abi_ulong load_addr
, load_bias
, loaddr
, hiaddr
, error
;
3268 * First of all, some simple consistency checks.
3269 * Note that we rely on the bswapped ehdr staying in bprm_buf,
3270 * for later use by load_elf_binary and create_elf_tables.
3272 if (!imgsrc_read(ehdr
, 0, sizeof(*ehdr
), src
, &err
)) {
3275 if (!elf_check_ident(ehdr
)) {
3276 error_setg(&err
, "Invalid ELF image for this architecture");
3280 if (!elf_check_ehdr(ehdr
)) {
3281 error_setg(&err
, "Invalid ELF image for this architecture");
3285 phdr
= imgsrc_read_alloc(ehdr
->e_phoff
,
3286 ehdr
->e_phnum
* sizeof(struct elf_phdr
),
3291 bswap_phdr(phdr
, ehdr
->e_phnum
);
3294 info
->pt_dynamic_addr
= 0;
3299 * Find the maximum size of the image and allocate an appropriate
3300 * amount of memory to handle that. Locate the interpreter, if any.
3302 loaddr
= -1, hiaddr
= 0;
3303 info
->alignment
= 0;
3304 info
->exec_stack
= EXSTACK_DEFAULT
;
3305 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
3306 struct elf_phdr
*eppnt
= phdr
+ i
;
3307 if (eppnt
->p_type
== PT_LOAD
) {
3308 abi_ulong a
= eppnt
->p_vaddr
- eppnt
->p_offset
;
3312 a
= eppnt
->p_vaddr
+ eppnt
->p_memsz
- 1;
3317 info
->alignment
|= eppnt
->p_align
;
3318 } else if (eppnt
->p_type
== PT_INTERP
&& pinterp_name
) {
3319 g_autofree
char *interp_name
= NULL
;
3321 if (*pinterp_name
) {
3322 error_setg(&err
, "Multiple PT_INTERP entries");
3326 interp_name
= imgsrc_read_alloc(eppnt
->p_offset
, eppnt
->p_filesz
,
3328 if (interp_name
== NULL
) {
3331 if (interp_name
[eppnt
->p_filesz
- 1] != 0) {
3332 error_setg(&err
, "Invalid PT_INTERP entry");
3335 *pinterp_name
= g_steal_pointer(&interp_name
);
3336 } else if (eppnt
->p_type
== PT_GNU_PROPERTY
) {
3337 if (!parse_elf_properties(src
, info
, eppnt
, &err
)) {
3340 } else if (eppnt
->p_type
== PT_GNU_STACK
) {
3341 info
->exec_stack
= eppnt
->p_flags
& PF_X
;
3347 if (pinterp_name
!= NULL
) {
3348 if (ehdr
->e_type
== ET_EXEC
) {
3350 * Make sure that the low address does not conflict with
3351 * MMAP_MIN_ADDR or the QEMU application itself.
3353 probe_guest_base(image_name
, loaddr
, hiaddr
);
3358 * The binary is dynamic, but we still need to
3359 * select guest_base. In this case we pass a size.
3361 probe_guest_base(image_name
, 0, hiaddr
- loaddr
);
3364 * Avoid collision with the loader by providing a different
3365 * default load address.
3367 load_addr
+= elf_et_dyn_base
;
3370 * TODO: Better support for mmap alignment is desirable.
3371 * Since we do not have complete control over the guest
3372 * address space, we prefer the kernel to choose some address
3373 * rather than force the use of LOAD_ADDR via MAP_FIXED.
3374 * But without MAP_FIXED we cannot guarantee alignment,
3377 align
= pow2ceil(info
->alignment
);
3379 load_addr
&= -align
;
3385 * Reserve address space for all of this.
3387 * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
3388 * exactly the address range that is required. Without reserved_va,
3389 * the guest address space is not isolated. We have attempted to avoid
3390 * conflict with the host program itself via probe_guest_base, but using
3391 * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
3393 * Otherwise this is ET_DYN, and we are searching for a location
3394 * that can hold the memory space required. If the image is
3395 * pre-linked, LOAD_ADDR will be non-zero, and the kernel should
3396 * honor that address if it happens to be free.
3398 * In both cases, we will overwrite pages in this range with mappings
3399 * from the executable.
3401 load_addr
= target_mmap(load_addr
, (size_t)hiaddr
- loaddr
+ 1, PROT_NONE
,
3402 MAP_PRIVATE
| MAP_ANON
| MAP_NORESERVE
|
3403 (ehdr
->e_type
== ET_EXEC
? MAP_FIXED_NOREPLACE
: 0),
3405 if (load_addr
== -1) {
3408 load_bias
= load_addr
- loaddr
;
3410 if (elf_is_fdpic(ehdr
)) {
3411 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
=
3412 g_malloc(sizeof(*loadsegs
) * info
->nsegs
);
3414 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
3415 switch (phdr
[i
].p_type
) {
3417 info
->pt_dynamic_addr
= phdr
[i
].p_vaddr
+ load_bias
;
3420 loadsegs
->addr
= phdr
[i
].p_vaddr
+ load_bias
;
3421 loadsegs
->p_vaddr
= phdr
[i
].p_vaddr
;
3422 loadsegs
->p_memsz
= phdr
[i
].p_memsz
;
3429 info
->load_bias
= load_bias
;
3430 info
->code_offset
= load_bias
;
3431 info
->data_offset
= load_bias
;
3432 info
->load_addr
= load_addr
;
3433 info
->entry
= ehdr
->e_entry
+ load_bias
;
3434 info
->start_code
= -1;
3436 info
->start_data
= -1;
3438 /* Usual start for brk is after all sections of the main executable. */
3439 info
->brk
= TARGET_PAGE_ALIGN(hiaddr
+ load_bias
);
3440 info
->elf_flags
= ehdr
->e_flags
;
3442 prot_exec
= PROT_EXEC
;
3443 #ifdef TARGET_AARCH64
3445 * If the BTI feature is present, this indicates that the executable
3446 * pages of the startup binary should be mapped with PROT_BTI, so that
3447 * branch targets are enforced.
3449 * The startup binary is either the interpreter or the static executable.
3450 * The interpreter is responsible for all pages of a dynamic executable.
3452 * Elf notes are backward compatible to older cpus.
3453 * Do not enable BTI unless it is supported.
3455 if ((info
->note_flags
& GNU_PROPERTY_AARCH64_FEATURE_1_BTI
)
3456 && (pinterp_name
== NULL
|| *pinterp_name
== 0)
3457 && cpu_isar_feature(aa64_bti
, ARM_CPU(thread_cpu
))) {
3458 prot_exec
|= TARGET_PROT_BTI
;
3462 for (i
= 0; i
< ehdr
->e_phnum
; i
++) {
3463 struct elf_phdr
*eppnt
= phdr
+ i
;
3464 if (eppnt
->p_type
== PT_LOAD
) {
3465 abi_ulong vaddr
, vaddr_po
, vaddr_ps
, vaddr_ef
, vaddr_em
;
3468 if (eppnt
->p_flags
& PF_R
) {
3469 elf_prot
|= PROT_READ
;
3471 if (eppnt
->p_flags
& PF_W
) {
3472 elf_prot
|= PROT_WRITE
;
3474 if (eppnt
->p_flags
& PF_X
) {
3475 elf_prot
|= prot_exec
;
3478 vaddr
= load_bias
+ eppnt
->p_vaddr
;
3479 vaddr_po
= vaddr
& ~TARGET_PAGE_MASK
;
3480 vaddr_ps
= vaddr
& TARGET_PAGE_MASK
;
3482 vaddr_ef
= vaddr
+ eppnt
->p_filesz
;
3483 vaddr_em
= vaddr
+ eppnt
->p_memsz
;
3486 * Some segments may be completely empty, with a non-zero p_memsz
3487 * but no backing file segment.
3489 if (eppnt
->p_filesz
!= 0) {
3490 error
= imgsrc_mmap(vaddr_ps
, eppnt
->p_filesz
+ vaddr_po
,
3491 elf_prot
, MAP_PRIVATE
| MAP_FIXED
,
3492 src
, eppnt
->p_offset
- vaddr_po
);
3498 /* If the load segment requests extra zeros (e.g. bss), map it. */
3499 if (vaddr_ef
< vaddr_em
&&
3500 !zero_bss(vaddr_ef
, vaddr_em
, elf_prot
, &err
)) {
3504 /* Find the full program boundaries. */
3505 if (elf_prot
& PROT_EXEC
) {
3506 if (vaddr
< info
->start_code
) {
3507 info
->start_code
= vaddr
;
3509 if (vaddr_ef
> info
->end_code
) {
3510 info
->end_code
= vaddr_ef
;
3513 if (elf_prot
& PROT_WRITE
) {
3514 if (vaddr
< info
->start_data
) {
3515 info
->start_data
= vaddr
;
3517 if (vaddr_ef
> info
->end_data
) {
3518 info
->end_data
= vaddr_ef
;
3522 } else if (eppnt
->p_type
== PT_MIPS_ABIFLAGS
) {
3523 Mips_elf_abiflags_v0 abiflags
;
3525 if (!imgsrc_read(&abiflags
, eppnt
->p_offset
, sizeof(abiflags
),
3529 bswap_mips_abiflags(&abiflags
);
3530 info
->fp_abi
= abiflags
.fp_abi
;
3535 if (info
->end_data
== 0) {
3536 info
->start_data
= info
->end_code
;
3537 info
->end_data
= info
->end_code
;
3540 if (qemu_log_enabled()) {
3541 load_symbols(ehdr
, src
, load_bias
);
3544 debuginfo_report_elf(image_name
, src
->fd
, load_bias
);
3552 error_setg_errno(&err
, errno
, "Error mapping file");
3555 error_reportf_err(err
, "%s: ", image_name
);
3559 static void load_elf_interp(const char *filename
, struct image_info
*info
,
3560 char bprm_buf
[BPRM_BUF_SIZE
])
3567 fd
= open(path(filename
), O_RDONLY
);
3569 error_setg_file_open(&err
, errno
, filename
);
3570 error_report_err(err
);
3574 retval
= read(fd
, bprm_buf
, BPRM_BUF_SIZE
);
3576 error_setg_errno(&err
, errno
, "Error reading file header");
3577 error_reportf_err(err
, "%s: ", filename
);
3582 src
.cache
= bprm_buf
;
3583 src
.cache_size
= retval
;
3585 load_elf_image(filename
, &src
, info
, &ehdr
, NULL
);
3589 #include VDSO_HEADER
3590 #define vdso_image_info() &vdso_image_info
3592 #define vdso_image_info() NULL
3595 static void load_elf_vdso(struct image_info
*info
, const VdsoImageInfo
*vdso
)
3599 abi_ulong load_bias
, load_addr
;
3602 src
.cache
= vdso
->image
;
3603 src
.cache_size
= vdso
->image_size
;
3605 load_elf_image("<internal-vdso>", &src
, info
, &ehdr
, NULL
);
3606 load_addr
= info
->load_addr
;
3607 load_bias
= info
->load_bias
;
3610 * We need to relocate the VDSO image. The one built into the kernel
3611 * is built for a fixed address. The one built for QEMU is not, since
3612 * that requires close control of the guest address space.
3613 * We pre-processed the image to locate all of the addresses that need
3616 for (unsigned i
= 0, n
= vdso
->reloc_count
; i
< n
; i
++) {
3617 abi_ulong
*addr
= g2h_untagged(load_addr
+ vdso
->relocs
[i
]);
3618 *addr
= tswapal(tswapal(*addr
) + load_bias
);
3621 /* Install signal trampolines, if present. */
3622 if (vdso
->sigreturn_ofs
) {
3623 default_sigreturn
= load_addr
+ vdso
->sigreturn_ofs
;
3625 if (vdso
->rt_sigreturn_ofs
) {
3626 default_rt_sigreturn
= load_addr
+ vdso
->rt_sigreturn_ofs
;
3629 /* Remove write from VDSO segment. */
3630 target_mprotect(info
->start_data
, info
->end_data
- info
->start_data
,
3631 PROT_READ
| PROT_EXEC
);
3634 static int symfind(const void *s0
, const void *s1
)
3636 struct elf_sym
*sym
= (struct elf_sym
*)s1
;
3637 __typeof(sym
->st_value
) addr
= *(uint64_t *)s0
;
3640 if (addr
< sym
->st_value
) {
3642 } else if (addr
>= sym
->st_value
+ sym
->st_size
) {
3648 static const char *lookup_symbolxx(struct syminfo
*s
, uint64_t orig_addr
)
3650 #if ELF_CLASS == ELFCLASS32
3651 struct elf_sym
*syms
= s
->disas_symtab
.elf32
;
3653 struct elf_sym
*syms
= s
->disas_symtab
.elf64
;
3657 struct elf_sym
*sym
;
3659 sym
= bsearch(&orig_addr
, syms
, s
->disas_num_syms
, sizeof(*syms
), symfind
);
3661 return s
->disas_strtab
+ sym
->st_name
;
3667 /* FIXME: This should use elf_ops.h */
3668 static int symcmp(const void *s0
, const void *s1
)
3670 struct elf_sym
*sym0
= (struct elf_sym
*)s0
;
3671 struct elf_sym
*sym1
= (struct elf_sym
*)s1
;
3672 return (sym0
->st_value
< sym1
->st_value
)
3674 : ((sym0
->st_value
> sym1
->st_value
) ? 1 : 0);
3677 /* Best attempt to load symbols from this ELF object. */
3678 static void load_symbols(struct elfhdr
*hdr
, const ImageSource
*src
,
3679 abi_ulong load_bias
)
3681 int i
, shnum
, nsyms
, sym_idx
= 0, str_idx
= 0;
3682 g_autofree
struct elf_shdr
*shdr
= NULL
;
3683 char *strings
= NULL
;
3684 struct elf_sym
*syms
= NULL
;
3685 struct elf_sym
*new_syms
;
3688 shnum
= hdr
->e_shnum
;
3689 shdr
= imgsrc_read_alloc(hdr
->e_shoff
, shnum
* sizeof(struct elf_shdr
),
3695 bswap_shdr(shdr
, shnum
);
3696 for (i
= 0; i
< shnum
; ++i
) {
3697 if (shdr
[i
].sh_type
== SHT_SYMTAB
) {
3699 str_idx
= shdr
[i
].sh_link
;
3704 /* There will be no symbol table if the file was stripped. */
3708 /* Now know where the strtab and symtab are. Snarf them. */
3710 segsz
= shdr
[str_idx
].sh_size
;
3711 strings
= g_try_malloc(segsz
);
3715 if (!imgsrc_read(strings
, shdr
[str_idx
].sh_offset
, segsz
, src
, NULL
)) {
3719 segsz
= shdr
[sym_idx
].sh_size
;
3720 if (segsz
/ sizeof(struct elf_sym
) > INT_MAX
) {
3722 * Implausibly large symbol table: give up rather than ploughing
3723 * on with the number of symbols calculation overflowing.
3727 nsyms
= segsz
/ sizeof(struct elf_sym
);
3728 syms
= g_try_malloc(segsz
);
3732 if (!imgsrc_read(syms
, shdr
[sym_idx
].sh_offset
, segsz
, src
, NULL
)) {
3736 for (i
= 0; i
< nsyms
; ) {
3737 bswap_sym(syms
+ i
);
3738 /* Throw away entries which we do not need. */
3739 if (syms
[i
].st_shndx
== SHN_UNDEF
3740 || syms
[i
].st_shndx
>= SHN_LORESERVE
3741 || ELF_ST_TYPE(syms
[i
].st_info
) != STT_FUNC
) {
3743 syms
[i
] = syms
[nsyms
];
3746 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3747 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3748 syms
[i
].st_value
&= ~(target_ulong
)1;
3750 syms
[i
].st_value
+= load_bias
;
3755 /* No "useful" symbol. */
3761 * Attempt to free the storage associated with the local symbols
3762 * that we threw away. Whether or not this has any effect on the
3763 * memory allocation depends on the malloc implementation and how
3764 * many symbols we managed to discard.
3766 new_syms
= g_try_renew(struct elf_sym
, syms
, nsyms
);
3767 if (new_syms
== NULL
) {
3772 qsort(syms
, nsyms
, sizeof(*syms
), symcmp
);
3775 struct syminfo
*s
= g_new(struct syminfo
, 1);
3777 s
->disas_strtab
= strings
;
3778 s
->disas_num_syms
= nsyms
;
3779 #if ELF_CLASS == ELFCLASS32
3780 s
->disas_symtab
.elf32
= syms
;
3782 s
->disas_symtab
.elf64
= syms
;
3784 s
->lookup_symbol
= lookup_symbolxx
;
3795 uint32_t get_elf_eflags(int fd
)
3801 /* Read ELF header */
3802 offset
= lseek(fd
, 0, SEEK_SET
);
3803 if (offset
== (off_t
) -1) {
3806 ret
= read(fd
, &ehdr
, sizeof(ehdr
));
3807 if (ret
< sizeof(ehdr
)) {
3810 offset
= lseek(fd
, offset
, SEEK_SET
);
3811 if (offset
== (off_t
) -1) {
3815 /* Check ELF signature */
3816 if (!elf_check_ident(&ehdr
)) {
3822 if (!elf_check_ehdr(&ehdr
)) {
3826 /* return architecture id */
3827 return ehdr
.e_flags
;
3830 int load_elf_binary(struct linux_binprm
*bprm
, struct image_info
*info
)
3833 * We need a copy of the elf header for passing to create_elf_tables.
3834 * We will have overwritten the original when we re-use bprm->buf
3835 * while loading the interpreter. Allocate the storage for this now
3836 * and let elf_load_image do any swapping that may be required.
3839 struct image_info interp_info
, vdso_info
;
3840 char *elf_interpreter
= NULL
;
3843 memset(&interp_info
, 0, sizeof(interp_info
));
3845 interp_info
.fp_abi
= MIPS_ABI_FP_UNKNOWN
;
3848 load_elf_image(bprm
->filename
, &bprm
->src
, info
, &ehdr
, &elf_interpreter
);
3850 /* Do this so that we can load the interpreter, if need be. We will
3851 change some of these later */
3852 bprm
->p
= setup_arg_pages(bprm
, info
);
3854 scratch
= g_new0(char, TARGET_PAGE_SIZE
);
3855 if (STACK_GROWS_DOWN
) {
3856 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, scratch
,
3857 bprm
->p
, info
->stack_limit
);
3858 info
->file_string
= bprm
->p
;
3859 bprm
->p
= copy_elf_strings(bprm
->envc
, bprm
->envp
, scratch
,
3860 bprm
->p
, info
->stack_limit
);
3861 info
->env_strings
= bprm
->p
;
3862 bprm
->p
= copy_elf_strings(bprm
->argc
, bprm
->argv
, scratch
,
3863 bprm
->p
, info
->stack_limit
);
3864 info
->arg_strings
= bprm
->p
;
3866 info
->arg_strings
= bprm
->p
;
3867 bprm
->p
= copy_elf_strings(bprm
->argc
, bprm
->argv
, scratch
,
3868 bprm
->p
, info
->stack_limit
);
3869 info
->env_strings
= bprm
->p
;
3870 bprm
->p
= copy_elf_strings(bprm
->envc
, bprm
->envp
, scratch
,
3871 bprm
->p
, info
->stack_limit
);
3872 info
->file_string
= bprm
->p
;
3873 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, scratch
,
3874 bprm
->p
, info
->stack_limit
);
3880 fprintf(stderr
, "%s: %s\n", bprm
->filename
, strerror(E2BIG
));
3884 if (elf_interpreter
) {
3885 load_elf_interp(elf_interpreter
, &interp_info
, bprm
->buf
);
3888 * While unusual because of ELF_ET_DYN_BASE, if we are unlucky
3889 * with the mappings the interpreter can be loaded above but
3890 * near the main executable, which can leave very little room
3892 * If the current brk has less than 16MB, use the end of the
3895 if (interp_info
.brk
> info
->brk
&&
3896 interp_info
.load_bias
- info
->brk
< 16 * MiB
) {
3897 info
->brk
= interp_info
.brk
;
3900 /* If the program interpreter is one of these two, then assume
3901 an iBCS2 image. Otherwise assume a native linux image. */
3903 if (strcmp(elf_interpreter
, "/usr/lib/libc.so.1") == 0
3904 || strcmp(elf_interpreter
, "/usr/lib/ld.so.1") == 0) {
3905 info
->personality
= PER_SVR4
;
3907 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3908 and some applications "depend" upon this behavior. Since
3909 we do not have the power to recompile these, we emulate
3910 the SVr4 behavior. Sigh. */
3911 target_mmap(0, qemu_host_page_size
, PROT_READ
| PROT_EXEC
,
3912 MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
3915 info
->interp_fp_abi
= interp_info
.fp_abi
;
3920 * Load a vdso if available, which will amongst other things contain the
3921 * signal trampolines. Otherwise, allocate a separate page for them.
3923 const VdsoImageInfo
*vdso
= vdso_image_info();
3925 load_elf_vdso(&vdso_info
, vdso
);
3926 info
->vdso
= vdso_info
.load_bias
;
3927 } else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE
) {
3928 abi_long tramp_page
= target_mmap(0, TARGET_PAGE_SIZE
,
3929 PROT_READ
| PROT_WRITE
,
3930 MAP_PRIVATE
| MAP_ANON
, -1, 0);
3931 if (tramp_page
== -1) {
3935 setup_sigtramp(tramp_page
);
3936 target_mprotect(tramp_page
, TARGET_PAGE_SIZE
, PROT_READ
| PROT_EXEC
);
3939 bprm
->p
= create_elf_tables(bprm
->p
, bprm
->argc
, bprm
->envc
, &ehdr
, info
,
3940 elf_interpreter
? &interp_info
: NULL
,
3941 vdso
? &vdso_info
: NULL
);
3942 info
->start_stack
= bprm
->p
;
3944 /* If we have an interpreter, set that as the program's entry point.
3945 Copy the load_bias as well, to help PPC64 interpret the entry
3946 point as a function descriptor. Do this after creating elf tables
3947 so that we copy the original program entry point into the AUXV. */
3948 if (elf_interpreter
) {
3949 info
->load_bias
= interp_info
.load_bias
;
3950 info
->entry
= interp_info
.entry
;
3951 g_free(elf_interpreter
);
3954 #ifdef USE_ELF_CORE_DUMP
3955 bprm
->core_dump
= &elf_core_dump
;
3961 #ifdef USE_ELF_CORE_DUMP
3963 * Definitions to generate Intel SVR4-like core files.
3964 * These mostly have the same names as the SVR4 types with "target_elf_"
3965 * tacked on the front to prevent clashes with linux definitions,
3966 * and the typedef forms have been avoided. This is mostly like
3967 * the SVR4 structure, but more Linuxy, with things that Linux does
3968 * not support and which gdb doesn't really use excluded.
3970 * Fields we don't dump (their contents is zero) in linux-user qemu
3971 * are marked with XXX.
3973 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3975 * Porting ELF coredump for target is (quite) simple process. First you
3976 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3977 * the target resides):
3979 * #define USE_ELF_CORE_DUMP
3981 * Next you define type of register set used for dumping. ELF specification
3982 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3984 * typedef <target_regtype> target_elf_greg_t;
3985 * #define ELF_NREG <number of registers>
3986 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3988 * Last step is to implement target specific function that copies registers
3989 * from given cpu into just specified register set. Prototype is:
3991 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3992 * const CPUArchState *env);
3995 * regs - copy register values into here (allocated and zeroed by caller)
3996 * env - copy registers from here
3998 * Example for ARM target is provided in this file.
4001 /* An ELF note in memory */
4005 size_t namesz_rounded
;
4008 size_t datasz_rounded
;
4013 struct target_elf_siginfo
{
4014 abi_int si_signo
; /* signal number */
4015 abi_int si_code
; /* extra code */
4016 abi_int si_errno
; /* errno */
4019 struct target_elf_prstatus
{
4020 struct target_elf_siginfo pr_info
; /* Info associated with signal */
4021 abi_short pr_cursig
; /* Current signal */
4022 abi_ulong pr_sigpend
; /* XXX */
4023 abi_ulong pr_sighold
; /* XXX */
4024 target_pid_t pr_pid
;
4025 target_pid_t pr_ppid
;
4026 target_pid_t pr_pgrp
;
4027 target_pid_t pr_sid
;
4028 struct target_timeval pr_utime
; /* XXX User time */
4029 struct target_timeval pr_stime
; /* XXX System time */
4030 struct target_timeval pr_cutime
; /* XXX Cumulative user time */
4031 struct target_timeval pr_cstime
; /* XXX Cumulative system time */
4032 target_elf_gregset_t pr_reg
; /* GP registers */
4033 abi_int pr_fpvalid
; /* XXX */
4036 #define ELF_PRARGSZ (80) /* Number of chars for args */
4038 struct target_elf_prpsinfo
{
4039 char pr_state
; /* numeric process state */
4040 char pr_sname
; /* char for pr_state */
4041 char pr_zomb
; /* zombie */
4042 char pr_nice
; /* nice val */
4043 abi_ulong pr_flag
; /* flags */
4044 target_uid_t pr_uid
;
4045 target_gid_t pr_gid
;
4046 target_pid_t pr_pid
, pr_ppid
, pr_pgrp
, pr_sid
;
4048 char pr_fname
[16] QEMU_NONSTRING
; /* filename of executable */
4049 char pr_psargs
[ELF_PRARGSZ
]; /* initial part of arg list */
4052 /* Here is the structure in which status of each thread is captured. */
4053 struct elf_thread_status
{
4054 QTAILQ_ENTRY(elf_thread_status
) ets_link
;
4055 struct target_elf_prstatus prstatus
; /* NT_PRSTATUS */
4057 elf_fpregset_t fpu
; /* NT_PRFPREG */
4058 struct task_struct
*thread
;
4059 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
4061 struct memelfnote notes
[1];
4065 struct elf_note_info
{
4066 struct memelfnote
*notes
;
4067 struct target_elf_prstatus
*prstatus
; /* NT_PRSTATUS */
4068 struct target_elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
4070 QTAILQ_HEAD(, elf_thread_status
) thread_list
;
4073 * Current version of ELF coredump doesn't support
4074 * dumping fp regs etc.
4076 elf_fpregset_t
*fpu
;
4077 elf_fpxregset_t
*xfpu
;
4078 int thread_status_size
;
4084 struct vm_area_struct
{
4085 target_ulong vma_start
; /* start vaddr of memory region */
4086 target_ulong vma_end
; /* end vaddr of memory region */
4087 abi_ulong vma_flags
; /* protection etc. flags for the region */
4088 QTAILQ_ENTRY(vm_area_struct
) vma_link
;
4092 QTAILQ_HEAD(, vm_area_struct
) mm_mmap
;
4093 int mm_count
; /* number of mappings */
4096 static struct mm_struct
*vma_init(void);
4097 static void vma_delete(struct mm_struct
*);
4098 static int vma_add_mapping(struct mm_struct
*, target_ulong
,
4099 target_ulong
, abi_ulong
);
4100 static int vma_get_mapping_count(const struct mm_struct
*);
4101 static struct vm_area_struct
*vma_first(const struct mm_struct
*);
4102 static struct vm_area_struct
*vma_next(struct vm_area_struct
*);
4103 static abi_ulong
vma_dump_size(const struct vm_area_struct
*);
4104 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
4105 unsigned long flags
);
4107 static void fill_elf_header(struct elfhdr
*, int, uint16_t, uint32_t);
4108 static void fill_note(struct memelfnote
*, const char *, int,
4109 unsigned int, void *);
4110 static void fill_prstatus(struct target_elf_prstatus
*, const TaskState
*, int);
4111 static int fill_psinfo(struct target_elf_prpsinfo
*, const TaskState
*);
4112 static void fill_auxv_note(struct memelfnote
*, const TaskState
*);
4113 static void fill_elf_note_phdr(struct elf_phdr
*, int, off_t
);
4114 static size_t note_size(const struct memelfnote
*);
4115 static void free_note_info(struct elf_note_info
*);
4116 static int fill_note_info(struct elf_note_info
*, long, const CPUArchState
*);
4117 static void fill_thread_info(struct elf_note_info
*, const CPUArchState
*);
4119 static int dump_write(int, const void *, size_t);
4120 static int write_note(struct memelfnote
*, int);
4121 static int write_note_info(struct elf_note_info
*, int);
4124 static void bswap_prstatus(struct target_elf_prstatus
*prstatus
)
4126 prstatus
->pr_info
.si_signo
= tswap32(prstatus
->pr_info
.si_signo
);
4127 prstatus
->pr_info
.si_code
= tswap32(prstatus
->pr_info
.si_code
);
4128 prstatus
->pr_info
.si_errno
= tswap32(prstatus
->pr_info
.si_errno
);
4129 prstatus
->pr_cursig
= tswap16(prstatus
->pr_cursig
);
4130 prstatus
->pr_sigpend
= tswapal(prstatus
->pr_sigpend
);
4131 prstatus
->pr_sighold
= tswapal(prstatus
->pr_sighold
);
4132 prstatus
->pr_pid
= tswap32(prstatus
->pr_pid
);
4133 prstatus
->pr_ppid
= tswap32(prstatus
->pr_ppid
);
4134 prstatus
->pr_pgrp
= tswap32(prstatus
->pr_pgrp
);
4135 prstatus
->pr_sid
= tswap32(prstatus
->pr_sid
);
4136 /* cpu times are not filled, so we skip them */
4137 /* regs should be in correct format already */
4138 prstatus
->pr_fpvalid
= tswap32(prstatus
->pr_fpvalid
);
4141 static void bswap_psinfo(struct target_elf_prpsinfo
*psinfo
)
4143 psinfo
->pr_flag
= tswapal(psinfo
->pr_flag
);
4144 psinfo
->pr_uid
= tswap16(psinfo
->pr_uid
);
4145 psinfo
->pr_gid
= tswap16(psinfo
->pr_gid
);
4146 psinfo
->pr_pid
= tswap32(psinfo
->pr_pid
);
4147 psinfo
->pr_ppid
= tswap32(psinfo
->pr_ppid
);
4148 psinfo
->pr_pgrp
= tswap32(psinfo
->pr_pgrp
);
4149 psinfo
->pr_sid
= tswap32(psinfo
->pr_sid
);
4152 static void bswap_note(struct elf_note
*en
)
4154 bswap32s(&en
->n_namesz
);
4155 bswap32s(&en
->n_descsz
);
4156 bswap32s(&en
->n_type
);
4159 static inline void bswap_prstatus(struct target_elf_prstatus
*p
) { }
4160 static inline void bswap_psinfo(struct target_elf_prpsinfo
*p
) {}
4161 static inline void bswap_note(struct elf_note
*en
) { }
4162 #endif /* BSWAP_NEEDED */
4165 * Minimal support for linux memory regions. These are needed
4166 * when we are finding out what memory exactly belongs to
4167 * emulated process. No locks needed here, as long as
4168 * thread that received the signal is stopped.
4171 static struct mm_struct
*vma_init(void)
4173 struct mm_struct
*mm
;
4175 if ((mm
= g_malloc(sizeof (*mm
))) == NULL
)
4179 QTAILQ_INIT(&mm
->mm_mmap
);
4184 static void vma_delete(struct mm_struct
*mm
)
4186 struct vm_area_struct
*vma
;
4188 while ((vma
= vma_first(mm
)) != NULL
) {
4189 QTAILQ_REMOVE(&mm
->mm_mmap
, vma
, vma_link
);
4195 static int vma_add_mapping(struct mm_struct
*mm
, target_ulong start
,
4196 target_ulong end
, abi_ulong flags
)
4198 struct vm_area_struct
*vma
;
4200 if ((vma
= g_malloc0(sizeof (*vma
))) == NULL
)
4203 vma
->vma_start
= start
;
4205 vma
->vma_flags
= flags
;
4207 QTAILQ_INSERT_TAIL(&mm
->mm_mmap
, vma
, vma_link
);
4213 static struct vm_area_struct
*vma_first(const struct mm_struct
*mm
)
4215 return (QTAILQ_FIRST(&mm
->mm_mmap
));
4218 static struct vm_area_struct
*vma_next(struct vm_area_struct
*vma
)
4220 return (QTAILQ_NEXT(vma
, vma_link
));
4223 static int vma_get_mapping_count(const struct mm_struct
*mm
)
4225 return (mm
->mm_count
);
4229 * Calculate file (dump) size of given memory region.
4231 static abi_ulong
vma_dump_size(const struct vm_area_struct
*vma
)
4233 /* if we cannot even read the first page, skip it */
4234 if (!access_ok_untagged(VERIFY_READ
, vma
->vma_start
, TARGET_PAGE_SIZE
))
4238 * Usually we don't dump executable pages as they contain
4239 * non-writable code that debugger can read directly from
4240 * target library etc. However, thread stacks are marked
4241 * also executable so we read in first page of given region
4242 * and check whether it contains elf header. If there is
4243 * no elf header, we dump it.
4245 if (vma
->vma_flags
& PROT_EXEC
) {
4246 char page
[TARGET_PAGE_SIZE
];
4248 if (copy_from_user(page
, vma
->vma_start
, sizeof (page
))) {
4251 if ((page
[EI_MAG0
] == ELFMAG0
) &&
4252 (page
[EI_MAG1
] == ELFMAG1
) &&
4253 (page
[EI_MAG2
] == ELFMAG2
) &&
4254 (page
[EI_MAG3
] == ELFMAG3
)) {
4256 * Mappings are possibly from ELF binary. Don't dump
4263 return (vma
->vma_end
- vma
->vma_start
);
4266 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
4267 unsigned long flags
)
4269 struct mm_struct
*mm
= (struct mm_struct
*)priv
;
4271 vma_add_mapping(mm
, start
, end
, flags
);
4275 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
4276 unsigned int sz
, void *data
)
4278 unsigned int namesz
;
4280 namesz
= strlen(name
) + 1;
4282 note
->namesz
= namesz
;
4283 note
->namesz_rounded
= roundup(namesz
, sizeof (int32_t));
4286 note
->datasz_rounded
= roundup(sz
, sizeof (int32_t));
4291 * We calculate rounded up note size here as specified by
4294 note
->notesz
= sizeof (struct elf_note
) +
4295 note
->namesz_rounded
+ note
->datasz_rounded
;
4298 static void fill_elf_header(struct elfhdr
*elf
, int segs
, uint16_t machine
,
4301 (void) memset(elf
, 0, sizeof(*elf
));
4303 (void) memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
4304 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
4305 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
4306 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
4307 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
4309 elf
->e_type
= ET_CORE
;
4310 elf
->e_machine
= machine
;
4311 elf
->e_version
= EV_CURRENT
;
4312 elf
->e_phoff
= sizeof(struct elfhdr
);
4313 elf
->e_flags
= flags
;
4314 elf
->e_ehsize
= sizeof(struct elfhdr
);
4315 elf
->e_phentsize
= sizeof(struct elf_phdr
);
4316 elf
->e_phnum
= segs
;
4321 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, off_t offset
)
4323 phdr
->p_type
= PT_NOTE
;
4324 phdr
->p_offset
= offset
;
4327 phdr
->p_filesz
= sz
;
4332 bswap_phdr(phdr
, 1);
4335 static size_t note_size(const struct memelfnote
*note
)
4337 return (note
->notesz
);
4340 static void fill_prstatus(struct target_elf_prstatus
*prstatus
,
4341 const TaskState
*ts
, int signr
)
4343 (void) memset(prstatus
, 0, sizeof (*prstatus
));
4344 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
4345 prstatus
->pr_pid
= ts
->ts_tid
;
4346 prstatus
->pr_ppid
= getppid();
4347 prstatus
->pr_pgrp
= getpgrp();
4348 prstatus
->pr_sid
= getsid(0);
4350 bswap_prstatus(prstatus
);
4353 static int fill_psinfo(struct target_elf_prpsinfo
*psinfo
, const TaskState
*ts
)
4355 char *base_filename
;
4356 unsigned int i
, len
;
4358 (void) memset(psinfo
, 0, sizeof (*psinfo
));
4360 len
= ts
->info
->env_strings
- ts
->info
->arg_strings
;
4361 if (len
>= ELF_PRARGSZ
)
4362 len
= ELF_PRARGSZ
- 1;
4363 if (copy_from_user(&psinfo
->pr_psargs
, ts
->info
->arg_strings
, len
)) {
4366 for (i
= 0; i
< len
; i
++)
4367 if (psinfo
->pr_psargs
[i
] == 0)
4368 psinfo
->pr_psargs
[i
] = ' ';
4369 psinfo
->pr_psargs
[len
] = 0;
4371 psinfo
->pr_pid
= getpid();
4372 psinfo
->pr_ppid
= getppid();
4373 psinfo
->pr_pgrp
= getpgrp();
4374 psinfo
->pr_sid
= getsid(0);
4375 psinfo
->pr_uid
= getuid();
4376 psinfo
->pr_gid
= getgid();
4378 base_filename
= g_path_get_basename(ts
->bprm
->filename
);
4380 * Using strncpy here is fine: at max-length,
4381 * this field is not NUL-terminated.
4383 (void) strncpy(psinfo
->pr_fname
, base_filename
,
4384 sizeof(psinfo
->pr_fname
));
4386 g_free(base_filename
);
4387 bswap_psinfo(psinfo
);
4391 static void fill_auxv_note(struct memelfnote
*note
, const TaskState
*ts
)
4393 elf_addr_t auxv
= (elf_addr_t
)ts
->info
->saved_auxv
;
4394 elf_addr_t orig_auxv
= auxv
;
4396 int len
= ts
->info
->auxv_len
;
4399 * Auxiliary vector is stored in target process stack. It contains
4400 * {type, value} pairs that we need to dump into note. This is not
4401 * strictly necessary but we do it here for sake of completeness.
4404 /* read in whole auxv vector and copy it to memelfnote */
4405 ptr
= lock_user(VERIFY_READ
, orig_auxv
, len
, 0);
4407 fill_note(note
, "CORE", NT_AUXV
, len
, ptr
);
4408 unlock_user(ptr
, auxv
, len
);
4413 * Constructs name of coredump file. We have following convention
4415 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4417 * Returns the filename
4419 static char *core_dump_filename(const TaskState
*ts
)
4421 g_autoptr(GDateTime
) now
= g_date_time_new_now_local();
4422 g_autofree
char *nowstr
= g_date_time_format(now
, "%Y%m%d-%H%M%S");
4423 g_autofree
char *base_filename
= g_path_get_basename(ts
->bprm
->filename
);
4425 return g_strdup_printf("qemu_%s_%s_%d.core",
4426 base_filename
, nowstr
, (int)getpid());
4429 static int dump_write(int fd
, const void *ptr
, size_t size
)
4431 const char *bufp
= (const char *)ptr
;
4432 ssize_t bytes_written
, bytes_left
;
4433 struct rlimit dumpsize
;
4437 getrlimit(RLIMIT_CORE
, &dumpsize
);
4438 if ((pos
= lseek(fd
, 0, SEEK_CUR
))==-1) {
4439 if (errno
== ESPIPE
) { /* not a seekable stream */
4445 if (dumpsize
.rlim_cur
<= pos
) {
4447 } else if (dumpsize
.rlim_cur
== RLIM_INFINITY
) {
4450 size_t limit_left
=dumpsize
.rlim_cur
- pos
;
4451 bytes_left
= limit_left
>= size
? size
: limit_left
;
4456 * In normal conditions, single write(2) should do but
4457 * in case of socket etc. this mechanism is more portable.
4460 bytes_written
= write(fd
, bufp
, bytes_left
);
4461 if (bytes_written
< 0) {
4465 } else if (bytes_written
== 0) { /* eof */
4468 bufp
+= bytes_written
;
4469 bytes_left
-= bytes_written
;
4470 } while (bytes_left
> 0);
4475 static int write_note(struct memelfnote
*men
, int fd
)
4479 en
.n_namesz
= men
->namesz
;
4480 en
.n_type
= men
->type
;
4481 en
.n_descsz
= men
->datasz
;
4485 if (dump_write(fd
, &en
, sizeof(en
)) != 0)
4487 if (dump_write(fd
, men
->name
, men
->namesz_rounded
) != 0)
4489 if (dump_write(fd
, men
->data
, men
->datasz_rounded
) != 0)
4495 static void fill_thread_info(struct elf_note_info
*info
, const CPUArchState
*env
)
4497 CPUState
*cpu
= env_cpu((CPUArchState
*)env
);
4498 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
4499 struct elf_thread_status
*ets
;
4501 ets
= g_malloc0(sizeof (*ets
));
4502 ets
->num_notes
= 1; /* only prstatus is dumped */
4503 fill_prstatus(&ets
->prstatus
, ts
, 0);
4504 elf_core_copy_regs(&ets
->prstatus
.pr_reg
, env
);
4505 fill_note(&ets
->notes
[0], "CORE", NT_PRSTATUS
, sizeof (ets
->prstatus
),
4508 QTAILQ_INSERT_TAIL(&info
->thread_list
, ets
, ets_link
);
4510 info
->notes_size
+= note_size(&ets
->notes
[0]);
4513 static void init_note_info(struct elf_note_info
*info
)
4515 /* Initialize the elf_note_info structure so that it is at
4516 * least safe to call free_note_info() on it. Must be
4517 * called before calling fill_note_info().
4519 memset(info
, 0, sizeof (*info
));
4520 QTAILQ_INIT(&info
->thread_list
);
4523 static int fill_note_info(struct elf_note_info
*info
,
4524 long signr
, const CPUArchState
*env
)
4527 CPUState
*cpu
= env_cpu((CPUArchState
*)env
);
4528 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
4531 info
->notes
= g_new0(struct memelfnote
, NUMNOTES
);
4532 if (info
->notes
== NULL
)
4534 info
->prstatus
= g_malloc0(sizeof (*info
->prstatus
));
4535 if (info
->prstatus
== NULL
)
4537 info
->psinfo
= g_malloc0(sizeof (*info
->psinfo
));
4538 if (info
->prstatus
== NULL
)
4542 * First fill in status (and registers) of current thread
4543 * including process info & aux vector.
4545 fill_prstatus(info
->prstatus
, ts
, signr
);
4546 elf_core_copy_regs(&info
->prstatus
->pr_reg
, env
);
4547 fill_note(&info
->notes
[0], "CORE", NT_PRSTATUS
,
4548 sizeof (*info
->prstatus
), info
->prstatus
);
4549 fill_psinfo(info
->psinfo
, ts
);
4550 fill_note(&info
->notes
[1], "CORE", NT_PRPSINFO
,
4551 sizeof (*info
->psinfo
), info
->psinfo
);
4552 fill_auxv_note(&info
->notes
[2], ts
);
4555 info
->notes_size
= 0;
4556 for (i
= 0; i
< info
->numnote
; i
++)
4557 info
->notes_size
+= note_size(&info
->notes
[i
]);
4559 /* read and fill status of all threads */
4560 WITH_QEMU_LOCK_GUARD(&qemu_cpu_list_lock
) {
4562 if (cpu
== thread_cpu
) {
4565 fill_thread_info(info
, cpu_env(cpu
));
4572 static void free_note_info(struct elf_note_info
*info
)
4574 struct elf_thread_status
*ets
;
4576 while (!QTAILQ_EMPTY(&info
->thread_list
)) {
4577 ets
= QTAILQ_FIRST(&info
->thread_list
);
4578 QTAILQ_REMOVE(&info
->thread_list
, ets
, ets_link
);
4582 g_free(info
->prstatus
);
4583 g_free(info
->psinfo
);
4584 g_free(info
->notes
);
4587 static int write_note_info(struct elf_note_info
*info
, int fd
)
4589 struct elf_thread_status
*ets
;
4592 /* write prstatus, psinfo and auxv for current thread */
4593 for (i
= 0; i
< info
->numnote
; i
++)
4594 if ((error
= write_note(&info
->notes
[i
], fd
)) != 0)
4597 /* write prstatus for each thread */
4598 QTAILQ_FOREACH(ets
, &info
->thread_list
, ets_link
) {
4599 if ((error
= write_note(&ets
->notes
[0], fd
)) != 0)
4607 * Write out ELF coredump.
4609 * See documentation of ELF object file format in:
4610 * http://www.caldera.com/developers/devspecs/gabi41.pdf
4612 * Coredump format in linux is following:
4614 * 0 +----------------------+ \
4615 * | ELF header | ET_CORE |
4616 * +----------------------+ |
4617 * | ELF program headers | |--- headers
4618 * | - NOTE section | |
4619 * | - PT_LOAD sections | |
4620 * +----------------------+ /
4625 * +----------------------+ <-- aligned to target page
4626 * | Process memory dump |
4631 * +----------------------+
4633 * NT_PRSTATUS -> struct elf_prstatus (per thread)
4634 * NT_PRSINFO -> struct elf_prpsinfo
4635 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4637 * Format follows System V format as close as possible. Current
4638 * version limitations are as follows:
4639 * - no floating point registers are dumped
4641 * Function returns 0 in case of success, negative errno otherwise.
4643 * TODO: make this work also during runtime: it should be
4644 * possible to force coredump from running process and then
4645 * continue processing. For example qemu could set up SIGUSR2
4646 * handler (provided that target process haven't registered
4647 * handler for that) that does the dump when signal is received.
4649 static int elf_core_dump(int signr
, const CPUArchState
*env
)
4651 const CPUState
*cpu
= env_cpu((CPUArchState
*)env
);
4652 const TaskState
*ts
= (const TaskState
*)cpu
->opaque
;
4653 struct vm_area_struct
*vma
= NULL
;
4654 g_autofree
char *corefile
= NULL
;
4655 struct elf_note_info info
;
4657 struct elf_phdr phdr
;
4658 struct rlimit dumpsize
;
4659 struct mm_struct
*mm
= NULL
;
4660 off_t offset
= 0, data_offset
= 0;
4664 init_note_info(&info
);
4667 getrlimit(RLIMIT_CORE
, &dumpsize
);
4668 if (dumpsize
.rlim_cur
== 0)
4671 corefile
= core_dump_filename(ts
);
4673 if ((fd
= open(corefile
, O_WRONLY
| O_CREAT
,
4674 S_IRUSR
|S_IWUSR
|S_IRGRP
|S_IROTH
)) < 0)
4678 * Walk through target process memory mappings and
4679 * set up structure containing this information. After
4680 * this point vma_xxx functions can be used.
4682 if ((mm
= vma_init()) == NULL
)
4685 walk_memory_regions(mm
, vma_walker
);
4686 segs
= vma_get_mapping_count(mm
);
4689 * Construct valid coredump ELF header. We also
4690 * add one more segment for notes.
4692 fill_elf_header(&elf
, segs
+ 1, ELF_MACHINE
, 0);
4693 if (dump_write(fd
, &elf
, sizeof (elf
)) != 0)
4696 /* fill in the in-memory version of notes */
4697 if (fill_note_info(&info
, signr
, env
) < 0)
4700 offset
+= sizeof (elf
); /* elf header */
4701 offset
+= (segs
+ 1) * sizeof (struct elf_phdr
); /* program headers */
4703 /* write out notes program header */
4704 fill_elf_note_phdr(&phdr
, info
.notes_size
, offset
);
4706 offset
+= info
.notes_size
;
4707 if (dump_write(fd
, &phdr
, sizeof (phdr
)) != 0)
4711 * ELF specification wants data to start at page boundary so
4714 data_offset
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
4717 * Write program headers for memory regions mapped in
4718 * the target process.
4720 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
4721 (void) memset(&phdr
, 0, sizeof (phdr
));
4723 phdr
.p_type
= PT_LOAD
;
4724 phdr
.p_offset
= offset
;
4725 phdr
.p_vaddr
= vma
->vma_start
;
4727 phdr
.p_filesz
= vma_dump_size(vma
);
4728 offset
+= phdr
.p_filesz
;
4729 phdr
.p_memsz
= vma
->vma_end
- vma
->vma_start
;
4730 phdr
.p_flags
= vma
->vma_flags
& PROT_READ
? PF_R
: 0;
4731 if (vma
->vma_flags
& PROT_WRITE
)
4732 phdr
.p_flags
|= PF_W
;
4733 if (vma
->vma_flags
& PROT_EXEC
)
4734 phdr
.p_flags
|= PF_X
;
4735 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
4737 bswap_phdr(&phdr
, 1);
4738 if (dump_write(fd
, &phdr
, sizeof(phdr
)) != 0) {
4744 * Next we write notes just after program headers. No
4745 * alignment needed here.
4747 if (write_note_info(&info
, fd
) < 0)
4750 /* align data to page boundary */
4751 if (lseek(fd
, data_offset
, SEEK_SET
) != data_offset
)
4755 * Finally we can dump process memory into corefile as well.
4757 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
4761 end
= vma
->vma_start
+ vma_dump_size(vma
);
4763 for (addr
= vma
->vma_start
; addr
< end
;
4764 addr
+= TARGET_PAGE_SIZE
) {
4765 char page
[TARGET_PAGE_SIZE
];
4769 * Read in page from target process memory and
4770 * write it to coredump file.
4772 error
= copy_from_user(page
, addr
, sizeof (page
));
4774 (void) fprintf(stderr
, "unable to dump " TARGET_ABI_FMT_lx
"\n",
4779 if (dump_write(fd
, page
, TARGET_PAGE_SIZE
) < 0)
4785 free_note_info(&info
);
4794 #endif /* USE_ELF_CORE_DUMP */
4796 void do_init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
4798 init_thread(regs
, infop
);