spapr: introduce a fixed IRQ number space
[qemu/ar7.git] / hw / ppc / spapr.c
blob6a78ceb7084acc376ef6533715fffb3f9d03513f
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "cpu-models.h"
47 #include "qom/cpu.h"
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/ppc/xics.h"
58 #include "hw/pci/msi.h"
60 #include "hw/pci/pci.h"
61 #include "hw/scsi/scsi.h"
62 #include "hw/virtio/virtio-scsi.h"
63 #include "hw/virtio/vhost-scsi-common.h"
65 #include "exec/address-spaces.h"
66 #include "exec/ram_addr.h"
67 #include "hw/usb.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
70 #include "trace.h"
71 #include "hw/nmi.h"
72 #include "hw/intc/intc.h"
74 #include "hw/compat.h"
75 #include "qemu/cutils.h"
76 #include "hw/ppc/spapr_cpu_core.h"
77 #include "hw/mem/memory-device.h"
79 #include <libfdt.h>
81 /* SLOF memory layout:
83 * SLOF raw image loaded at 0, copies its romfs right below the flat
84 * device-tree, then position SLOF itself 31M below that
86 * So we set FW_OVERHEAD to 40MB which should account for all of that
87 * and more
89 * We load our kernel at 4M, leaving space for SLOF initial image
91 #define FDT_MAX_SIZE 0x100000
92 #define RTAS_MAX_SIZE 0x10000
93 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
94 #define FW_MAX_SIZE 0x400000
95 #define FW_FILE_NAME "slof.bin"
96 #define FW_OVERHEAD 0x2800000
97 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
99 #define MIN_RMA_SLOF 128UL
101 #define PHANDLE_XICP 0x00001111
103 /* These two functions implement the VCPU id numbering: one to compute them
104 * all and one to identify thread 0 of a VCORE. Any change to the first one
105 * is likely to have an impact on the second one, so let's keep them close.
107 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
109 assert(spapr->vsmt);
110 return
111 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
113 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
114 PowerPCCPU *cpu)
116 assert(spapr->vsmt);
117 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
120 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
121 const char *type_ics,
122 int nr_irqs, Error **errp)
124 Error *local_err = NULL;
125 Object *obj;
127 obj = object_new(type_ics);
128 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
129 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
130 &error_abort);
131 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
132 if (local_err) {
133 goto error;
135 object_property_set_bool(obj, true, "realized", &local_err);
136 if (local_err) {
137 goto error;
140 return ICS_BASE(obj);
142 error:
143 error_propagate(errp, local_err);
144 return NULL;
147 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
149 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
150 * and newer QEMUs don't even have them. In both cases, we don't want
151 * to send anything on the wire.
153 return false;
156 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
157 .name = "icp/server",
158 .version_id = 1,
159 .minimum_version_id = 1,
160 .needed = pre_2_10_vmstate_dummy_icp_needed,
161 .fields = (VMStateField[]) {
162 VMSTATE_UNUSED(4), /* uint32_t xirr */
163 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
164 VMSTATE_UNUSED(1), /* uint8_t mfrr */
165 VMSTATE_END_OF_LIST()
169 static void pre_2_10_vmstate_register_dummy_icp(int i)
171 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
172 (void *)(uintptr_t) i);
175 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
177 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
178 (void *)(uintptr_t) i);
181 static int xics_max_server_number(sPAPRMachineState *spapr)
183 assert(spapr->vsmt);
184 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
187 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
189 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
190 Error *local_err = NULL;
192 /* Initialize the MSI IRQ allocator. */
193 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
194 spapr_irq_msi_init(spapr, XICS_IRQ_BASE + nr_irqs - SPAPR_IRQ_MSI);
197 if (kvm_enabled()) {
198 if (machine_kernel_irqchip_allowed(machine) &&
199 !xics_kvm_init(spapr, &local_err)) {
200 spapr->icp_type = TYPE_KVM_ICP;
201 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs,
202 &local_err);
204 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
205 error_prepend(&local_err,
206 "kernel_irqchip requested but unavailable: ");
207 goto error;
209 error_free(local_err);
210 local_err = NULL;
213 if (!spapr->ics) {
214 xics_spapr_init(spapr);
215 spapr->icp_type = TYPE_ICP;
216 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs,
217 &local_err);
220 error:
221 error_propagate(errp, local_err);
224 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
225 int smt_threads)
227 int i, ret = 0;
228 uint32_t servers_prop[smt_threads];
229 uint32_t gservers_prop[smt_threads * 2];
230 int index = spapr_get_vcpu_id(cpu);
232 if (cpu->compat_pvr) {
233 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
234 if (ret < 0) {
235 return ret;
239 /* Build interrupt servers and gservers properties */
240 for (i = 0; i < smt_threads; i++) {
241 servers_prop[i] = cpu_to_be32(index + i);
242 /* Hack, direct the group queues back to cpu 0 */
243 gservers_prop[i*2] = cpu_to_be32(index + i);
244 gservers_prop[i*2 + 1] = 0;
246 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
247 servers_prop, sizeof(servers_prop));
248 if (ret < 0) {
249 return ret;
251 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
252 gservers_prop, sizeof(gservers_prop));
254 return ret;
257 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
259 int index = spapr_get_vcpu_id(cpu);
260 uint32_t associativity[] = {cpu_to_be32(0x5),
261 cpu_to_be32(0x0),
262 cpu_to_be32(0x0),
263 cpu_to_be32(0x0),
264 cpu_to_be32(cpu->node_id),
265 cpu_to_be32(index)};
267 /* Advertise NUMA via ibm,associativity */
268 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
269 sizeof(associativity));
272 /* Populate the "ibm,pa-features" property */
273 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
274 PowerPCCPU *cpu,
275 void *fdt, int offset,
276 bool legacy_guest)
278 uint8_t pa_features_206[] = { 6, 0,
279 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
280 uint8_t pa_features_207[] = { 24, 0,
281 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
282 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
283 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
284 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
285 uint8_t pa_features_300[] = { 66, 0,
286 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
287 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
288 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
289 /* 6: DS207 */
290 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
291 /* 16: Vector */
292 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
293 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
294 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
295 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
296 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
297 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
298 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
299 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
300 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
301 /* 42: PM, 44: PC RA, 46: SC vec'd */
302 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
303 /* 48: SIMD, 50: QP BFP, 52: String */
304 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
305 /* 54: DecFP, 56: DecI, 58: SHA */
306 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
307 /* 60: NM atomic, 62: RNG */
308 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
310 uint8_t *pa_features = NULL;
311 size_t pa_size;
313 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
314 pa_features = pa_features_206;
315 pa_size = sizeof(pa_features_206);
317 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
318 pa_features = pa_features_207;
319 pa_size = sizeof(pa_features_207);
321 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
322 pa_features = pa_features_300;
323 pa_size = sizeof(pa_features_300);
325 if (!pa_features) {
326 return;
329 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
331 * Note: we keep CI large pages off by default because a 64K capable
332 * guest provisioned with large pages might otherwise try to map a qemu
333 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
334 * even if that qemu runs on a 4k host.
335 * We dd this bit back here if we are confident this is not an issue
337 pa_features[3] |= 0x20;
339 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
340 pa_features[24] |= 0x80; /* Transactional memory support */
342 if (legacy_guest && pa_size > 40) {
343 /* Workaround for broken kernels that attempt (guest) radix
344 * mode when they can't handle it, if they see the radix bit set
345 * in pa-features. So hide it from them. */
346 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
349 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
352 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
354 int ret = 0, offset, cpus_offset;
355 CPUState *cs;
356 char cpu_model[32];
357 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
359 CPU_FOREACH(cs) {
360 PowerPCCPU *cpu = POWERPC_CPU(cs);
361 DeviceClass *dc = DEVICE_GET_CLASS(cs);
362 int index = spapr_get_vcpu_id(cpu);
363 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
365 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
366 continue;
369 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
371 cpus_offset = fdt_path_offset(fdt, "/cpus");
372 if (cpus_offset < 0) {
373 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
374 if (cpus_offset < 0) {
375 return cpus_offset;
378 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
379 if (offset < 0) {
380 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
381 if (offset < 0) {
382 return offset;
386 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
387 pft_size_prop, sizeof(pft_size_prop));
388 if (ret < 0) {
389 return ret;
392 if (nb_numa_nodes > 1) {
393 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
394 if (ret < 0) {
395 return ret;
399 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
400 if (ret < 0) {
401 return ret;
404 spapr_populate_pa_features(spapr, cpu, fdt, offset,
405 spapr->cas_legacy_guest_workaround);
407 return ret;
410 static hwaddr spapr_node0_size(MachineState *machine)
412 if (nb_numa_nodes) {
413 int i;
414 for (i = 0; i < nb_numa_nodes; ++i) {
415 if (numa_info[i].node_mem) {
416 return MIN(pow2floor(numa_info[i].node_mem),
417 machine->ram_size);
421 return machine->ram_size;
424 static void add_str(GString *s, const gchar *s1)
426 g_string_append_len(s, s1, strlen(s1) + 1);
429 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
430 hwaddr size)
432 uint32_t associativity[] = {
433 cpu_to_be32(0x4), /* length */
434 cpu_to_be32(0x0), cpu_to_be32(0x0),
435 cpu_to_be32(0x0), cpu_to_be32(nodeid)
437 char mem_name[32];
438 uint64_t mem_reg_property[2];
439 int off;
441 mem_reg_property[0] = cpu_to_be64(start);
442 mem_reg_property[1] = cpu_to_be64(size);
444 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
445 off = fdt_add_subnode(fdt, 0, mem_name);
446 _FDT(off);
447 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
448 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
449 sizeof(mem_reg_property))));
450 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
451 sizeof(associativity))));
452 return off;
455 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
457 MachineState *machine = MACHINE(spapr);
458 hwaddr mem_start, node_size;
459 int i, nb_nodes = nb_numa_nodes;
460 NodeInfo *nodes = numa_info;
461 NodeInfo ramnode;
463 /* No NUMA nodes, assume there is just one node with whole RAM */
464 if (!nb_numa_nodes) {
465 nb_nodes = 1;
466 ramnode.node_mem = machine->ram_size;
467 nodes = &ramnode;
470 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
471 if (!nodes[i].node_mem) {
472 continue;
474 if (mem_start >= machine->ram_size) {
475 node_size = 0;
476 } else {
477 node_size = nodes[i].node_mem;
478 if (node_size > machine->ram_size - mem_start) {
479 node_size = machine->ram_size - mem_start;
482 if (!mem_start) {
483 /* spapr_machine_init() checks for rma_size <= node0_size
484 * already */
485 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
486 mem_start += spapr->rma_size;
487 node_size -= spapr->rma_size;
489 for ( ; node_size; ) {
490 hwaddr sizetmp = pow2floor(node_size);
492 /* mem_start != 0 here */
493 if (ctzl(mem_start) < ctzl(sizetmp)) {
494 sizetmp = 1ULL << ctzl(mem_start);
497 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
498 node_size -= sizetmp;
499 mem_start += sizetmp;
503 return 0;
506 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
507 sPAPRMachineState *spapr)
509 PowerPCCPU *cpu = POWERPC_CPU(cs);
510 CPUPPCState *env = &cpu->env;
511 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
512 int index = spapr_get_vcpu_id(cpu);
513 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
514 0xffffffff, 0xffffffff};
515 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
516 : SPAPR_TIMEBASE_FREQ;
517 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
518 uint32_t page_sizes_prop[64];
519 size_t page_sizes_prop_size;
520 uint32_t vcpus_per_socket = smp_threads * smp_cores;
521 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
522 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
523 sPAPRDRConnector *drc;
524 int drc_index;
525 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
526 int i;
528 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
529 if (drc) {
530 drc_index = spapr_drc_index(drc);
531 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
534 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
535 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
537 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
538 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
539 env->dcache_line_size)));
540 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
541 env->dcache_line_size)));
542 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
543 env->icache_line_size)));
544 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
545 env->icache_line_size)));
547 if (pcc->l1_dcache_size) {
548 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
549 pcc->l1_dcache_size)));
550 } else {
551 warn_report("Unknown L1 dcache size for cpu");
553 if (pcc->l1_icache_size) {
554 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
555 pcc->l1_icache_size)));
556 } else {
557 warn_report("Unknown L1 icache size for cpu");
560 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
561 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
562 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
563 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
564 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
565 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
567 if (env->spr_cb[SPR_PURR].oea_read) {
568 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
571 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
572 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
573 segs, sizeof(segs))));
576 /* Advertise VSX (vector extensions) if available
577 * 1 == VMX / Altivec available
578 * 2 == VSX available
580 * Only CPUs for which we create core types in spapr_cpu_core.c
581 * are possible, and all of those have VMX */
582 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
583 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
584 } else {
585 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
588 /* Advertise DFP (Decimal Floating Point) if available
589 * 0 / no property == no DFP
590 * 1 == DFP available */
591 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
592 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
595 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
596 sizeof(page_sizes_prop));
597 if (page_sizes_prop_size) {
598 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
599 page_sizes_prop, page_sizes_prop_size)));
602 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
604 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
605 cs->cpu_index / vcpus_per_socket)));
607 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
608 pft_size_prop, sizeof(pft_size_prop))));
610 if (nb_numa_nodes > 1) {
611 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
614 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
616 if (pcc->radix_page_info) {
617 for (i = 0; i < pcc->radix_page_info->count; i++) {
618 radix_AP_encodings[i] =
619 cpu_to_be32(pcc->radix_page_info->entries[i]);
621 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
622 radix_AP_encodings,
623 pcc->radix_page_info->count *
624 sizeof(radix_AP_encodings[0]))));
628 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
630 CPUState *cs;
631 int cpus_offset;
632 char *nodename;
634 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
635 _FDT(cpus_offset);
636 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
637 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
640 * We walk the CPUs in reverse order to ensure that CPU DT nodes
641 * created by fdt_add_subnode() end up in the right order in FDT
642 * for the guest kernel the enumerate the CPUs correctly.
644 CPU_FOREACH_REVERSE(cs) {
645 PowerPCCPU *cpu = POWERPC_CPU(cs);
646 int index = spapr_get_vcpu_id(cpu);
647 DeviceClass *dc = DEVICE_GET_CLASS(cs);
648 int offset;
650 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
651 continue;
654 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
655 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
656 g_free(nodename);
657 _FDT(offset);
658 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
663 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
665 MemoryDeviceInfoList *info;
667 for (info = list; info; info = info->next) {
668 MemoryDeviceInfo *value = info->value;
670 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
671 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
673 if (addr >= pcdimm_info->addr &&
674 addr < (pcdimm_info->addr + pcdimm_info->size)) {
675 return pcdimm_info->node;
680 return -1;
683 struct sPAPRDrconfCellV2 {
684 uint32_t seq_lmbs;
685 uint64_t base_addr;
686 uint32_t drc_index;
687 uint32_t aa_index;
688 uint32_t flags;
689 } QEMU_PACKED;
691 typedef struct DrconfCellQueue {
692 struct sPAPRDrconfCellV2 cell;
693 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
694 } DrconfCellQueue;
696 static DrconfCellQueue *
697 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
698 uint32_t drc_index, uint32_t aa_index,
699 uint32_t flags)
701 DrconfCellQueue *elem;
703 elem = g_malloc0(sizeof(*elem));
704 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
705 elem->cell.base_addr = cpu_to_be64(base_addr);
706 elem->cell.drc_index = cpu_to_be32(drc_index);
707 elem->cell.aa_index = cpu_to_be32(aa_index);
708 elem->cell.flags = cpu_to_be32(flags);
710 return elem;
713 /* ibm,dynamic-memory-v2 */
714 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
715 int offset, MemoryDeviceInfoList *dimms)
717 MachineState *machine = MACHINE(spapr);
718 uint8_t *int_buf, *cur_index, buf_len;
719 int ret;
720 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
721 uint64_t addr, cur_addr, size;
722 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
723 uint64_t mem_end = machine->device_memory->base +
724 memory_region_size(&machine->device_memory->mr);
725 uint32_t node, nr_entries = 0;
726 sPAPRDRConnector *drc;
727 DrconfCellQueue *elem, *next;
728 MemoryDeviceInfoList *info;
729 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
730 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
732 /* Entry to cover RAM and the gap area */
733 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
734 SPAPR_LMB_FLAGS_RESERVED |
735 SPAPR_LMB_FLAGS_DRC_INVALID);
736 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
737 nr_entries++;
739 cur_addr = machine->device_memory->base;
740 for (info = dimms; info; info = info->next) {
741 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
743 addr = di->addr;
744 size = di->size;
745 node = di->node;
747 /* Entry for hot-pluggable area */
748 if (cur_addr < addr) {
749 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
750 g_assert(drc);
751 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
752 cur_addr, spapr_drc_index(drc), -1, 0);
753 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
754 nr_entries++;
757 /* Entry for DIMM */
758 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
759 g_assert(drc);
760 elem = spapr_get_drconf_cell(size / lmb_size, addr,
761 spapr_drc_index(drc), node,
762 SPAPR_LMB_FLAGS_ASSIGNED);
763 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
764 nr_entries++;
765 cur_addr = addr + size;
768 /* Entry for remaining hotpluggable area */
769 if (cur_addr < mem_end) {
770 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
771 g_assert(drc);
772 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
773 cur_addr, spapr_drc_index(drc), -1, 0);
774 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
775 nr_entries++;
778 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
779 int_buf = cur_index = g_malloc0(buf_len);
780 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
781 cur_index += sizeof(nr_entries);
783 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
784 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
785 cur_index += sizeof(elem->cell);
786 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
787 g_free(elem);
790 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
791 g_free(int_buf);
792 if (ret < 0) {
793 return -1;
795 return 0;
798 /* ibm,dynamic-memory */
799 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
800 int offset, MemoryDeviceInfoList *dimms)
802 MachineState *machine = MACHINE(spapr);
803 int i, ret;
804 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
805 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
806 uint32_t nr_lmbs = (machine->device_memory->base +
807 memory_region_size(&machine->device_memory->mr)) /
808 lmb_size;
809 uint32_t *int_buf, *cur_index, buf_len;
812 * Allocate enough buffer size to fit in ibm,dynamic-memory
814 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
815 cur_index = int_buf = g_malloc0(buf_len);
816 int_buf[0] = cpu_to_be32(nr_lmbs);
817 cur_index++;
818 for (i = 0; i < nr_lmbs; i++) {
819 uint64_t addr = i * lmb_size;
820 uint32_t *dynamic_memory = cur_index;
822 if (i >= device_lmb_start) {
823 sPAPRDRConnector *drc;
825 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
826 g_assert(drc);
828 dynamic_memory[0] = cpu_to_be32(addr >> 32);
829 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
830 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
831 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
832 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
833 if (memory_region_present(get_system_memory(), addr)) {
834 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
835 } else {
836 dynamic_memory[5] = cpu_to_be32(0);
838 } else {
840 * LMB information for RMA, boot time RAM and gap b/n RAM and
841 * device memory region -- all these are marked as reserved
842 * and as having no valid DRC.
844 dynamic_memory[0] = cpu_to_be32(addr >> 32);
845 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
846 dynamic_memory[2] = cpu_to_be32(0);
847 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
848 dynamic_memory[4] = cpu_to_be32(-1);
849 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
850 SPAPR_LMB_FLAGS_DRC_INVALID);
853 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
855 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
856 g_free(int_buf);
857 if (ret < 0) {
858 return -1;
860 return 0;
864 * Adds ibm,dynamic-reconfiguration-memory node.
865 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
866 * of this device tree node.
868 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
870 MachineState *machine = MACHINE(spapr);
871 int ret, i, offset;
872 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
873 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
874 uint32_t *int_buf, *cur_index, buf_len;
875 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
876 MemoryDeviceInfoList *dimms = NULL;
879 * Don't create the node if there is no device memory
881 if (machine->ram_size == machine->maxram_size) {
882 return 0;
885 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
887 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
888 sizeof(prop_lmb_size));
889 if (ret < 0) {
890 return ret;
893 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
894 if (ret < 0) {
895 return ret;
898 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
899 if (ret < 0) {
900 return ret;
903 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
904 dimms = qmp_memory_device_list();
905 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
906 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
907 } else {
908 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
910 qapi_free_MemoryDeviceInfoList(dimms);
912 if (ret < 0) {
913 return ret;
916 /* ibm,associativity-lookup-arrays */
917 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
918 cur_index = int_buf = g_malloc0(buf_len);
920 cur_index = int_buf;
921 int_buf[0] = cpu_to_be32(nr_nodes);
922 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
923 cur_index += 2;
924 for (i = 0; i < nr_nodes; i++) {
925 uint32_t associativity[] = {
926 cpu_to_be32(0x0),
927 cpu_to_be32(0x0),
928 cpu_to_be32(0x0),
929 cpu_to_be32(i)
931 memcpy(cur_index, associativity, sizeof(associativity));
932 cur_index += 4;
934 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
935 (cur_index - int_buf) * sizeof(uint32_t));
936 g_free(int_buf);
938 return ret;
941 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
942 sPAPROptionVector *ov5_updates)
944 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
945 int ret = 0, offset;
947 /* Generate ibm,dynamic-reconfiguration-memory node if required */
948 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
949 g_assert(smc->dr_lmb_enabled);
950 ret = spapr_populate_drconf_memory(spapr, fdt);
951 if (ret) {
952 goto out;
956 offset = fdt_path_offset(fdt, "/chosen");
957 if (offset < 0) {
958 offset = fdt_add_subnode(fdt, 0, "chosen");
959 if (offset < 0) {
960 return offset;
963 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
964 "ibm,architecture-vec-5");
966 out:
967 return ret;
970 static bool spapr_hotplugged_dev_before_cas(void)
972 Object *drc_container, *obj;
973 ObjectProperty *prop;
974 ObjectPropertyIterator iter;
976 drc_container = container_get(object_get_root(), "/dr-connector");
977 object_property_iter_init(&iter, drc_container);
978 while ((prop = object_property_iter_next(&iter))) {
979 if (!strstart(prop->type, "link<", NULL)) {
980 continue;
982 obj = object_property_get_link(drc_container, prop->name, NULL);
983 if (spapr_drc_needed(obj)) {
984 return true;
987 return false;
990 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
991 target_ulong addr, target_ulong size,
992 sPAPROptionVector *ov5_updates)
994 void *fdt, *fdt_skel;
995 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
997 if (spapr_hotplugged_dev_before_cas()) {
998 return 1;
1001 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
1002 error_report("SLOF provided an unexpected CAS buffer size "
1003 TARGET_FMT_lu " (min: %zu, max: %u)",
1004 size, sizeof(hdr), FW_MAX_SIZE);
1005 exit(EXIT_FAILURE);
1008 size -= sizeof(hdr);
1010 /* Create skeleton */
1011 fdt_skel = g_malloc0(size);
1012 _FDT((fdt_create(fdt_skel, size)));
1013 _FDT((fdt_finish_reservemap(fdt_skel)));
1014 _FDT((fdt_begin_node(fdt_skel, "")));
1015 _FDT((fdt_end_node(fdt_skel)));
1016 _FDT((fdt_finish(fdt_skel)));
1017 fdt = g_malloc0(size);
1018 _FDT((fdt_open_into(fdt_skel, fdt, size)));
1019 g_free(fdt_skel);
1021 /* Fixup cpu nodes */
1022 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1024 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1025 return -1;
1028 /* Pack resulting tree */
1029 _FDT((fdt_pack(fdt)));
1031 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1032 trace_spapr_cas_failed(size);
1033 return -1;
1036 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1037 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1038 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1039 g_free(fdt);
1041 return 0;
1044 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
1046 int rtas;
1047 GString *hypertas = g_string_sized_new(256);
1048 GString *qemu_hypertas = g_string_sized_new(256);
1049 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1050 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1051 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1052 uint32_t lrdr_capacity[] = {
1053 cpu_to_be32(max_device_addr >> 32),
1054 cpu_to_be32(max_device_addr & 0xffffffff),
1055 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1056 cpu_to_be32(max_cpus / smp_threads),
1058 uint32_t maxdomains[] = {
1059 cpu_to_be32(4),
1060 cpu_to_be32(0),
1061 cpu_to_be32(0),
1062 cpu_to_be32(0),
1063 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes - 1 : 0),
1066 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1068 /* hypertas */
1069 add_str(hypertas, "hcall-pft");
1070 add_str(hypertas, "hcall-term");
1071 add_str(hypertas, "hcall-dabr");
1072 add_str(hypertas, "hcall-interrupt");
1073 add_str(hypertas, "hcall-tce");
1074 add_str(hypertas, "hcall-vio");
1075 add_str(hypertas, "hcall-splpar");
1076 add_str(hypertas, "hcall-bulk");
1077 add_str(hypertas, "hcall-set-mode");
1078 add_str(hypertas, "hcall-sprg0");
1079 add_str(hypertas, "hcall-copy");
1080 add_str(hypertas, "hcall-debug");
1081 add_str(qemu_hypertas, "hcall-memop1");
1083 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1084 add_str(hypertas, "hcall-multi-tce");
1087 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1088 add_str(hypertas, "hcall-hpt-resize");
1091 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1092 hypertas->str, hypertas->len));
1093 g_string_free(hypertas, TRUE);
1094 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1095 qemu_hypertas->str, qemu_hypertas->len));
1096 g_string_free(qemu_hypertas, TRUE);
1098 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1099 refpoints, sizeof(refpoints)));
1101 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1102 maxdomains, sizeof(maxdomains)));
1104 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1105 RTAS_ERROR_LOG_MAX));
1106 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1107 RTAS_EVENT_SCAN_RATE));
1109 g_assert(msi_nonbroken);
1110 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1113 * According to PAPR, rtas ibm,os-term does not guarantee a return
1114 * back to the guest cpu.
1116 * While an additional ibm,extended-os-term property indicates
1117 * that rtas call return will always occur. Set this property.
1119 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1121 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1122 lrdr_capacity, sizeof(lrdr_capacity)));
1124 spapr_dt_rtas_tokens(fdt, rtas);
1127 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
1128 * that the guest may request and thus the valid values for bytes 24..26 of
1129 * option vector 5: */
1130 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
1132 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1134 char val[2 * 4] = {
1135 23, 0x00, /* Xive mode, filled in below. */
1136 24, 0x00, /* Hash/Radix, filled in below. */
1137 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1138 26, 0x40, /* Radix options: GTSE == yes. */
1141 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1142 first_ppc_cpu->compat_pvr)) {
1143 /* If we're in a pre POWER9 compat mode then the guest should do hash */
1144 val[3] = 0x00; /* Hash */
1145 } else if (kvm_enabled()) {
1146 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1147 val[3] = 0x80; /* OV5_MMU_BOTH */
1148 } else if (kvmppc_has_cap_mmu_radix()) {
1149 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1150 } else {
1151 val[3] = 0x00; /* Hash */
1153 } else {
1154 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1155 val[3] = 0xC0;
1157 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1158 val, sizeof(val)));
1161 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1163 MachineState *machine = MACHINE(spapr);
1164 int chosen;
1165 const char *boot_device = machine->boot_order;
1166 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1167 size_t cb = 0;
1168 char *bootlist = get_boot_devices_list(&cb);
1170 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1172 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1173 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1174 spapr->initrd_base));
1175 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1176 spapr->initrd_base + spapr->initrd_size));
1178 if (spapr->kernel_size) {
1179 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1180 cpu_to_be64(spapr->kernel_size) };
1182 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1183 &kprop, sizeof(kprop)));
1184 if (spapr->kernel_le) {
1185 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1188 if (boot_menu) {
1189 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1191 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1192 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1193 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1195 if (cb && bootlist) {
1196 int i;
1198 for (i = 0; i < cb; i++) {
1199 if (bootlist[i] == '\n') {
1200 bootlist[i] = ' ';
1203 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1206 if (boot_device && strlen(boot_device)) {
1207 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1210 if (!spapr->has_graphics && stdout_path) {
1212 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1213 * kernel. New platforms should only use the "stdout-path" property. Set
1214 * the new property and continue using older property to remain
1215 * compatible with the existing firmware.
1217 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1218 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1221 spapr_dt_ov5_platform_support(fdt, chosen);
1223 g_free(stdout_path);
1224 g_free(bootlist);
1227 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1229 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1230 * KVM to work under pHyp with some guest co-operation */
1231 int hypervisor;
1232 uint8_t hypercall[16];
1234 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1235 /* indicate KVM hypercall interface */
1236 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1237 if (kvmppc_has_cap_fixup_hcalls()) {
1239 * Older KVM versions with older guest kernels were broken
1240 * with the magic page, don't allow the guest to map it.
1242 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1243 sizeof(hypercall))) {
1244 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1245 hypercall, sizeof(hypercall)));
1250 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1251 hwaddr rtas_addr,
1252 hwaddr rtas_size)
1254 MachineState *machine = MACHINE(spapr);
1255 MachineClass *mc = MACHINE_GET_CLASS(machine);
1256 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1257 int ret;
1258 void *fdt;
1259 sPAPRPHBState *phb;
1260 char *buf;
1262 fdt = g_malloc0(FDT_MAX_SIZE);
1263 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1265 /* Root node */
1266 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1267 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1268 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1271 * Add info to guest to indentify which host is it being run on
1272 * and what is the uuid of the guest
1274 if (kvmppc_get_host_model(&buf)) {
1275 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1276 g_free(buf);
1278 if (kvmppc_get_host_serial(&buf)) {
1279 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1280 g_free(buf);
1283 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1285 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1286 if (qemu_uuid_set) {
1287 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1289 g_free(buf);
1291 if (qemu_get_vm_name()) {
1292 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1293 qemu_get_vm_name()));
1296 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1297 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1299 /* /interrupt controller */
1300 spapr_dt_xics(xics_max_server_number(spapr), fdt, PHANDLE_XICP);
1302 ret = spapr_populate_memory(spapr, fdt);
1303 if (ret < 0) {
1304 error_report("couldn't setup memory nodes in fdt");
1305 exit(1);
1308 /* /vdevice */
1309 spapr_dt_vdevice(spapr->vio_bus, fdt);
1311 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1312 ret = spapr_rng_populate_dt(fdt);
1313 if (ret < 0) {
1314 error_report("could not set up rng device in the fdt");
1315 exit(1);
1319 QLIST_FOREACH(phb, &spapr->phbs, list) {
1320 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1321 if (ret < 0) {
1322 error_report("couldn't setup PCI devices in fdt");
1323 exit(1);
1327 /* cpus */
1328 spapr_populate_cpus_dt_node(fdt, spapr);
1330 if (smc->dr_lmb_enabled) {
1331 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1334 if (mc->has_hotpluggable_cpus) {
1335 int offset = fdt_path_offset(fdt, "/cpus");
1336 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1337 SPAPR_DR_CONNECTOR_TYPE_CPU);
1338 if (ret < 0) {
1339 error_report("Couldn't set up CPU DR device tree properties");
1340 exit(1);
1344 /* /event-sources */
1345 spapr_dt_events(spapr, fdt);
1347 /* /rtas */
1348 spapr_dt_rtas(spapr, fdt);
1350 /* /chosen */
1351 spapr_dt_chosen(spapr, fdt);
1353 /* /hypervisor */
1354 if (kvm_enabled()) {
1355 spapr_dt_hypervisor(spapr, fdt);
1358 /* Build memory reserve map */
1359 if (spapr->kernel_size) {
1360 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1362 if (spapr->initrd_size) {
1363 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1366 /* ibm,client-architecture-support updates */
1367 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1368 if (ret < 0) {
1369 error_report("couldn't setup CAS properties fdt");
1370 exit(1);
1373 return fdt;
1376 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1378 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1381 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1382 PowerPCCPU *cpu)
1384 CPUPPCState *env = &cpu->env;
1386 /* The TCG path should also be holding the BQL at this point */
1387 g_assert(qemu_mutex_iothread_locked());
1389 if (msr_pr) {
1390 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1391 env->gpr[3] = H_PRIVILEGE;
1392 } else {
1393 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1397 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1399 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1401 return spapr->patb_entry;
1404 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1405 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1406 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1407 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1408 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1411 * Get the fd to access the kernel htab, re-opening it if necessary
1413 static int get_htab_fd(sPAPRMachineState *spapr)
1415 Error *local_err = NULL;
1417 if (spapr->htab_fd >= 0) {
1418 return spapr->htab_fd;
1421 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1422 if (spapr->htab_fd < 0) {
1423 error_report_err(local_err);
1426 return spapr->htab_fd;
1429 void close_htab_fd(sPAPRMachineState *spapr)
1431 if (spapr->htab_fd >= 0) {
1432 close(spapr->htab_fd);
1434 spapr->htab_fd = -1;
1437 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1439 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1441 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1444 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1446 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1448 assert(kvm_enabled());
1450 if (!spapr->htab) {
1451 return 0;
1454 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1457 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1458 hwaddr ptex, int n)
1460 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1461 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1463 if (!spapr->htab) {
1465 * HTAB is controlled by KVM. Fetch into temporary buffer
1467 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1468 kvmppc_read_hptes(hptes, ptex, n);
1469 return hptes;
1473 * HTAB is controlled by QEMU. Just point to the internally
1474 * accessible PTEG.
1476 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1479 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1480 const ppc_hash_pte64_t *hptes,
1481 hwaddr ptex, int n)
1483 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1485 if (!spapr->htab) {
1486 g_free((void *)hptes);
1489 /* Nothing to do for qemu managed HPT */
1492 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1493 uint64_t pte0, uint64_t pte1)
1495 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1496 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1498 if (!spapr->htab) {
1499 kvmppc_write_hpte(ptex, pte0, pte1);
1500 } else {
1501 stq_p(spapr->htab + offset, pte0);
1502 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1506 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1508 int shift;
1510 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1511 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1512 * that's much more than is needed for Linux guests */
1513 shift = ctz64(pow2ceil(ramsize)) - 7;
1514 shift = MAX(shift, 18); /* Minimum architected size */
1515 shift = MIN(shift, 46); /* Maximum architected size */
1516 return shift;
1519 void spapr_free_hpt(sPAPRMachineState *spapr)
1521 g_free(spapr->htab);
1522 spapr->htab = NULL;
1523 spapr->htab_shift = 0;
1524 close_htab_fd(spapr);
1527 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1528 Error **errp)
1530 long rc;
1532 /* Clean up any HPT info from a previous boot */
1533 spapr_free_hpt(spapr);
1535 rc = kvmppc_reset_htab(shift);
1536 if (rc < 0) {
1537 /* kernel-side HPT needed, but couldn't allocate one */
1538 error_setg_errno(errp, errno,
1539 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1540 shift);
1541 /* This is almost certainly fatal, but if the caller really
1542 * wants to carry on with shift == 0, it's welcome to try */
1543 } else if (rc > 0) {
1544 /* kernel-side HPT allocated */
1545 if (rc != shift) {
1546 error_setg(errp,
1547 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1548 shift, rc);
1551 spapr->htab_shift = shift;
1552 spapr->htab = NULL;
1553 } else {
1554 /* kernel-side HPT not needed, allocate in userspace instead */
1555 size_t size = 1ULL << shift;
1556 int i;
1558 spapr->htab = qemu_memalign(size, size);
1559 if (!spapr->htab) {
1560 error_setg_errno(errp, errno,
1561 "Could not allocate HPT of order %d", shift);
1562 return;
1565 memset(spapr->htab, 0, size);
1566 spapr->htab_shift = shift;
1568 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1569 DIRTY_HPTE(HPTE(spapr->htab, i));
1572 /* We're setting up a hash table, so that means we're not radix */
1573 spapr->patb_entry = 0;
1576 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1578 int hpt_shift;
1580 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1581 || (spapr->cas_reboot
1582 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1583 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1584 } else {
1585 uint64_t current_ram_size;
1587 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1588 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1590 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1592 if (spapr->vrma_adjust) {
1593 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1594 spapr->htab_shift);
1598 static int spapr_reset_drcs(Object *child, void *opaque)
1600 sPAPRDRConnector *drc =
1601 (sPAPRDRConnector *) object_dynamic_cast(child,
1602 TYPE_SPAPR_DR_CONNECTOR);
1604 if (drc) {
1605 spapr_drc_reset(drc);
1608 return 0;
1611 static void spapr_machine_reset(void)
1613 MachineState *machine = MACHINE(qdev_get_machine());
1614 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1615 PowerPCCPU *first_ppc_cpu;
1616 uint32_t rtas_limit;
1617 hwaddr rtas_addr, fdt_addr;
1618 void *fdt;
1619 int rc;
1621 spapr_caps_apply(spapr);
1623 first_ppc_cpu = POWERPC_CPU(first_cpu);
1624 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1625 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1626 spapr->max_compat_pvr)) {
1627 /* If using KVM with radix mode available, VCPUs can be started
1628 * without a HPT because KVM will start them in radix mode.
1629 * Set the GR bit in PATB so that we know there is no HPT. */
1630 spapr->patb_entry = PATBE1_GR;
1631 } else {
1632 spapr_setup_hpt_and_vrma(spapr);
1635 /* if this reset wasn't generated by CAS, we should reset our
1636 * negotiated options and start from scratch */
1637 if (!spapr->cas_reboot) {
1638 spapr_ovec_cleanup(spapr->ov5_cas);
1639 spapr->ov5_cas = spapr_ovec_new();
1641 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1644 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1645 spapr_irq_msi_reset(spapr);
1648 qemu_devices_reset();
1650 /* DRC reset may cause a device to be unplugged. This will cause troubles
1651 * if this device is used by another device (eg, a running vhost backend
1652 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1653 * situations, we reset DRCs after all devices have been reset.
1655 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1657 spapr_clear_pending_events(spapr);
1660 * We place the device tree and RTAS just below either the top of the RMA,
1661 * or just below 2GB, whichever is lowere, so that it can be
1662 * processed with 32-bit real mode code if necessary
1664 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1665 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1666 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1668 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1670 spapr_load_rtas(spapr, fdt, rtas_addr);
1672 rc = fdt_pack(fdt);
1674 /* Should only fail if we've built a corrupted tree */
1675 assert(rc == 0);
1677 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1678 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1679 fdt_totalsize(fdt), FDT_MAX_SIZE);
1680 exit(1);
1683 /* Load the fdt */
1684 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1685 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1686 g_free(fdt);
1688 /* Set up the entry state */
1689 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1690 first_ppc_cpu->env.gpr[5] = 0;
1692 spapr->cas_reboot = false;
1695 static void spapr_create_nvram(sPAPRMachineState *spapr)
1697 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1698 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1700 if (dinfo) {
1701 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1702 &error_fatal);
1705 qdev_init_nofail(dev);
1707 spapr->nvram = (struct sPAPRNVRAM *)dev;
1710 static void spapr_rtc_create(sPAPRMachineState *spapr)
1712 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1713 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1714 &error_fatal);
1715 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1716 &error_fatal);
1717 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1718 "date", &error_fatal);
1721 /* Returns whether we want to use VGA or not */
1722 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1724 switch (vga_interface_type) {
1725 case VGA_NONE:
1726 return false;
1727 case VGA_DEVICE:
1728 return true;
1729 case VGA_STD:
1730 case VGA_VIRTIO:
1731 return pci_vga_init(pci_bus) != NULL;
1732 default:
1733 error_setg(errp,
1734 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1735 return false;
1739 static int spapr_pre_load(void *opaque)
1741 int rc;
1743 rc = spapr_caps_pre_load(opaque);
1744 if (rc) {
1745 return rc;
1748 return 0;
1751 static int spapr_post_load(void *opaque, int version_id)
1753 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1754 int err = 0;
1756 err = spapr_caps_post_migration(spapr);
1757 if (err) {
1758 return err;
1761 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1762 CPUState *cs;
1763 CPU_FOREACH(cs) {
1764 PowerPCCPU *cpu = POWERPC_CPU(cs);
1765 icp_resend(ICP(cpu->intc));
1769 /* In earlier versions, there was no separate qdev for the PAPR
1770 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1771 * So when migrating from those versions, poke the incoming offset
1772 * value into the RTC device */
1773 if (version_id < 3) {
1774 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1777 if (kvm_enabled() && spapr->patb_entry) {
1778 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1779 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1780 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1782 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1783 if (err) {
1784 error_report("Process table config unsupported by the host");
1785 return -EINVAL;
1789 return err;
1792 static int spapr_pre_save(void *opaque)
1794 int rc;
1796 rc = spapr_caps_pre_save(opaque);
1797 if (rc) {
1798 return rc;
1801 return 0;
1804 static bool version_before_3(void *opaque, int version_id)
1806 return version_id < 3;
1809 static bool spapr_pending_events_needed(void *opaque)
1811 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1812 return !QTAILQ_EMPTY(&spapr->pending_events);
1815 static const VMStateDescription vmstate_spapr_event_entry = {
1816 .name = "spapr_event_log_entry",
1817 .version_id = 1,
1818 .minimum_version_id = 1,
1819 .fields = (VMStateField[]) {
1820 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1821 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1822 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1823 NULL, extended_length),
1824 VMSTATE_END_OF_LIST()
1828 static const VMStateDescription vmstate_spapr_pending_events = {
1829 .name = "spapr_pending_events",
1830 .version_id = 1,
1831 .minimum_version_id = 1,
1832 .needed = spapr_pending_events_needed,
1833 .fields = (VMStateField[]) {
1834 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1835 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1836 VMSTATE_END_OF_LIST()
1840 static bool spapr_ov5_cas_needed(void *opaque)
1842 sPAPRMachineState *spapr = opaque;
1843 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1844 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1845 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1846 bool cas_needed;
1848 /* Prior to the introduction of sPAPROptionVector, we had two option
1849 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1850 * Both of these options encode machine topology into the device-tree
1851 * in such a way that the now-booted OS should still be able to interact
1852 * appropriately with QEMU regardless of what options were actually
1853 * negotiatied on the source side.
1855 * As such, we can avoid migrating the CAS-negotiated options if these
1856 * are the only options available on the current machine/platform.
1857 * Since these are the only options available for pseries-2.7 and
1858 * earlier, this allows us to maintain old->new/new->old migration
1859 * compatibility.
1861 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1862 * via default pseries-2.8 machines and explicit command-line parameters.
1863 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1864 * of the actual CAS-negotiated values to continue working properly. For
1865 * example, availability of memory unplug depends on knowing whether
1866 * OV5_HP_EVT was negotiated via CAS.
1868 * Thus, for any cases where the set of available CAS-negotiatable
1869 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1870 * include the CAS-negotiated options in the migration stream, unless
1871 * if they affect boot time behaviour only.
1873 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1874 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1875 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1877 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1878 * the mask itself since in the future it's possible "legacy" bits may be
1879 * removed via machine options, which could generate a false positive
1880 * that breaks migration.
1882 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1883 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1885 spapr_ovec_cleanup(ov5_mask);
1886 spapr_ovec_cleanup(ov5_legacy);
1887 spapr_ovec_cleanup(ov5_removed);
1889 return cas_needed;
1892 static const VMStateDescription vmstate_spapr_ov5_cas = {
1893 .name = "spapr_option_vector_ov5_cas",
1894 .version_id = 1,
1895 .minimum_version_id = 1,
1896 .needed = spapr_ov5_cas_needed,
1897 .fields = (VMStateField[]) {
1898 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1899 vmstate_spapr_ovec, sPAPROptionVector),
1900 VMSTATE_END_OF_LIST()
1904 static bool spapr_patb_entry_needed(void *opaque)
1906 sPAPRMachineState *spapr = opaque;
1908 return !!spapr->patb_entry;
1911 static const VMStateDescription vmstate_spapr_patb_entry = {
1912 .name = "spapr_patb_entry",
1913 .version_id = 1,
1914 .minimum_version_id = 1,
1915 .needed = spapr_patb_entry_needed,
1916 .fields = (VMStateField[]) {
1917 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1918 VMSTATE_END_OF_LIST()
1922 static bool spapr_irq_map_needed(void *opaque)
1924 sPAPRMachineState *spapr = opaque;
1926 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1929 static const VMStateDescription vmstate_spapr_irq_map = {
1930 .name = "spapr_irq_map",
1931 .version_id = 1,
1932 .minimum_version_id = 1,
1933 .needed = spapr_irq_map_needed,
1934 .fields = (VMStateField[]) {
1935 VMSTATE_BITMAP(irq_map, sPAPRMachineState, 0, irq_map_nr),
1936 VMSTATE_END_OF_LIST()
1940 static const VMStateDescription vmstate_spapr = {
1941 .name = "spapr",
1942 .version_id = 3,
1943 .minimum_version_id = 1,
1944 .pre_load = spapr_pre_load,
1945 .post_load = spapr_post_load,
1946 .pre_save = spapr_pre_save,
1947 .fields = (VMStateField[]) {
1948 /* used to be @next_irq */
1949 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1951 /* RTC offset */
1952 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1954 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1955 VMSTATE_END_OF_LIST()
1957 .subsections = (const VMStateDescription*[]) {
1958 &vmstate_spapr_ov5_cas,
1959 &vmstate_spapr_patb_entry,
1960 &vmstate_spapr_pending_events,
1961 &vmstate_spapr_cap_htm,
1962 &vmstate_spapr_cap_vsx,
1963 &vmstate_spapr_cap_dfp,
1964 &vmstate_spapr_cap_cfpc,
1965 &vmstate_spapr_cap_sbbc,
1966 &vmstate_spapr_cap_ibs,
1967 &vmstate_spapr_irq_map,
1968 NULL
1972 static int htab_save_setup(QEMUFile *f, void *opaque)
1974 sPAPRMachineState *spapr = opaque;
1976 /* "Iteration" header */
1977 if (!spapr->htab_shift) {
1978 qemu_put_be32(f, -1);
1979 } else {
1980 qemu_put_be32(f, spapr->htab_shift);
1983 if (spapr->htab) {
1984 spapr->htab_save_index = 0;
1985 spapr->htab_first_pass = true;
1986 } else {
1987 if (spapr->htab_shift) {
1988 assert(kvm_enabled());
1993 return 0;
1996 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1997 int chunkstart, int n_valid, int n_invalid)
1999 qemu_put_be32(f, chunkstart);
2000 qemu_put_be16(f, n_valid);
2001 qemu_put_be16(f, n_invalid);
2002 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2003 HASH_PTE_SIZE_64 * n_valid);
2006 static void htab_save_end_marker(QEMUFile *f)
2008 qemu_put_be32(f, 0);
2009 qemu_put_be16(f, 0);
2010 qemu_put_be16(f, 0);
2013 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
2014 int64_t max_ns)
2016 bool has_timeout = max_ns != -1;
2017 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2018 int index = spapr->htab_save_index;
2019 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2021 assert(spapr->htab_first_pass);
2023 do {
2024 int chunkstart;
2026 /* Consume invalid HPTEs */
2027 while ((index < htabslots)
2028 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2029 CLEAN_HPTE(HPTE(spapr->htab, index));
2030 index++;
2033 /* Consume valid HPTEs */
2034 chunkstart = index;
2035 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2036 && HPTE_VALID(HPTE(spapr->htab, index))) {
2037 CLEAN_HPTE(HPTE(spapr->htab, index));
2038 index++;
2041 if (index > chunkstart) {
2042 int n_valid = index - chunkstart;
2044 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2046 if (has_timeout &&
2047 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2048 break;
2051 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2053 if (index >= htabslots) {
2054 assert(index == htabslots);
2055 index = 0;
2056 spapr->htab_first_pass = false;
2058 spapr->htab_save_index = index;
2061 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2062 int64_t max_ns)
2064 bool final = max_ns < 0;
2065 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2066 int examined = 0, sent = 0;
2067 int index = spapr->htab_save_index;
2068 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2070 assert(!spapr->htab_first_pass);
2072 do {
2073 int chunkstart, invalidstart;
2075 /* Consume non-dirty HPTEs */
2076 while ((index < htabslots)
2077 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2078 index++;
2079 examined++;
2082 chunkstart = index;
2083 /* Consume valid dirty HPTEs */
2084 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2085 && HPTE_DIRTY(HPTE(spapr->htab, index))
2086 && HPTE_VALID(HPTE(spapr->htab, index))) {
2087 CLEAN_HPTE(HPTE(spapr->htab, index));
2088 index++;
2089 examined++;
2092 invalidstart = index;
2093 /* Consume invalid dirty HPTEs */
2094 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2095 && HPTE_DIRTY(HPTE(spapr->htab, index))
2096 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2097 CLEAN_HPTE(HPTE(spapr->htab, index));
2098 index++;
2099 examined++;
2102 if (index > chunkstart) {
2103 int n_valid = invalidstart - chunkstart;
2104 int n_invalid = index - invalidstart;
2106 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2107 sent += index - chunkstart;
2109 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2110 break;
2114 if (examined >= htabslots) {
2115 break;
2118 if (index >= htabslots) {
2119 assert(index == htabslots);
2120 index = 0;
2122 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2124 if (index >= htabslots) {
2125 assert(index == htabslots);
2126 index = 0;
2129 spapr->htab_save_index = index;
2131 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2134 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2135 #define MAX_KVM_BUF_SIZE 2048
2137 static int htab_save_iterate(QEMUFile *f, void *opaque)
2139 sPAPRMachineState *spapr = opaque;
2140 int fd;
2141 int rc = 0;
2143 /* Iteration header */
2144 if (!spapr->htab_shift) {
2145 qemu_put_be32(f, -1);
2146 return 1;
2147 } else {
2148 qemu_put_be32(f, 0);
2151 if (!spapr->htab) {
2152 assert(kvm_enabled());
2154 fd = get_htab_fd(spapr);
2155 if (fd < 0) {
2156 return fd;
2159 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2160 if (rc < 0) {
2161 return rc;
2163 } else if (spapr->htab_first_pass) {
2164 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2165 } else {
2166 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2169 htab_save_end_marker(f);
2171 return rc;
2174 static int htab_save_complete(QEMUFile *f, void *opaque)
2176 sPAPRMachineState *spapr = opaque;
2177 int fd;
2179 /* Iteration header */
2180 if (!spapr->htab_shift) {
2181 qemu_put_be32(f, -1);
2182 return 0;
2183 } else {
2184 qemu_put_be32(f, 0);
2187 if (!spapr->htab) {
2188 int rc;
2190 assert(kvm_enabled());
2192 fd = get_htab_fd(spapr);
2193 if (fd < 0) {
2194 return fd;
2197 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2198 if (rc < 0) {
2199 return rc;
2201 } else {
2202 if (spapr->htab_first_pass) {
2203 htab_save_first_pass(f, spapr, -1);
2205 htab_save_later_pass(f, spapr, -1);
2208 /* End marker */
2209 htab_save_end_marker(f);
2211 return 0;
2214 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2216 sPAPRMachineState *spapr = opaque;
2217 uint32_t section_hdr;
2218 int fd = -1;
2219 Error *local_err = NULL;
2221 if (version_id < 1 || version_id > 1) {
2222 error_report("htab_load() bad version");
2223 return -EINVAL;
2226 section_hdr = qemu_get_be32(f);
2228 if (section_hdr == -1) {
2229 spapr_free_hpt(spapr);
2230 return 0;
2233 if (section_hdr) {
2234 /* First section gives the htab size */
2235 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2236 if (local_err) {
2237 error_report_err(local_err);
2238 return -EINVAL;
2240 return 0;
2243 if (!spapr->htab) {
2244 assert(kvm_enabled());
2246 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2247 if (fd < 0) {
2248 error_report_err(local_err);
2249 return fd;
2253 while (true) {
2254 uint32_t index;
2255 uint16_t n_valid, n_invalid;
2257 index = qemu_get_be32(f);
2258 n_valid = qemu_get_be16(f);
2259 n_invalid = qemu_get_be16(f);
2261 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2262 /* End of Stream */
2263 break;
2266 if ((index + n_valid + n_invalid) >
2267 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2268 /* Bad index in stream */
2269 error_report(
2270 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2271 index, n_valid, n_invalid, spapr->htab_shift);
2272 return -EINVAL;
2275 if (spapr->htab) {
2276 if (n_valid) {
2277 qemu_get_buffer(f, HPTE(spapr->htab, index),
2278 HASH_PTE_SIZE_64 * n_valid);
2280 if (n_invalid) {
2281 memset(HPTE(spapr->htab, index + n_valid), 0,
2282 HASH_PTE_SIZE_64 * n_invalid);
2284 } else {
2285 int rc;
2287 assert(fd >= 0);
2289 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2290 if (rc < 0) {
2291 return rc;
2296 if (!spapr->htab) {
2297 assert(fd >= 0);
2298 close(fd);
2301 return 0;
2304 static void htab_save_cleanup(void *opaque)
2306 sPAPRMachineState *spapr = opaque;
2308 close_htab_fd(spapr);
2311 static SaveVMHandlers savevm_htab_handlers = {
2312 .save_setup = htab_save_setup,
2313 .save_live_iterate = htab_save_iterate,
2314 .save_live_complete_precopy = htab_save_complete,
2315 .save_cleanup = htab_save_cleanup,
2316 .load_state = htab_load,
2319 static void spapr_boot_set(void *opaque, const char *boot_device,
2320 Error **errp)
2322 MachineState *machine = MACHINE(opaque);
2323 machine->boot_order = g_strdup(boot_device);
2326 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2328 MachineState *machine = MACHINE(spapr);
2329 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2330 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2331 int i;
2333 for (i = 0; i < nr_lmbs; i++) {
2334 uint64_t addr;
2336 addr = i * lmb_size + machine->device_memory->base;
2337 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2338 addr / lmb_size);
2343 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2344 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2345 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2347 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2349 int i;
2351 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2352 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2353 " is not aligned to %" PRIu64 " MiB",
2354 machine->ram_size,
2355 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2356 return;
2359 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2360 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2361 " is not aligned to %" PRIu64 " MiB",
2362 machine->ram_size,
2363 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2364 return;
2367 for (i = 0; i < nb_numa_nodes; i++) {
2368 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2369 error_setg(errp,
2370 "Node %d memory size 0x%" PRIx64
2371 " is not aligned to %" PRIu64 " MiB",
2372 i, numa_info[i].node_mem,
2373 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2374 return;
2379 /* find cpu slot in machine->possible_cpus by core_id */
2380 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2382 int index = id / smp_threads;
2384 if (index >= ms->possible_cpus->len) {
2385 return NULL;
2387 if (idx) {
2388 *idx = index;
2390 return &ms->possible_cpus->cpus[index];
2393 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2395 Error *local_err = NULL;
2396 bool vsmt_user = !!spapr->vsmt;
2397 int kvm_smt = kvmppc_smt_threads();
2398 int ret;
2400 if (!kvm_enabled() && (smp_threads > 1)) {
2401 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2402 "on a pseries machine");
2403 goto out;
2405 if (!is_power_of_2(smp_threads)) {
2406 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2407 "machine because it must be a power of 2", smp_threads);
2408 goto out;
2411 /* Detemine the VSMT mode to use: */
2412 if (vsmt_user) {
2413 if (spapr->vsmt < smp_threads) {
2414 error_setg(&local_err, "Cannot support VSMT mode %d"
2415 " because it must be >= threads/core (%d)",
2416 spapr->vsmt, smp_threads);
2417 goto out;
2419 /* In this case, spapr->vsmt has been set by the command line */
2420 } else {
2422 * Default VSMT value is tricky, because we need it to be as
2423 * consistent as possible (for migration), but this requires
2424 * changing it for at least some existing cases. We pick 8 as
2425 * the value that we'd get with KVM on POWER8, the
2426 * overwhelmingly common case in production systems.
2428 spapr->vsmt = MAX(8, smp_threads);
2431 /* KVM: If necessary, set the SMT mode: */
2432 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2433 ret = kvmppc_set_smt_threads(spapr->vsmt);
2434 if (ret) {
2435 /* Looks like KVM isn't able to change VSMT mode */
2436 error_setg(&local_err,
2437 "Failed to set KVM's VSMT mode to %d (errno %d)",
2438 spapr->vsmt, ret);
2439 /* We can live with that if the default one is big enough
2440 * for the number of threads, and a submultiple of the one
2441 * we want. In this case we'll waste some vcpu ids, but
2442 * behaviour will be correct */
2443 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2444 warn_report_err(local_err);
2445 local_err = NULL;
2446 goto out;
2447 } else {
2448 if (!vsmt_user) {
2449 error_append_hint(&local_err,
2450 "On PPC, a VM with %d threads/core"
2451 " on a host with %d threads/core"
2452 " requires the use of VSMT mode %d.\n",
2453 smp_threads, kvm_smt, spapr->vsmt);
2455 kvmppc_hint_smt_possible(&local_err);
2456 goto out;
2460 /* else TCG: nothing to do currently */
2461 out:
2462 error_propagate(errp, local_err);
2465 static void spapr_init_cpus(sPAPRMachineState *spapr)
2467 MachineState *machine = MACHINE(spapr);
2468 MachineClass *mc = MACHINE_GET_CLASS(machine);
2469 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2470 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2471 const CPUArchIdList *possible_cpus;
2472 int boot_cores_nr = smp_cpus / smp_threads;
2473 int i;
2475 possible_cpus = mc->possible_cpu_arch_ids(machine);
2476 if (mc->has_hotpluggable_cpus) {
2477 if (smp_cpus % smp_threads) {
2478 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2479 smp_cpus, smp_threads);
2480 exit(1);
2482 if (max_cpus % smp_threads) {
2483 error_report("max_cpus (%u) must be multiple of threads (%u)",
2484 max_cpus, smp_threads);
2485 exit(1);
2487 } else {
2488 if (max_cpus != smp_cpus) {
2489 error_report("This machine version does not support CPU hotplug");
2490 exit(1);
2492 boot_cores_nr = possible_cpus->len;
2495 /* VSMT must be set in order to be able to compute VCPU ids, ie to
2496 * call xics_max_server_number() or spapr_vcpu_id().
2498 spapr_set_vsmt_mode(spapr, &error_fatal);
2500 if (smc->pre_2_10_has_unused_icps) {
2501 int i;
2503 for (i = 0; i < xics_max_server_number(spapr); i++) {
2504 /* Dummy entries get deregistered when real ICPState objects
2505 * are registered during CPU core hotplug.
2507 pre_2_10_vmstate_register_dummy_icp(i);
2511 for (i = 0; i < possible_cpus->len; i++) {
2512 int core_id = i * smp_threads;
2514 if (mc->has_hotpluggable_cpus) {
2515 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2516 spapr_vcpu_id(spapr, core_id));
2519 if (i < boot_cores_nr) {
2520 Object *core = object_new(type);
2521 int nr_threads = smp_threads;
2523 /* Handle the partially filled core for older machine types */
2524 if ((i + 1) * smp_threads >= smp_cpus) {
2525 nr_threads = smp_cpus - i * smp_threads;
2528 object_property_set_int(core, nr_threads, "nr-threads",
2529 &error_fatal);
2530 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2531 &error_fatal);
2532 object_property_set_bool(core, true, "realized", &error_fatal);
2537 /* pSeries LPAR / sPAPR hardware init */
2538 static void spapr_machine_init(MachineState *machine)
2540 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2541 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2542 const char *kernel_filename = machine->kernel_filename;
2543 const char *initrd_filename = machine->initrd_filename;
2544 PCIHostState *phb;
2545 int i;
2546 MemoryRegion *sysmem = get_system_memory();
2547 MemoryRegion *ram = g_new(MemoryRegion, 1);
2548 hwaddr node0_size = spapr_node0_size(machine);
2549 long load_limit, fw_size;
2550 char *filename;
2551 Error *resize_hpt_err = NULL;
2553 msi_nonbroken = true;
2555 QLIST_INIT(&spapr->phbs);
2556 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2558 /* Determine capabilities to run with */
2559 spapr_caps_init(spapr);
2561 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2562 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2564 * If the user explicitly requested a mode we should either
2565 * supply it, or fail completely (which we do below). But if
2566 * it's not set explicitly, we reset our mode to something
2567 * that works
2569 if (resize_hpt_err) {
2570 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2571 error_free(resize_hpt_err);
2572 resize_hpt_err = NULL;
2573 } else {
2574 spapr->resize_hpt = smc->resize_hpt_default;
2578 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2580 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2582 * User requested HPT resize, but this host can't supply it. Bail out
2584 error_report_err(resize_hpt_err);
2585 exit(1);
2588 spapr->rma_size = node0_size;
2590 /* With KVM, we don't actually know whether KVM supports an
2591 * unbounded RMA (PR KVM) or is limited by the hash table size
2592 * (HV KVM using VRMA), so we always assume the latter
2594 * In that case, we also limit the initial allocations for RTAS
2595 * etc... to 256M since we have no way to know what the VRMA size
2596 * is going to be as it depends on the size of the hash table
2597 * which isn't determined yet.
2599 if (kvm_enabled()) {
2600 spapr->vrma_adjust = 1;
2601 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2604 /* Actually we don't support unbounded RMA anymore since we added
2605 * proper emulation of HV mode. The max we can get is 16G which
2606 * also happens to be what we configure for PAPR mode so make sure
2607 * we don't do anything bigger than that
2609 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2611 if (spapr->rma_size > node0_size) {
2612 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2613 spapr->rma_size);
2614 exit(1);
2617 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2618 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2620 /* Set up Interrupt Controller before we create the VCPUs */
2621 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2623 /* Set up containers for ibm,client-architecture-support negotiated options
2625 spapr->ov5 = spapr_ovec_new();
2626 spapr->ov5_cas = spapr_ovec_new();
2628 if (smc->dr_lmb_enabled) {
2629 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2630 spapr_validate_node_memory(machine, &error_fatal);
2633 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2635 /* advertise support for dedicated HP event source to guests */
2636 if (spapr->use_hotplug_event_source) {
2637 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2640 /* advertise support for HPT resizing */
2641 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2642 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2645 /* advertise support for ibm,dyamic-memory-v2 */
2646 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2648 /* init CPUs */
2649 spapr_init_cpus(spapr);
2651 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2652 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2653 spapr->max_compat_pvr)) {
2654 /* KVM and TCG always allow GTSE with radix... */
2655 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2657 /* ... but not with hash (currently). */
2659 if (kvm_enabled()) {
2660 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2661 kvmppc_enable_logical_ci_hcalls();
2662 kvmppc_enable_set_mode_hcall();
2664 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2665 kvmppc_enable_clear_ref_mod_hcalls();
2668 /* allocate RAM */
2669 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2670 machine->ram_size);
2671 memory_region_add_subregion(sysmem, 0, ram);
2673 /* always allocate the device memory information */
2674 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2676 /* initialize hotplug memory address space */
2677 if (machine->ram_size < machine->maxram_size) {
2678 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2680 * Limit the number of hotpluggable memory slots to half the number
2681 * slots that KVM supports, leaving the other half for PCI and other
2682 * devices. However ensure that number of slots doesn't drop below 32.
2684 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2685 SPAPR_MAX_RAM_SLOTS;
2687 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2688 max_memslots = SPAPR_MAX_RAM_SLOTS;
2690 if (machine->ram_slots > max_memslots) {
2691 error_report("Specified number of memory slots %"
2692 PRIu64" exceeds max supported %d",
2693 machine->ram_slots, max_memslots);
2694 exit(1);
2697 machine->device_memory->base = ROUND_UP(machine->ram_size,
2698 SPAPR_DEVICE_MEM_ALIGN);
2699 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2700 "device-memory", device_mem_size);
2701 memory_region_add_subregion(sysmem, machine->device_memory->base,
2702 &machine->device_memory->mr);
2705 if (smc->dr_lmb_enabled) {
2706 spapr_create_lmb_dr_connectors(spapr);
2709 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2710 if (!filename) {
2711 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2712 exit(1);
2714 spapr->rtas_size = get_image_size(filename);
2715 if (spapr->rtas_size < 0) {
2716 error_report("Could not get size of LPAR rtas '%s'", filename);
2717 exit(1);
2719 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2720 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2721 error_report("Could not load LPAR rtas '%s'", filename);
2722 exit(1);
2724 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2725 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2726 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2727 exit(1);
2729 g_free(filename);
2731 /* Set up RTAS event infrastructure */
2732 spapr_events_init(spapr);
2734 /* Set up the RTC RTAS interfaces */
2735 spapr_rtc_create(spapr);
2737 /* Set up VIO bus */
2738 spapr->vio_bus = spapr_vio_bus_init();
2740 for (i = 0; i < serial_max_hds(); i++) {
2741 if (serial_hd(i)) {
2742 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2746 /* We always have at least the nvram device on VIO */
2747 spapr_create_nvram(spapr);
2749 /* Set up PCI */
2750 spapr_pci_rtas_init();
2752 phb = spapr_create_phb(spapr, 0);
2754 for (i = 0; i < nb_nics; i++) {
2755 NICInfo *nd = &nd_table[i];
2757 if (!nd->model) {
2758 nd->model = g_strdup("spapr-vlan");
2761 if (g_str_equal(nd->model, "spapr-vlan") ||
2762 g_str_equal(nd->model, "ibmveth")) {
2763 spapr_vlan_create(spapr->vio_bus, nd);
2764 } else {
2765 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2769 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2770 spapr_vscsi_create(spapr->vio_bus);
2773 /* Graphics */
2774 if (spapr_vga_init(phb->bus, &error_fatal)) {
2775 spapr->has_graphics = true;
2776 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2779 if (machine->usb) {
2780 if (smc->use_ohci_by_default) {
2781 pci_create_simple(phb->bus, -1, "pci-ohci");
2782 } else {
2783 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2786 if (spapr->has_graphics) {
2787 USBBus *usb_bus = usb_bus_find(-1);
2789 usb_create_simple(usb_bus, "usb-kbd");
2790 usb_create_simple(usb_bus, "usb-mouse");
2794 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2795 error_report(
2796 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2797 MIN_RMA_SLOF);
2798 exit(1);
2801 if (kernel_filename) {
2802 uint64_t lowaddr = 0;
2804 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2805 NULL, NULL, &lowaddr, NULL, 1,
2806 PPC_ELF_MACHINE, 0, 0);
2807 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2808 spapr->kernel_size = load_elf(kernel_filename,
2809 translate_kernel_address, NULL, NULL,
2810 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2811 0, 0);
2812 spapr->kernel_le = spapr->kernel_size > 0;
2814 if (spapr->kernel_size < 0) {
2815 error_report("error loading %s: %s", kernel_filename,
2816 load_elf_strerror(spapr->kernel_size));
2817 exit(1);
2820 /* load initrd */
2821 if (initrd_filename) {
2822 /* Try to locate the initrd in the gap between the kernel
2823 * and the firmware. Add a bit of space just in case
2825 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2826 + 0x1ffff) & ~0xffff;
2827 spapr->initrd_size = load_image_targphys(initrd_filename,
2828 spapr->initrd_base,
2829 load_limit
2830 - spapr->initrd_base);
2831 if (spapr->initrd_size < 0) {
2832 error_report("could not load initial ram disk '%s'",
2833 initrd_filename);
2834 exit(1);
2839 if (bios_name == NULL) {
2840 bios_name = FW_FILE_NAME;
2842 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2843 if (!filename) {
2844 error_report("Could not find LPAR firmware '%s'", bios_name);
2845 exit(1);
2847 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2848 if (fw_size <= 0) {
2849 error_report("Could not load LPAR firmware '%s'", filename);
2850 exit(1);
2852 g_free(filename);
2854 /* FIXME: Should register things through the MachineState's qdev
2855 * interface, this is a legacy from the sPAPREnvironment structure
2856 * which predated MachineState but had a similar function */
2857 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2858 register_savevm_live(NULL, "spapr/htab", -1, 1,
2859 &savevm_htab_handlers, spapr);
2861 qemu_register_boot_set(spapr_boot_set, spapr);
2863 if (kvm_enabled()) {
2864 /* to stop and start vmclock */
2865 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2866 &spapr->tb);
2868 kvmppc_spapr_enable_inkernel_multitce();
2872 static int spapr_kvm_type(const char *vm_type)
2874 if (!vm_type) {
2875 return 0;
2878 if (!strcmp(vm_type, "HV")) {
2879 return 1;
2882 if (!strcmp(vm_type, "PR")) {
2883 return 2;
2886 error_report("Unknown kvm-type specified '%s'", vm_type);
2887 exit(1);
2891 * Implementation of an interface to adjust firmware path
2892 * for the bootindex property handling.
2894 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2895 DeviceState *dev)
2897 #define CAST(type, obj, name) \
2898 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2899 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2900 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2901 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2903 if (d) {
2904 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2905 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2906 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2908 if (spapr) {
2910 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2911 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2912 * in the top 16 bits of the 64-bit LUN
2914 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2915 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2916 (uint64_t)id << 48);
2917 } else if (virtio) {
2919 * We use SRP luns of the form 01000000 | (target << 8) | lun
2920 * in the top 32 bits of the 64-bit LUN
2921 * Note: the quote above is from SLOF and it is wrong,
2922 * the actual binding is:
2923 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2925 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2926 if (d->lun >= 256) {
2927 /* Use the LUN "flat space addressing method" */
2928 id |= 0x4000;
2930 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2931 (uint64_t)id << 32);
2932 } else if (usb) {
2934 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2935 * in the top 32 bits of the 64-bit LUN
2937 unsigned usb_port = atoi(usb->port->path);
2938 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2939 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2940 (uint64_t)id << 32);
2945 * SLOF probes the USB devices, and if it recognizes that the device is a
2946 * storage device, it changes its name to "storage" instead of "usb-host",
2947 * and additionally adds a child node for the SCSI LUN, so the correct
2948 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2950 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2951 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2952 if (usb_host_dev_is_scsi_storage(usbdev)) {
2953 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2957 if (phb) {
2958 /* Replace "pci" with "pci@800000020000000" */
2959 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2962 if (vsc) {
2963 /* Same logic as virtio above */
2964 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2965 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2968 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2969 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2970 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2971 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2974 return NULL;
2977 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2979 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2981 return g_strdup(spapr->kvm_type);
2984 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2986 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2988 g_free(spapr->kvm_type);
2989 spapr->kvm_type = g_strdup(value);
2992 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2994 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2996 return spapr->use_hotplug_event_source;
2999 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3000 Error **errp)
3002 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3004 spapr->use_hotplug_event_source = value;
3007 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3009 return true;
3012 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3014 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3016 switch (spapr->resize_hpt) {
3017 case SPAPR_RESIZE_HPT_DEFAULT:
3018 return g_strdup("default");
3019 case SPAPR_RESIZE_HPT_DISABLED:
3020 return g_strdup("disabled");
3021 case SPAPR_RESIZE_HPT_ENABLED:
3022 return g_strdup("enabled");
3023 case SPAPR_RESIZE_HPT_REQUIRED:
3024 return g_strdup("required");
3026 g_assert_not_reached();
3029 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3031 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3033 if (strcmp(value, "default") == 0) {
3034 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3035 } else if (strcmp(value, "disabled") == 0) {
3036 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3037 } else if (strcmp(value, "enabled") == 0) {
3038 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3039 } else if (strcmp(value, "required") == 0) {
3040 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3041 } else {
3042 error_setg(errp, "Bad value for \"resize-hpt\" property");
3046 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3047 void *opaque, Error **errp)
3049 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3052 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3053 void *opaque, Error **errp)
3055 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3058 static void spapr_instance_init(Object *obj)
3060 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3062 spapr->htab_fd = -1;
3063 spapr->use_hotplug_event_source = true;
3064 object_property_add_str(obj, "kvm-type",
3065 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3066 object_property_set_description(obj, "kvm-type",
3067 "Specifies the KVM virtualization mode (HV, PR)",
3068 NULL);
3069 object_property_add_bool(obj, "modern-hotplug-events",
3070 spapr_get_modern_hotplug_events,
3071 spapr_set_modern_hotplug_events,
3072 NULL);
3073 object_property_set_description(obj, "modern-hotplug-events",
3074 "Use dedicated hotplug event mechanism in"
3075 " place of standard EPOW events when possible"
3076 " (required for memory hot-unplug support)",
3077 NULL);
3078 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3079 "Maximum permitted CPU compatibility mode",
3080 &error_fatal);
3082 object_property_add_str(obj, "resize-hpt",
3083 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3084 object_property_set_description(obj, "resize-hpt",
3085 "Resizing of the Hash Page Table (enabled, disabled, required)",
3086 NULL);
3087 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3088 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3089 object_property_set_description(obj, "vsmt",
3090 "Virtual SMT: KVM behaves as if this were"
3091 " the host's SMT mode", &error_abort);
3092 object_property_add_bool(obj, "vfio-no-msix-emulation",
3093 spapr_get_msix_emulation, NULL, NULL);
3096 static void spapr_machine_finalizefn(Object *obj)
3098 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3100 g_free(spapr->kvm_type);
3103 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3105 cpu_synchronize_state(cs);
3106 ppc_cpu_do_system_reset(cs);
3109 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3111 CPUState *cs;
3113 CPU_FOREACH(cs) {
3114 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3118 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3119 uint32_t node, bool dedicated_hp_event_source,
3120 Error **errp)
3122 sPAPRDRConnector *drc;
3123 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3124 int i, fdt_offset, fdt_size;
3125 void *fdt;
3126 uint64_t addr = addr_start;
3127 bool hotplugged = spapr_drc_hotplugged(dev);
3128 Error *local_err = NULL;
3130 for (i = 0; i < nr_lmbs; i++) {
3131 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3132 addr / SPAPR_MEMORY_BLOCK_SIZE);
3133 g_assert(drc);
3135 fdt = create_device_tree(&fdt_size);
3136 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
3137 SPAPR_MEMORY_BLOCK_SIZE);
3139 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3140 if (local_err) {
3141 while (addr > addr_start) {
3142 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3143 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3144 addr / SPAPR_MEMORY_BLOCK_SIZE);
3145 spapr_drc_detach(drc);
3147 g_free(fdt);
3148 error_propagate(errp, local_err);
3149 return;
3151 if (!hotplugged) {
3152 spapr_drc_reset(drc);
3154 addr += SPAPR_MEMORY_BLOCK_SIZE;
3156 /* send hotplug notification to the
3157 * guest only in case of hotplugged memory
3159 if (hotplugged) {
3160 if (dedicated_hp_event_source) {
3161 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3162 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3163 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3164 nr_lmbs,
3165 spapr_drc_index(drc));
3166 } else {
3167 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3168 nr_lmbs);
3173 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3174 Error **errp)
3176 Error *local_err = NULL;
3177 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3178 PCDIMMDevice *dimm = PC_DIMM(dev);
3179 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3180 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3181 uint64_t align, size, addr;
3182 uint32_t node;
3184 align = memory_region_get_alignment(mr);
3185 size = memory_region_size(mr);
3187 pc_dimm_plug(dev, MACHINE(ms), align, &local_err);
3188 if (local_err) {
3189 goto out;
3192 addr = object_property_get_uint(OBJECT(dimm),
3193 PC_DIMM_ADDR_PROP, &local_err);
3194 if (local_err) {
3195 goto out_unplug;
3198 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
3199 &error_abort);
3200 spapr_add_lmbs(dev, addr, size, node,
3201 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3202 &local_err);
3203 if (local_err) {
3204 goto out_unplug;
3207 return;
3209 out_unplug:
3210 pc_dimm_unplug(dev, MACHINE(ms));
3211 out:
3212 error_propagate(errp, local_err);
3215 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3216 Error **errp)
3218 const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3219 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3220 PCDIMMDevice *dimm = PC_DIMM(dev);
3221 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3222 MemoryRegion *mr;
3223 uint64_t size;
3224 Object *memdev;
3225 hwaddr pagesize;
3227 if (!smc->dr_lmb_enabled) {
3228 error_setg(errp, "Memory hotplug not supported for this machine");
3229 return;
3232 mr = ddc->get_memory_region(dimm, errp);
3233 if (!mr) {
3234 return;
3236 size = memory_region_size(mr);
3238 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3239 error_setg(errp, "Hotplugged memory size must be a multiple of "
3240 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3241 return;
3244 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3245 &error_abort);
3246 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3247 spapr_check_pagesize(spapr, pagesize, errp);
3250 struct sPAPRDIMMState {
3251 PCDIMMDevice *dimm;
3252 uint32_t nr_lmbs;
3253 QTAILQ_ENTRY(sPAPRDIMMState) next;
3256 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3257 PCDIMMDevice *dimm)
3259 sPAPRDIMMState *dimm_state = NULL;
3261 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3262 if (dimm_state->dimm == dimm) {
3263 break;
3266 return dimm_state;
3269 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3270 uint32_t nr_lmbs,
3271 PCDIMMDevice *dimm)
3273 sPAPRDIMMState *ds = NULL;
3276 * If this request is for a DIMM whose removal had failed earlier
3277 * (due to guest's refusal to remove the LMBs), we would have this
3278 * dimm already in the pending_dimm_unplugs list. In that
3279 * case don't add again.
3281 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3282 if (!ds) {
3283 ds = g_malloc0(sizeof(sPAPRDIMMState));
3284 ds->nr_lmbs = nr_lmbs;
3285 ds->dimm = dimm;
3286 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3288 return ds;
3291 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3292 sPAPRDIMMState *dimm_state)
3294 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3295 g_free(dimm_state);
3298 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3299 PCDIMMDevice *dimm)
3301 sPAPRDRConnector *drc;
3302 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3303 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3304 uint64_t size = memory_region_size(mr);
3305 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3306 uint32_t avail_lmbs = 0;
3307 uint64_t addr_start, addr;
3308 int i;
3310 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3311 &error_abort);
3313 addr = addr_start;
3314 for (i = 0; i < nr_lmbs; i++) {
3315 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3316 addr / SPAPR_MEMORY_BLOCK_SIZE);
3317 g_assert(drc);
3318 if (drc->dev) {
3319 avail_lmbs++;
3321 addr += SPAPR_MEMORY_BLOCK_SIZE;
3324 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3327 /* Callback to be called during DRC release. */
3328 void spapr_lmb_release(DeviceState *dev)
3330 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3331 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3332 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3334 /* This information will get lost if a migration occurs
3335 * during the unplug process. In this case recover it. */
3336 if (ds == NULL) {
3337 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3338 g_assert(ds);
3339 /* The DRC being examined by the caller at least must be counted */
3340 g_assert(ds->nr_lmbs);
3343 if (--ds->nr_lmbs) {
3344 return;
3348 * Now that all the LMBs have been removed by the guest, call the
3349 * unplug handler chain. This can never fail.
3351 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3354 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3356 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3357 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3359 pc_dimm_unplug(dev, MACHINE(hotplug_dev));
3360 object_unparent(OBJECT(dev));
3361 spapr_pending_dimm_unplugs_remove(spapr, ds);
3364 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3365 DeviceState *dev, Error **errp)
3367 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3368 Error *local_err = NULL;
3369 PCDIMMDevice *dimm = PC_DIMM(dev);
3370 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3371 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3372 uint32_t nr_lmbs;
3373 uint64_t size, addr_start, addr;
3374 int i;
3375 sPAPRDRConnector *drc;
3377 size = memory_region_size(mr);
3378 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3380 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3381 &local_err);
3382 if (local_err) {
3383 goto out;
3387 * An existing pending dimm state for this DIMM means that there is an
3388 * unplug operation in progress, waiting for the spapr_lmb_release
3389 * callback to complete the job (BQL can't cover that far). In this case,
3390 * bail out to avoid detaching DRCs that were already released.
3392 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3393 error_setg(&local_err,
3394 "Memory unplug already in progress for device %s",
3395 dev->id);
3396 goto out;
3399 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3401 addr = addr_start;
3402 for (i = 0; i < nr_lmbs; i++) {
3403 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3404 addr / SPAPR_MEMORY_BLOCK_SIZE);
3405 g_assert(drc);
3407 spapr_drc_detach(drc);
3408 addr += SPAPR_MEMORY_BLOCK_SIZE;
3411 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3412 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3413 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3414 nr_lmbs, spapr_drc_index(drc));
3415 out:
3416 error_propagate(errp, local_err);
3419 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3420 sPAPRMachineState *spapr)
3422 PowerPCCPU *cpu = POWERPC_CPU(cs);
3423 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3424 int id = spapr_get_vcpu_id(cpu);
3425 void *fdt;
3426 int offset, fdt_size;
3427 char *nodename;
3429 fdt = create_device_tree(&fdt_size);
3430 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3431 offset = fdt_add_subnode(fdt, 0, nodename);
3433 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3434 g_free(nodename);
3436 *fdt_offset = offset;
3437 return fdt;
3440 /* Callback to be called during DRC release. */
3441 void spapr_core_release(DeviceState *dev)
3443 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3445 /* Call the unplug handler chain. This can never fail. */
3446 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3449 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3451 MachineState *ms = MACHINE(hotplug_dev);
3452 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3453 CPUCore *cc = CPU_CORE(dev);
3454 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3456 if (smc->pre_2_10_has_unused_icps) {
3457 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3458 int i;
3460 for (i = 0; i < cc->nr_threads; i++) {
3461 CPUState *cs = CPU(sc->threads[i]);
3463 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3467 assert(core_slot);
3468 core_slot->cpu = NULL;
3469 object_unparent(OBJECT(dev));
3472 static
3473 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3474 Error **errp)
3476 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3477 int index;
3478 sPAPRDRConnector *drc;
3479 CPUCore *cc = CPU_CORE(dev);
3481 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3482 error_setg(errp, "Unable to find CPU core with core-id: %d",
3483 cc->core_id);
3484 return;
3486 if (index == 0) {
3487 error_setg(errp, "Boot CPU core may not be unplugged");
3488 return;
3491 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3492 spapr_vcpu_id(spapr, cc->core_id));
3493 g_assert(drc);
3495 spapr_drc_detach(drc);
3497 spapr_hotplug_req_remove_by_index(drc);
3500 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3501 Error **errp)
3503 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3504 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3505 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3506 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3507 CPUCore *cc = CPU_CORE(dev);
3508 CPUState *cs = CPU(core->threads[0]);
3509 sPAPRDRConnector *drc;
3510 Error *local_err = NULL;
3511 CPUArchId *core_slot;
3512 int index;
3513 bool hotplugged = spapr_drc_hotplugged(dev);
3515 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3516 if (!core_slot) {
3517 error_setg(errp, "Unable to find CPU core with core-id: %d",
3518 cc->core_id);
3519 return;
3521 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3522 spapr_vcpu_id(spapr, cc->core_id));
3524 g_assert(drc || !mc->has_hotpluggable_cpus);
3526 if (drc) {
3527 void *fdt;
3528 int fdt_offset;
3530 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3532 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3533 if (local_err) {
3534 g_free(fdt);
3535 error_propagate(errp, local_err);
3536 return;
3539 if (hotplugged) {
3541 * Send hotplug notification interrupt to the guest only
3542 * in case of hotplugged CPUs.
3544 spapr_hotplug_req_add_by_index(drc);
3545 } else {
3546 spapr_drc_reset(drc);
3550 core_slot->cpu = OBJECT(dev);
3552 if (smc->pre_2_10_has_unused_icps) {
3553 int i;
3555 for (i = 0; i < cc->nr_threads; i++) {
3556 cs = CPU(core->threads[i]);
3557 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3562 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3563 Error **errp)
3565 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3566 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3567 Error *local_err = NULL;
3568 CPUCore *cc = CPU_CORE(dev);
3569 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3570 const char *type = object_get_typename(OBJECT(dev));
3571 CPUArchId *core_slot;
3572 int index;
3574 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3575 error_setg(&local_err, "CPU hotplug not supported for this machine");
3576 goto out;
3579 if (strcmp(base_core_type, type)) {
3580 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3581 goto out;
3584 if (cc->core_id % smp_threads) {
3585 error_setg(&local_err, "invalid core id %d", cc->core_id);
3586 goto out;
3590 * In general we should have homogeneous threads-per-core, but old
3591 * (pre hotplug support) machine types allow the last core to have
3592 * reduced threads as a compatibility hack for when we allowed
3593 * total vcpus not a multiple of threads-per-core.
3595 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3596 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3597 cc->nr_threads, smp_threads);
3598 goto out;
3601 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3602 if (!core_slot) {
3603 error_setg(&local_err, "core id %d out of range", cc->core_id);
3604 goto out;
3607 if (core_slot->cpu) {
3608 error_setg(&local_err, "core %d already populated", cc->core_id);
3609 goto out;
3612 numa_cpu_pre_plug(core_slot, dev, &local_err);
3614 out:
3615 error_propagate(errp, local_err);
3618 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3619 DeviceState *dev, Error **errp)
3621 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3622 spapr_memory_plug(hotplug_dev, dev, errp);
3623 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3624 spapr_core_plug(hotplug_dev, dev, errp);
3628 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3629 DeviceState *dev, Error **errp)
3631 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3632 spapr_memory_unplug(hotplug_dev, dev);
3633 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3634 spapr_core_unplug(hotplug_dev, dev);
3638 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3639 DeviceState *dev, Error **errp)
3641 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3642 MachineClass *mc = MACHINE_GET_CLASS(sms);
3644 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3645 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3646 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3647 } else {
3648 /* NOTE: this means there is a window after guest reset, prior to
3649 * CAS negotiation, where unplug requests will fail due to the
3650 * capability not being detected yet. This is a bit different than
3651 * the case with PCI unplug, where the events will be queued and
3652 * eventually handled by the guest after boot
3654 error_setg(errp, "Memory hot unplug not supported for this guest");
3656 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3657 if (!mc->has_hotpluggable_cpus) {
3658 error_setg(errp, "CPU hot unplug not supported on this machine");
3659 return;
3661 spapr_core_unplug_request(hotplug_dev, dev, errp);
3665 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3666 DeviceState *dev, Error **errp)
3668 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3669 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3670 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3671 spapr_core_pre_plug(hotplug_dev, dev, errp);
3675 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3676 DeviceState *dev)
3678 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3679 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3680 return HOTPLUG_HANDLER(machine);
3682 return NULL;
3685 static CpuInstanceProperties
3686 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3688 CPUArchId *core_slot;
3689 MachineClass *mc = MACHINE_GET_CLASS(machine);
3691 /* make sure possible_cpu are intialized */
3692 mc->possible_cpu_arch_ids(machine);
3693 /* get CPU core slot containing thread that matches cpu_index */
3694 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3695 assert(core_slot);
3696 return core_slot->props;
3699 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3701 return idx / smp_cores % nb_numa_nodes;
3704 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3706 int i;
3707 const char *core_type;
3708 int spapr_max_cores = max_cpus / smp_threads;
3709 MachineClass *mc = MACHINE_GET_CLASS(machine);
3711 if (!mc->has_hotpluggable_cpus) {
3712 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3714 if (machine->possible_cpus) {
3715 assert(machine->possible_cpus->len == spapr_max_cores);
3716 return machine->possible_cpus;
3719 core_type = spapr_get_cpu_core_type(machine->cpu_type);
3720 if (!core_type) {
3721 error_report("Unable to find sPAPR CPU Core definition");
3722 exit(1);
3725 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3726 sizeof(CPUArchId) * spapr_max_cores);
3727 machine->possible_cpus->len = spapr_max_cores;
3728 for (i = 0; i < machine->possible_cpus->len; i++) {
3729 int core_id = i * smp_threads;
3731 machine->possible_cpus->cpus[i].type = core_type;
3732 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3733 machine->possible_cpus->cpus[i].arch_id = core_id;
3734 machine->possible_cpus->cpus[i].props.has_core_id = true;
3735 machine->possible_cpus->cpus[i].props.core_id = core_id;
3737 return machine->possible_cpus;
3740 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3741 uint64_t *buid, hwaddr *pio,
3742 hwaddr *mmio32, hwaddr *mmio64,
3743 unsigned n_dma, uint32_t *liobns, Error **errp)
3746 * New-style PHB window placement.
3748 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3749 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3750 * windows.
3752 * Some guest kernels can't work with MMIO windows above 1<<46
3753 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3755 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3756 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3757 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3758 * 1TiB 64-bit MMIO windows for each PHB.
3760 const uint64_t base_buid = 0x800000020000000ULL;
3761 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3762 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3763 int i;
3765 /* Sanity check natural alignments */
3766 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3767 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3768 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3769 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3770 /* Sanity check bounds */
3771 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3772 SPAPR_PCI_MEM32_WIN_SIZE);
3773 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3774 SPAPR_PCI_MEM64_WIN_SIZE);
3776 if (index >= SPAPR_MAX_PHBS) {
3777 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3778 SPAPR_MAX_PHBS - 1);
3779 return;
3782 *buid = base_buid + index;
3783 for (i = 0; i < n_dma; ++i) {
3784 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3787 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3788 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3789 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3792 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3794 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3796 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3799 static void spapr_ics_resend(XICSFabric *dev)
3801 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3803 ics_resend(spapr->ics);
3806 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3808 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3810 return cpu ? ICP(cpu->intc) : NULL;
3813 #define ICS_IRQ_FREE(ics, srcno) \
3814 (!((ics)->irqs[(srcno)].flags & (XICS_FLAGS_IRQ_MASK)))
3816 static int ics_find_free_block(ICSState *ics, int num, int alignnum)
3818 int first, i;
3820 for (first = 0; first < ics->nr_irqs; first += alignnum) {
3821 if (num > (ics->nr_irqs - first)) {
3822 return -1;
3824 for (i = first; i < first + num; ++i) {
3825 if (!ICS_IRQ_FREE(ics, i)) {
3826 break;
3829 if (i == (first + num)) {
3830 return first;
3834 return -1;
3837 int spapr_irq_find(sPAPRMachineState *spapr, int num, bool align, Error **errp)
3839 ICSState *ics = spapr->ics;
3840 int first = -1;
3842 assert(ics);
3845 * MSIMesage::data is used for storing VIRQ so
3846 * it has to be aligned to num to support multiple
3847 * MSI vectors. MSI-X is not affected by this.
3848 * The hint is used for the first IRQ, the rest should
3849 * be allocated continuously.
3851 if (align) {
3852 assert((num == 1) || (num == 2) || (num == 4) ||
3853 (num == 8) || (num == 16) || (num == 32));
3854 first = ics_find_free_block(ics, num, num);
3855 } else {
3856 first = ics_find_free_block(ics, num, 1);
3859 if (first < 0) {
3860 error_setg(errp, "can't find a free %d-IRQ block", num);
3861 return -1;
3864 return first + ics->offset;
3867 int spapr_irq_claim(sPAPRMachineState *spapr, int irq, bool lsi, Error **errp)
3869 ICSState *ics = spapr->ics;
3871 assert(ics);
3873 if (!ics_valid_irq(ics, irq)) {
3874 error_setg(errp, "IRQ %d is invalid", irq);
3875 return -1;
3878 if (!ICS_IRQ_FREE(ics, irq - ics->offset)) {
3879 error_setg(errp, "IRQ %d is not free", irq);
3880 return -1;
3883 ics_set_irq_type(ics, irq - ics->offset, lsi);
3884 return 0;
3887 void spapr_irq_free(sPAPRMachineState *spapr, int irq, int num)
3889 ICSState *ics = spapr->ics;
3890 int srcno = irq - ics->offset;
3891 int i;
3893 if (ics_valid_irq(ics, irq)) {
3894 trace_spapr_irq_free(0, irq, num);
3895 for (i = srcno; i < srcno + num; ++i) {
3896 if (ICS_IRQ_FREE(ics, i)) {
3897 trace_spapr_irq_free_warn(0, i + ics->offset);
3899 memset(&ics->irqs[i], 0, sizeof(ICSIRQState));
3904 qemu_irq spapr_qirq(sPAPRMachineState *spapr, int irq)
3906 ICSState *ics = spapr->ics;
3908 if (ics_valid_irq(ics, irq)) {
3909 return ics->qirqs[irq - ics->offset];
3912 return NULL;
3915 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3916 Monitor *mon)
3918 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3919 CPUState *cs;
3921 CPU_FOREACH(cs) {
3922 PowerPCCPU *cpu = POWERPC_CPU(cs);
3924 icp_pic_print_info(ICP(cpu->intc), mon);
3927 ics_pic_print_info(spapr->ics, mon);
3930 int spapr_get_vcpu_id(PowerPCCPU *cpu)
3932 return cpu->vcpu_id;
3935 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3937 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3938 int vcpu_id;
3940 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3942 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3943 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3944 error_append_hint(errp, "Adjust the number of cpus to %d "
3945 "or try to raise the number of threads per core\n",
3946 vcpu_id * smp_threads / spapr->vsmt);
3947 return;
3950 cpu->vcpu_id = vcpu_id;
3953 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3955 CPUState *cs;
3957 CPU_FOREACH(cs) {
3958 PowerPCCPU *cpu = POWERPC_CPU(cs);
3960 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
3961 return cpu;
3965 return NULL;
3968 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3970 MachineClass *mc = MACHINE_CLASS(oc);
3971 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3972 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3973 NMIClass *nc = NMI_CLASS(oc);
3974 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3975 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3976 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3977 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3979 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3980 mc->ignore_boot_device_suffixes = true;
3983 * We set up the default / latest behaviour here. The class_init
3984 * functions for the specific versioned machine types can override
3985 * these details for backwards compatibility
3987 mc->init = spapr_machine_init;
3988 mc->reset = spapr_machine_reset;
3989 mc->block_default_type = IF_SCSI;
3990 mc->max_cpus = 1024;
3991 mc->no_parallel = 1;
3992 mc->default_boot_order = "";
3993 mc->default_ram_size = 512 * MiB;
3994 mc->default_display = "std";
3995 mc->kvm_type = spapr_kvm_type;
3996 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3997 mc->pci_allow_0_address = true;
3998 assert(!mc->get_hotplug_handler);
3999 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4000 hc->pre_plug = spapr_machine_device_pre_plug;
4001 hc->plug = spapr_machine_device_plug;
4002 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4003 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4004 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4005 hc->unplug_request = spapr_machine_device_unplug_request;
4006 hc->unplug = spapr_machine_device_unplug;
4008 smc->dr_lmb_enabled = true;
4009 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4010 mc->has_hotpluggable_cpus = true;
4011 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4012 fwc->get_dev_path = spapr_get_fw_dev_path;
4013 nc->nmi_monitor_handler = spapr_nmi;
4014 smc->phb_placement = spapr_phb_placement;
4015 vhc->hypercall = emulate_spapr_hypercall;
4016 vhc->hpt_mask = spapr_hpt_mask;
4017 vhc->map_hptes = spapr_map_hptes;
4018 vhc->unmap_hptes = spapr_unmap_hptes;
4019 vhc->store_hpte = spapr_store_hpte;
4020 vhc->get_patbe = spapr_get_patbe;
4021 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4022 xic->ics_get = spapr_ics_get;
4023 xic->ics_resend = spapr_ics_resend;
4024 xic->icp_get = spapr_icp_get;
4025 ispc->print_info = spapr_pic_print_info;
4026 /* Force NUMA node memory size to be a multiple of
4027 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4028 * in which LMBs are represented and hot-added
4030 mc->numa_mem_align_shift = 28;
4032 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4033 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4034 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4035 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4036 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4037 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4038 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4039 spapr_caps_add_properties(smc, &error_abort);
4042 static const TypeInfo spapr_machine_info = {
4043 .name = TYPE_SPAPR_MACHINE,
4044 .parent = TYPE_MACHINE,
4045 .abstract = true,
4046 .instance_size = sizeof(sPAPRMachineState),
4047 .instance_init = spapr_instance_init,
4048 .instance_finalize = spapr_machine_finalizefn,
4049 .class_size = sizeof(sPAPRMachineClass),
4050 .class_init = spapr_machine_class_init,
4051 .interfaces = (InterfaceInfo[]) {
4052 { TYPE_FW_PATH_PROVIDER },
4053 { TYPE_NMI },
4054 { TYPE_HOTPLUG_HANDLER },
4055 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4056 { TYPE_XICS_FABRIC },
4057 { TYPE_INTERRUPT_STATS_PROVIDER },
4062 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4063 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4064 void *data) \
4066 MachineClass *mc = MACHINE_CLASS(oc); \
4067 spapr_machine_##suffix##_class_options(mc); \
4068 if (latest) { \
4069 mc->alias = "pseries"; \
4070 mc->is_default = 1; \
4073 static void spapr_machine_##suffix##_instance_init(Object *obj) \
4075 MachineState *machine = MACHINE(obj); \
4076 spapr_machine_##suffix##_instance_options(machine); \
4078 static const TypeInfo spapr_machine_##suffix##_info = { \
4079 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4080 .parent = TYPE_SPAPR_MACHINE, \
4081 .class_init = spapr_machine_##suffix##_class_init, \
4082 .instance_init = spapr_machine_##suffix##_instance_init, \
4083 }; \
4084 static void spapr_machine_register_##suffix(void) \
4086 type_register(&spapr_machine_##suffix##_info); \
4088 type_init(spapr_machine_register_##suffix)
4091 * pseries-3.1
4093 static void spapr_machine_3_1_instance_options(MachineState *machine)
4097 static void spapr_machine_3_1_class_options(MachineClass *mc)
4099 /* Defaults for the latest behaviour inherited from the base class */
4102 DEFINE_SPAPR_MACHINE(3_1, "3.1", true);
4105 * pseries-3.0
4107 #define SPAPR_COMPAT_3_0 \
4108 HW_COMPAT_3_0
4110 static void spapr_machine_3_0_instance_options(MachineState *machine)
4112 spapr_machine_3_1_instance_options(machine);
4115 static void spapr_machine_3_0_class_options(MachineClass *mc)
4117 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4119 spapr_machine_3_1_class_options(mc);
4120 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_3_0);
4122 smc->legacy_irq_allocation = true;
4125 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4128 * pseries-2.12
4130 #define SPAPR_COMPAT_2_12 \
4131 HW_COMPAT_2_12 \
4133 .driver = TYPE_POWERPC_CPU, \
4134 .property = "pre-3.0-migration", \
4135 .value = "on", \
4136 }, \
4138 .driver = TYPE_SPAPR_CPU_CORE, \
4139 .property = "pre-3.0-migration", \
4140 .value = "on", \
4143 static void spapr_machine_2_12_instance_options(MachineState *machine)
4145 spapr_machine_3_0_instance_options(machine);
4148 static void spapr_machine_2_12_class_options(MachineClass *mc)
4150 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4152 spapr_machine_3_0_class_options(mc);
4153 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_12);
4155 /* We depend on kvm_enabled() to choose a default value for the
4156 * hpt-max-page-size capability. Of course we can't do it here
4157 * because this is too early and the HW accelerator isn't initialzed
4158 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4160 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4163 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4165 static void spapr_machine_2_12_sxxm_instance_options(MachineState *machine)
4167 spapr_machine_2_12_instance_options(machine);
4170 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4172 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4174 spapr_machine_2_12_class_options(mc);
4175 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4176 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4177 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4180 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4183 * pseries-2.11
4185 #define SPAPR_COMPAT_2_11 \
4186 HW_COMPAT_2_11
4188 static void spapr_machine_2_11_instance_options(MachineState *machine)
4190 spapr_machine_2_12_instance_options(machine);
4193 static void spapr_machine_2_11_class_options(MachineClass *mc)
4195 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4197 spapr_machine_2_12_class_options(mc);
4198 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4199 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
4202 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4205 * pseries-2.10
4207 #define SPAPR_COMPAT_2_10 \
4208 HW_COMPAT_2_10
4210 static void spapr_machine_2_10_instance_options(MachineState *machine)
4212 spapr_machine_2_11_instance_options(machine);
4215 static void spapr_machine_2_10_class_options(MachineClass *mc)
4217 spapr_machine_2_11_class_options(mc);
4218 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
4221 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4224 * pseries-2.9
4226 #define SPAPR_COMPAT_2_9 \
4227 HW_COMPAT_2_9 \
4229 .driver = TYPE_POWERPC_CPU, \
4230 .property = "pre-2.10-migration", \
4231 .value = "on", \
4232 }, \
4234 static void spapr_machine_2_9_instance_options(MachineState *machine)
4236 spapr_machine_2_10_instance_options(machine);
4239 static void spapr_machine_2_9_class_options(MachineClass *mc)
4241 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4243 spapr_machine_2_10_class_options(mc);
4244 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
4245 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4246 smc->pre_2_10_has_unused_icps = true;
4247 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4250 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4253 * pseries-2.8
4255 #define SPAPR_COMPAT_2_8 \
4256 HW_COMPAT_2_8 \
4258 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4259 .property = "pcie-extended-configuration-space", \
4260 .value = "off", \
4263 static void spapr_machine_2_8_instance_options(MachineState *machine)
4265 spapr_machine_2_9_instance_options(machine);
4268 static void spapr_machine_2_8_class_options(MachineClass *mc)
4270 spapr_machine_2_9_class_options(mc);
4271 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
4272 mc->numa_mem_align_shift = 23;
4275 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4278 * pseries-2.7
4280 #define SPAPR_COMPAT_2_7 \
4281 HW_COMPAT_2_7 \
4283 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4284 .property = "mem_win_size", \
4285 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
4286 }, \
4288 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4289 .property = "mem64_win_size", \
4290 .value = "0", \
4291 }, \
4293 .driver = TYPE_POWERPC_CPU, \
4294 .property = "pre-2.8-migration", \
4295 .value = "on", \
4296 }, \
4298 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4299 .property = "pre-2.8-migration", \
4300 .value = "on", \
4303 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4304 uint64_t *buid, hwaddr *pio,
4305 hwaddr *mmio32, hwaddr *mmio64,
4306 unsigned n_dma, uint32_t *liobns, Error **errp)
4308 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4309 const uint64_t base_buid = 0x800000020000000ULL;
4310 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4311 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4312 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4313 const uint32_t max_index = 255;
4314 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4316 uint64_t ram_top = MACHINE(spapr)->ram_size;
4317 hwaddr phb0_base, phb_base;
4318 int i;
4320 /* Do we have device memory? */
4321 if (MACHINE(spapr)->maxram_size > ram_top) {
4322 /* Can't just use maxram_size, because there may be an
4323 * alignment gap between normal and device memory regions
4325 ram_top = MACHINE(spapr)->device_memory->base +
4326 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4329 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4331 if (index > max_index) {
4332 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4333 max_index);
4334 return;
4337 *buid = base_buid + index;
4338 for (i = 0; i < n_dma; ++i) {
4339 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4342 phb_base = phb0_base + index * phb_spacing;
4343 *pio = phb_base + pio_offset;
4344 *mmio32 = phb_base + mmio_offset;
4346 * We don't set the 64-bit MMIO window, relying on the PHB's
4347 * fallback behaviour of automatically splitting a large "32-bit"
4348 * window into contiguous 32-bit and 64-bit windows
4352 static void spapr_machine_2_7_instance_options(MachineState *machine)
4354 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
4356 spapr_machine_2_8_instance_options(machine);
4357 spapr->use_hotplug_event_source = false;
4360 static void spapr_machine_2_7_class_options(MachineClass *mc)
4362 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4364 spapr_machine_2_8_class_options(mc);
4365 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4366 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
4367 smc->phb_placement = phb_placement_2_7;
4370 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4373 * pseries-2.6
4375 #define SPAPR_COMPAT_2_6 \
4376 HW_COMPAT_2_6 \
4378 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4379 .property = "ddw",\
4380 .value = stringify(off),\
4383 static void spapr_machine_2_6_instance_options(MachineState *machine)
4385 spapr_machine_2_7_instance_options(machine);
4388 static void spapr_machine_2_6_class_options(MachineClass *mc)
4390 spapr_machine_2_7_class_options(mc);
4391 mc->has_hotpluggable_cpus = false;
4392 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4395 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4398 * pseries-2.5
4400 #define SPAPR_COMPAT_2_5 \
4401 HW_COMPAT_2_5 \
4403 .driver = "spapr-vlan", \
4404 .property = "use-rx-buffer-pools", \
4405 .value = "off", \
4408 static void spapr_machine_2_5_instance_options(MachineState *machine)
4410 spapr_machine_2_6_instance_options(machine);
4413 static void spapr_machine_2_5_class_options(MachineClass *mc)
4415 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4417 spapr_machine_2_6_class_options(mc);
4418 smc->use_ohci_by_default = true;
4419 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
4422 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4425 * pseries-2.4
4427 #define SPAPR_COMPAT_2_4 \
4428 HW_COMPAT_2_4
4430 static void spapr_machine_2_4_instance_options(MachineState *machine)
4432 spapr_machine_2_5_instance_options(machine);
4435 static void spapr_machine_2_4_class_options(MachineClass *mc)
4437 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4439 spapr_machine_2_5_class_options(mc);
4440 smc->dr_lmb_enabled = false;
4441 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
4444 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4447 * pseries-2.3
4449 #define SPAPR_COMPAT_2_3 \
4450 HW_COMPAT_2_3 \
4452 .driver = "spapr-pci-host-bridge",\
4453 .property = "dynamic-reconfiguration",\
4454 .value = "off",\
4457 static void spapr_machine_2_3_instance_options(MachineState *machine)
4459 spapr_machine_2_4_instance_options(machine);
4462 static void spapr_machine_2_3_class_options(MachineClass *mc)
4464 spapr_machine_2_4_class_options(mc);
4465 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
4467 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4470 * pseries-2.2
4473 #define SPAPR_COMPAT_2_2 \
4474 HW_COMPAT_2_2 \
4476 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4477 .property = "mem_win_size",\
4478 .value = "0x20000000",\
4481 static void spapr_machine_2_2_instance_options(MachineState *machine)
4483 spapr_machine_2_3_instance_options(machine);
4484 machine->suppress_vmdesc = true;
4487 static void spapr_machine_2_2_class_options(MachineClass *mc)
4489 spapr_machine_2_3_class_options(mc);
4490 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4492 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4495 * pseries-2.1
4497 #define SPAPR_COMPAT_2_1 \
4498 HW_COMPAT_2_1
4500 static void spapr_machine_2_1_instance_options(MachineState *machine)
4502 spapr_machine_2_2_instance_options(machine);
4505 static void spapr_machine_2_1_class_options(MachineClass *mc)
4507 spapr_machine_2_2_class_options(mc);
4508 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4510 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4512 static void spapr_machine_register_types(void)
4514 type_register_static(&spapr_machine_info);
4517 type_init(spapr_machine_register_types)