xive: Link "xive" property to XiveSource::xive pointer
[qemu/ar7.git] / hw / intc / pnv_xive.c
blob9e23dc705dc39b570c84233fee60bd55fe44d520
1 /*
2 * QEMU PowerPC XIVE interrupt controller model
4 * Copyright (c) 2017-2019, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "monitor/monitor.h"
19 #include "hw/ppc/fdt.h"
20 #include "hw/ppc/pnv.h"
21 #include "hw/ppc/pnv_core.h"
22 #include "hw/ppc/pnv_xscom.h"
23 #include "hw/ppc/pnv_xive.h"
24 #include "hw/ppc/xive_regs.h"
25 #include "hw/qdev-properties.h"
26 #include "hw/ppc/ppc.h"
28 #include <libfdt.h>
30 #include "pnv_xive_regs.h"
32 #define XIVE_DEBUG
35 * Virtual structures table (VST)
37 #define SBE_PER_BYTE 4
39 typedef struct XiveVstInfo {
40 const char *name;
41 uint32_t size;
42 uint32_t max_blocks;
43 } XiveVstInfo;
45 static const XiveVstInfo vst_infos[] = {
46 [VST_TSEL_IVT] = { "EAT", sizeof(XiveEAS), 16 },
47 [VST_TSEL_SBE] = { "SBE", 1, 16 },
48 [VST_TSEL_EQDT] = { "ENDT", sizeof(XiveEND), 16 },
49 [VST_TSEL_VPDT] = { "VPDT", sizeof(XiveNVT), 32 },
52 * Interrupt fifo backing store table (not modeled) :
54 * 0 - IPI,
55 * 1 - HWD,
56 * 2 - First escalate,
57 * 3 - Second escalate,
58 * 4 - Redistribution,
59 * 5 - IPI cascaded queue ?
61 [VST_TSEL_IRQ] = { "IRQ", 1, 6 },
64 #define xive_error(xive, fmt, ...) \
65 qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n", \
66 (xive)->chip->chip_id, ## __VA_ARGS__);
69 * QEMU version of the GETFIELD/SETFIELD macros
71 * TODO: It might be better to use the existing extract64() and
72 * deposit64() but this means that all the register definitions will
73 * change and become incompatible with the ones found in skiboot.
75 * Keep it as it is for now until we find a common ground.
77 static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
79 return (word & mask) >> ctz64(mask);
82 static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
83 uint64_t value)
85 return (word & ~mask) | ((value << ctz64(mask)) & mask);
89 * Remote access to controllers. HW uses MMIOs. For now, a simple scan
90 * of the chips is good enough.
92 * TODO: Block scope support
94 static PnvXive *pnv_xive_get_ic(uint8_t blk)
96 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
97 int i;
99 for (i = 0; i < pnv->num_chips; i++) {
100 Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
101 PnvXive *xive = &chip9->xive;
103 if (xive->chip->chip_id == blk) {
104 return xive;
107 return NULL;
111 * VST accessors for SBE, EAT, ENDT, NVT
113 * Indirect VST tables are arrays of VSDs pointing to a page (of same
114 * size). Each page is a direct VST table.
117 #define XIVE_VSD_SIZE 8
119 /* Indirect page size can be 4K, 64K, 2M, 16M. */
120 static uint64_t pnv_xive_vst_page_size_allowed(uint32_t page_shift)
122 return page_shift == 12 || page_shift == 16 ||
123 page_shift == 21 || page_shift == 24;
126 static uint64_t pnv_xive_vst_size(uint64_t vsd)
128 uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
131 * Read the first descriptor to get the page size of the indirect
132 * table.
134 if (VSD_INDIRECT & vsd) {
135 uint32_t nr_pages = vst_tsize / XIVE_VSD_SIZE;
136 uint32_t page_shift;
138 vsd = ldq_be_dma(&address_space_memory, vsd & VSD_ADDRESS_MASK);
139 page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
141 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
142 return 0;
145 return nr_pages * (1ull << page_shift);
148 return vst_tsize;
151 static uint64_t pnv_xive_vst_addr_direct(PnvXive *xive, uint32_t type,
152 uint64_t vsd, uint32_t idx)
154 const XiveVstInfo *info = &vst_infos[type];
155 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
157 return vst_addr + idx * info->size;
160 static uint64_t pnv_xive_vst_addr_indirect(PnvXive *xive, uint32_t type,
161 uint64_t vsd, uint32_t idx)
163 const XiveVstInfo *info = &vst_infos[type];
164 uint64_t vsd_addr;
165 uint32_t vsd_idx;
166 uint32_t page_shift;
167 uint32_t vst_per_page;
169 /* Get the page size of the indirect table. */
170 vsd_addr = vsd & VSD_ADDRESS_MASK;
171 vsd = ldq_be_dma(&address_space_memory, vsd_addr);
173 if (!(vsd & VSD_ADDRESS_MASK)) {
174 xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
175 return 0;
178 page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
180 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
181 xive_error(xive, "VST: invalid %s page shift %d", info->name,
182 page_shift);
183 return 0;
186 vst_per_page = (1ull << page_shift) / info->size;
187 vsd_idx = idx / vst_per_page;
189 /* Load the VSD we are looking for, if not already done */
190 if (vsd_idx) {
191 vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE;
192 vsd = ldq_be_dma(&address_space_memory, vsd_addr);
194 if (!(vsd & VSD_ADDRESS_MASK)) {
195 xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
196 return 0;
200 * Check that the pages have a consistent size across the
201 * indirect table
203 if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) {
204 xive_error(xive, "VST: %s entry %x indirect page size differ !?",
205 info->name, idx);
206 return 0;
210 return pnv_xive_vst_addr_direct(xive, type, vsd, (idx % vst_per_page));
213 static uint64_t pnv_xive_vst_addr(PnvXive *xive, uint32_t type, uint8_t blk,
214 uint32_t idx)
216 const XiveVstInfo *info = &vst_infos[type];
217 uint64_t vsd;
218 uint32_t idx_max;
220 if (blk >= info->max_blocks) {
221 xive_error(xive, "VST: invalid block id %d for VST %s %d !?",
222 blk, info->name, idx);
223 return 0;
226 vsd = xive->vsds[type][blk];
228 /* Remote VST access */
229 if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) {
230 xive = pnv_xive_get_ic(blk);
232 return xive ? pnv_xive_vst_addr(xive, type, blk, idx) : 0;
235 idx_max = pnv_xive_vst_size(vsd) / info->size - 1;
236 if (idx > idx_max) {
237 #ifdef XIVE_DEBUG
238 xive_error(xive, "VST: %s entry %x/%x out of range [ 0 .. %x ] !?",
239 info->name, blk, idx, idx_max);
240 #endif
241 return 0;
244 if (VSD_INDIRECT & vsd) {
245 return pnv_xive_vst_addr_indirect(xive, type, vsd, idx);
248 return pnv_xive_vst_addr_direct(xive, type, vsd, idx);
251 static int pnv_xive_vst_read(PnvXive *xive, uint32_t type, uint8_t blk,
252 uint32_t idx, void *data)
254 const XiveVstInfo *info = &vst_infos[type];
255 uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
257 if (!addr) {
258 return -1;
261 cpu_physical_memory_read(addr, data, info->size);
262 return 0;
265 #define XIVE_VST_WORD_ALL -1
267 static int pnv_xive_vst_write(PnvXive *xive, uint32_t type, uint8_t blk,
268 uint32_t idx, void *data, uint32_t word_number)
270 const XiveVstInfo *info = &vst_infos[type];
271 uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
273 if (!addr) {
274 return -1;
277 if (word_number == XIVE_VST_WORD_ALL) {
278 cpu_physical_memory_write(addr, data, info->size);
279 } else {
280 cpu_physical_memory_write(addr + word_number * 4,
281 data + word_number * 4, 4);
283 return 0;
286 static int pnv_xive_get_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
287 XiveEND *end)
289 return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end);
292 static int pnv_xive_write_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
293 XiveEND *end, uint8_t word_number)
295 return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end,
296 word_number);
299 static int pnv_xive_end_update(PnvXive *xive)
301 uint8_t blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
302 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
303 uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
304 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
305 int i;
306 uint64_t eqc_watch[4];
308 for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
309 eqc_watch[i] = cpu_to_be64(xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i]);
312 return pnv_xive_vst_write(xive, VST_TSEL_EQDT, blk, idx, eqc_watch,
313 XIVE_VST_WORD_ALL);
316 static void pnv_xive_end_cache_load(PnvXive *xive)
318 uint8_t blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
319 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
320 uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
321 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
322 uint64_t eqc_watch[4] = { 0 };
323 int i;
325 if (pnv_xive_vst_read(xive, VST_TSEL_EQDT, blk, idx, eqc_watch)) {
326 xive_error(xive, "VST: no END entry %x/%x !?", blk, idx);
329 for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
330 xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(eqc_watch[i]);
334 static int pnv_xive_get_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
335 XiveNVT *nvt)
337 return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt);
340 static int pnv_xive_write_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
341 XiveNVT *nvt, uint8_t word_number)
343 return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt,
344 word_number);
347 static int pnv_xive_nvt_update(PnvXive *xive)
349 uint8_t blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
350 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
351 uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
352 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
353 int i;
354 uint64_t vpc_watch[8];
356 for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
357 vpc_watch[i] = cpu_to_be64(xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i]);
360 return pnv_xive_vst_write(xive, VST_TSEL_VPDT, blk, idx, vpc_watch,
361 XIVE_VST_WORD_ALL);
364 static void pnv_xive_nvt_cache_load(PnvXive *xive)
366 uint8_t blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
367 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
368 uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
369 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
370 uint64_t vpc_watch[8] = { 0 };
371 int i;
373 if (pnv_xive_vst_read(xive, VST_TSEL_VPDT, blk, idx, vpc_watch)) {
374 xive_error(xive, "VST: no NVT entry %x/%x !?", blk, idx);
377 for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
378 xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(vpc_watch[i]);
382 static int pnv_xive_get_eas(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
383 XiveEAS *eas)
385 PnvXive *xive = PNV_XIVE(xrtr);
387 if (pnv_xive_get_ic(blk) != xive) {
388 xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
389 return -1;
392 return pnv_xive_vst_read(xive, VST_TSEL_IVT, blk, idx, eas);
395 static XiveTCTX *pnv_xive_get_tctx(XiveRouter *xrtr, CPUState *cs)
397 PowerPCCPU *cpu = POWERPC_CPU(cs);
398 XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
399 PnvXive *xive = NULL;
400 CPUPPCState *env = &cpu->env;
401 int pir = env->spr_cb[SPR_PIR].default_value;
404 * Perform an extra check on the HW thread enablement.
406 * The TIMA is shared among the chips and to identify the chip
407 * from which the access is being done, we extract the chip id
408 * from the PIR.
410 xive = pnv_xive_get_ic((pir >> 8) & 0xf);
411 if (!xive) {
412 return NULL;
415 if (!(xive->regs[PC_THREAD_EN_REG0 >> 3] & PPC_BIT(pir & 0x3f))) {
416 xive_error(PNV_XIVE(xrtr), "IC: CPU %x is not enabled", pir);
419 return tctx;
423 * The internal sources (IPIs) of the interrupt controller have no
424 * knowledge of the XIVE chip on which they reside. Encode the block
425 * id in the source interrupt number before forwarding the source
426 * event notification to the Router. This is required on a multichip
427 * system.
429 static void pnv_xive_notify(XiveNotifier *xn, uint32_t srcno)
431 PnvXive *xive = PNV_XIVE(xn);
432 uint8_t blk = xive->chip->chip_id;
434 xive_router_notify(xn, XIVE_EAS(blk, srcno));
438 * XIVE helpers
441 static uint64_t pnv_xive_vc_size(PnvXive *xive)
443 return (~xive->regs[CQ_VC_BARM >> 3] + 1) & CQ_VC_BARM_MASK;
446 static uint64_t pnv_xive_edt_shift(PnvXive *xive)
448 return ctz64(pnv_xive_vc_size(xive) / XIVE_TABLE_EDT_MAX);
451 static uint64_t pnv_xive_pc_size(PnvXive *xive)
453 return (~xive->regs[CQ_PC_BARM >> 3] + 1) & CQ_PC_BARM_MASK;
456 static uint32_t pnv_xive_nr_ipis(PnvXive *xive)
458 uint8_t blk = xive->chip->chip_id;
460 return pnv_xive_vst_size(xive->vsds[VST_TSEL_SBE][blk]) * SBE_PER_BYTE;
463 static uint32_t pnv_xive_nr_ends(PnvXive *xive)
465 uint8_t blk = xive->chip->chip_id;
467 return pnv_xive_vst_size(xive->vsds[VST_TSEL_EQDT][blk])
468 / vst_infos[VST_TSEL_EQDT].size;
472 * EDT Table
474 * The Virtualization Controller MMIO region containing the IPI ESB
475 * pages and END ESB pages is sub-divided into "sets" which map
476 * portions of the VC region to the different ESB pages. It is
477 * configured at runtime through the EDT "Domain Table" to let the
478 * firmware decide how to split the VC address space between IPI ESB
479 * pages and END ESB pages.
483 * Computes the overall size of the IPI or the END ESB pages
485 static uint64_t pnv_xive_edt_size(PnvXive *xive, uint64_t type)
487 uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
488 uint64_t size = 0;
489 int i;
491 for (i = 0; i < XIVE_TABLE_EDT_MAX; i++) {
492 uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
494 if (edt_type == type) {
495 size += edt_size;
499 return size;
503 * Maps an offset of the VC region in the IPI or END region using the
504 * layout defined by the EDT "Domaine Table"
506 static uint64_t pnv_xive_edt_offset(PnvXive *xive, uint64_t vc_offset,
507 uint64_t type)
509 int i;
510 uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
511 uint64_t edt_offset = vc_offset;
513 for (i = 0; i < XIVE_TABLE_EDT_MAX && (i * edt_size) < vc_offset; i++) {
514 uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
516 if (edt_type != type) {
517 edt_offset -= edt_size;
521 return edt_offset;
524 static void pnv_xive_edt_resize(PnvXive *xive)
526 uint64_t ipi_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_IPI);
527 uint64_t end_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_EQ);
529 memory_region_set_size(&xive->ipi_edt_mmio, ipi_edt_size);
530 memory_region_add_subregion(&xive->ipi_mmio, 0, &xive->ipi_edt_mmio);
532 memory_region_set_size(&xive->end_edt_mmio, end_edt_size);
533 memory_region_add_subregion(&xive->end_mmio, 0, &xive->end_edt_mmio);
537 * XIVE Table configuration. Only EDT is supported.
539 static int pnv_xive_table_set_data(PnvXive *xive, uint64_t val)
541 uint64_t tsel = xive->regs[CQ_TAR >> 3] & CQ_TAR_TSEL;
542 uint8_t tsel_index = GETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3]);
543 uint64_t *xive_table;
544 uint8_t max_index;
546 switch (tsel) {
547 case CQ_TAR_TSEL_BLK:
548 max_index = ARRAY_SIZE(xive->blk);
549 xive_table = xive->blk;
550 break;
551 case CQ_TAR_TSEL_MIG:
552 max_index = ARRAY_SIZE(xive->mig);
553 xive_table = xive->mig;
554 break;
555 case CQ_TAR_TSEL_EDT:
556 max_index = ARRAY_SIZE(xive->edt);
557 xive_table = xive->edt;
558 break;
559 case CQ_TAR_TSEL_VDT:
560 max_index = ARRAY_SIZE(xive->vdt);
561 xive_table = xive->vdt;
562 break;
563 default:
564 xive_error(xive, "IC: invalid table %d", (int) tsel);
565 return -1;
568 if (tsel_index >= max_index) {
569 xive_error(xive, "IC: invalid index %d", (int) tsel_index);
570 return -1;
573 xive_table[tsel_index] = val;
575 if (xive->regs[CQ_TAR >> 3] & CQ_TAR_TBL_AUTOINC) {
576 xive->regs[CQ_TAR >> 3] =
577 SETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3], ++tsel_index);
581 * EDT configuration is complete. Resize the MMIO windows exposing
582 * the IPI and the END ESBs in the VC region.
584 if (tsel == CQ_TAR_TSEL_EDT && tsel_index == ARRAY_SIZE(xive->edt)) {
585 pnv_xive_edt_resize(xive);
588 return 0;
592 * Virtual Structure Tables (VST) configuration
594 static void pnv_xive_vst_set_exclusive(PnvXive *xive, uint8_t type,
595 uint8_t blk, uint64_t vsd)
597 XiveENDSource *end_xsrc = &xive->end_source;
598 XiveSource *xsrc = &xive->ipi_source;
599 const XiveVstInfo *info = &vst_infos[type];
600 uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
601 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
603 /* Basic checks */
605 if (VSD_INDIRECT & vsd) {
606 if (!(xive->regs[VC_GLOBAL_CONFIG >> 3] & VC_GCONF_INDIRECT)) {
607 xive_error(xive, "VST: %s indirect tables are not enabled",
608 info->name);
609 return;
612 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
613 xive_error(xive, "VST: invalid %s page shift %d", info->name,
614 page_shift);
615 return;
619 if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) {
620 xive_error(xive, "VST: %s table address 0x%"PRIx64" is not aligned with"
621 " page shift %d", info->name, vst_addr, page_shift);
622 return;
625 /* Record the table configuration (in SRAM on HW) */
626 xive->vsds[type][blk] = vsd;
628 /* Now tune the models with the configuration provided by the FW */
630 switch (type) {
631 case VST_TSEL_IVT: /* Nothing to be done */
632 break;
634 case VST_TSEL_EQDT:
636 * Backing store pages for the END. Compute the number of ENDs
637 * provisioned by FW and resize the END ESB window accordingly.
639 memory_region_set_size(&end_xsrc->esb_mmio, pnv_xive_nr_ends(xive) *
640 (1ull << (end_xsrc->esb_shift + 1)));
641 memory_region_add_subregion(&xive->end_edt_mmio, 0,
642 &end_xsrc->esb_mmio);
643 break;
645 case VST_TSEL_SBE:
647 * Backing store pages for the source PQ bits. The model does
648 * not use these PQ bits backed in RAM because the XiveSource
649 * model has its own. Compute the number of IRQs provisioned
650 * by FW and resize the IPI ESB window accordingly.
652 memory_region_set_size(&xsrc->esb_mmio, pnv_xive_nr_ipis(xive) *
653 (1ull << xsrc->esb_shift));
654 memory_region_add_subregion(&xive->ipi_edt_mmio, 0, &xsrc->esb_mmio);
655 break;
657 case VST_TSEL_VPDT: /* Not modeled */
658 case VST_TSEL_IRQ: /* Not modeled */
660 * These tables contains the backing store pages for the
661 * interrupt fifos of the VC sub-engine in case of overflow.
663 break;
665 default:
666 g_assert_not_reached();
671 * Both PC and VC sub-engines are configured as each use the Virtual
672 * Structure Tables : SBE, EAS, END and NVT.
674 static void pnv_xive_vst_set_data(PnvXive *xive, uint64_t vsd, bool pc_engine)
676 uint8_t mode = GETFIELD(VSD_MODE, vsd);
677 uint8_t type = GETFIELD(VST_TABLE_SELECT,
678 xive->regs[VC_VSD_TABLE_ADDR >> 3]);
679 uint8_t blk = GETFIELD(VST_TABLE_BLOCK,
680 xive->regs[VC_VSD_TABLE_ADDR >> 3]);
681 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
683 if (type > VST_TSEL_IRQ) {
684 xive_error(xive, "VST: invalid table type %d", type);
685 return;
688 if (blk >= vst_infos[type].max_blocks) {
689 xive_error(xive, "VST: invalid block id %d for"
690 " %s table", blk, vst_infos[type].name);
691 return;
695 * Only take the VC sub-engine configuration into account because
696 * the XiveRouter model combines both VC and PC sub-engines
698 if (pc_engine) {
699 return;
702 if (!vst_addr) {
703 xive_error(xive, "VST: invalid %s table address", vst_infos[type].name);
704 return;
707 switch (mode) {
708 case VSD_MODE_FORWARD:
709 xive->vsds[type][blk] = vsd;
710 break;
712 case VSD_MODE_EXCLUSIVE:
713 pnv_xive_vst_set_exclusive(xive, type, blk, vsd);
714 break;
716 default:
717 xive_error(xive, "VST: unsupported table mode %d", mode);
718 return;
723 * Interrupt controller MMIO region. The layout is compatible between
724 * 4K and 64K pages :
726 * Page 0 sub-engine BARs
727 * 0x000 - 0x3FF IC registers
728 * 0x400 - 0x7FF PC registers
729 * 0x800 - 0xFFF VC registers
731 * Page 1 Notify page (writes only)
732 * 0x000 - 0x7FF HW interrupt triggers (PSI, PHB)
733 * 0x800 - 0xFFF forwards and syncs
735 * Page 2 LSI Trigger page (writes only) (not modeled)
736 * Page 3 LSI SB EOI page (reads only) (not modeled)
738 * Page 4-7 indirect TIMA
742 * IC - registers MMIO
744 static void pnv_xive_ic_reg_write(void *opaque, hwaddr offset,
745 uint64_t val, unsigned size)
747 PnvXive *xive = PNV_XIVE(opaque);
748 MemoryRegion *sysmem = get_system_memory();
749 uint32_t reg = offset >> 3;
750 bool is_chip0 = xive->chip->chip_id == 0;
752 switch (offset) {
755 * XIVE CQ (PowerBus bridge) settings
757 case CQ_MSGSND: /* msgsnd for doorbells */
758 case CQ_FIRMASK_OR: /* FIR error reporting */
759 break;
760 case CQ_PBI_CTL:
761 if (val & CQ_PBI_PC_64K) {
762 xive->pc_shift = 16;
764 if (val & CQ_PBI_VC_64K) {
765 xive->vc_shift = 16;
767 break;
768 case CQ_CFG_PB_GEN: /* PowerBus General Configuration */
770 * TODO: CQ_INT_ADDR_OPT for 1-block-per-chip mode
772 break;
775 * XIVE Virtualization Controller settings
777 case VC_GLOBAL_CONFIG:
778 break;
781 * XIVE Presenter Controller settings
783 case PC_GLOBAL_CONFIG:
785 * PC_GCONF_CHIPID_OVR
786 * Overrides Int command Chip ID with the Chip ID field (DEBUG)
788 break;
789 case PC_TCTXT_CFG:
791 * TODO: block group support
793 * PC_TCTXT_CFG_BLKGRP_EN
794 * PC_TCTXT_CFG_HARD_CHIPID_BLK :
795 * Moves the chipid into block field for hardwired CAM compares.
796 * Block offset value is adjusted to 0b0..01 & ThrdId
798 * Will require changes in xive_presenter_tctx_match(). I am
799 * not sure how to handle that yet.
802 /* Overrides hardwired chip ID with the chip ID field */
803 if (val & PC_TCTXT_CHIPID_OVERRIDE) {
804 xive->tctx_chipid = GETFIELD(PC_TCTXT_CHIPID, val);
806 break;
807 case PC_TCTXT_TRACK:
809 * PC_TCTXT_TRACK_EN:
810 * enable block tracking and exchange of block ownership
811 * information between Interrupt controllers
813 break;
816 * Misc settings
818 case VC_SBC_CONFIG: /* Store EOI configuration */
820 * Configure store EOI if required by firwmare (skiboot has removed
821 * support recently though)
823 if (val & (VC_SBC_CONF_CPLX_CIST | VC_SBC_CONF_CIST_BOTH)) {
824 xive->ipi_source.esb_flags |= XIVE_SRC_STORE_EOI;
826 break;
828 case VC_EQC_CONFIG: /* TODO: silent escalation */
829 case VC_AIB_TX_ORDER_TAG2: /* relax ordering */
830 break;
833 * XIVE BAR settings (XSCOM only)
835 case CQ_RST_CTL:
836 /* bit4: resets all BAR registers */
837 break;
839 case CQ_IC_BAR: /* IC BAR. 8 pages */
840 xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12;
841 if (!(val & CQ_IC_BAR_VALID)) {
842 xive->ic_base = 0;
843 if (xive->regs[reg] & CQ_IC_BAR_VALID) {
844 memory_region_del_subregion(&xive->ic_mmio,
845 &xive->ic_reg_mmio);
846 memory_region_del_subregion(&xive->ic_mmio,
847 &xive->ic_notify_mmio);
848 memory_region_del_subregion(&xive->ic_mmio,
849 &xive->ic_lsi_mmio);
850 memory_region_del_subregion(&xive->ic_mmio,
851 &xive->tm_indirect_mmio);
853 memory_region_del_subregion(sysmem, &xive->ic_mmio);
855 } else {
856 xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K);
857 if (!(xive->regs[reg] & CQ_IC_BAR_VALID)) {
858 memory_region_add_subregion(sysmem, xive->ic_base,
859 &xive->ic_mmio);
861 memory_region_add_subregion(&xive->ic_mmio, 0,
862 &xive->ic_reg_mmio);
863 memory_region_add_subregion(&xive->ic_mmio,
864 1ul << xive->ic_shift,
865 &xive->ic_notify_mmio);
866 memory_region_add_subregion(&xive->ic_mmio,
867 2ul << xive->ic_shift,
868 &xive->ic_lsi_mmio);
869 memory_region_add_subregion(&xive->ic_mmio,
870 4ull << xive->ic_shift,
871 &xive->tm_indirect_mmio);
874 break;
876 case CQ_TM1_BAR: /* TM BAR. 4 pages. Map only once */
877 case CQ_TM2_BAR: /* second TM BAR. for hotplug. Not modeled */
878 xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12;
879 if (!(val & CQ_TM_BAR_VALID)) {
880 xive->tm_base = 0;
881 if (xive->regs[reg] & CQ_TM_BAR_VALID && is_chip0) {
882 memory_region_del_subregion(sysmem, &xive->tm_mmio);
884 } else {
885 xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K);
886 if (!(xive->regs[reg] & CQ_TM_BAR_VALID) && is_chip0) {
887 memory_region_add_subregion(sysmem, xive->tm_base,
888 &xive->tm_mmio);
891 break;
893 case CQ_PC_BARM:
894 xive->regs[reg] = val;
895 memory_region_set_size(&xive->pc_mmio, pnv_xive_pc_size(xive));
896 break;
897 case CQ_PC_BAR: /* From 32M to 512G */
898 if (!(val & CQ_PC_BAR_VALID)) {
899 xive->pc_base = 0;
900 if (xive->regs[reg] & CQ_PC_BAR_VALID) {
901 memory_region_del_subregion(sysmem, &xive->pc_mmio);
903 } else {
904 xive->pc_base = val & ~(CQ_PC_BAR_VALID);
905 if (!(xive->regs[reg] & CQ_PC_BAR_VALID)) {
906 memory_region_add_subregion(sysmem, xive->pc_base,
907 &xive->pc_mmio);
910 break;
912 case CQ_VC_BARM:
913 xive->regs[reg] = val;
914 memory_region_set_size(&xive->vc_mmio, pnv_xive_vc_size(xive));
915 break;
916 case CQ_VC_BAR: /* From 64M to 4TB */
917 if (!(val & CQ_VC_BAR_VALID)) {
918 xive->vc_base = 0;
919 if (xive->regs[reg] & CQ_VC_BAR_VALID) {
920 memory_region_del_subregion(sysmem, &xive->vc_mmio);
922 } else {
923 xive->vc_base = val & ~(CQ_VC_BAR_VALID);
924 if (!(xive->regs[reg] & CQ_VC_BAR_VALID)) {
925 memory_region_add_subregion(sysmem, xive->vc_base,
926 &xive->vc_mmio);
929 break;
932 * XIVE Table settings.
934 case CQ_TAR: /* Table Address */
935 break;
936 case CQ_TDR: /* Table Data */
937 pnv_xive_table_set_data(xive, val);
938 break;
941 * XIVE VC & PC Virtual Structure Table settings
943 case VC_VSD_TABLE_ADDR:
944 case PC_VSD_TABLE_ADDR: /* Virtual table selector */
945 break;
946 case VC_VSD_TABLE_DATA: /* Virtual table setting */
947 case PC_VSD_TABLE_DATA:
948 pnv_xive_vst_set_data(xive, val, offset == PC_VSD_TABLE_DATA);
949 break;
952 * Interrupt fifo overflow in memory backing store (Not modeled)
954 case VC_IRQ_CONFIG_IPI:
955 case VC_IRQ_CONFIG_HW:
956 case VC_IRQ_CONFIG_CASCADE1:
957 case VC_IRQ_CONFIG_CASCADE2:
958 case VC_IRQ_CONFIG_REDIST:
959 case VC_IRQ_CONFIG_IPI_CASC:
960 break;
963 * XIVE hardware thread enablement
965 case PC_THREAD_EN_REG0: /* Physical Thread Enable */
966 case PC_THREAD_EN_REG1: /* Physical Thread Enable (fused core) */
967 break;
969 case PC_THREAD_EN_REG0_SET:
970 xive->regs[PC_THREAD_EN_REG0 >> 3] |= val;
971 break;
972 case PC_THREAD_EN_REG1_SET:
973 xive->regs[PC_THREAD_EN_REG1 >> 3] |= val;
974 break;
975 case PC_THREAD_EN_REG0_CLR:
976 xive->regs[PC_THREAD_EN_REG0 >> 3] &= ~val;
977 break;
978 case PC_THREAD_EN_REG1_CLR:
979 xive->regs[PC_THREAD_EN_REG1 >> 3] &= ~val;
980 break;
983 * Indirect TIMA access set up. Defines the PIR of the HW thread
984 * to use.
986 case PC_TCTXT_INDIR0 ... PC_TCTXT_INDIR3:
987 break;
990 * XIVE PC & VC cache updates for EAS, NVT and END
992 case VC_IVC_SCRUB_MASK:
993 case VC_IVC_SCRUB_TRIG:
994 break;
996 case VC_EQC_CWATCH_SPEC:
997 val &= ~VC_EQC_CWATCH_CONFLICT; /* HW resets this bit */
998 break;
999 case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1000 break;
1001 case VC_EQC_CWATCH_DAT0:
1002 /* writing to DATA0 triggers the cache write */
1003 xive->regs[reg] = val;
1004 pnv_xive_end_update(xive);
1005 break;
1006 case VC_EQC_SCRUB_MASK:
1007 case VC_EQC_SCRUB_TRIG:
1009 * The scrubbing registers flush the cache in RAM and can also
1010 * invalidate.
1012 break;
1014 case PC_VPC_CWATCH_SPEC:
1015 val &= ~PC_VPC_CWATCH_CONFLICT; /* HW resets this bit */
1016 break;
1017 case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1018 break;
1019 case PC_VPC_CWATCH_DAT0:
1020 /* writing to DATA0 triggers the cache write */
1021 xive->regs[reg] = val;
1022 pnv_xive_nvt_update(xive);
1023 break;
1024 case PC_VPC_SCRUB_MASK:
1025 case PC_VPC_SCRUB_TRIG:
1027 * The scrubbing registers flush the cache in RAM and can also
1028 * invalidate.
1030 break;
1034 * XIVE PC & VC cache invalidation
1036 case PC_AT_KILL:
1037 break;
1038 case VC_AT_MACRO_KILL:
1039 break;
1040 case PC_AT_KILL_MASK:
1041 case VC_AT_MACRO_KILL_MASK:
1042 break;
1044 default:
1045 xive_error(xive, "IC: invalid write to reg=0x%"HWADDR_PRIx, offset);
1046 return;
1049 xive->regs[reg] = val;
1052 static uint64_t pnv_xive_ic_reg_read(void *opaque, hwaddr offset, unsigned size)
1054 PnvXive *xive = PNV_XIVE(opaque);
1055 uint64_t val = 0;
1056 uint32_t reg = offset >> 3;
1058 switch (offset) {
1059 case CQ_CFG_PB_GEN:
1060 case CQ_IC_BAR:
1061 case CQ_TM1_BAR:
1062 case CQ_TM2_BAR:
1063 case CQ_PC_BAR:
1064 case CQ_PC_BARM:
1065 case CQ_VC_BAR:
1066 case CQ_VC_BARM:
1067 case CQ_TAR:
1068 case CQ_TDR:
1069 case CQ_PBI_CTL:
1071 case PC_TCTXT_CFG:
1072 case PC_TCTXT_TRACK:
1073 case PC_TCTXT_INDIR0:
1074 case PC_TCTXT_INDIR1:
1075 case PC_TCTXT_INDIR2:
1076 case PC_TCTXT_INDIR3:
1077 case PC_GLOBAL_CONFIG:
1079 case PC_VPC_SCRUB_MASK:
1081 case VC_GLOBAL_CONFIG:
1082 case VC_AIB_TX_ORDER_TAG2:
1084 case VC_IRQ_CONFIG_IPI:
1085 case VC_IRQ_CONFIG_HW:
1086 case VC_IRQ_CONFIG_CASCADE1:
1087 case VC_IRQ_CONFIG_CASCADE2:
1088 case VC_IRQ_CONFIG_REDIST:
1089 case VC_IRQ_CONFIG_IPI_CASC:
1091 case VC_EQC_SCRUB_MASK:
1092 case VC_IVC_SCRUB_MASK:
1093 case VC_SBC_CONFIG:
1094 case VC_AT_MACRO_KILL_MASK:
1095 case VC_VSD_TABLE_ADDR:
1096 case PC_VSD_TABLE_ADDR:
1097 case VC_VSD_TABLE_DATA:
1098 case PC_VSD_TABLE_DATA:
1099 case PC_THREAD_EN_REG0:
1100 case PC_THREAD_EN_REG1:
1101 val = xive->regs[reg];
1102 break;
1105 * XIVE hardware thread enablement
1107 case PC_THREAD_EN_REG0_SET:
1108 case PC_THREAD_EN_REG0_CLR:
1109 val = xive->regs[PC_THREAD_EN_REG0 >> 3];
1110 break;
1111 case PC_THREAD_EN_REG1_SET:
1112 case PC_THREAD_EN_REG1_CLR:
1113 val = xive->regs[PC_THREAD_EN_REG1 >> 3];
1114 break;
1116 case CQ_MSGSND: /* Identifies which cores have msgsnd enabled. */
1117 val = 0xffffff0000000000;
1118 break;
1121 * XIVE PC & VC cache updates for EAS, NVT and END
1123 case VC_EQC_CWATCH_SPEC:
1124 xive->regs[reg] = ~(VC_EQC_CWATCH_FULL | VC_EQC_CWATCH_CONFLICT);
1125 val = xive->regs[reg];
1126 break;
1127 case VC_EQC_CWATCH_DAT0:
1129 * Load DATA registers from cache with data requested by the
1130 * SPEC register
1132 pnv_xive_end_cache_load(xive);
1133 val = xive->regs[reg];
1134 break;
1135 case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1136 val = xive->regs[reg];
1137 break;
1139 case PC_VPC_CWATCH_SPEC:
1140 xive->regs[reg] = ~(PC_VPC_CWATCH_FULL | PC_VPC_CWATCH_CONFLICT);
1141 val = xive->regs[reg];
1142 break;
1143 case PC_VPC_CWATCH_DAT0:
1145 * Load DATA registers from cache with data requested by the
1146 * SPEC register
1148 pnv_xive_nvt_cache_load(xive);
1149 val = xive->regs[reg];
1150 break;
1151 case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1152 val = xive->regs[reg];
1153 break;
1155 case PC_VPC_SCRUB_TRIG:
1156 case VC_IVC_SCRUB_TRIG:
1157 case VC_EQC_SCRUB_TRIG:
1158 xive->regs[reg] &= ~VC_SCRUB_VALID;
1159 val = xive->regs[reg];
1160 break;
1163 * XIVE PC & VC cache invalidation
1165 case PC_AT_KILL:
1166 xive->regs[reg] &= ~PC_AT_KILL_VALID;
1167 val = xive->regs[reg];
1168 break;
1169 case VC_AT_MACRO_KILL:
1170 xive->regs[reg] &= ~VC_KILL_VALID;
1171 val = xive->regs[reg];
1172 break;
1175 * XIVE synchronisation
1177 case VC_EQC_CONFIG:
1178 val = VC_EQC_SYNC_MASK;
1179 break;
1181 default:
1182 xive_error(xive, "IC: invalid read reg=0x%"HWADDR_PRIx, offset);
1185 return val;
1188 static const MemoryRegionOps pnv_xive_ic_reg_ops = {
1189 .read = pnv_xive_ic_reg_read,
1190 .write = pnv_xive_ic_reg_write,
1191 .endianness = DEVICE_BIG_ENDIAN,
1192 .valid = {
1193 .min_access_size = 8,
1194 .max_access_size = 8,
1196 .impl = {
1197 .min_access_size = 8,
1198 .max_access_size = 8,
1203 * IC - Notify MMIO port page (write only)
1205 #define PNV_XIVE_FORWARD_IPI 0x800 /* Forward IPI */
1206 #define PNV_XIVE_FORWARD_HW 0x880 /* Forward HW */
1207 #define PNV_XIVE_FORWARD_OS_ESC 0x900 /* Forward OS escalation */
1208 #define PNV_XIVE_FORWARD_HW_ESC 0x980 /* Forward Hyp escalation */
1209 #define PNV_XIVE_FORWARD_REDIS 0xa00 /* Forward Redistribution */
1210 #define PNV_XIVE_RESERVED5 0xa80 /* Cache line 5 PowerBUS operation */
1211 #define PNV_XIVE_RESERVED6 0xb00 /* Cache line 6 PowerBUS operation */
1212 #define PNV_XIVE_RESERVED7 0xb80 /* Cache line 7 PowerBUS operation */
1214 /* VC synchronisation */
1215 #define PNV_XIVE_SYNC_IPI 0xc00 /* Sync IPI */
1216 #define PNV_XIVE_SYNC_HW 0xc80 /* Sync HW */
1217 #define PNV_XIVE_SYNC_OS_ESC 0xd00 /* Sync OS escalation */
1218 #define PNV_XIVE_SYNC_HW_ESC 0xd80 /* Sync Hyp escalation */
1219 #define PNV_XIVE_SYNC_REDIS 0xe00 /* Sync Redistribution */
1221 /* PC synchronisation */
1222 #define PNV_XIVE_SYNC_PULL 0xe80 /* Sync pull context */
1223 #define PNV_XIVE_SYNC_PUSH 0xf00 /* Sync push context */
1224 #define PNV_XIVE_SYNC_VPC 0xf80 /* Sync remove VPC store */
1226 static void pnv_xive_ic_hw_trigger(PnvXive *xive, hwaddr addr, uint64_t val)
1228 uint8_t blk;
1229 uint32_t idx;
1231 if (val & XIVE_TRIGGER_END) {
1232 xive_error(xive, "IC: END trigger at @0x%"HWADDR_PRIx" data 0x%"PRIx64,
1233 addr, val);
1234 return;
1238 * Forward the source event notification directly to the Router.
1239 * The source interrupt number should already be correctly encoded
1240 * with the chip block id by the sending device (PHB, PSI).
1242 blk = XIVE_EAS_BLOCK(val);
1243 idx = XIVE_EAS_INDEX(val);
1245 xive_router_notify(XIVE_NOTIFIER(xive), XIVE_EAS(blk, idx));
1248 static void pnv_xive_ic_notify_write(void *opaque, hwaddr addr, uint64_t val,
1249 unsigned size)
1251 PnvXive *xive = PNV_XIVE(opaque);
1253 /* VC: HW triggers */
1254 switch (addr) {
1255 case 0x000 ... 0x7FF:
1256 pnv_xive_ic_hw_trigger(opaque, addr, val);
1257 break;
1259 /* VC: Forwarded IRQs */
1260 case PNV_XIVE_FORWARD_IPI:
1261 case PNV_XIVE_FORWARD_HW:
1262 case PNV_XIVE_FORWARD_OS_ESC:
1263 case PNV_XIVE_FORWARD_HW_ESC:
1264 case PNV_XIVE_FORWARD_REDIS:
1265 /* TODO: forwarded IRQs. Should be like HW triggers */
1266 xive_error(xive, "IC: forwarded at @0x%"HWADDR_PRIx" IRQ 0x%"PRIx64,
1267 addr, val);
1268 break;
1270 /* VC syncs */
1271 case PNV_XIVE_SYNC_IPI:
1272 case PNV_XIVE_SYNC_HW:
1273 case PNV_XIVE_SYNC_OS_ESC:
1274 case PNV_XIVE_SYNC_HW_ESC:
1275 case PNV_XIVE_SYNC_REDIS:
1276 break;
1278 /* PC syncs */
1279 case PNV_XIVE_SYNC_PULL:
1280 case PNV_XIVE_SYNC_PUSH:
1281 case PNV_XIVE_SYNC_VPC:
1282 break;
1284 default:
1285 xive_error(xive, "IC: invalid notify write @%"HWADDR_PRIx, addr);
1289 static uint64_t pnv_xive_ic_notify_read(void *opaque, hwaddr addr,
1290 unsigned size)
1292 PnvXive *xive = PNV_XIVE(opaque);
1294 /* loads are invalid */
1295 xive_error(xive, "IC: invalid notify read @%"HWADDR_PRIx, addr);
1296 return -1;
1299 static const MemoryRegionOps pnv_xive_ic_notify_ops = {
1300 .read = pnv_xive_ic_notify_read,
1301 .write = pnv_xive_ic_notify_write,
1302 .endianness = DEVICE_BIG_ENDIAN,
1303 .valid = {
1304 .min_access_size = 8,
1305 .max_access_size = 8,
1307 .impl = {
1308 .min_access_size = 8,
1309 .max_access_size = 8,
1314 * IC - LSI MMIO handlers (not modeled)
1317 static void pnv_xive_ic_lsi_write(void *opaque, hwaddr addr,
1318 uint64_t val, unsigned size)
1320 PnvXive *xive = PNV_XIVE(opaque);
1322 xive_error(xive, "IC: LSI invalid write @%"HWADDR_PRIx, addr);
1325 static uint64_t pnv_xive_ic_lsi_read(void *opaque, hwaddr addr, unsigned size)
1327 PnvXive *xive = PNV_XIVE(opaque);
1329 xive_error(xive, "IC: LSI invalid read @%"HWADDR_PRIx, addr);
1330 return -1;
1333 static const MemoryRegionOps pnv_xive_ic_lsi_ops = {
1334 .read = pnv_xive_ic_lsi_read,
1335 .write = pnv_xive_ic_lsi_write,
1336 .endianness = DEVICE_BIG_ENDIAN,
1337 .valid = {
1338 .min_access_size = 8,
1339 .max_access_size = 8,
1341 .impl = {
1342 .min_access_size = 8,
1343 .max_access_size = 8,
1348 * IC - Indirect TIMA MMIO handlers
1352 * When the TIMA is accessed from the indirect page, the thread id
1353 * (PIR) has to be configured in the IC registers before. This is used
1354 * for resets and for debug purpose also.
1356 static XiveTCTX *pnv_xive_get_indirect_tctx(PnvXive *xive)
1358 uint64_t tctxt_indir = xive->regs[PC_TCTXT_INDIR0 >> 3];
1359 PowerPCCPU *cpu = NULL;
1360 int pir;
1362 if (!(tctxt_indir & PC_TCTXT_INDIR_VALID)) {
1363 xive_error(xive, "IC: no indirect TIMA access in progress");
1364 return NULL;
1367 pir = GETFIELD(PC_TCTXT_INDIR_THRDID, tctxt_indir) & 0xff;
1368 cpu = ppc_get_vcpu_by_pir(pir);
1369 if (!cpu) {
1370 xive_error(xive, "IC: invalid PIR %x for indirect access", pir);
1371 return NULL;
1374 /* Check that HW thread is XIVE enabled */
1375 if (!(xive->regs[PC_THREAD_EN_REG0 >> 3] & PPC_BIT(pir & 0x3f))) {
1376 xive_error(xive, "IC: CPU %x is not enabled", pir);
1379 return XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1382 static void xive_tm_indirect_write(void *opaque, hwaddr offset,
1383 uint64_t value, unsigned size)
1385 XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1387 xive_tctx_tm_write(tctx, offset, value, size);
1390 static uint64_t xive_tm_indirect_read(void *opaque, hwaddr offset,
1391 unsigned size)
1393 XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1395 return xive_tctx_tm_read(tctx, offset, size);
1398 static const MemoryRegionOps xive_tm_indirect_ops = {
1399 .read = xive_tm_indirect_read,
1400 .write = xive_tm_indirect_write,
1401 .endianness = DEVICE_BIG_ENDIAN,
1402 .valid = {
1403 .min_access_size = 1,
1404 .max_access_size = 8,
1406 .impl = {
1407 .min_access_size = 1,
1408 .max_access_size = 8,
1413 * Interrupt controller XSCOM region.
1415 static uint64_t pnv_xive_xscom_read(void *opaque, hwaddr addr, unsigned size)
1417 switch (addr >> 3) {
1418 case X_VC_EQC_CONFIG:
1419 /* FIXME (skiboot): This is the only XSCOM load. Bizarre. */
1420 return VC_EQC_SYNC_MASK;
1421 default:
1422 return pnv_xive_ic_reg_read(opaque, addr, size);
1426 static void pnv_xive_xscom_write(void *opaque, hwaddr addr,
1427 uint64_t val, unsigned size)
1429 pnv_xive_ic_reg_write(opaque, addr, val, size);
1432 static const MemoryRegionOps pnv_xive_xscom_ops = {
1433 .read = pnv_xive_xscom_read,
1434 .write = pnv_xive_xscom_write,
1435 .endianness = DEVICE_BIG_ENDIAN,
1436 .valid = {
1437 .min_access_size = 8,
1438 .max_access_size = 8,
1440 .impl = {
1441 .min_access_size = 8,
1442 .max_access_size = 8,
1447 * Virtualization Controller MMIO region containing the IPI and END ESB pages
1449 static uint64_t pnv_xive_vc_read(void *opaque, hwaddr offset,
1450 unsigned size)
1452 PnvXive *xive = PNV_XIVE(opaque);
1453 uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1454 uint64_t edt_type = 0;
1455 uint64_t edt_offset;
1456 MemTxResult result;
1457 AddressSpace *edt_as = NULL;
1458 uint64_t ret = -1;
1460 if (edt_index < XIVE_TABLE_EDT_MAX) {
1461 edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1464 switch (edt_type) {
1465 case CQ_TDR_EDT_IPI:
1466 edt_as = &xive->ipi_as;
1467 break;
1468 case CQ_TDR_EDT_EQ:
1469 edt_as = &xive->end_as;
1470 break;
1471 default:
1472 xive_error(xive, "VC: invalid EDT type for read @%"HWADDR_PRIx, offset);
1473 return -1;
1476 /* Remap the offset for the targeted address space */
1477 edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1479 ret = address_space_ldq(edt_as, edt_offset, MEMTXATTRS_UNSPECIFIED,
1480 &result);
1482 if (result != MEMTX_OK) {
1483 xive_error(xive, "VC: %s read failed at @0x%"HWADDR_PRIx " -> @0x%"
1484 HWADDR_PRIx, edt_type == CQ_TDR_EDT_IPI ? "IPI" : "END",
1485 offset, edt_offset);
1486 return -1;
1489 return ret;
1492 static void pnv_xive_vc_write(void *opaque, hwaddr offset,
1493 uint64_t val, unsigned size)
1495 PnvXive *xive = PNV_XIVE(opaque);
1496 uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1497 uint64_t edt_type = 0;
1498 uint64_t edt_offset;
1499 MemTxResult result;
1500 AddressSpace *edt_as = NULL;
1502 if (edt_index < XIVE_TABLE_EDT_MAX) {
1503 edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1506 switch (edt_type) {
1507 case CQ_TDR_EDT_IPI:
1508 edt_as = &xive->ipi_as;
1509 break;
1510 case CQ_TDR_EDT_EQ:
1511 edt_as = &xive->end_as;
1512 break;
1513 default:
1514 xive_error(xive, "VC: invalid EDT type for write @%"HWADDR_PRIx,
1515 offset);
1516 return;
1519 /* Remap the offset for the targeted address space */
1520 edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1522 address_space_stq(edt_as, edt_offset, val, MEMTXATTRS_UNSPECIFIED, &result);
1523 if (result != MEMTX_OK) {
1524 xive_error(xive, "VC: write failed at @0x%"HWADDR_PRIx, edt_offset);
1528 static const MemoryRegionOps pnv_xive_vc_ops = {
1529 .read = pnv_xive_vc_read,
1530 .write = pnv_xive_vc_write,
1531 .endianness = DEVICE_BIG_ENDIAN,
1532 .valid = {
1533 .min_access_size = 8,
1534 .max_access_size = 8,
1536 .impl = {
1537 .min_access_size = 8,
1538 .max_access_size = 8,
1543 * Presenter Controller MMIO region. The Virtualization Controller
1544 * updates the IPB in the NVT table when required. Not modeled.
1546 static uint64_t pnv_xive_pc_read(void *opaque, hwaddr addr,
1547 unsigned size)
1549 PnvXive *xive = PNV_XIVE(opaque);
1551 xive_error(xive, "PC: invalid read @%"HWADDR_PRIx, addr);
1552 return -1;
1555 static void pnv_xive_pc_write(void *opaque, hwaddr addr,
1556 uint64_t value, unsigned size)
1558 PnvXive *xive = PNV_XIVE(opaque);
1560 xive_error(xive, "PC: invalid write to VC @%"HWADDR_PRIx, addr);
1563 static const MemoryRegionOps pnv_xive_pc_ops = {
1564 .read = pnv_xive_pc_read,
1565 .write = pnv_xive_pc_write,
1566 .endianness = DEVICE_BIG_ENDIAN,
1567 .valid = {
1568 .min_access_size = 8,
1569 .max_access_size = 8,
1571 .impl = {
1572 .min_access_size = 8,
1573 .max_access_size = 8,
1577 void pnv_xive_pic_print_info(PnvXive *xive, Monitor *mon)
1579 XiveRouter *xrtr = XIVE_ROUTER(xive);
1580 uint8_t blk = xive->chip->chip_id;
1581 uint32_t srcno0 = XIVE_EAS(blk, 0);
1582 uint32_t nr_ipis = pnv_xive_nr_ipis(xive);
1583 uint32_t nr_ends = pnv_xive_nr_ends(xive);
1584 XiveEAS eas;
1585 XiveEND end;
1586 int i;
1588 monitor_printf(mon, "XIVE[%x] Source %08x .. %08x\n", blk, srcno0,
1589 srcno0 + nr_ipis - 1);
1590 xive_source_pic_print_info(&xive->ipi_source, srcno0, mon);
1592 monitor_printf(mon, "XIVE[%x] EAT %08x .. %08x\n", blk, srcno0,
1593 srcno0 + nr_ipis - 1);
1594 for (i = 0; i < nr_ipis; i++) {
1595 if (xive_router_get_eas(xrtr, blk, i, &eas)) {
1596 break;
1598 if (!xive_eas_is_masked(&eas)) {
1599 xive_eas_pic_print_info(&eas, i, mon);
1603 monitor_printf(mon, "XIVE[%x] ENDT %08x .. %08x\n", blk, 0, nr_ends - 1);
1604 for (i = 0; i < nr_ends; i++) {
1605 if (xive_router_get_end(xrtr, blk, i, &end)) {
1606 break;
1608 xive_end_pic_print_info(&end, i, mon);
1611 monitor_printf(mon, "XIVE[%x] END Escalation %08x .. %08x\n", blk, 0,
1612 nr_ends - 1);
1613 for (i = 0; i < nr_ends; i++) {
1614 if (xive_router_get_end(xrtr, blk, i, &end)) {
1615 break;
1617 xive_end_eas_pic_print_info(&end, i, mon);
1621 static void pnv_xive_reset(void *dev)
1623 PnvXive *xive = PNV_XIVE(dev);
1624 XiveSource *xsrc = &xive->ipi_source;
1625 XiveENDSource *end_xsrc = &xive->end_source;
1628 * Use the PnvChip id to identify the XIVE interrupt controller.
1629 * It can be overriden by configuration at runtime.
1631 xive->tctx_chipid = xive->chip->chip_id;
1633 /* Default page size (Should be changed at runtime to 64k) */
1634 xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1636 /* Clear subregions */
1637 if (memory_region_is_mapped(&xsrc->esb_mmio)) {
1638 memory_region_del_subregion(&xive->ipi_edt_mmio, &xsrc->esb_mmio);
1641 if (memory_region_is_mapped(&xive->ipi_edt_mmio)) {
1642 memory_region_del_subregion(&xive->ipi_mmio, &xive->ipi_edt_mmio);
1645 if (memory_region_is_mapped(&end_xsrc->esb_mmio)) {
1646 memory_region_del_subregion(&xive->end_edt_mmio, &end_xsrc->esb_mmio);
1649 if (memory_region_is_mapped(&xive->end_edt_mmio)) {
1650 memory_region_del_subregion(&xive->end_mmio, &xive->end_edt_mmio);
1654 static void pnv_xive_init(Object *obj)
1656 PnvXive *xive = PNV_XIVE(obj);
1658 object_initialize_child(obj, "ipi_source", &xive->ipi_source,
1659 sizeof(xive->ipi_source), TYPE_XIVE_SOURCE,
1660 &error_abort, NULL);
1661 object_initialize_child(obj, "end_source", &xive->end_source,
1662 sizeof(xive->end_source), TYPE_XIVE_END_SOURCE,
1663 &error_abort, NULL);
1667 * Maximum number of IRQs and ENDs supported by HW
1669 #define PNV_XIVE_NR_IRQS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1670 #define PNV_XIVE_NR_ENDS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1672 static void pnv_xive_realize(DeviceState *dev, Error **errp)
1674 PnvXive *xive = PNV_XIVE(dev);
1675 XiveSource *xsrc = &xive->ipi_source;
1676 XiveENDSource *end_xsrc = &xive->end_source;
1677 Error *local_err = NULL;
1678 Object *obj;
1680 obj = object_property_get_link(OBJECT(dev), "chip", &local_err);
1681 if (!obj) {
1682 error_propagate(errp, local_err);
1683 error_prepend(errp, "required link 'chip' not found: ");
1684 return;
1687 /* The PnvChip id identifies the XIVE interrupt controller. */
1688 xive->chip = PNV_CHIP(obj);
1691 * The XiveSource and XiveENDSource objects are realized with the
1692 * maximum allowed HW configuration. The ESB MMIO regions will be
1693 * resized dynamically when the controller is configured by the FW
1694 * to limit accesses to resources not provisioned.
1696 object_property_set_int(OBJECT(xsrc), PNV_XIVE_NR_IRQS, "nr-irqs",
1697 &error_fatal);
1698 object_property_set_link(OBJECT(xsrc), OBJECT(xive), "xive",
1699 &error_abort);
1700 object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
1701 if (local_err) {
1702 error_propagate(errp, local_err);
1703 return;
1706 object_property_set_int(OBJECT(end_xsrc), PNV_XIVE_NR_ENDS, "nr-ends",
1707 &error_fatal);
1708 object_property_add_const_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
1709 &error_fatal);
1710 object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
1711 if (local_err) {
1712 error_propagate(errp, local_err);
1713 return;
1716 /* Default page size. Generally changed at runtime to 64k */
1717 xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1719 /* XSCOM region, used for initial configuration of the BARs */
1720 memory_region_init_io(&xive->xscom_regs, OBJECT(dev), &pnv_xive_xscom_ops,
1721 xive, "xscom-xive", PNV9_XSCOM_XIVE_SIZE << 3);
1723 /* Interrupt controller MMIO regions */
1724 memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic",
1725 PNV9_XIVE_IC_SIZE);
1727 memory_region_init_io(&xive->ic_reg_mmio, OBJECT(dev), &pnv_xive_ic_reg_ops,
1728 xive, "xive-ic-reg", 1 << xive->ic_shift);
1729 memory_region_init_io(&xive->ic_notify_mmio, OBJECT(dev),
1730 &pnv_xive_ic_notify_ops,
1731 xive, "xive-ic-notify", 1 << xive->ic_shift);
1733 /* The Pervasive LSI trigger and EOI pages (not modeled) */
1734 memory_region_init_io(&xive->ic_lsi_mmio, OBJECT(dev), &pnv_xive_ic_lsi_ops,
1735 xive, "xive-ic-lsi", 2 << xive->ic_shift);
1737 /* Thread Interrupt Management Area (Indirect) */
1738 memory_region_init_io(&xive->tm_indirect_mmio, OBJECT(dev),
1739 &xive_tm_indirect_ops,
1740 xive, "xive-tima-indirect", PNV9_XIVE_TM_SIZE);
1742 * Overall Virtualization Controller MMIO region containing the
1743 * IPI ESB pages and END ESB pages. The layout is defined by the
1744 * EDT "Domain table" and the accesses are dispatched using
1745 * address spaces for each.
1747 memory_region_init_io(&xive->vc_mmio, OBJECT(xive), &pnv_xive_vc_ops, xive,
1748 "xive-vc", PNV9_XIVE_VC_SIZE);
1750 memory_region_init(&xive->ipi_mmio, OBJECT(xive), "xive-vc-ipi",
1751 PNV9_XIVE_VC_SIZE);
1752 address_space_init(&xive->ipi_as, &xive->ipi_mmio, "xive-vc-ipi");
1753 memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-vc-end",
1754 PNV9_XIVE_VC_SIZE);
1755 address_space_init(&xive->end_as, &xive->end_mmio, "xive-vc-end");
1758 * The MMIO windows exposing the IPI ESBs and the END ESBs in the
1759 * VC region. Their size is configured by the FW in the EDT table.
1761 memory_region_init(&xive->ipi_edt_mmio, OBJECT(xive), "xive-vc-ipi-edt", 0);
1762 memory_region_init(&xive->end_edt_mmio, OBJECT(xive), "xive-vc-end-edt", 0);
1764 /* Presenter Controller MMIO region (not modeled) */
1765 memory_region_init_io(&xive->pc_mmio, OBJECT(xive), &pnv_xive_pc_ops, xive,
1766 "xive-pc", PNV9_XIVE_PC_SIZE);
1768 /* Thread Interrupt Management Area (Direct) */
1769 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &xive_tm_ops,
1770 xive, "xive-tima", PNV9_XIVE_TM_SIZE);
1772 qemu_register_reset(pnv_xive_reset, dev);
1775 static int pnv_xive_dt_xscom(PnvXScomInterface *dev, void *fdt,
1776 int xscom_offset)
1778 const char compat[] = "ibm,power9-xive-x";
1779 char *name;
1780 int offset;
1781 uint32_t lpc_pcba = PNV9_XSCOM_XIVE_BASE;
1782 uint32_t reg[] = {
1783 cpu_to_be32(lpc_pcba),
1784 cpu_to_be32(PNV9_XSCOM_XIVE_SIZE)
1787 name = g_strdup_printf("xive@%x", lpc_pcba);
1788 offset = fdt_add_subnode(fdt, xscom_offset, name);
1789 _FDT(offset);
1790 g_free(name);
1792 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
1793 _FDT((fdt_setprop(fdt, offset, "compatible", compat,
1794 sizeof(compat))));
1795 return 0;
1798 static Property pnv_xive_properties[] = {
1799 DEFINE_PROP_UINT64("ic-bar", PnvXive, ic_base, 0),
1800 DEFINE_PROP_UINT64("vc-bar", PnvXive, vc_base, 0),
1801 DEFINE_PROP_UINT64("pc-bar", PnvXive, pc_base, 0),
1802 DEFINE_PROP_UINT64("tm-bar", PnvXive, tm_base, 0),
1803 DEFINE_PROP_END_OF_LIST(),
1806 static void pnv_xive_class_init(ObjectClass *klass, void *data)
1808 DeviceClass *dc = DEVICE_CLASS(klass);
1809 PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
1810 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
1811 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1813 xdc->dt_xscom = pnv_xive_dt_xscom;
1815 dc->desc = "PowerNV XIVE Interrupt Controller";
1816 dc->realize = pnv_xive_realize;
1817 dc->props = pnv_xive_properties;
1819 xrc->get_eas = pnv_xive_get_eas;
1820 xrc->get_end = pnv_xive_get_end;
1821 xrc->write_end = pnv_xive_write_end;
1822 xrc->get_nvt = pnv_xive_get_nvt;
1823 xrc->write_nvt = pnv_xive_write_nvt;
1824 xrc->get_tctx = pnv_xive_get_tctx;
1826 xnc->notify = pnv_xive_notify;
1829 static const TypeInfo pnv_xive_info = {
1830 .name = TYPE_PNV_XIVE,
1831 .parent = TYPE_XIVE_ROUTER,
1832 .instance_init = pnv_xive_init,
1833 .instance_size = sizeof(PnvXive),
1834 .class_init = pnv_xive_class_init,
1835 .interfaces = (InterfaceInfo[]) {
1836 { TYPE_PNV_XSCOM_INTERFACE },
1841 static void pnv_xive_register_types(void)
1843 type_register_static(&pnv_xive_info);
1846 type_init(pnv_xive_register_types)