migration/postcopy: not necessary to do discard when canonicalizing bitmap
[qemu/ar7.git] / migration / ram.c
blob57d1a4627ee292bfa1b628fcdc9bc827f5a20bd7
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
29 #include "qemu/osdep.h"
30 #include "cpu.h"
31 #include <zlib.h>
32 #include "qemu/cutils.h"
33 #include "qemu/bitops.h"
34 #include "qemu/bitmap.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/pmem.h"
37 #include "xbzrle.h"
38 #include "ram.h"
39 #include "migration.h"
40 #include "socket.h"
41 #include "migration/register.h"
42 #include "migration/misc.h"
43 #include "qemu-file.h"
44 #include "postcopy-ram.h"
45 #include "page_cache.h"
46 #include "qemu/error-report.h"
47 #include "qapi/error.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qmp/qerror.h"
50 #include "trace.h"
51 #include "exec/ram_addr.h"
52 #include "exec/target_page.h"
53 #include "qemu/rcu_queue.h"
54 #include "migration/colo.h"
55 #include "block.h"
56 #include "sysemu/sysemu.h"
57 #include "qemu/uuid.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
61 /***********************************************************/
62 /* ram save/restore */
64 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
65 * worked for pages that where filled with the same char. We switched
66 * it to only search for the zero value. And to avoid confusion with
67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
70 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
71 #define RAM_SAVE_FLAG_ZERO 0x02
72 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
73 #define RAM_SAVE_FLAG_PAGE 0x08
74 #define RAM_SAVE_FLAG_EOS 0x10
75 #define RAM_SAVE_FLAG_CONTINUE 0x20
76 #define RAM_SAVE_FLAG_XBZRLE 0x40
77 /* 0x80 is reserved in migration.h start with 0x100 next */
78 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
80 static inline bool is_zero_range(uint8_t *p, uint64_t size)
82 return buffer_is_zero(p, size);
85 XBZRLECacheStats xbzrle_counters;
87 /* struct contains XBZRLE cache and a static page
88 used by the compression */
89 static struct {
90 /* buffer used for XBZRLE encoding */
91 uint8_t *encoded_buf;
92 /* buffer for storing page content */
93 uint8_t *current_buf;
94 /* Cache for XBZRLE, Protected by lock. */
95 PageCache *cache;
96 QemuMutex lock;
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
101 } XBZRLE;
103 static void XBZRLE_cache_lock(void)
105 if (migrate_use_xbzrle())
106 qemu_mutex_lock(&XBZRLE.lock);
109 static void XBZRLE_cache_unlock(void)
111 if (migrate_use_xbzrle())
112 qemu_mutex_unlock(&XBZRLE.lock);
116 * xbzrle_cache_resize: resize the xbzrle cache
118 * This function is called from qmp_migrate_set_cache_size in main
119 * thread, possibly while a migration is in progress. A running
120 * migration may be using the cache and might finish during this call,
121 * hence changes to the cache are protected by XBZRLE.lock().
123 * Returns 0 for success or -1 for error
125 * @new_size: new cache size
126 * @errp: set *errp if the check failed, with reason
128 int xbzrle_cache_resize(int64_t new_size, Error **errp)
130 PageCache *new_cache;
131 int64_t ret = 0;
133 /* Check for truncation */
134 if (new_size != (size_t)new_size) {
135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
136 "exceeding address space");
137 return -1;
140 if (new_size == migrate_xbzrle_cache_size()) {
141 /* nothing to do */
142 return 0;
145 XBZRLE_cache_lock();
147 if (XBZRLE.cache != NULL) {
148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
149 if (!new_cache) {
150 ret = -1;
151 goto out;
154 cache_fini(XBZRLE.cache);
155 XBZRLE.cache = new_cache;
157 out:
158 XBZRLE_cache_unlock();
159 return ret;
162 static bool ramblock_is_ignored(RAMBlock *block)
164 return !qemu_ram_is_migratable(block) ||
165 (migrate_ignore_shared() && qemu_ram_is_shared(block));
168 /* Should be holding either ram_list.mutex, or the RCU lock. */
169 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
170 INTERNAL_RAMBLOCK_FOREACH(block) \
171 if (ramblock_is_ignored(block)) {} else
173 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \
174 INTERNAL_RAMBLOCK_FOREACH(block) \
175 if (!qemu_ram_is_migratable(block)) {} else
177 #undef RAMBLOCK_FOREACH
179 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
181 RAMBlock *block;
182 int ret = 0;
184 rcu_read_lock();
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
187 if (ret) {
188 break;
191 rcu_read_unlock();
192 return ret;
195 static void ramblock_recv_map_init(void)
197 RAMBlock *rb;
199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
200 assert(!rb->receivedmap);
201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
205 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
208 rb->receivedmap);
211 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
216 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
221 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
222 size_t nr)
224 bitmap_set_atomic(rb->receivedmap,
225 ramblock_recv_bitmap_offset(host_addr, rb),
226 nr);
229 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
234 * Returns >0 if success with sent bytes, or <0 if error.
236 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
237 const char *block_name)
239 RAMBlock *block = qemu_ram_block_by_name(block_name);
240 unsigned long *le_bitmap, nbits;
241 uint64_t size;
243 if (!block) {
244 error_report("%s: invalid block name: %s", __func__, block_name);
245 return -1;
248 nbits = block->used_length >> TARGET_PAGE_BITS;
251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
252 * machines we may need 4 more bytes for padding (see below
253 * comment). So extend it a bit before hand.
255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
258 * Always use little endian when sending the bitmap. This is
259 * required that when source and destination VMs are not using the
260 * same endianess. (Note: big endian won't work.)
262 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
264 /* Size of the bitmap, in bytes */
265 size = DIV_ROUND_UP(nbits, 8);
268 * size is always aligned to 8 bytes for 64bit machines, but it
269 * may not be true for 32bit machines. We need this padding to
270 * make sure the migration can survive even between 32bit and
271 * 64bit machines.
273 size = ROUND_UP(size, 8);
275 qemu_put_be64(file, size);
276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
278 * Mark as an end, in case the middle part is screwed up due to
279 * some "misterious" reason.
281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
282 qemu_fflush(file);
284 g_free(le_bitmap);
286 if (qemu_file_get_error(file)) {
287 return qemu_file_get_error(file);
290 return size + sizeof(size);
294 * An outstanding page request, on the source, having been received
295 * and queued
297 struct RAMSrcPageRequest {
298 RAMBlock *rb;
299 hwaddr offset;
300 hwaddr len;
302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
305 /* State of RAM for migration */
306 struct RAMState {
307 /* QEMUFile used for this migration */
308 QEMUFile *f;
309 /* Last block that we have visited searching for dirty pages */
310 RAMBlock *last_seen_block;
311 /* Last block from where we have sent data */
312 RAMBlock *last_sent_block;
313 /* Last dirty target page we have sent */
314 ram_addr_t last_page;
315 /* last ram version we have seen */
316 uint32_t last_version;
317 /* We are in the first round */
318 bool ram_bulk_stage;
319 /* The free page optimization is enabled */
320 bool fpo_enabled;
321 /* How many times we have dirty too many pages */
322 int dirty_rate_high_cnt;
323 /* these variables are used for bitmap sync */
324 /* last time we did a full bitmap_sync */
325 int64_t time_last_bitmap_sync;
326 /* bytes transferred at start_time */
327 uint64_t bytes_xfer_prev;
328 /* number of dirty pages since start_time */
329 uint64_t num_dirty_pages_period;
330 /* xbzrle misses since the beginning of the period */
331 uint64_t xbzrle_cache_miss_prev;
333 /* compression statistics since the beginning of the period */
334 /* amount of count that no free thread to compress data */
335 uint64_t compress_thread_busy_prev;
336 /* amount bytes after compression */
337 uint64_t compressed_size_prev;
338 /* amount of compressed pages */
339 uint64_t compress_pages_prev;
341 /* total handled target pages at the beginning of period */
342 uint64_t target_page_count_prev;
343 /* total handled target pages since start */
344 uint64_t target_page_count;
345 /* number of dirty bits in the bitmap */
346 uint64_t migration_dirty_pages;
347 /* Protects modification of the bitmap and migration dirty pages */
348 QemuMutex bitmap_mutex;
349 /* The RAMBlock used in the last src_page_requests */
350 RAMBlock *last_req_rb;
351 /* Queue of outstanding page requests from the destination */
352 QemuMutex src_page_req_mutex;
353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
355 typedef struct RAMState RAMState;
357 static RAMState *ram_state;
359 static NotifierWithReturnList precopy_notifier_list;
361 void precopy_infrastructure_init(void)
363 notifier_with_return_list_init(&precopy_notifier_list);
366 void precopy_add_notifier(NotifierWithReturn *n)
368 notifier_with_return_list_add(&precopy_notifier_list, n);
371 void precopy_remove_notifier(NotifierWithReturn *n)
373 notifier_with_return_remove(n);
376 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
378 PrecopyNotifyData pnd;
379 pnd.reason = reason;
380 pnd.errp = errp;
382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
385 void precopy_enable_free_page_optimization(void)
387 if (!ram_state) {
388 return;
391 ram_state->fpo_enabled = true;
394 uint64_t ram_bytes_remaining(void)
396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
400 MigrationStats ram_counters;
402 /* used by the search for pages to send */
403 struct PageSearchStatus {
404 /* Current block being searched */
405 RAMBlock *block;
406 /* Current page to search from */
407 unsigned long page;
408 /* Set once we wrap around */
409 bool complete_round;
411 typedef struct PageSearchStatus PageSearchStatus;
413 CompressionStats compression_counters;
415 struct CompressParam {
416 bool done;
417 bool quit;
418 bool zero_page;
419 QEMUFile *file;
420 QemuMutex mutex;
421 QemuCond cond;
422 RAMBlock *block;
423 ram_addr_t offset;
425 /* internally used fields */
426 z_stream stream;
427 uint8_t *originbuf;
429 typedef struct CompressParam CompressParam;
431 struct DecompressParam {
432 bool done;
433 bool quit;
434 QemuMutex mutex;
435 QemuCond cond;
436 void *des;
437 uint8_t *compbuf;
438 int len;
439 z_stream stream;
441 typedef struct DecompressParam DecompressParam;
443 static CompressParam *comp_param;
444 static QemuThread *compress_threads;
445 /* comp_done_cond is used to wake up the migration thread when
446 * one of the compression threads has finished the compression.
447 * comp_done_lock is used to co-work with comp_done_cond.
449 static QemuMutex comp_done_lock;
450 static QemuCond comp_done_cond;
451 /* The empty QEMUFileOps will be used by file in CompressParam */
452 static const QEMUFileOps empty_ops = { };
454 static QEMUFile *decomp_file;
455 static DecompressParam *decomp_param;
456 static QemuThread *decompress_threads;
457 static QemuMutex decomp_done_lock;
458 static QemuCond decomp_done_cond;
460 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
461 ram_addr_t offset, uint8_t *source_buf);
463 static void *do_data_compress(void *opaque)
465 CompressParam *param = opaque;
466 RAMBlock *block;
467 ram_addr_t offset;
468 bool zero_page;
470 qemu_mutex_lock(&param->mutex);
471 while (!param->quit) {
472 if (param->block) {
473 block = param->block;
474 offset = param->offset;
475 param->block = NULL;
476 qemu_mutex_unlock(&param->mutex);
478 zero_page = do_compress_ram_page(param->file, &param->stream,
479 block, offset, param->originbuf);
481 qemu_mutex_lock(&comp_done_lock);
482 param->done = true;
483 param->zero_page = zero_page;
484 qemu_cond_signal(&comp_done_cond);
485 qemu_mutex_unlock(&comp_done_lock);
487 qemu_mutex_lock(&param->mutex);
488 } else {
489 qemu_cond_wait(&param->cond, &param->mutex);
492 qemu_mutex_unlock(&param->mutex);
494 return NULL;
497 static void compress_threads_save_cleanup(void)
499 int i, thread_count;
501 if (!migrate_use_compression() || !comp_param) {
502 return;
505 thread_count = migrate_compress_threads();
506 for (i = 0; i < thread_count; i++) {
508 * we use it as a indicator which shows if the thread is
509 * properly init'd or not
511 if (!comp_param[i].file) {
512 break;
515 qemu_mutex_lock(&comp_param[i].mutex);
516 comp_param[i].quit = true;
517 qemu_cond_signal(&comp_param[i].cond);
518 qemu_mutex_unlock(&comp_param[i].mutex);
520 qemu_thread_join(compress_threads + i);
521 qemu_mutex_destroy(&comp_param[i].mutex);
522 qemu_cond_destroy(&comp_param[i].cond);
523 deflateEnd(&comp_param[i].stream);
524 g_free(comp_param[i].originbuf);
525 qemu_fclose(comp_param[i].file);
526 comp_param[i].file = NULL;
528 qemu_mutex_destroy(&comp_done_lock);
529 qemu_cond_destroy(&comp_done_cond);
530 g_free(compress_threads);
531 g_free(comp_param);
532 compress_threads = NULL;
533 comp_param = NULL;
536 static int compress_threads_save_setup(void)
538 int i, thread_count;
540 if (!migrate_use_compression()) {
541 return 0;
543 thread_count = migrate_compress_threads();
544 compress_threads = g_new0(QemuThread, thread_count);
545 comp_param = g_new0(CompressParam, thread_count);
546 qemu_cond_init(&comp_done_cond);
547 qemu_mutex_init(&comp_done_lock);
548 for (i = 0; i < thread_count; i++) {
549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
550 if (!comp_param[i].originbuf) {
551 goto exit;
554 if (deflateInit(&comp_param[i].stream,
555 migrate_compress_level()) != Z_OK) {
556 g_free(comp_param[i].originbuf);
557 goto exit;
560 /* comp_param[i].file is just used as a dummy buffer to save data,
561 * set its ops to empty.
563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
564 comp_param[i].done = true;
565 comp_param[i].quit = false;
566 qemu_mutex_init(&comp_param[i].mutex);
567 qemu_cond_init(&comp_param[i].cond);
568 qemu_thread_create(compress_threads + i, "compress",
569 do_data_compress, comp_param + i,
570 QEMU_THREAD_JOINABLE);
572 return 0;
574 exit:
575 compress_threads_save_cleanup();
576 return -1;
579 /* Multiple fd's */
581 #define MULTIFD_MAGIC 0x11223344U
582 #define MULTIFD_VERSION 1
584 #define MULTIFD_FLAG_SYNC (1 << 0)
586 /* This value needs to be a multiple of qemu_target_page_size() */
587 #define MULTIFD_PACKET_SIZE (512 * 1024)
589 typedef struct {
590 uint32_t magic;
591 uint32_t version;
592 unsigned char uuid[16]; /* QemuUUID */
593 uint8_t id;
594 uint8_t unused1[7]; /* Reserved for future use */
595 uint64_t unused2[4]; /* Reserved for future use */
596 } __attribute__((packed)) MultiFDInit_t;
598 typedef struct {
599 uint32_t magic;
600 uint32_t version;
601 uint32_t flags;
602 /* maximum number of allocated pages */
603 uint32_t pages_alloc;
604 uint32_t pages_used;
605 /* size of the next packet that contains pages */
606 uint32_t next_packet_size;
607 uint64_t packet_num;
608 uint64_t unused[4]; /* Reserved for future use */
609 char ramblock[256];
610 uint64_t offset[];
611 } __attribute__((packed)) MultiFDPacket_t;
613 typedef struct {
614 /* number of used pages */
615 uint32_t used;
616 /* number of allocated pages */
617 uint32_t allocated;
618 /* global number of generated multifd packets */
619 uint64_t packet_num;
620 /* offset of each page */
621 ram_addr_t *offset;
622 /* pointer to each page */
623 struct iovec *iov;
624 RAMBlock *block;
625 } MultiFDPages_t;
627 typedef struct {
628 /* this fields are not changed once the thread is created */
629 /* channel number */
630 uint8_t id;
631 /* channel thread name */
632 char *name;
633 /* channel thread id */
634 QemuThread thread;
635 /* communication channel */
636 QIOChannel *c;
637 /* sem where to wait for more work */
638 QemuSemaphore sem;
639 /* this mutex protects the following parameters */
640 QemuMutex mutex;
641 /* is this channel thread running */
642 bool running;
643 /* should this thread finish */
644 bool quit;
645 /* thread has work to do */
646 int pending_job;
647 /* array of pages to sent */
648 MultiFDPages_t *pages;
649 /* packet allocated len */
650 uint32_t packet_len;
651 /* pointer to the packet */
652 MultiFDPacket_t *packet;
653 /* multifd flags for each packet */
654 uint32_t flags;
655 /* size of the next packet that contains pages */
656 uint32_t next_packet_size;
657 /* global number of generated multifd packets */
658 uint64_t packet_num;
659 /* thread local variables */
660 /* packets sent through this channel */
661 uint64_t num_packets;
662 /* pages sent through this channel */
663 uint64_t num_pages;
664 /* syncs main thread and channels */
665 QemuSemaphore sem_sync;
666 } MultiFDSendParams;
668 typedef struct {
669 /* this fields are not changed once the thread is created */
670 /* channel number */
671 uint8_t id;
672 /* channel thread name */
673 char *name;
674 /* channel thread id */
675 QemuThread thread;
676 /* communication channel */
677 QIOChannel *c;
678 /* this mutex protects the following parameters */
679 QemuMutex mutex;
680 /* is this channel thread running */
681 bool running;
682 /* should this thread finish */
683 bool quit;
684 /* array of pages to receive */
685 MultiFDPages_t *pages;
686 /* packet allocated len */
687 uint32_t packet_len;
688 /* pointer to the packet */
689 MultiFDPacket_t *packet;
690 /* multifd flags for each packet */
691 uint32_t flags;
692 /* global number of generated multifd packets */
693 uint64_t packet_num;
694 /* thread local variables */
695 /* size of the next packet that contains pages */
696 uint32_t next_packet_size;
697 /* packets sent through this channel */
698 uint64_t num_packets;
699 /* pages sent through this channel */
700 uint64_t num_pages;
701 /* syncs main thread and channels */
702 QemuSemaphore sem_sync;
703 } MultiFDRecvParams;
705 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
707 MultiFDInit_t msg;
708 int ret;
710 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
711 msg.version = cpu_to_be32(MULTIFD_VERSION);
712 msg.id = p->id;
713 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
715 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
716 if (ret != 0) {
717 return -1;
719 return 0;
722 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
724 MultiFDInit_t msg;
725 int ret;
727 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
728 if (ret != 0) {
729 return -1;
732 msg.magic = be32_to_cpu(msg.magic);
733 msg.version = be32_to_cpu(msg.version);
735 if (msg.magic != MULTIFD_MAGIC) {
736 error_setg(errp, "multifd: received packet magic %x "
737 "expected %x", msg.magic, MULTIFD_MAGIC);
738 return -1;
741 if (msg.version != MULTIFD_VERSION) {
742 error_setg(errp, "multifd: received packet version %d "
743 "expected %d", msg.version, MULTIFD_VERSION);
744 return -1;
747 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
748 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
749 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
751 error_setg(errp, "multifd: received uuid '%s' and expected "
752 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
753 g_free(uuid);
754 g_free(msg_uuid);
755 return -1;
758 if (msg.id > migrate_multifd_channels()) {
759 error_setg(errp, "multifd: received channel version %d "
760 "expected %d", msg.version, MULTIFD_VERSION);
761 return -1;
764 return msg.id;
767 static MultiFDPages_t *multifd_pages_init(size_t size)
769 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
771 pages->allocated = size;
772 pages->iov = g_new0(struct iovec, size);
773 pages->offset = g_new0(ram_addr_t, size);
775 return pages;
778 static void multifd_pages_clear(MultiFDPages_t *pages)
780 pages->used = 0;
781 pages->allocated = 0;
782 pages->packet_num = 0;
783 pages->block = NULL;
784 g_free(pages->iov);
785 pages->iov = NULL;
786 g_free(pages->offset);
787 pages->offset = NULL;
788 g_free(pages);
791 static void multifd_send_fill_packet(MultiFDSendParams *p)
793 MultiFDPacket_t *packet = p->packet;
794 uint32_t page_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
795 int i;
797 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
798 packet->version = cpu_to_be32(MULTIFD_VERSION);
799 packet->flags = cpu_to_be32(p->flags);
800 packet->pages_alloc = cpu_to_be32(page_max);
801 packet->pages_used = cpu_to_be32(p->pages->used);
802 packet->next_packet_size = cpu_to_be32(p->next_packet_size);
803 packet->packet_num = cpu_to_be64(p->packet_num);
805 if (p->pages->block) {
806 strncpy(packet->ramblock, p->pages->block->idstr, 256);
809 for (i = 0; i < p->pages->used; i++) {
810 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
814 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
816 MultiFDPacket_t *packet = p->packet;
817 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
818 RAMBlock *block;
819 int i;
821 packet->magic = be32_to_cpu(packet->magic);
822 if (packet->magic != MULTIFD_MAGIC) {
823 error_setg(errp, "multifd: received packet "
824 "magic %x and expected magic %x",
825 packet->magic, MULTIFD_MAGIC);
826 return -1;
829 packet->version = be32_to_cpu(packet->version);
830 if (packet->version != MULTIFD_VERSION) {
831 error_setg(errp, "multifd: received packet "
832 "version %d and expected version %d",
833 packet->version, MULTIFD_VERSION);
834 return -1;
837 p->flags = be32_to_cpu(packet->flags);
839 packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
841 * If we recevied a packet that is 100 times bigger than expected
842 * just stop migration. It is a magic number.
844 if (packet->pages_alloc > pages_max * 100) {
845 error_setg(errp, "multifd: received packet "
846 "with size %d and expected a maximum size of %d",
847 packet->pages_alloc, pages_max * 100) ;
848 return -1;
851 * We received a packet that is bigger than expected but inside
852 * reasonable limits (see previous comment). Just reallocate.
854 if (packet->pages_alloc > p->pages->allocated) {
855 multifd_pages_clear(p->pages);
856 p->pages = multifd_pages_init(packet->pages_alloc);
859 p->pages->used = be32_to_cpu(packet->pages_used);
860 if (p->pages->used > packet->pages_alloc) {
861 error_setg(errp, "multifd: received packet "
862 "with %d pages and expected maximum pages are %d",
863 p->pages->used, packet->pages_alloc) ;
864 return -1;
867 p->next_packet_size = be32_to_cpu(packet->next_packet_size);
868 p->packet_num = be64_to_cpu(packet->packet_num);
870 if (p->pages->used) {
871 /* make sure that ramblock is 0 terminated */
872 packet->ramblock[255] = 0;
873 block = qemu_ram_block_by_name(packet->ramblock);
874 if (!block) {
875 error_setg(errp, "multifd: unknown ram block %s",
876 packet->ramblock);
877 return -1;
881 for (i = 0; i < p->pages->used; i++) {
882 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
884 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
885 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
886 " (max " RAM_ADDR_FMT ")",
887 offset, block->max_length);
888 return -1;
890 p->pages->iov[i].iov_base = block->host + offset;
891 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
894 return 0;
897 struct {
898 MultiFDSendParams *params;
899 /* array of pages to sent */
900 MultiFDPages_t *pages;
901 /* global number of generated multifd packets */
902 uint64_t packet_num;
903 /* send channels ready */
904 QemuSemaphore channels_ready;
905 } *multifd_send_state;
908 * How we use multifd_send_state->pages and channel->pages?
910 * We create a pages for each channel, and a main one. Each time that
911 * we need to send a batch of pages we interchange the ones between
912 * multifd_send_state and the channel that is sending it. There are
913 * two reasons for that:
914 * - to not have to do so many mallocs during migration
915 * - to make easier to know what to free at the end of migration
917 * This way we always know who is the owner of each "pages" struct,
918 * and we don't need any locking. It belongs to the migration thread
919 * or to the channel thread. Switching is safe because the migration
920 * thread is using the channel mutex when changing it, and the channel
921 * have to had finish with its own, otherwise pending_job can't be
922 * false.
925 static int multifd_send_pages(RAMState *rs)
927 int i;
928 static int next_channel;
929 MultiFDSendParams *p = NULL; /* make happy gcc */
930 MultiFDPages_t *pages = multifd_send_state->pages;
931 uint64_t transferred;
933 qemu_sem_wait(&multifd_send_state->channels_ready);
934 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
935 p = &multifd_send_state->params[i];
937 qemu_mutex_lock(&p->mutex);
938 if (p->quit) {
939 error_report("%s: channel %d has already quit!", __func__, i);
940 qemu_mutex_unlock(&p->mutex);
941 return -1;
943 if (!p->pending_job) {
944 p->pending_job++;
945 next_channel = (i + 1) % migrate_multifd_channels();
946 break;
948 qemu_mutex_unlock(&p->mutex);
950 p->pages->used = 0;
952 p->packet_num = multifd_send_state->packet_num++;
953 p->pages->block = NULL;
954 multifd_send_state->pages = p->pages;
955 p->pages = pages;
956 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
957 qemu_file_update_transfer(rs->f, transferred);
958 ram_counters.multifd_bytes += transferred;
959 ram_counters.transferred += transferred;;
960 qemu_mutex_unlock(&p->mutex);
961 qemu_sem_post(&p->sem);
963 return 1;
966 static int multifd_queue_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
968 MultiFDPages_t *pages = multifd_send_state->pages;
970 if (!pages->block) {
971 pages->block = block;
974 if (pages->block == block) {
975 pages->offset[pages->used] = offset;
976 pages->iov[pages->used].iov_base = block->host + offset;
977 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
978 pages->used++;
980 if (pages->used < pages->allocated) {
981 return 1;
985 if (multifd_send_pages(rs) < 0) {
986 return -1;
989 if (pages->block != block) {
990 return multifd_queue_page(rs, block, offset);
993 return 1;
996 static void multifd_send_terminate_threads(Error *err)
998 int i;
1000 trace_multifd_send_terminate_threads(err != NULL);
1002 if (err) {
1003 MigrationState *s = migrate_get_current();
1004 migrate_set_error(s, err);
1005 if (s->state == MIGRATION_STATUS_SETUP ||
1006 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
1007 s->state == MIGRATION_STATUS_DEVICE ||
1008 s->state == MIGRATION_STATUS_ACTIVE) {
1009 migrate_set_state(&s->state, s->state,
1010 MIGRATION_STATUS_FAILED);
1014 for (i = 0; i < migrate_multifd_channels(); i++) {
1015 MultiFDSendParams *p = &multifd_send_state->params[i];
1017 qemu_mutex_lock(&p->mutex);
1018 p->quit = true;
1019 qemu_sem_post(&p->sem);
1020 qemu_mutex_unlock(&p->mutex);
1024 void multifd_save_cleanup(void)
1026 int i;
1028 if (!migrate_use_multifd()) {
1029 return;
1031 multifd_send_terminate_threads(NULL);
1032 for (i = 0; i < migrate_multifd_channels(); i++) {
1033 MultiFDSendParams *p = &multifd_send_state->params[i];
1035 if (p->running) {
1036 qemu_thread_join(&p->thread);
1038 socket_send_channel_destroy(p->c);
1039 p->c = NULL;
1040 qemu_mutex_destroy(&p->mutex);
1041 qemu_sem_destroy(&p->sem);
1042 qemu_sem_destroy(&p->sem_sync);
1043 g_free(p->name);
1044 p->name = NULL;
1045 multifd_pages_clear(p->pages);
1046 p->pages = NULL;
1047 p->packet_len = 0;
1048 g_free(p->packet);
1049 p->packet = NULL;
1051 qemu_sem_destroy(&multifd_send_state->channels_ready);
1052 g_free(multifd_send_state->params);
1053 multifd_send_state->params = NULL;
1054 multifd_pages_clear(multifd_send_state->pages);
1055 multifd_send_state->pages = NULL;
1056 g_free(multifd_send_state);
1057 multifd_send_state = NULL;
1060 static void multifd_send_sync_main(RAMState *rs)
1062 int i;
1064 if (!migrate_use_multifd()) {
1065 return;
1067 if (multifd_send_state->pages->used) {
1068 if (multifd_send_pages(rs) < 0) {
1069 error_report("%s: multifd_send_pages fail", __func__);
1070 return;
1073 for (i = 0; i < migrate_multifd_channels(); i++) {
1074 MultiFDSendParams *p = &multifd_send_state->params[i];
1076 trace_multifd_send_sync_main_signal(p->id);
1078 qemu_mutex_lock(&p->mutex);
1080 if (p->quit) {
1081 error_report("%s: channel %d has already quit", __func__, i);
1082 qemu_mutex_unlock(&p->mutex);
1083 return;
1086 p->packet_num = multifd_send_state->packet_num++;
1087 p->flags |= MULTIFD_FLAG_SYNC;
1088 p->pending_job++;
1089 qemu_file_update_transfer(rs->f, p->packet_len);
1090 ram_counters.multifd_bytes += p->packet_len;
1091 ram_counters.transferred += p->packet_len;
1092 qemu_mutex_unlock(&p->mutex);
1093 qemu_sem_post(&p->sem);
1095 for (i = 0; i < migrate_multifd_channels(); i++) {
1096 MultiFDSendParams *p = &multifd_send_state->params[i];
1098 trace_multifd_send_sync_main_wait(p->id);
1099 qemu_sem_wait(&p->sem_sync);
1101 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1104 static void *multifd_send_thread(void *opaque)
1106 MultiFDSendParams *p = opaque;
1107 Error *local_err = NULL;
1108 int ret = 0;
1109 uint32_t flags = 0;
1111 trace_multifd_send_thread_start(p->id);
1112 rcu_register_thread();
1114 if (multifd_send_initial_packet(p, &local_err) < 0) {
1115 ret = -1;
1116 goto out;
1118 /* initial packet */
1119 p->num_packets = 1;
1121 while (true) {
1122 qemu_sem_wait(&p->sem);
1123 qemu_mutex_lock(&p->mutex);
1125 if (p->pending_job) {
1126 uint32_t used = p->pages->used;
1127 uint64_t packet_num = p->packet_num;
1128 flags = p->flags;
1130 p->next_packet_size = used * qemu_target_page_size();
1131 multifd_send_fill_packet(p);
1132 p->flags = 0;
1133 p->num_packets++;
1134 p->num_pages += used;
1135 p->pages->used = 0;
1136 qemu_mutex_unlock(&p->mutex);
1138 trace_multifd_send(p->id, packet_num, used, flags,
1139 p->next_packet_size);
1141 ret = qio_channel_write_all(p->c, (void *)p->packet,
1142 p->packet_len, &local_err);
1143 if (ret != 0) {
1144 break;
1147 if (used) {
1148 ret = qio_channel_writev_all(p->c, p->pages->iov,
1149 used, &local_err);
1150 if (ret != 0) {
1151 break;
1155 qemu_mutex_lock(&p->mutex);
1156 p->pending_job--;
1157 qemu_mutex_unlock(&p->mutex);
1159 if (flags & MULTIFD_FLAG_SYNC) {
1160 qemu_sem_post(&p->sem_sync);
1162 qemu_sem_post(&multifd_send_state->channels_ready);
1163 } else if (p->quit) {
1164 qemu_mutex_unlock(&p->mutex);
1165 break;
1166 } else {
1167 qemu_mutex_unlock(&p->mutex);
1168 /* sometimes there are spurious wakeups */
1172 out:
1173 if (local_err) {
1174 trace_multifd_send_error(p->id);
1175 multifd_send_terminate_threads(local_err);
1179 * Error happen, I will exit, but I can't just leave, tell
1180 * who pay attention to me.
1182 if (ret != 0) {
1183 qemu_sem_post(&p->sem_sync);
1184 qemu_sem_post(&multifd_send_state->channels_ready);
1187 qemu_mutex_lock(&p->mutex);
1188 p->running = false;
1189 qemu_mutex_unlock(&p->mutex);
1191 rcu_unregister_thread();
1192 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1194 return NULL;
1197 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1199 MultiFDSendParams *p = opaque;
1200 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1201 Error *local_err = NULL;
1203 trace_multifd_new_send_channel_async(p->id);
1204 if (qio_task_propagate_error(task, &local_err)) {
1205 migrate_set_error(migrate_get_current(), local_err);
1206 multifd_save_cleanup();
1207 } else {
1208 p->c = QIO_CHANNEL(sioc);
1209 qio_channel_set_delay(p->c, false);
1210 p->running = true;
1211 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1212 QEMU_THREAD_JOINABLE);
1216 int multifd_save_setup(void)
1218 int thread_count;
1219 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1220 uint8_t i;
1222 if (!migrate_use_multifd()) {
1223 return 0;
1225 thread_count = migrate_multifd_channels();
1226 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1227 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
1228 multifd_send_state->pages = multifd_pages_init(page_count);
1229 qemu_sem_init(&multifd_send_state->channels_ready, 0);
1231 for (i = 0; i < thread_count; i++) {
1232 MultiFDSendParams *p = &multifd_send_state->params[i];
1234 qemu_mutex_init(&p->mutex);
1235 qemu_sem_init(&p->sem, 0);
1236 qemu_sem_init(&p->sem_sync, 0);
1237 p->quit = false;
1238 p->pending_job = 0;
1239 p->id = i;
1240 p->pages = multifd_pages_init(page_count);
1241 p->packet_len = sizeof(MultiFDPacket_t)
1242 + sizeof(ram_addr_t) * page_count;
1243 p->packet = g_malloc0(p->packet_len);
1244 p->name = g_strdup_printf("multifdsend_%d", i);
1245 socket_send_channel_create(multifd_new_send_channel_async, p);
1247 return 0;
1250 struct {
1251 MultiFDRecvParams *params;
1252 /* number of created threads */
1253 int count;
1254 /* syncs main thread and channels */
1255 QemuSemaphore sem_sync;
1256 /* global number of generated multifd packets */
1257 uint64_t packet_num;
1258 } *multifd_recv_state;
1260 static void multifd_recv_terminate_threads(Error *err)
1262 int i;
1264 trace_multifd_recv_terminate_threads(err != NULL);
1266 if (err) {
1267 MigrationState *s = migrate_get_current();
1268 migrate_set_error(s, err);
1269 if (s->state == MIGRATION_STATUS_SETUP ||
1270 s->state == MIGRATION_STATUS_ACTIVE) {
1271 migrate_set_state(&s->state, s->state,
1272 MIGRATION_STATUS_FAILED);
1276 for (i = 0; i < migrate_multifd_channels(); i++) {
1277 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1279 qemu_mutex_lock(&p->mutex);
1280 p->quit = true;
1281 /* We could arrive here for two reasons:
1282 - normal quit, i.e. everything went fine, just finished
1283 - error quit: We close the channels so the channel threads
1284 finish the qio_channel_read_all_eof() */
1285 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
1286 qemu_mutex_unlock(&p->mutex);
1290 int multifd_load_cleanup(Error **errp)
1292 int i;
1293 int ret = 0;
1295 if (!migrate_use_multifd()) {
1296 return 0;
1298 multifd_recv_terminate_threads(NULL);
1299 for (i = 0; i < migrate_multifd_channels(); i++) {
1300 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1302 if (p->running) {
1303 p->quit = true;
1305 * multifd_recv_thread may hung at MULTIFD_FLAG_SYNC handle code,
1306 * however try to wakeup it without harm in cleanup phase.
1308 qemu_sem_post(&p->sem_sync);
1309 qemu_thread_join(&p->thread);
1311 object_unref(OBJECT(p->c));
1312 p->c = NULL;
1313 qemu_mutex_destroy(&p->mutex);
1314 qemu_sem_destroy(&p->sem_sync);
1315 g_free(p->name);
1316 p->name = NULL;
1317 multifd_pages_clear(p->pages);
1318 p->pages = NULL;
1319 p->packet_len = 0;
1320 g_free(p->packet);
1321 p->packet = NULL;
1323 qemu_sem_destroy(&multifd_recv_state->sem_sync);
1324 g_free(multifd_recv_state->params);
1325 multifd_recv_state->params = NULL;
1326 g_free(multifd_recv_state);
1327 multifd_recv_state = NULL;
1329 return ret;
1332 static void multifd_recv_sync_main(void)
1334 int i;
1336 if (!migrate_use_multifd()) {
1337 return;
1339 for (i = 0; i < migrate_multifd_channels(); i++) {
1340 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1342 trace_multifd_recv_sync_main_wait(p->id);
1343 qemu_sem_wait(&multifd_recv_state->sem_sync);
1345 for (i = 0; i < migrate_multifd_channels(); i++) {
1346 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1348 qemu_mutex_lock(&p->mutex);
1349 if (multifd_recv_state->packet_num < p->packet_num) {
1350 multifd_recv_state->packet_num = p->packet_num;
1352 qemu_mutex_unlock(&p->mutex);
1353 trace_multifd_recv_sync_main_signal(p->id);
1354 qemu_sem_post(&p->sem_sync);
1356 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1359 static void *multifd_recv_thread(void *opaque)
1361 MultiFDRecvParams *p = opaque;
1362 Error *local_err = NULL;
1363 int ret;
1365 trace_multifd_recv_thread_start(p->id);
1366 rcu_register_thread();
1368 while (true) {
1369 uint32_t used;
1370 uint32_t flags;
1372 if (p->quit) {
1373 break;
1376 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1377 p->packet_len, &local_err);
1378 if (ret == 0) { /* EOF */
1379 break;
1381 if (ret == -1) { /* Error */
1382 break;
1385 qemu_mutex_lock(&p->mutex);
1386 ret = multifd_recv_unfill_packet(p, &local_err);
1387 if (ret) {
1388 qemu_mutex_unlock(&p->mutex);
1389 break;
1392 used = p->pages->used;
1393 flags = p->flags;
1394 trace_multifd_recv(p->id, p->packet_num, used, flags,
1395 p->next_packet_size);
1396 p->num_packets++;
1397 p->num_pages += used;
1398 qemu_mutex_unlock(&p->mutex);
1400 if (used) {
1401 ret = qio_channel_readv_all(p->c, p->pages->iov,
1402 used, &local_err);
1403 if (ret != 0) {
1404 break;
1408 if (flags & MULTIFD_FLAG_SYNC) {
1409 qemu_sem_post(&multifd_recv_state->sem_sync);
1410 qemu_sem_wait(&p->sem_sync);
1414 if (local_err) {
1415 multifd_recv_terminate_threads(local_err);
1417 qemu_mutex_lock(&p->mutex);
1418 p->running = false;
1419 qemu_mutex_unlock(&p->mutex);
1421 rcu_unregister_thread();
1422 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1424 return NULL;
1427 int multifd_load_setup(void)
1429 int thread_count;
1430 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1431 uint8_t i;
1433 if (!migrate_use_multifd()) {
1434 return 0;
1436 thread_count = migrate_multifd_channels();
1437 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1438 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
1439 atomic_set(&multifd_recv_state->count, 0);
1440 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
1442 for (i = 0; i < thread_count; i++) {
1443 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1445 qemu_mutex_init(&p->mutex);
1446 qemu_sem_init(&p->sem_sync, 0);
1447 p->quit = false;
1448 p->id = i;
1449 p->pages = multifd_pages_init(page_count);
1450 p->packet_len = sizeof(MultiFDPacket_t)
1451 + sizeof(ram_addr_t) * page_count;
1452 p->packet = g_malloc0(p->packet_len);
1453 p->name = g_strdup_printf("multifdrecv_%d", i);
1455 return 0;
1458 bool multifd_recv_all_channels_created(void)
1460 int thread_count = migrate_multifd_channels();
1462 if (!migrate_use_multifd()) {
1463 return true;
1466 return thread_count == atomic_read(&multifd_recv_state->count);
1470 * Try to receive all multifd channels to get ready for the migration.
1471 * - Return true and do not set @errp when correctly receving all channels;
1472 * - Return false and do not set @errp when correctly receiving the current one;
1473 * - Return false and set @errp when failing to receive the current channel.
1475 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
1477 MultiFDRecvParams *p;
1478 Error *local_err = NULL;
1479 int id;
1481 id = multifd_recv_initial_packet(ioc, &local_err);
1482 if (id < 0) {
1483 multifd_recv_terminate_threads(local_err);
1484 error_propagate_prepend(errp, local_err,
1485 "failed to receive packet"
1486 " via multifd channel %d: ",
1487 atomic_read(&multifd_recv_state->count));
1488 return false;
1490 trace_multifd_recv_new_channel(id);
1492 p = &multifd_recv_state->params[id];
1493 if (p->c != NULL) {
1494 error_setg(&local_err, "multifd: received id '%d' already setup'",
1495 id);
1496 multifd_recv_terminate_threads(local_err);
1497 error_propagate(errp, local_err);
1498 return false;
1500 p->c = ioc;
1501 object_ref(OBJECT(ioc));
1502 /* initial packet */
1503 p->num_packets = 1;
1505 p->running = true;
1506 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1507 QEMU_THREAD_JOINABLE);
1508 atomic_inc(&multifd_recv_state->count);
1509 return atomic_read(&multifd_recv_state->count) ==
1510 migrate_multifd_channels();
1514 * save_page_header: write page header to wire
1516 * If this is the 1st block, it also writes the block identification
1518 * Returns the number of bytes written
1520 * @f: QEMUFile where to send the data
1521 * @block: block that contains the page we want to send
1522 * @offset: offset inside the block for the page
1523 * in the lower bits, it contains flags
1525 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1526 ram_addr_t offset)
1528 size_t size, len;
1530 if (block == rs->last_sent_block) {
1531 offset |= RAM_SAVE_FLAG_CONTINUE;
1533 qemu_put_be64(f, offset);
1534 size = 8;
1536 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
1537 len = strlen(block->idstr);
1538 qemu_put_byte(f, len);
1539 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
1540 size += 1 + len;
1541 rs->last_sent_block = block;
1543 return size;
1547 * mig_throttle_guest_down: throotle down the guest
1549 * Reduce amount of guest cpu execution to hopefully slow down memory
1550 * writes. If guest dirty memory rate is reduced below the rate at
1551 * which we can transfer pages to the destination then we should be
1552 * able to complete migration. Some workloads dirty memory way too
1553 * fast and will not effectively converge, even with auto-converge.
1555 static void mig_throttle_guest_down(void)
1557 MigrationState *s = migrate_get_current();
1558 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1559 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
1560 int pct_max = s->parameters.max_cpu_throttle;
1562 /* We have not started throttling yet. Let's start it. */
1563 if (!cpu_throttle_active()) {
1564 cpu_throttle_set(pct_initial);
1565 } else {
1566 /* Throttling already on, just increase the rate */
1567 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1568 pct_max));
1573 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1575 * @rs: current RAM state
1576 * @current_addr: address for the zero page
1578 * Update the xbzrle cache to reflect a page that's been sent as all 0.
1579 * The important thing is that a stale (not-yet-0'd) page be replaced
1580 * by the new data.
1581 * As a bonus, if the page wasn't in the cache it gets added so that
1582 * when a small write is made into the 0'd page it gets XBZRLE sent.
1584 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
1586 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
1587 return;
1590 /* We don't care if this fails to allocate a new cache page
1591 * as long as it updated an old one */
1592 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
1593 ram_counters.dirty_sync_count);
1596 #define ENCODING_FLAG_XBZRLE 0x1
1599 * save_xbzrle_page: compress and send current page
1601 * Returns: 1 means that we wrote the page
1602 * 0 means that page is identical to the one already sent
1603 * -1 means that xbzrle would be longer than normal
1605 * @rs: current RAM state
1606 * @current_data: pointer to the address of the page contents
1607 * @current_addr: addr of the page
1608 * @block: block that contains the page we want to send
1609 * @offset: offset inside the block for the page
1610 * @last_stage: if we are at the completion stage
1612 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
1613 ram_addr_t current_addr, RAMBlock *block,
1614 ram_addr_t offset, bool last_stage)
1616 int encoded_len = 0, bytes_xbzrle;
1617 uint8_t *prev_cached_page;
1619 if (!cache_is_cached(XBZRLE.cache, current_addr,
1620 ram_counters.dirty_sync_count)) {
1621 xbzrle_counters.cache_miss++;
1622 if (!last_stage) {
1623 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
1624 ram_counters.dirty_sync_count) == -1) {
1625 return -1;
1626 } else {
1627 /* update *current_data when the page has been
1628 inserted into cache */
1629 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1632 return -1;
1635 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1637 /* save current buffer into memory */
1638 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1640 /* XBZRLE encoding (if there is no overflow) */
1641 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1642 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1643 TARGET_PAGE_SIZE);
1646 * Update the cache contents, so that it corresponds to the data
1647 * sent, in all cases except where we skip the page.
1649 if (!last_stage && encoded_len != 0) {
1650 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1652 * In the case where we couldn't compress, ensure that the caller
1653 * sends the data from the cache, since the guest might have
1654 * changed the RAM since we copied it.
1656 *current_data = prev_cached_page;
1659 if (encoded_len == 0) {
1660 trace_save_xbzrle_page_skipping();
1661 return 0;
1662 } else if (encoded_len == -1) {
1663 trace_save_xbzrle_page_overflow();
1664 xbzrle_counters.overflow++;
1665 return -1;
1668 /* Send XBZRLE based compressed page */
1669 bytes_xbzrle = save_page_header(rs, rs->f, block,
1670 offset | RAM_SAVE_FLAG_XBZRLE);
1671 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1672 qemu_put_be16(rs->f, encoded_len);
1673 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
1674 bytes_xbzrle += encoded_len + 1 + 2;
1675 xbzrle_counters.pages++;
1676 xbzrle_counters.bytes += bytes_xbzrle;
1677 ram_counters.transferred += bytes_xbzrle;
1679 return 1;
1683 * migration_bitmap_find_dirty: find the next dirty page from start
1685 * Returns the page offset within memory region of the start of a dirty page
1687 * @rs: current RAM state
1688 * @rb: RAMBlock where to search for dirty pages
1689 * @start: page where we start the search
1691 static inline
1692 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
1693 unsigned long start)
1695 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1696 unsigned long *bitmap = rb->bmap;
1697 unsigned long next;
1699 if (ramblock_is_ignored(rb)) {
1700 return size;
1704 * When the free page optimization is enabled, we need to check the bitmap
1705 * to send the non-free pages rather than all the pages in the bulk stage.
1707 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
1708 next = start + 1;
1709 } else {
1710 next = find_next_bit(bitmap, size, start);
1713 return next;
1716 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
1717 RAMBlock *rb,
1718 unsigned long page)
1720 bool ret;
1722 qemu_mutex_lock(&rs->bitmap_mutex);
1725 * Clear dirty bitmap if needed. This _must_ be called before we
1726 * send any of the page in the chunk because we need to make sure
1727 * we can capture further page content changes when we sync dirty
1728 * log the next time. So as long as we are going to send any of
1729 * the page in the chunk we clear the remote dirty bitmap for all.
1730 * Clearing it earlier won't be a problem, but too late will.
1732 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) {
1733 uint8_t shift = rb->clear_bmap_shift;
1734 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift);
1735 hwaddr start = (page << TARGET_PAGE_BITS) & (-size);
1738 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
1739 * can make things easier sometimes since then start address
1740 * of the small chunk will always be 64 pages aligned so the
1741 * bitmap will always be aligned to unsigned long. We should
1742 * even be able to remove this restriction but I'm simply
1743 * keeping it.
1745 assert(shift >= 6);
1746 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
1747 memory_region_clear_dirty_bitmap(rb->mr, start, size);
1750 ret = test_and_clear_bit(page, rb->bmap);
1752 if (ret) {
1753 rs->migration_dirty_pages--;
1755 qemu_mutex_unlock(&rs->bitmap_mutex);
1757 return ret;
1760 /* Called with RCU critical section */
1761 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
1763 rs->migration_dirty_pages +=
1764 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length,
1765 &rs->num_dirty_pages_period);
1769 * ram_pagesize_summary: calculate all the pagesizes of a VM
1771 * Returns a summary bitmap of the page sizes of all RAMBlocks
1773 * For VMs with just normal pages this is equivalent to the host page
1774 * size. If it's got some huge pages then it's the OR of all the
1775 * different page sizes.
1777 uint64_t ram_pagesize_summary(void)
1779 RAMBlock *block;
1780 uint64_t summary = 0;
1782 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1783 summary |= block->page_size;
1786 return summary;
1789 uint64_t ram_get_total_transferred_pages(void)
1791 return ram_counters.normal + ram_counters.duplicate +
1792 compression_counters.pages + xbzrle_counters.pages;
1795 static void migration_update_rates(RAMState *rs, int64_t end_time)
1797 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
1798 double compressed_size;
1800 /* calculate period counters */
1801 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1802 / (end_time - rs->time_last_bitmap_sync);
1804 if (!page_count) {
1805 return;
1808 if (migrate_use_xbzrle()) {
1809 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1810 rs->xbzrle_cache_miss_prev) / page_count;
1811 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1814 if (migrate_use_compression()) {
1815 compression_counters.busy_rate = (double)(compression_counters.busy -
1816 rs->compress_thread_busy_prev) / page_count;
1817 rs->compress_thread_busy_prev = compression_counters.busy;
1819 compressed_size = compression_counters.compressed_size -
1820 rs->compressed_size_prev;
1821 if (compressed_size) {
1822 double uncompressed_size = (compression_counters.pages -
1823 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1825 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1826 compression_counters.compression_rate =
1827 uncompressed_size / compressed_size;
1829 rs->compress_pages_prev = compression_counters.pages;
1830 rs->compressed_size_prev = compression_counters.compressed_size;
1835 static void migration_bitmap_sync(RAMState *rs)
1837 RAMBlock *block;
1838 int64_t end_time;
1839 uint64_t bytes_xfer_now;
1841 ram_counters.dirty_sync_count++;
1843 if (!rs->time_last_bitmap_sync) {
1844 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1847 trace_migration_bitmap_sync_start();
1848 memory_global_dirty_log_sync();
1850 qemu_mutex_lock(&rs->bitmap_mutex);
1851 rcu_read_lock();
1852 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1853 ramblock_sync_dirty_bitmap(rs, block);
1855 ram_counters.remaining = ram_bytes_remaining();
1856 rcu_read_unlock();
1857 qemu_mutex_unlock(&rs->bitmap_mutex);
1859 memory_global_after_dirty_log_sync();
1860 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1862 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1864 /* more than 1 second = 1000 millisecons */
1865 if (end_time > rs->time_last_bitmap_sync + 1000) {
1866 bytes_xfer_now = ram_counters.transferred;
1868 /* During block migration the auto-converge logic incorrectly detects
1869 * that ram migration makes no progress. Avoid this by disabling the
1870 * throttling logic during the bulk phase of block migration. */
1871 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1872 /* The following detection logic can be refined later. For now:
1873 Check to see if the dirtied bytes is 50% more than the approx.
1874 amount of bytes that just got transferred since the last time we
1875 were in this routine. If that happens twice, start or increase
1876 throttling */
1878 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
1879 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
1880 (++rs->dirty_rate_high_cnt >= 2)) {
1881 trace_migration_throttle();
1882 rs->dirty_rate_high_cnt = 0;
1883 mig_throttle_guest_down();
1887 migration_update_rates(rs, end_time);
1889 rs->target_page_count_prev = rs->target_page_count;
1891 /* reset period counters */
1892 rs->time_last_bitmap_sync = end_time;
1893 rs->num_dirty_pages_period = 0;
1894 rs->bytes_xfer_prev = bytes_xfer_now;
1896 if (migrate_use_events()) {
1897 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
1901 static void migration_bitmap_sync_precopy(RAMState *rs)
1903 Error *local_err = NULL;
1906 * The current notifier usage is just an optimization to migration, so we
1907 * don't stop the normal migration process in the error case.
1909 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1910 error_report_err(local_err);
1913 migration_bitmap_sync(rs);
1915 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1916 error_report_err(local_err);
1921 * save_zero_page_to_file: send the zero page to the file
1923 * Returns the size of data written to the file, 0 means the page is not
1924 * a zero page
1926 * @rs: current RAM state
1927 * @file: the file where the data is saved
1928 * @block: block that contains the page we want to send
1929 * @offset: offset inside the block for the page
1931 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1932 RAMBlock *block, ram_addr_t offset)
1934 uint8_t *p = block->host + offset;
1935 int len = 0;
1937 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1938 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1939 qemu_put_byte(file, 0);
1940 len += 1;
1942 return len;
1946 * save_zero_page: send the zero page to the stream
1948 * Returns the number of pages written.
1950 * @rs: current RAM state
1951 * @block: block that contains the page we want to send
1952 * @offset: offset inside the block for the page
1954 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1956 int len = save_zero_page_to_file(rs, rs->f, block, offset);
1958 if (len) {
1959 ram_counters.duplicate++;
1960 ram_counters.transferred += len;
1961 return 1;
1963 return -1;
1966 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
1968 if (!migrate_release_ram() || !migration_in_postcopy()) {
1969 return;
1972 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
1976 * @pages: the number of pages written by the control path,
1977 * < 0 - error
1978 * > 0 - number of pages written
1980 * Return true if the pages has been saved, otherwise false is returned.
1982 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1983 int *pages)
1985 uint64_t bytes_xmit = 0;
1986 int ret;
1988 *pages = -1;
1989 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1990 &bytes_xmit);
1991 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1992 return false;
1995 if (bytes_xmit) {
1996 ram_counters.transferred += bytes_xmit;
1997 *pages = 1;
2000 if (ret == RAM_SAVE_CONTROL_DELAYED) {
2001 return true;
2004 if (bytes_xmit > 0) {
2005 ram_counters.normal++;
2006 } else if (bytes_xmit == 0) {
2007 ram_counters.duplicate++;
2010 return true;
2014 * directly send the page to the stream
2016 * Returns the number of pages written.
2018 * @rs: current RAM state
2019 * @block: block that contains the page we want to send
2020 * @offset: offset inside the block for the page
2021 * @buf: the page to be sent
2022 * @async: send to page asyncly
2024 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
2025 uint8_t *buf, bool async)
2027 ram_counters.transferred += save_page_header(rs, rs->f, block,
2028 offset | RAM_SAVE_FLAG_PAGE);
2029 if (async) {
2030 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
2031 migrate_release_ram() &
2032 migration_in_postcopy());
2033 } else {
2034 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
2036 ram_counters.transferred += TARGET_PAGE_SIZE;
2037 ram_counters.normal++;
2038 return 1;
2042 * ram_save_page: send the given page to the stream
2044 * Returns the number of pages written.
2045 * < 0 - error
2046 * >=0 - Number of pages written - this might legally be 0
2047 * if xbzrle noticed the page was the same.
2049 * @rs: current RAM state
2050 * @block: block that contains the page we want to send
2051 * @offset: offset inside the block for the page
2052 * @last_stage: if we are at the completion stage
2054 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
2056 int pages = -1;
2057 uint8_t *p;
2058 bool send_async = true;
2059 RAMBlock *block = pss->block;
2060 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2061 ram_addr_t current_addr = block->offset + offset;
2063 p = block->host + offset;
2064 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
2066 XBZRLE_cache_lock();
2067 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
2068 migrate_use_xbzrle()) {
2069 pages = save_xbzrle_page(rs, &p, current_addr, block,
2070 offset, last_stage);
2071 if (!last_stage) {
2072 /* Can't send this cached data async, since the cache page
2073 * might get updated before it gets to the wire
2075 send_async = false;
2079 /* XBZRLE overflow or normal page */
2080 if (pages == -1) {
2081 pages = save_normal_page(rs, block, offset, p, send_async);
2084 XBZRLE_cache_unlock();
2086 return pages;
2089 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
2090 ram_addr_t offset)
2092 if (multifd_queue_page(rs, block, offset) < 0) {
2093 return -1;
2095 ram_counters.normal++;
2097 return 1;
2100 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
2101 ram_addr_t offset, uint8_t *source_buf)
2103 RAMState *rs = ram_state;
2104 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
2105 bool zero_page = false;
2106 int ret;
2108 if (save_zero_page_to_file(rs, f, block, offset)) {
2109 zero_page = true;
2110 goto exit;
2113 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
2116 * copy it to a internal buffer to avoid it being modified by VM
2117 * so that we can catch up the error during compression and
2118 * decompression
2120 memcpy(source_buf, p, TARGET_PAGE_SIZE);
2121 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2122 if (ret < 0) {
2123 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
2124 error_report("compressed data failed!");
2125 return false;
2128 exit:
2129 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
2130 return zero_page;
2133 static void
2134 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2136 ram_counters.transferred += bytes_xmit;
2138 if (param->zero_page) {
2139 ram_counters.duplicate++;
2140 return;
2143 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2144 compression_counters.compressed_size += bytes_xmit - 8;
2145 compression_counters.pages++;
2148 static bool save_page_use_compression(RAMState *rs);
2150 static void flush_compressed_data(RAMState *rs)
2152 int idx, len, thread_count;
2154 if (!save_page_use_compression(rs)) {
2155 return;
2157 thread_count = migrate_compress_threads();
2159 qemu_mutex_lock(&comp_done_lock);
2160 for (idx = 0; idx < thread_count; idx++) {
2161 while (!comp_param[idx].done) {
2162 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2165 qemu_mutex_unlock(&comp_done_lock);
2167 for (idx = 0; idx < thread_count; idx++) {
2168 qemu_mutex_lock(&comp_param[idx].mutex);
2169 if (!comp_param[idx].quit) {
2170 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2172 * it's safe to fetch zero_page without holding comp_done_lock
2173 * as there is no further request submitted to the thread,
2174 * i.e, the thread should be waiting for a request at this point.
2176 update_compress_thread_counts(&comp_param[idx], len);
2178 qemu_mutex_unlock(&comp_param[idx].mutex);
2182 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2183 ram_addr_t offset)
2185 param->block = block;
2186 param->offset = offset;
2189 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2190 ram_addr_t offset)
2192 int idx, thread_count, bytes_xmit = -1, pages = -1;
2193 bool wait = migrate_compress_wait_thread();
2195 thread_count = migrate_compress_threads();
2196 qemu_mutex_lock(&comp_done_lock);
2197 retry:
2198 for (idx = 0; idx < thread_count; idx++) {
2199 if (comp_param[idx].done) {
2200 comp_param[idx].done = false;
2201 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2202 qemu_mutex_lock(&comp_param[idx].mutex);
2203 set_compress_params(&comp_param[idx], block, offset);
2204 qemu_cond_signal(&comp_param[idx].cond);
2205 qemu_mutex_unlock(&comp_param[idx].mutex);
2206 pages = 1;
2207 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
2208 break;
2213 * wait for the free thread if the user specifies 'compress-wait-thread',
2214 * otherwise we will post the page out in the main thread as normal page.
2216 if (pages < 0 && wait) {
2217 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2218 goto retry;
2220 qemu_mutex_unlock(&comp_done_lock);
2222 return pages;
2226 * find_dirty_block: find the next dirty page and update any state
2227 * associated with the search process.
2229 * Returns true if a page is found
2231 * @rs: current RAM state
2232 * @pss: data about the state of the current dirty page scan
2233 * @again: set to false if the search has scanned the whole of RAM
2235 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
2237 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
2238 if (pss->complete_round && pss->block == rs->last_seen_block &&
2239 pss->page >= rs->last_page) {
2241 * We've been once around the RAM and haven't found anything.
2242 * Give up.
2244 *again = false;
2245 return false;
2247 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
2248 /* Didn't find anything in this RAM Block */
2249 pss->page = 0;
2250 pss->block = QLIST_NEXT_RCU(pss->block, next);
2251 if (!pss->block) {
2253 * If memory migration starts over, we will meet a dirtied page
2254 * which may still exists in compression threads's ring, so we
2255 * should flush the compressed data to make sure the new page
2256 * is not overwritten by the old one in the destination.
2258 * Also If xbzrle is on, stop using the data compression at this
2259 * point. In theory, xbzrle can do better than compression.
2261 flush_compressed_data(rs);
2263 /* Hit the end of the list */
2264 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2265 /* Flag that we've looped */
2266 pss->complete_round = true;
2267 rs->ram_bulk_stage = false;
2269 /* Didn't find anything this time, but try again on the new block */
2270 *again = true;
2271 return false;
2272 } else {
2273 /* Can go around again, but... */
2274 *again = true;
2275 /* We've found something so probably don't need to */
2276 return true;
2281 * unqueue_page: gets a page of the queue
2283 * Helper for 'get_queued_page' - gets a page off the queue
2285 * Returns the block of the page (or NULL if none available)
2287 * @rs: current RAM state
2288 * @offset: used to return the offset within the RAMBlock
2290 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
2292 RAMBlock *block = NULL;
2294 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2295 return NULL;
2298 qemu_mutex_lock(&rs->src_page_req_mutex);
2299 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2300 struct RAMSrcPageRequest *entry =
2301 QSIMPLEQ_FIRST(&rs->src_page_requests);
2302 block = entry->rb;
2303 *offset = entry->offset;
2305 if (entry->len > TARGET_PAGE_SIZE) {
2306 entry->len -= TARGET_PAGE_SIZE;
2307 entry->offset += TARGET_PAGE_SIZE;
2308 } else {
2309 memory_region_unref(block->mr);
2310 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2311 g_free(entry);
2312 migration_consume_urgent_request();
2315 qemu_mutex_unlock(&rs->src_page_req_mutex);
2317 return block;
2321 * get_queued_page: unqueue a page from the postcopy requests
2323 * Skips pages that are already sent (!dirty)
2325 * Returns true if a queued page is found
2327 * @rs: current RAM state
2328 * @pss: data about the state of the current dirty page scan
2330 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
2332 RAMBlock *block;
2333 ram_addr_t offset;
2334 bool dirty;
2336 do {
2337 block = unqueue_page(rs, &offset);
2339 * We're sending this page, and since it's postcopy nothing else
2340 * will dirty it, and we must make sure it doesn't get sent again
2341 * even if this queue request was received after the background
2342 * search already sent it.
2344 if (block) {
2345 unsigned long page;
2347 page = offset >> TARGET_PAGE_BITS;
2348 dirty = test_bit(page, block->bmap);
2349 if (!dirty) {
2350 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
2351 page, test_bit(page, block->unsentmap));
2352 } else {
2353 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
2357 } while (block && !dirty);
2359 if (block) {
2361 * As soon as we start servicing pages out of order, then we have
2362 * to kill the bulk stage, since the bulk stage assumes
2363 * in (migration_bitmap_find_and_reset_dirty) that every page is
2364 * dirty, that's no longer true.
2366 rs->ram_bulk_stage = false;
2369 * We want the background search to continue from the queued page
2370 * since the guest is likely to want other pages near to the page
2371 * it just requested.
2373 pss->block = block;
2374 pss->page = offset >> TARGET_PAGE_BITS;
2377 * This unqueued page would break the "one round" check, even is
2378 * really rare.
2380 pss->complete_round = false;
2383 return !!block;
2387 * migration_page_queue_free: drop any remaining pages in the ram
2388 * request queue
2390 * It should be empty at the end anyway, but in error cases there may
2391 * be some left. in case that there is any page left, we drop it.
2394 static void migration_page_queue_free(RAMState *rs)
2396 struct RAMSrcPageRequest *mspr, *next_mspr;
2397 /* This queue generally should be empty - but in the case of a failed
2398 * migration might have some droppings in.
2400 rcu_read_lock();
2401 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2402 memory_region_unref(mspr->rb->mr);
2403 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2404 g_free(mspr);
2406 rcu_read_unlock();
2410 * ram_save_queue_pages: queue the page for transmission
2412 * A request from postcopy destination for example.
2414 * Returns zero on success or negative on error
2416 * @rbname: Name of the RAMBLock of the request. NULL means the
2417 * same that last one.
2418 * @start: starting address from the start of the RAMBlock
2419 * @len: length (in bytes) to send
2421 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2423 RAMBlock *ramblock;
2424 RAMState *rs = ram_state;
2426 ram_counters.postcopy_requests++;
2427 rcu_read_lock();
2428 if (!rbname) {
2429 /* Reuse last RAMBlock */
2430 ramblock = rs->last_req_rb;
2432 if (!ramblock) {
2434 * Shouldn't happen, we can't reuse the last RAMBlock if
2435 * it's the 1st request.
2437 error_report("ram_save_queue_pages no previous block");
2438 goto err;
2440 } else {
2441 ramblock = qemu_ram_block_by_name(rbname);
2443 if (!ramblock) {
2444 /* We shouldn't be asked for a non-existent RAMBlock */
2445 error_report("ram_save_queue_pages no block '%s'", rbname);
2446 goto err;
2448 rs->last_req_rb = ramblock;
2450 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2451 if (start+len > ramblock->used_length) {
2452 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2453 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2454 __func__, start, len, ramblock->used_length);
2455 goto err;
2458 struct RAMSrcPageRequest *new_entry =
2459 g_malloc0(sizeof(struct RAMSrcPageRequest));
2460 new_entry->rb = ramblock;
2461 new_entry->offset = start;
2462 new_entry->len = len;
2464 memory_region_ref(ramblock->mr);
2465 qemu_mutex_lock(&rs->src_page_req_mutex);
2466 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2467 migration_make_urgent_request();
2468 qemu_mutex_unlock(&rs->src_page_req_mutex);
2469 rcu_read_unlock();
2471 return 0;
2473 err:
2474 rcu_read_unlock();
2475 return -1;
2478 static bool save_page_use_compression(RAMState *rs)
2480 if (!migrate_use_compression()) {
2481 return false;
2485 * If xbzrle is on, stop using the data compression after first
2486 * round of migration even if compression is enabled. In theory,
2487 * xbzrle can do better than compression.
2489 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2490 return true;
2493 return false;
2497 * try to compress the page before posting it out, return true if the page
2498 * has been properly handled by compression, otherwise needs other
2499 * paths to handle it
2501 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2503 if (!save_page_use_compression(rs)) {
2504 return false;
2508 * When starting the process of a new block, the first page of
2509 * the block should be sent out before other pages in the same
2510 * block, and all the pages in last block should have been sent
2511 * out, keeping this order is important, because the 'cont' flag
2512 * is used to avoid resending the block name.
2514 * We post the fist page as normal page as compression will take
2515 * much CPU resource.
2517 if (block != rs->last_sent_block) {
2518 flush_compressed_data(rs);
2519 return false;
2522 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2523 return true;
2526 compression_counters.busy++;
2527 return false;
2531 * ram_save_target_page: save one target page
2533 * Returns the number of pages written
2535 * @rs: current RAM state
2536 * @pss: data about the page we want to send
2537 * @last_stage: if we are at the completion stage
2539 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
2540 bool last_stage)
2542 RAMBlock *block = pss->block;
2543 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2544 int res;
2546 if (control_save_page(rs, block, offset, &res)) {
2547 return res;
2550 if (save_compress_page(rs, block, offset)) {
2551 return 1;
2554 res = save_zero_page(rs, block, offset);
2555 if (res > 0) {
2556 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2557 * page would be stale
2559 if (!save_page_use_compression(rs)) {
2560 XBZRLE_cache_lock();
2561 xbzrle_cache_zero_page(rs, block->offset + offset);
2562 XBZRLE_cache_unlock();
2564 ram_release_pages(block->idstr, offset, res);
2565 return res;
2569 * do not use multifd for compression as the first page in the new
2570 * block should be posted out before sending the compressed page
2572 if (!save_page_use_compression(rs) && migrate_use_multifd()) {
2573 return ram_save_multifd_page(rs, block, offset);
2576 return ram_save_page(rs, pss, last_stage);
2580 * ram_save_host_page: save a whole host page
2582 * Starting at *offset send pages up to the end of the current host
2583 * page. It's valid for the initial offset to point into the middle of
2584 * a host page in which case the remainder of the hostpage is sent.
2585 * Only dirty target pages are sent. Note that the host page size may
2586 * be a huge page for this block.
2587 * The saving stops at the boundary of the used_length of the block
2588 * if the RAMBlock isn't a multiple of the host page size.
2590 * Returns the number of pages written or negative on error
2592 * @rs: current RAM state
2593 * @ms: current migration state
2594 * @pss: data about the page we want to send
2595 * @last_stage: if we are at the completion stage
2597 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
2598 bool last_stage)
2600 int tmppages, pages = 0;
2601 size_t pagesize_bits =
2602 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2604 if (ramblock_is_ignored(pss->block)) {
2605 error_report("block %s should not be migrated !", pss->block->idstr);
2606 return 0;
2609 do {
2610 /* Check the pages is dirty and if it is send it */
2611 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2612 pss->page++;
2613 continue;
2616 tmppages = ram_save_target_page(rs, pss, last_stage);
2617 if (tmppages < 0) {
2618 return tmppages;
2621 pages += tmppages;
2622 if (pss->block->unsentmap) {
2623 clear_bit(pss->page, pss->block->unsentmap);
2626 pss->page++;
2627 } while ((pss->page & (pagesize_bits - 1)) &&
2628 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
2630 /* The offset we leave with is the last one we looked at */
2631 pss->page--;
2632 return pages;
2636 * ram_find_and_save_block: finds a dirty page and sends it to f
2638 * Called within an RCU critical section.
2640 * Returns the number of pages written where zero means no dirty pages,
2641 * or negative on error
2643 * @rs: current RAM state
2644 * @last_stage: if we are at the completion stage
2646 * On systems where host-page-size > target-page-size it will send all the
2647 * pages in a host page that are dirty.
2650 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
2652 PageSearchStatus pss;
2653 int pages = 0;
2654 bool again, found;
2656 /* No dirty page as there is zero RAM */
2657 if (!ram_bytes_total()) {
2658 return pages;
2661 pss.block = rs->last_seen_block;
2662 pss.page = rs->last_page;
2663 pss.complete_round = false;
2665 if (!pss.block) {
2666 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2669 do {
2670 again = true;
2671 found = get_queued_page(rs, &pss);
2673 if (!found) {
2674 /* priority queue empty, so just search for something dirty */
2675 found = find_dirty_block(rs, &pss, &again);
2678 if (found) {
2679 pages = ram_save_host_page(rs, &pss, last_stage);
2681 } while (!pages && again);
2683 rs->last_seen_block = pss.block;
2684 rs->last_page = pss.page;
2686 return pages;
2689 void acct_update_position(QEMUFile *f, size_t size, bool zero)
2691 uint64_t pages = size / TARGET_PAGE_SIZE;
2693 if (zero) {
2694 ram_counters.duplicate += pages;
2695 } else {
2696 ram_counters.normal += pages;
2697 ram_counters.transferred += size;
2698 qemu_update_position(f, size);
2702 static uint64_t ram_bytes_total_common(bool count_ignored)
2704 RAMBlock *block;
2705 uint64_t total = 0;
2707 rcu_read_lock();
2708 if (count_ignored) {
2709 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2710 total += block->used_length;
2712 } else {
2713 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2714 total += block->used_length;
2717 rcu_read_unlock();
2718 return total;
2721 uint64_t ram_bytes_total(void)
2723 return ram_bytes_total_common(false);
2726 static void xbzrle_load_setup(void)
2728 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2731 static void xbzrle_load_cleanup(void)
2733 g_free(XBZRLE.decoded_buf);
2734 XBZRLE.decoded_buf = NULL;
2737 static void ram_state_cleanup(RAMState **rsp)
2739 if (*rsp) {
2740 migration_page_queue_free(*rsp);
2741 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2742 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2743 g_free(*rsp);
2744 *rsp = NULL;
2748 static void xbzrle_cleanup(void)
2750 XBZRLE_cache_lock();
2751 if (XBZRLE.cache) {
2752 cache_fini(XBZRLE.cache);
2753 g_free(XBZRLE.encoded_buf);
2754 g_free(XBZRLE.current_buf);
2755 g_free(XBZRLE.zero_target_page);
2756 XBZRLE.cache = NULL;
2757 XBZRLE.encoded_buf = NULL;
2758 XBZRLE.current_buf = NULL;
2759 XBZRLE.zero_target_page = NULL;
2761 XBZRLE_cache_unlock();
2764 static void ram_save_cleanup(void *opaque)
2766 RAMState **rsp = opaque;
2767 RAMBlock *block;
2769 /* caller have hold iothread lock or is in a bh, so there is
2770 * no writing race against the migration bitmap
2772 memory_global_dirty_log_stop();
2774 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2775 g_free(block->clear_bmap);
2776 block->clear_bmap = NULL;
2777 g_free(block->bmap);
2778 block->bmap = NULL;
2779 g_free(block->unsentmap);
2780 block->unsentmap = NULL;
2783 xbzrle_cleanup();
2784 compress_threads_save_cleanup();
2785 ram_state_cleanup(rsp);
2788 static void ram_state_reset(RAMState *rs)
2790 rs->last_seen_block = NULL;
2791 rs->last_sent_block = NULL;
2792 rs->last_page = 0;
2793 rs->last_version = ram_list.version;
2794 rs->ram_bulk_stage = true;
2795 rs->fpo_enabled = false;
2798 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2801 * 'expected' is the value you expect the bitmap mostly to be full
2802 * of; it won't bother printing lines that are all this value.
2803 * If 'todump' is null the migration bitmap is dumped.
2805 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2806 unsigned long pages)
2808 int64_t cur;
2809 int64_t linelen = 128;
2810 char linebuf[129];
2812 for (cur = 0; cur < pages; cur += linelen) {
2813 int64_t curb;
2814 bool found = false;
2816 * Last line; catch the case where the line length
2817 * is longer than remaining ram
2819 if (cur + linelen > pages) {
2820 linelen = pages - cur;
2822 for (curb = 0; curb < linelen; curb++) {
2823 bool thisbit = test_bit(cur + curb, todump);
2824 linebuf[curb] = thisbit ? '1' : '.';
2825 found = found || (thisbit != expected);
2827 if (found) {
2828 linebuf[curb] = '\0';
2829 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2834 /* **** functions for postcopy ***** */
2836 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2838 struct RAMBlock *block;
2840 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2841 unsigned long *bitmap = block->bmap;
2842 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2843 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2845 while (run_start < range) {
2846 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2847 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
2848 (run_end - run_start) << TARGET_PAGE_BITS);
2849 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2855 * postcopy_send_discard_bm_ram: discard a RAMBlock
2857 * Returns zero on success
2859 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2860 * Note: At this point the 'unsentmap' is the processed bitmap combined
2861 * with the dirtymap; so a '1' means it's either dirty or unsent.
2863 * @ms: current migration state
2864 * @block: RAMBlock to discard
2866 static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2868 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2869 unsigned long current;
2870 unsigned long *unsentmap = block->unsentmap;
2872 for (current = 0; current < end; ) {
2873 unsigned long one = find_next_bit(unsentmap, end, current);
2874 unsigned long zero, discard_length;
2876 if (one >= end) {
2877 break;
2880 zero = find_next_zero_bit(unsentmap, end, one + 1);
2882 if (zero >= end) {
2883 discard_length = end - one;
2884 } else {
2885 discard_length = zero - one;
2887 postcopy_discard_send_range(ms, one, discard_length);
2888 current = one + discard_length;
2891 return 0;
2895 * postcopy_each_ram_send_discard: discard all RAMBlocks
2897 * Returns 0 for success or negative for error
2899 * Utility for the outgoing postcopy code.
2900 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2901 * passing it bitmap indexes and name.
2902 * (qemu_ram_foreach_block ends up passing unscaled lengths
2903 * which would mean postcopy code would have to deal with target page)
2905 * @ms: current migration state
2907 static int postcopy_each_ram_send_discard(MigrationState *ms)
2909 struct RAMBlock *block;
2910 int ret;
2912 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2913 postcopy_discard_send_init(ms, block->idstr);
2916 * Postcopy sends chunks of bitmap over the wire, but it
2917 * just needs indexes at this point, avoids it having
2918 * target page specific code.
2920 ret = postcopy_send_discard_bm_ram(ms, block);
2921 postcopy_discard_send_finish(ms);
2922 if (ret) {
2923 return ret;
2927 return 0;
2931 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2933 * Helper for postcopy_chunk_hostpages; it's called twice to
2934 * canonicalize the two bitmaps, that are similar, but one is
2935 * inverted.
2937 * Postcopy requires that all target pages in a hostpage are dirty or
2938 * clean, not a mix. This function canonicalizes the bitmaps.
2940 * @ms: current migration state
2941 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2942 * otherwise we need to canonicalize partially dirty host pages
2943 * @block: block that contains the page we want to canonicalize
2945 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2946 RAMBlock *block)
2948 RAMState *rs = ram_state;
2949 unsigned long *bitmap = block->bmap;
2950 unsigned long *unsentmap = block->unsentmap;
2951 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2952 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2953 unsigned long run_start;
2955 if (block->page_size == TARGET_PAGE_SIZE) {
2956 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2957 return;
2960 if (unsent_pass) {
2961 /* Find a sent page */
2962 run_start = find_next_zero_bit(unsentmap, pages, 0);
2963 } else {
2964 /* Find a dirty page */
2965 run_start = find_next_bit(bitmap, pages, 0);
2968 while (run_start < pages) {
2971 * If the start of this run of pages is in the middle of a host
2972 * page, then we need to fixup this host page.
2974 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2975 /* Find the end of this run */
2976 if (unsent_pass) {
2977 run_start = find_next_bit(unsentmap, pages, run_start + 1);
2978 } else {
2979 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2982 * If the end isn't at the start of a host page, then the
2983 * run doesn't finish at the end of a host page
2984 * and we need to discard.
2988 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2989 unsigned long page;
2990 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2991 host_ratio);
2992 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2994 /* Clean up the bitmap */
2995 for (page = fixup_start_addr;
2996 page < fixup_start_addr + host_ratio; page++) {
2997 /* All pages in this host page are now not sent */
2998 set_bit(page, unsentmap);
3001 * Remark them as dirty, updating the count for any pages
3002 * that weren't previously dirty.
3004 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
3008 if (unsent_pass) {
3009 /* Find the next sent page for the next iteration */
3010 run_start = find_next_zero_bit(unsentmap, pages, run_start);
3011 } else {
3012 /* Find the next dirty page for the next iteration */
3013 run_start = find_next_bit(bitmap, pages, run_start);
3019 * postcopy_chunk_hostpages: discard any partially sent host page
3021 * Utility for the outgoing postcopy code.
3023 * Discard any partially sent host-page size chunks, mark any partially
3024 * dirty host-page size chunks as all dirty. In this case the host-page
3025 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
3027 * Returns zero on success
3029 * @ms: current migration state
3030 * @block: block we want to work with
3032 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
3034 postcopy_discard_send_init(ms, block->idstr);
3036 /* First pass: Discard all partially sent host pages */
3037 postcopy_chunk_hostpages_pass(ms, true, block);
3039 * Second pass: Ensure that all partially dirty host pages are made
3040 * fully dirty.
3042 postcopy_chunk_hostpages_pass(ms, false, block);
3044 postcopy_discard_send_finish(ms);
3045 return 0;
3049 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
3051 * Returns zero on success
3053 * Transmit the set of pages to be discarded after precopy to the target
3054 * these are pages that:
3055 * a) Have been previously transmitted but are now dirty again
3056 * b) Pages that have never been transmitted, this ensures that
3057 * any pages on the destination that have been mapped by background
3058 * tasks get discarded (transparent huge pages is the specific concern)
3059 * Hopefully this is pretty sparse
3061 * @ms: current migration state
3063 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
3065 RAMState *rs = ram_state;
3066 RAMBlock *block;
3067 int ret;
3069 rcu_read_lock();
3071 /* This should be our last sync, the src is now paused */
3072 migration_bitmap_sync(rs);
3074 /* Easiest way to make sure we don't resume in the middle of a host-page */
3075 rs->last_seen_block = NULL;
3076 rs->last_sent_block = NULL;
3077 rs->last_page = 0;
3079 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3080 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
3081 unsigned long *bitmap = block->bmap;
3082 unsigned long *unsentmap = block->unsentmap;
3084 if (!unsentmap) {
3085 /* We don't have a safe way to resize the sentmap, so
3086 * if the bitmap was resized it will be NULL at this
3087 * point.
3089 error_report("migration ram resized during precopy phase");
3090 rcu_read_unlock();
3091 return -EINVAL;
3093 /* Deal with TPS != HPS and huge pages */
3094 ret = postcopy_chunk_hostpages(ms, block);
3095 if (ret) {
3096 rcu_read_unlock();
3097 return ret;
3101 * Update the unsentmap to be unsentmap = unsentmap | dirty
3103 bitmap_or(unsentmap, unsentmap, bitmap, pages);
3104 #ifdef DEBUG_POSTCOPY
3105 ram_debug_dump_bitmap(unsentmap, true, pages);
3106 #endif
3108 trace_ram_postcopy_send_discard_bitmap();
3110 ret = postcopy_each_ram_send_discard(ms);
3111 rcu_read_unlock();
3113 return ret;
3117 * ram_discard_range: discard dirtied pages at the beginning of postcopy
3119 * Returns zero on success
3121 * @rbname: name of the RAMBlock of the request. NULL means the
3122 * same that last one.
3123 * @start: RAMBlock starting page
3124 * @length: RAMBlock size
3126 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
3128 int ret = -1;
3130 trace_ram_discard_range(rbname, start, length);
3132 rcu_read_lock();
3133 RAMBlock *rb = qemu_ram_block_by_name(rbname);
3135 if (!rb) {
3136 error_report("ram_discard_range: Failed to find block '%s'", rbname);
3137 goto err;
3141 * On source VM, we don't need to update the received bitmap since
3142 * we don't even have one.
3144 if (rb->receivedmap) {
3145 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3146 length >> qemu_target_page_bits());
3149 ret = ram_block_discard_range(rb, start, length);
3151 err:
3152 rcu_read_unlock();
3154 return ret;
3158 * For every allocation, we will try not to crash the VM if the
3159 * allocation failed.
3161 static int xbzrle_init(void)
3163 Error *local_err = NULL;
3165 if (!migrate_use_xbzrle()) {
3166 return 0;
3169 XBZRLE_cache_lock();
3171 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3172 if (!XBZRLE.zero_target_page) {
3173 error_report("%s: Error allocating zero page", __func__);
3174 goto err_out;
3177 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3178 TARGET_PAGE_SIZE, &local_err);
3179 if (!XBZRLE.cache) {
3180 error_report_err(local_err);
3181 goto free_zero_page;
3184 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3185 if (!XBZRLE.encoded_buf) {
3186 error_report("%s: Error allocating encoded_buf", __func__);
3187 goto free_cache;
3190 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3191 if (!XBZRLE.current_buf) {
3192 error_report("%s: Error allocating current_buf", __func__);
3193 goto free_encoded_buf;
3196 /* We are all good */
3197 XBZRLE_cache_unlock();
3198 return 0;
3200 free_encoded_buf:
3201 g_free(XBZRLE.encoded_buf);
3202 XBZRLE.encoded_buf = NULL;
3203 free_cache:
3204 cache_fini(XBZRLE.cache);
3205 XBZRLE.cache = NULL;
3206 free_zero_page:
3207 g_free(XBZRLE.zero_target_page);
3208 XBZRLE.zero_target_page = NULL;
3209 err_out:
3210 XBZRLE_cache_unlock();
3211 return -ENOMEM;
3214 static int ram_state_init(RAMState **rsp)
3216 *rsp = g_try_new0(RAMState, 1);
3218 if (!*rsp) {
3219 error_report("%s: Init ramstate fail", __func__);
3220 return -1;
3223 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3224 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3225 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
3228 * Count the total number of pages used by ram blocks not including any
3229 * gaps due to alignment or unplugs.
3230 * This must match with the initial values of dirty bitmap.
3232 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
3233 ram_state_reset(*rsp);
3235 return 0;
3238 static void ram_list_init_bitmaps(void)
3240 MigrationState *ms = migrate_get_current();
3241 RAMBlock *block;
3242 unsigned long pages;
3243 uint8_t shift;
3245 /* Skip setting bitmap if there is no RAM */
3246 if (ram_bytes_total()) {
3247 shift = ms->clear_bitmap_shift;
3248 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
3249 error_report("clear_bitmap_shift (%u) too big, using "
3250 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
3251 shift = CLEAR_BITMAP_SHIFT_MAX;
3252 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
3253 error_report("clear_bitmap_shift (%u) too small, using "
3254 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
3255 shift = CLEAR_BITMAP_SHIFT_MIN;
3258 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3259 pages = block->max_length >> TARGET_PAGE_BITS;
3261 * The initial dirty bitmap for migration must be set with all
3262 * ones to make sure we'll migrate every guest RAM page to
3263 * destination.
3264 * Here we set RAMBlock.bmap all to 1 because when rebegin a
3265 * new migration after a failed migration, ram_list.
3266 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
3267 * guest memory.
3269 block->bmap = bitmap_new(pages);
3270 bitmap_set(block->bmap, 0, pages);
3271 block->clear_bmap_shift = shift;
3272 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
3273 if (migrate_postcopy_ram()) {
3274 block->unsentmap = bitmap_new(pages);
3275 bitmap_set(block->unsentmap, 0, pages);
3281 static void ram_init_bitmaps(RAMState *rs)
3283 /* For memory_global_dirty_log_start below. */
3284 qemu_mutex_lock_iothread();
3285 qemu_mutex_lock_ramlist();
3286 rcu_read_lock();
3288 ram_list_init_bitmaps();
3289 memory_global_dirty_log_start();
3290 migration_bitmap_sync_precopy(rs);
3292 rcu_read_unlock();
3293 qemu_mutex_unlock_ramlist();
3294 qemu_mutex_unlock_iothread();
3297 static int ram_init_all(RAMState **rsp)
3299 if (ram_state_init(rsp)) {
3300 return -1;
3303 if (xbzrle_init()) {
3304 ram_state_cleanup(rsp);
3305 return -1;
3308 ram_init_bitmaps(*rsp);
3310 return 0;
3313 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3315 RAMBlock *block;
3316 uint64_t pages = 0;
3319 * Postcopy is not using xbzrle/compression, so no need for that.
3320 * Also, since source are already halted, we don't need to care
3321 * about dirty page logging as well.
3324 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3325 pages += bitmap_count_one(block->bmap,
3326 block->used_length >> TARGET_PAGE_BITS);
3329 /* This may not be aligned with current bitmaps. Recalculate. */
3330 rs->migration_dirty_pages = pages;
3332 rs->last_seen_block = NULL;
3333 rs->last_sent_block = NULL;
3334 rs->last_page = 0;
3335 rs->last_version = ram_list.version;
3337 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3338 * matter what we have sent.
3340 rs->ram_bulk_stage = false;
3342 /* Update RAMState cache of output QEMUFile */
3343 rs->f = out;
3345 trace_ram_state_resume_prepare(pages);
3349 * This function clears bits of the free pages reported by the caller from the
3350 * migration dirty bitmap. @addr is the host address corresponding to the
3351 * start of the continuous guest free pages, and @len is the total bytes of
3352 * those pages.
3354 void qemu_guest_free_page_hint(void *addr, size_t len)
3356 RAMBlock *block;
3357 ram_addr_t offset;
3358 size_t used_len, start, npages;
3359 MigrationState *s = migrate_get_current();
3361 /* This function is currently expected to be used during live migration */
3362 if (!migration_is_setup_or_active(s->state)) {
3363 return;
3366 for (; len > 0; len -= used_len, addr += used_len) {
3367 block = qemu_ram_block_from_host(addr, false, &offset);
3368 if (unlikely(!block || offset >= block->used_length)) {
3370 * The implementation might not support RAMBlock resize during
3371 * live migration, but it could happen in theory with future
3372 * updates. So we add a check here to capture that case.
3374 error_report_once("%s unexpected error", __func__);
3375 return;
3378 if (len <= block->used_length - offset) {
3379 used_len = len;
3380 } else {
3381 used_len = block->used_length - offset;
3384 start = offset >> TARGET_PAGE_BITS;
3385 npages = used_len >> TARGET_PAGE_BITS;
3387 qemu_mutex_lock(&ram_state->bitmap_mutex);
3388 ram_state->migration_dirty_pages -=
3389 bitmap_count_one_with_offset(block->bmap, start, npages);
3390 bitmap_clear(block->bmap, start, npages);
3391 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3396 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3397 * long-running RCU critical section. When rcu-reclaims in the code
3398 * start to become numerous it will be necessary to reduce the
3399 * granularity of these critical sections.
3403 * ram_save_setup: Setup RAM for migration
3405 * Returns zero to indicate success and negative for error
3407 * @f: QEMUFile where to send the data
3408 * @opaque: RAMState pointer
3410 static int ram_save_setup(QEMUFile *f, void *opaque)
3412 RAMState **rsp = opaque;
3413 RAMBlock *block;
3415 if (compress_threads_save_setup()) {
3416 return -1;
3419 /* migration has already setup the bitmap, reuse it. */
3420 if (!migration_in_colo_state()) {
3421 if (ram_init_all(rsp) != 0) {
3422 compress_threads_save_cleanup();
3423 return -1;
3426 (*rsp)->f = f;
3428 rcu_read_lock();
3430 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
3432 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3433 qemu_put_byte(f, strlen(block->idstr));
3434 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3435 qemu_put_be64(f, block->used_length);
3436 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3437 qemu_put_be64(f, block->page_size);
3439 if (migrate_ignore_shared()) {
3440 qemu_put_be64(f, block->mr->addr);
3444 rcu_read_unlock();
3446 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3447 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3449 multifd_send_sync_main(*rsp);
3450 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3451 qemu_fflush(f);
3453 return 0;
3457 * ram_save_iterate: iterative stage for migration
3459 * Returns zero to indicate success and negative for error
3461 * @f: QEMUFile where to send the data
3462 * @opaque: RAMState pointer
3464 static int ram_save_iterate(QEMUFile *f, void *opaque)
3466 RAMState **temp = opaque;
3467 RAMState *rs = *temp;
3468 int ret;
3469 int i;
3470 int64_t t0;
3471 int done = 0;
3473 if (blk_mig_bulk_active()) {
3474 /* Avoid transferring ram during bulk phase of block migration as
3475 * the bulk phase will usually take a long time and transferring
3476 * ram updates during that time is pointless. */
3477 goto out;
3480 rcu_read_lock();
3481 if (ram_list.version != rs->last_version) {
3482 ram_state_reset(rs);
3485 /* Read version before ram_list.blocks */
3486 smp_rmb();
3488 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3490 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3491 i = 0;
3492 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3493 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
3494 int pages;
3496 if (qemu_file_get_error(f)) {
3497 break;
3500 pages = ram_find_and_save_block(rs, false);
3501 /* no more pages to sent */
3502 if (pages == 0) {
3503 done = 1;
3504 break;
3507 if (pages < 0) {
3508 qemu_file_set_error(f, pages);
3509 break;
3512 rs->target_page_count += pages;
3514 /* we want to check in the 1st loop, just in case it was the 1st time
3515 and we had to sync the dirty bitmap.
3516 qemu_clock_get_ns() is a bit expensive, so we only check each some
3517 iterations
3519 if ((i & 63) == 0) {
3520 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3521 if (t1 > MAX_WAIT) {
3522 trace_ram_save_iterate_big_wait(t1, i);
3523 break;
3526 i++;
3528 rcu_read_unlock();
3531 * Must occur before EOS (or any QEMUFile operation)
3532 * because of RDMA protocol.
3534 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3536 out:
3537 multifd_send_sync_main(rs);
3538 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3539 qemu_fflush(f);
3540 ram_counters.transferred += 8;
3542 ret = qemu_file_get_error(f);
3543 if (ret < 0) {
3544 return ret;
3547 return done;
3551 * ram_save_complete: function called to send the remaining amount of ram
3553 * Returns zero to indicate success or negative on error
3555 * Called with iothread lock
3557 * @f: QEMUFile where to send the data
3558 * @opaque: RAMState pointer
3560 static int ram_save_complete(QEMUFile *f, void *opaque)
3562 RAMState **temp = opaque;
3563 RAMState *rs = *temp;
3564 int ret = 0;
3566 rcu_read_lock();
3568 if (!migration_in_postcopy()) {
3569 migration_bitmap_sync_precopy(rs);
3572 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3574 /* try transferring iterative blocks of memory */
3576 /* flush all remaining blocks regardless of rate limiting */
3577 while (true) {
3578 int pages;
3580 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
3581 /* no more blocks to sent */
3582 if (pages == 0) {
3583 break;
3585 if (pages < 0) {
3586 ret = pages;
3587 break;
3591 flush_compressed_data(rs);
3592 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3594 rcu_read_unlock();
3596 multifd_send_sync_main(rs);
3597 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3598 qemu_fflush(f);
3600 return ret;
3603 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3604 uint64_t *res_precopy_only,
3605 uint64_t *res_compatible,
3606 uint64_t *res_postcopy_only)
3608 RAMState **temp = opaque;
3609 RAMState *rs = *temp;
3610 uint64_t remaining_size;
3612 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3614 if (!migration_in_postcopy() &&
3615 remaining_size < max_size) {
3616 qemu_mutex_lock_iothread();
3617 rcu_read_lock();
3618 migration_bitmap_sync_precopy(rs);
3619 rcu_read_unlock();
3620 qemu_mutex_unlock_iothread();
3621 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3624 if (migrate_postcopy_ram()) {
3625 /* We can do postcopy, and all the data is postcopiable */
3626 *res_compatible += remaining_size;
3627 } else {
3628 *res_precopy_only += remaining_size;
3632 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3634 unsigned int xh_len;
3635 int xh_flags;
3636 uint8_t *loaded_data;
3638 /* extract RLE header */
3639 xh_flags = qemu_get_byte(f);
3640 xh_len = qemu_get_be16(f);
3642 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3643 error_report("Failed to load XBZRLE page - wrong compression!");
3644 return -1;
3647 if (xh_len > TARGET_PAGE_SIZE) {
3648 error_report("Failed to load XBZRLE page - len overflow!");
3649 return -1;
3651 loaded_data = XBZRLE.decoded_buf;
3652 /* load data and decode */
3653 /* it can change loaded_data to point to an internal buffer */
3654 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3656 /* decode RLE */
3657 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3658 TARGET_PAGE_SIZE) == -1) {
3659 error_report("Failed to load XBZRLE page - decode error!");
3660 return -1;
3663 return 0;
3667 * ram_block_from_stream: read a RAMBlock id from the migration stream
3669 * Must be called from within a rcu critical section.
3671 * Returns a pointer from within the RCU-protected ram_list.
3673 * @f: QEMUFile where to read the data from
3674 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3676 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
3678 static RAMBlock *block = NULL;
3679 char id[256];
3680 uint8_t len;
3682 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3683 if (!block) {
3684 error_report("Ack, bad migration stream!");
3685 return NULL;
3687 return block;
3690 len = qemu_get_byte(f);
3691 qemu_get_buffer(f, (uint8_t *)id, len);
3692 id[len] = 0;
3694 block = qemu_ram_block_by_name(id);
3695 if (!block) {
3696 error_report("Can't find block %s", id);
3697 return NULL;
3700 if (ramblock_is_ignored(block)) {
3701 error_report("block %s should not be migrated !", id);
3702 return NULL;
3705 return block;
3708 static inline void *host_from_ram_block_offset(RAMBlock *block,
3709 ram_addr_t offset)
3711 if (!offset_in_ramblock(block, offset)) {
3712 return NULL;
3715 return block->host + offset;
3718 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3719 ram_addr_t offset)
3721 if (!offset_in_ramblock(block, offset)) {
3722 return NULL;
3724 if (!block->colo_cache) {
3725 error_report("%s: colo_cache is NULL in block :%s",
3726 __func__, block->idstr);
3727 return NULL;
3731 * During colo checkpoint, we need bitmap of these migrated pages.
3732 * It help us to decide which pages in ram cache should be flushed
3733 * into VM's RAM later.
3735 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3736 ram_state->migration_dirty_pages++;
3738 return block->colo_cache + offset;
3742 * ram_handle_compressed: handle the zero page case
3744 * If a page (or a whole RDMA chunk) has been
3745 * determined to be zero, then zap it.
3747 * @host: host address for the zero page
3748 * @ch: what the page is filled from. We only support zero
3749 * @size: size of the zero page
3751 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3753 if (ch != 0 || !is_zero_range(host, size)) {
3754 memset(host, ch, size);
3758 /* return the size after decompression, or negative value on error */
3759 static int
3760 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3761 const uint8_t *source, size_t source_len)
3763 int err;
3765 err = inflateReset(stream);
3766 if (err != Z_OK) {
3767 return -1;
3770 stream->avail_in = source_len;
3771 stream->next_in = (uint8_t *)source;
3772 stream->avail_out = dest_len;
3773 stream->next_out = dest;
3775 err = inflate(stream, Z_NO_FLUSH);
3776 if (err != Z_STREAM_END) {
3777 return -1;
3780 return stream->total_out;
3783 static void *do_data_decompress(void *opaque)
3785 DecompressParam *param = opaque;
3786 unsigned long pagesize;
3787 uint8_t *des;
3788 int len, ret;
3790 qemu_mutex_lock(&param->mutex);
3791 while (!param->quit) {
3792 if (param->des) {
3793 des = param->des;
3794 len = param->len;
3795 param->des = 0;
3796 qemu_mutex_unlock(&param->mutex);
3798 pagesize = TARGET_PAGE_SIZE;
3800 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3801 param->compbuf, len);
3802 if (ret < 0 && migrate_get_current()->decompress_error_check) {
3803 error_report("decompress data failed");
3804 qemu_file_set_error(decomp_file, ret);
3807 qemu_mutex_lock(&decomp_done_lock);
3808 param->done = true;
3809 qemu_cond_signal(&decomp_done_cond);
3810 qemu_mutex_unlock(&decomp_done_lock);
3812 qemu_mutex_lock(&param->mutex);
3813 } else {
3814 qemu_cond_wait(&param->cond, &param->mutex);
3817 qemu_mutex_unlock(&param->mutex);
3819 return NULL;
3822 static int wait_for_decompress_done(void)
3824 int idx, thread_count;
3826 if (!migrate_use_compression()) {
3827 return 0;
3830 thread_count = migrate_decompress_threads();
3831 qemu_mutex_lock(&decomp_done_lock);
3832 for (idx = 0; idx < thread_count; idx++) {
3833 while (!decomp_param[idx].done) {
3834 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3837 qemu_mutex_unlock(&decomp_done_lock);
3838 return qemu_file_get_error(decomp_file);
3841 static void compress_threads_load_cleanup(void)
3843 int i, thread_count;
3845 if (!migrate_use_compression()) {
3846 return;
3848 thread_count = migrate_decompress_threads();
3849 for (i = 0; i < thread_count; i++) {
3851 * we use it as a indicator which shows if the thread is
3852 * properly init'd or not
3854 if (!decomp_param[i].compbuf) {
3855 break;
3858 qemu_mutex_lock(&decomp_param[i].mutex);
3859 decomp_param[i].quit = true;
3860 qemu_cond_signal(&decomp_param[i].cond);
3861 qemu_mutex_unlock(&decomp_param[i].mutex);
3863 for (i = 0; i < thread_count; i++) {
3864 if (!decomp_param[i].compbuf) {
3865 break;
3868 qemu_thread_join(decompress_threads + i);
3869 qemu_mutex_destroy(&decomp_param[i].mutex);
3870 qemu_cond_destroy(&decomp_param[i].cond);
3871 inflateEnd(&decomp_param[i].stream);
3872 g_free(decomp_param[i].compbuf);
3873 decomp_param[i].compbuf = NULL;
3875 g_free(decompress_threads);
3876 g_free(decomp_param);
3877 decompress_threads = NULL;
3878 decomp_param = NULL;
3879 decomp_file = NULL;
3882 static int compress_threads_load_setup(QEMUFile *f)
3884 int i, thread_count;
3886 if (!migrate_use_compression()) {
3887 return 0;
3890 thread_count = migrate_decompress_threads();
3891 decompress_threads = g_new0(QemuThread, thread_count);
3892 decomp_param = g_new0(DecompressParam, thread_count);
3893 qemu_mutex_init(&decomp_done_lock);
3894 qemu_cond_init(&decomp_done_cond);
3895 decomp_file = f;
3896 for (i = 0; i < thread_count; i++) {
3897 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3898 goto exit;
3901 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3902 qemu_mutex_init(&decomp_param[i].mutex);
3903 qemu_cond_init(&decomp_param[i].cond);
3904 decomp_param[i].done = true;
3905 decomp_param[i].quit = false;
3906 qemu_thread_create(decompress_threads + i, "decompress",
3907 do_data_decompress, decomp_param + i,
3908 QEMU_THREAD_JOINABLE);
3910 return 0;
3911 exit:
3912 compress_threads_load_cleanup();
3913 return -1;
3916 static void decompress_data_with_multi_threads(QEMUFile *f,
3917 void *host, int len)
3919 int idx, thread_count;
3921 thread_count = migrate_decompress_threads();
3922 qemu_mutex_lock(&decomp_done_lock);
3923 while (true) {
3924 for (idx = 0; idx < thread_count; idx++) {
3925 if (decomp_param[idx].done) {
3926 decomp_param[idx].done = false;
3927 qemu_mutex_lock(&decomp_param[idx].mutex);
3928 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3929 decomp_param[idx].des = host;
3930 decomp_param[idx].len = len;
3931 qemu_cond_signal(&decomp_param[idx].cond);
3932 qemu_mutex_unlock(&decomp_param[idx].mutex);
3933 break;
3936 if (idx < thread_count) {
3937 break;
3938 } else {
3939 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3942 qemu_mutex_unlock(&decomp_done_lock);
3946 * colo cache: this is for secondary VM, we cache the whole
3947 * memory of the secondary VM, it is need to hold the global lock
3948 * to call this helper.
3950 int colo_init_ram_cache(void)
3952 RAMBlock *block;
3954 rcu_read_lock();
3955 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3956 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3957 NULL,
3958 false);
3959 if (!block->colo_cache) {
3960 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3961 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3962 block->used_length);
3963 goto out_locked;
3965 memcpy(block->colo_cache, block->host, block->used_length);
3967 rcu_read_unlock();
3969 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3970 * with to decide which page in cache should be flushed into SVM's RAM. Here
3971 * we use the same name 'ram_bitmap' as for migration.
3973 if (ram_bytes_total()) {
3974 RAMBlock *block;
3976 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3977 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3979 block->bmap = bitmap_new(pages);
3980 bitmap_set(block->bmap, 0, pages);
3983 ram_state = g_new0(RAMState, 1);
3984 ram_state->migration_dirty_pages = 0;
3985 qemu_mutex_init(&ram_state->bitmap_mutex);
3986 memory_global_dirty_log_start();
3988 return 0;
3990 out_locked:
3992 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3993 if (block->colo_cache) {
3994 qemu_anon_ram_free(block->colo_cache, block->used_length);
3995 block->colo_cache = NULL;
3999 rcu_read_unlock();
4000 return -errno;
4003 /* It is need to hold the global lock to call this helper */
4004 void colo_release_ram_cache(void)
4006 RAMBlock *block;
4008 memory_global_dirty_log_stop();
4009 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4010 g_free(block->bmap);
4011 block->bmap = NULL;
4014 rcu_read_lock();
4016 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4017 if (block->colo_cache) {
4018 qemu_anon_ram_free(block->colo_cache, block->used_length);
4019 block->colo_cache = NULL;
4023 rcu_read_unlock();
4024 qemu_mutex_destroy(&ram_state->bitmap_mutex);
4025 g_free(ram_state);
4026 ram_state = NULL;
4030 * ram_load_setup: Setup RAM for migration incoming side
4032 * Returns zero to indicate success and negative for error
4034 * @f: QEMUFile where to receive the data
4035 * @opaque: RAMState pointer
4037 static int ram_load_setup(QEMUFile *f, void *opaque)
4039 if (compress_threads_load_setup(f)) {
4040 return -1;
4043 xbzrle_load_setup();
4044 ramblock_recv_map_init();
4046 return 0;
4049 static int ram_load_cleanup(void *opaque)
4051 RAMBlock *rb;
4053 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4054 if (ramblock_is_pmem(rb)) {
4055 pmem_persist(rb->host, rb->used_length);
4059 xbzrle_load_cleanup();
4060 compress_threads_load_cleanup();
4062 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4063 g_free(rb->receivedmap);
4064 rb->receivedmap = NULL;
4067 return 0;
4071 * ram_postcopy_incoming_init: allocate postcopy data structures
4073 * Returns 0 for success and negative if there was one error
4075 * @mis: current migration incoming state
4077 * Allocate data structures etc needed by incoming migration with
4078 * postcopy-ram. postcopy-ram's similarly names
4079 * postcopy_ram_incoming_init does the work.
4081 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
4083 return postcopy_ram_incoming_init(mis);
4087 * ram_load_postcopy: load a page in postcopy case
4089 * Returns 0 for success or -errno in case of error
4091 * Called in postcopy mode by ram_load().
4092 * rcu_read_lock is taken prior to this being called.
4094 * @f: QEMUFile where to send the data
4096 static int ram_load_postcopy(QEMUFile *f)
4098 int flags = 0, ret = 0;
4099 bool place_needed = false;
4100 bool matches_target_page_size = false;
4101 MigrationIncomingState *mis = migration_incoming_get_current();
4102 /* Temporary page that is later 'placed' */
4103 void *postcopy_host_page = postcopy_get_tmp_page(mis);
4104 void *last_host = NULL;
4105 bool all_zero = false;
4107 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4108 ram_addr_t addr;
4109 void *host = NULL;
4110 void *page_buffer = NULL;
4111 void *place_source = NULL;
4112 RAMBlock *block = NULL;
4113 uint8_t ch;
4115 addr = qemu_get_be64(f);
4118 * If qemu file error, we should stop here, and then "addr"
4119 * may be invalid
4121 ret = qemu_file_get_error(f);
4122 if (ret) {
4123 break;
4126 flags = addr & ~TARGET_PAGE_MASK;
4127 addr &= TARGET_PAGE_MASK;
4129 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4130 place_needed = false;
4131 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
4132 block = ram_block_from_stream(f, flags);
4134 host = host_from_ram_block_offset(block, addr);
4135 if (!host) {
4136 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4137 ret = -EINVAL;
4138 break;
4140 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
4142 * Postcopy requires that we place whole host pages atomically;
4143 * these may be huge pages for RAMBlocks that are backed by
4144 * hugetlbfs.
4145 * To make it atomic, the data is read into a temporary page
4146 * that's moved into place later.
4147 * The migration protocol uses, possibly smaller, target-pages
4148 * however the source ensures it always sends all the components
4149 * of a host page in order.
4151 page_buffer = postcopy_host_page +
4152 ((uintptr_t)host & (block->page_size - 1));
4153 /* If all TP are zero then we can optimise the place */
4154 if (!((uintptr_t)host & (block->page_size - 1))) {
4155 all_zero = true;
4156 } else {
4157 /* not the 1st TP within the HP */
4158 if (host != (last_host + TARGET_PAGE_SIZE)) {
4159 error_report("Non-sequential target page %p/%p",
4160 host, last_host);
4161 ret = -EINVAL;
4162 break;
4168 * If it's the last part of a host page then we place the host
4169 * page
4171 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
4172 (block->page_size - 1)) == 0;
4173 place_source = postcopy_host_page;
4175 last_host = host;
4177 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4178 case RAM_SAVE_FLAG_ZERO:
4179 ch = qemu_get_byte(f);
4180 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4181 if (ch) {
4182 all_zero = false;
4184 break;
4186 case RAM_SAVE_FLAG_PAGE:
4187 all_zero = false;
4188 if (!matches_target_page_size) {
4189 /* For huge pages, we always use temporary buffer */
4190 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4191 } else {
4193 * For small pages that matches target page size, we
4194 * avoid the qemu_file copy. Instead we directly use
4195 * the buffer of QEMUFile to place the page. Note: we
4196 * cannot do any QEMUFile operation before using that
4197 * buffer to make sure the buffer is valid when
4198 * placing the page.
4200 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4201 TARGET_PAGE_SIZE);
4203 break;
4204 case RAM_SAVE_FLAG_EOS:
4205 /* normal exit */
4206 multifd_recv_sync_main();
4207 break;
4208 default:
4209 error_report("Unknown combination of migration flags: %#x"
4210 " (postcopy mode)", flags);
4211 ret = -EINVAL;
4212 break;
4215 /* Detect for any possible file errors */
4216 if (!ret && qemu_file_get_error(f)) {
4217 ret = qemu_file_get_error(f);
4220 if (!ret && place_needed) {
4221 /* This gets called at the last target page in the host page */
4222 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
4224 if (all_zero) {
4225 ret = postcopy_place_page_zero(mis, place_dest,
4226 block);
4227 } else {
4228 ret = postcopy_place_page(mis, place_dest,
4229 place_source, block);
4234 return ret;
4237 static bool postcopy_is_advised(void)
4239 PostcopyState ps = postcopy_state_get();
4240 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4243 static bool postcopy_is_running(void)
4245 PostcopyState ps = postcopy_state_get();
4246 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4250 * Flush content of RAM cache into SVM's memory.
4251 * Only flush the pages that be dirtied by PVM or SVM or both.
4253 static void colo_flush_ram_cache(void)
4255 RAMBlock *block = NULL;
4256 void *dst_host;
4257 void *src_host;
4258 unsigned long offset = 0;
4260 memory_global_dirty_log_sync();
4261 rcu_read_lock();
4262 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4263 ramblock_sync_dirty_bitmap(ram_state, block);
4265 rcu_read_unlock();
4267 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4268 rcu_read_lock();
4269 block = QLIST_FIRST_RCU(&ram_list.blocks);
4271 while (block) {
4272 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4274 if (offset << TARGET_PAGE_BITS >= block->used_length) {
4275 offset = 0;
4276 block = QLIST_NEXT_RCU(block, next);
4277 } else {
4278 migration_bitmap_clear_dirty(ram_state, block, offset);
4279 dst_host = block->host + (offset << TARGET_PAGE_BITS);
4280 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4281 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4285 rcu_read_unlock();
4286 trace_colo_flush_ram_cache_end();
4290 * ram_load_precopy: load pages in precopy case
4292 * Returns 0 for success or -errno in case of error
4294 * Called in precopy mode by ram_load().
4295 * rcu_read_lock is taken prior to this being called.
4297 * @f: QEMUFile where to send the data
4299 static int ram_load_precopy(QEMUFile *f)
4301 int flags = 0, ret = 0, invalid_flags = 0, len = 0;
4302 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4303 bool postcopy_advised = postcopy_is_advised();
4304 if (!migrate_use_compression()) {
4305 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4308 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4309 ram_addr_t addr, total_ram_bytes;
4310 void *host = NULL;
4311 uint8_t ch;
4313 addr = qemu_get_be64(f);
4314 flags = addr & ~TARGET_PAGE_MASK;
4315 addr &= TARGET_PAGE_MASK;
4317 if (flags & invalid_flags) {
4318 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4319 error_report("Received an unexpected compressed page");
4322 ret = -EINVAL;
4323 break;
4326 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4327 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4328 RAMBlock *block = ram_block_from_stream(f, flags);
4331 * After going into COLO, we should load the Page into colo_cache.
4333 if (migration_incoming_in_colo_state()) {
4334 host = colo_cache_from_block_offset(block, addr);
4335 } else {
4336 host = host_from_ram_block_offset(block, addr);
4338 if (!host) {
4339 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4340 ret = -EINVAL;
4341 break;
4344 if (!migration_incoming_in_colo_state()) {
4345 ramblock_recv_bitmap_set(block, host);
4348 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4351 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4352 case RAM_SAVE_FLAG_MEM_SIZE:
4353 /* Synchronize RAM block list */
4354 total_ram_bytes = addr;
4355 while (!ret && total_ram_bytes) {
4356 RAMBlock *block;
4357 char id[256];
4358 ram_addr_t length;
4360 len = qemu_get_byte(f);
4361 qemu_get_buffer(f, (uint8_t *)id, len);
4362 id[len] = 0;
4363 length = qemu_get_be64(f);
4365 block = qemu_ram_block_by_name(id);
4366 if (block && !qemu_ram_is_migratable(block)) {
4367 error_report("block %s should not be migrated !", id);
4368 ret = -EINVAL;
4369 } else if (block) {
4370 if (length != block->used_length) {
4371 Error *local_err = NULL;
4373 ret = qemu_ram_resize(block, length,
4374 &local_err);
4375 if (local_err) {
4376 error_report_err(local_err);
4379 /* For postcopy we need to check hugepage sizes match */
4380 if (postcopy_advised &&
4381 block->page_size != qemu_host_page_size) {
4382 uint64_t remote_page_size = qemu_get_be64(f);
4383 if (remote_page_size != block->page_size) {
4384 error_report("Mismatched RAM page size %s "
4385 "(local) %zd != %" PRId64,
4386 id, block->page_size,
4387 remote_page_size);
4388 ret = -EINVAL;
4391 if (migrate_ignore_shared()) {
4392 hwaddr addr = qemu_get_be64(f);
4393 if (ramblock_is_ignored(block) &&
4394 block->mr->addr != addr) {
4395 error_report("Mismatched GPAs for block %s "
4396 "%" PRId64 "!= %" PRId64,
4397 id, (uint64_t)addr,
4398 (uint64_t)block->mr->addr);
4399 ret = -EINVAL;
4402 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4403 block->idstr);
4404 } else {
4405 error_report("Unknown ramblock \"%s\", cannot "
4406 "accept migration", id);
4407 ret = -EINVAL;
4410 total_ram_bytes -= length;
4412 break;
4414 case RAM_SAVE_FLAG_ZERO:
4415 ch = qemu_get_byte(f);
4416 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4417 break;
4419 case RAM_SAVE_FLAG_PAGE:
4420 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4421 break;
4423 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4424 len = qemu_get_be32(f);
4425 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4426 error_report("Invalid compressed data length: %d", len);
4427 ret = -EINVAL;
4428 break;
4430 decompress_data_with_multi_threads(f, host, len);
4431 break;
4433 case RAM_SAVE_FLAG_XBZRLE:
4434 if (load_xbzrle(f, addr, host) < 0) {
4435 error_report("Failed to decompress XBZRLE page at "
4436 RAM_ADDR_FMT, addr);
4437 ret = -EINVAL;
4438 break;
4440 break;
4441 case RAM_SAVE_FLAG_EOS:
4442 /* normal exit */
4443 multifd_recv_sync_main();
4444 break;
4445 default:
4446 if (flags & RAM_SAVE_FLAG_HOOK) {
4447 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4448 } else {
4449 error_report("Unknown combination of migration flags: %#x",
4450 flags);
4451 ret = -EINVAL;
4454 if (!ret) {
4455 ret = qemu_file_get_error(f);
4459 return ret;
4462 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4464 int ret = 0;
4465 static uint64_t seq_iter;
4467 * If system is running in postcopy mode, page inserts to host memory must
4468 * be atomic
4470 bool postcopy_running = postcopy_is_running();
4472 seq_iter++;
4474 if (version_id != 4) {
4475 return -EINVAL;
4479 * This RCU critical section can be very long running.
4480 * When RCU reclaims in the code start to become numerous,
4481 * it will be necessary to reduce the granularity of this
4482 * critical section.
4484 rcu_read_lock();
4486 if (postcopy_running) {
4487 ret = ram_load_postcopy(f);
4488 } else {
4489 ret = ram_load_precopy(f);
4492 ret |= wait_for_decompress_done();
4493 rcu_read_unlock();
4494 trace_ram_load_complete(ret, seq_iter);
4496 if (!ret && migration_incoming_in_colo_state()) {
4497 colo_flush_ram_cache();
4499 return ret;
4502 static bool ram_has_postcopy(void *opaque)
4504 RAMBlock *rb;
4505 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4506 if (ramblock_is_pmem(rb)) {
4507 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4508 "is not supported now!", rb->idstr, rb->host);
4509 return false;
4513 return migrate_postcopy_ram();
4516 /* Sync all the dirty bitmap with destination VM. */
4517 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4519 RAMBlock *block;
4520 QEMUFile *file = s->to_dst_file;
4521 int ramblock_count = 0;
4523 trace_ram_dirty_bitmap_sync_start();
4525 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4526 qemu_savevm_send_recv_bitmap(file, block->idstr);
4527 trace_ram_dirty_bitmap_request(block->idstr);
4528 ramblock_count++;
4531 trace_ram_dirty_bitmap_sync_wait();
4533 /* Wait until all the ramblocks' dirty bitmap synced */
4534 while (ramblock_count--) {
4535 qemu_sem_wait(&s->rp_state.rp_sem);
4538 trace_ram_dirty_bitmap_sync_complete();
4540 return 0;
4543 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4545 qemu_sem_post(&s->rp_state.rp_sem);
4549 * Read the received bitmap, revert it as the initial dirty bitmap.
4550 * This is only used when the postcopy migration is paused but wants
4551 * to resume from a middle point.
4553 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4555 int ret = -EINVAL;
4556 QEMUFile *file = s->rp_state.from_dst_file;
4557 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4558 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4559 uint64_t size, end_mark;
4561 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4563 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4564 error_report("%s: incorrect state %s", __func__,
4565 MigrationStatus_str(s->state));
4566 return -EINVAL;
4570 * Note: see comments in ramblock_recv_bitmap_send() on why we
4571 * need the endianess convertion, and the paddings.
4573 local_size = ROUND_UP(local_size, 8);
4575 /* Add paddings */
4576 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4578 size = qemu_get_be64(file);
4580 /* The size of the bitmap should match with our ramblock */
4581 if (size != local_size) {
4582 error_report("%s: ramblock '%s' bitmap size mismatch "
4583 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4584 block->idstr, size, local_size);
4585 ret = -EINVAL;
4586 goto out;
4589 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4590 end_mark = qemu_get_be64(file);
4592 ret = qemu_file_get_error(file);
4593 if (ret || size != local_size) {
4594 error_report("%s: read bitmap failed for ramblock '%s': %d"
4595 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4596 __func__, block->idstr, ret, local_size, size);
4597 ret = -EIO;
4598 goto out;
4601 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4602 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4603 __func__, block->idstr, end_mark);
4604 ret = -EINVAL;
4605 goto out;
4609 * Endianess convertion. We are during postcopy (though paused).
4610 * The dirty bitmap won't change. We can directly modify it.
4612 bitmap_from_le(block->bmap, le_bitmap, nbits);
4615 * What we received is "received bitmap". Revert it as the initial
4616 * dirty bitmap for this ramblock.
4618 bitmap_complement(block->bmap, block->bmap, nbits);
4620 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4623 * We succeeded to sync bitmap for current ramblock. If this is
4624 * the last one to sync, we need to notify the main send thread.
4626 ram_dirty_bitmap_reload_notify(s);
4628 ret = 0;
4629 out:
4630 g_free(le_bitmap);
4631 return ret;
4634 static int ram_resume_prepare(MigrationState *s, void *opaque)
4636 RAMState *rs = *(RAMState **)opaque;
4637 int ret;
4639 ret = ram_dirty_bitmap_sync_all(s, rs);
4640 if (ret) {
4641 return ret;
4644 ram_state_resume_prepare(rs, s->to_dst_file);
4646 return 0;
4649 static SaveVMHandlers savevm_ram_handlers = {
4650 .save_setup = ram_save_setup,
4651 .save_live_iterate = ram_save_iterate,
4652 .save_live_complete_postcopy = ram_save_complete,
4653 .save_live_complete_precopy = ram_save_complete,
4654 .has_postcopy = ram_has_postcopy,
4655 .save_live_pending = ram_save_pending,
4656 .load_state = ram_load,
4657 .save_cleanup = ram_save_cleanup,
4658 .load_setup = ram_load_setup,
4659 .load_cleanup = ram_load_cleanup,
4660 .resume_prepare = ram_resume_prepare,
4663 void ram_mig_init(void)
4665 qemu_mutex_init(&XBZRLE.lock);
4666 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);