2 * PowerPC implementation of KVM hooks
4 * Copyright IBM Corp. 2007
5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
8 * Jerone Young <jyoung5@us.ibm.com>
9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10 * Hollis Blanchard <hollisb@us.ibm.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
13 * See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
19 #include <sys/ioctl.h>
22 #include <linux/kvm.h>
24 #include "qapi/error.h"
25 #include "qemu/error-report.h"
27 #include "cpu-models.h"
28 #include "qemu/timer.h"
29 #include "sysemu/hw_accel.h"
31 #include "sysemu/cpus.h"
32 #include "sysemu/device_tree.h"
33 #include "mmu-hash64.h"
35 #include "hw/ppc/spapr.h"
36 #include "hw/ppc/spapr_cpu_core.h"
38 #include "hw/ppc/ppc.h"
39 #include "migration/qemu-file-types.h"
40 #include "sysemu/watchdog.h"
42 #include "exec/gdbstub.h"
43 #include "exec/memattrs.h"
44 #include "exec/ram_addr.h"
45 #include "sysemu/hostmem.h"
46 #include "qemu/cutils.h"
47 #include "qemu/main-loop.h"
48 #include "qemu/mmap-alloc.h"
50 #include "sysemu/kvm_int.h"
52 #define PROC_DEVTREE_CPU "/proc/device-tree/cpus/"
54 #define DEBUG_RETURN_GUEST 0
55 #define DEBUG_RETURN_GDB 1
57 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
61 static int cap_interrupt_unset
;
62 static int cap_segstate
;
63 static int cap_booke_sregs
;
64 static int cap_ppc_smt
;
65 static int cap_ppc_smt_possible
;
66 static int cap_spapr_tce
;
67 static int cap_spapr_tce_64
;
68 static int cap_spapr_multitce
;
69 static int cap_spapr_vfio
;
71 static int cap_one_reg
;
73 static int cap_ppc_watchdog
;
75 static int cap_htab_fd
;
76 static int cap_fixup_hcalls
;
77 static int cap_htm
; /* Hardware transactional memory support */
78 static int cap_mmu_radix
;
79 static int cap_mmu_hash_v3
;
81 static int cap_resize_hpt
;
82 static int cap_ppc_pvr_compat
;
83 static int cap_ppc_safe_cache
;
84 static int cap_ppc_safe_bounds_check
;
85 static int cap_ppc_safe_indirect_branch
;
86 static int cap_ppc_count_cache_flush_assist
;
87 static int cap_ppc_nested_kvm_hv
;
88 static int cap_large_decr
;
90 static int cap_rpt_invalidate
;
91 static int cap_ail_mode_3
;
93 static uint32_t debug_inst_opcode
;
96 * Check whether we are running with KVM-PR (instead of KVM-HV). This
97 * should only be used for fallback tests - generally we should use
98 * explicit capabilities for the features we want, rather than
99 * assuming what is/isn't available depending on the KVM variant.
101 static bool kvmppc_is_pr(KVMState
*ks
)
103 /* Assume KVM-PR if the GET_PVINFO capability is available */
104 return kvm_vm_check_extension(ks
, KVM_CAP_PPC_GET_PVINFO
) != 0;
107 static int kvm_ppc_register_host_cpu_type(void);
108 static void kvmppc_get_cpu_characteristics(KVMState
*s
);
109 static int kvmppc_get_dec_bits(void);
111 int kvm_arch_get_default_type(MachineState
*ms
)
116 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
118 cap_interrupt_unset
= kvm_check_extension(s
, KVM_CAP_PPC_UNSET_IRQ
);
119 cap_segstate
= kvm_check_extension(s
, KVM_CAP_PPC_SEGSTATE
);
120 cap_booke_sregs
= kvm_check_extension(s
, KVM_CAP_PPC_BOOKE_SREGS
);
121 cap_ppc_smt_possible
= kvm_vm_check_extension(s
, KVM_CAP_PPC_SMT_POSSIBLE
);
122 cap_spapr_tce
= kvm_check_extension(s
, KVM_CAP_SPAPR_TCE
);
123 cap_spapr_tce_64
= kvm_check_extension(s
, KVM_CAP_SPAPR_TCE_64
);
124 cap_spapr_multitce
= kvm_check_extension(s
, KVM_CAP_SPAPR_MULTITCE
);
125 cap_spapr_vfio
= kvm_vm_check_extension(s
, KVM_CAP_SPAPR_TCE_VFIO
);
126 cap_one_reg
= kvm_check_extension(s
, KVM_CAP_ONE_REG
);
127 cap_hior
= kvm_check_extension(s
, KVM_CAP_PPC_HIOR
);
128 cap_epr
= kvm_check_extension(s
, KVM_CAP_PPC_EPR
);
129 cap_ppc_watchdog
= kvm_check_extension(s
, KVM_CAP_PPC_BOOKE_WATCHDOG
);
131 * Note: we don't set cap_papr here, because this capability is
132 * only activated after this by kvmppc_set_papr()
134 cap_htab_fd
= kvm_vm_check_extension(s
, KVM_CAP_PPC_HTAB_FD
);
135 cap_fixup_hcalls
= kvm_check_extension(s
, KVM_CAP_PPC_FIXUP_HCALL
);
136 cap_ppc_smt
= kvm_vm_check_extension(s
, KVM_CAP_PPC_SMT
);
137 cap_htm
= kvm_vm_check_extension(s
, KVM_CAP_PPC_HTM
);
138 cap_mmu_radix
= kvm_vm_check_extension(s
, KVM_CAP_PPC_MMU_RADIX
);
139 cap_mmu_hash_v3
= kvm_vm_check_extension(s
, KVM_CAP_PPC_MMU_HASH_V3
);
140 cap_xive
= kvm_vm_check_extension(s
, KVM_CAP_PPC_IRQ_XIVE
);
141 cap_resize_hpt
= kvm_vm_check_extension(s
, KVM_CAP_SPAPR_RESIZE_HPT
);
142 kvmppc_get_cpu_characteristics(s
);
143 cap_ppc_nested_kvm_hv
= kvm_vm_check_extension(s
, KVM_CAP_PPC_NESTED_HV
);
144 cap_large_decr
= kvmppc_get_dec_bits();
145 cap_fwnmi
= kvm_vm_check_extension(s
, KVM_CAP_PPC_FWNMI
);
147 * Note: setting it to false because there is not such capability
148 * in KVM at this moment.
150 * TODO: call kvm_vm_check_extension() with the right capability
151 * after the kernel starts implementing it.
153 cap_ppc_pvr_compat
= false;
155 if (!kvm_check_extension(s
, KVM_CAP_PPC_IRQ_LEVEL
)) {
156 error_report("KVM: Host kernel doesn't have level irq capability");
160 cap_rpt_invalidate
= kvm_vm_check_extension(s
, KVM_CAP_PPC_RPT_INVALIDATE
);
161 cap_ail_mode_3
= kvm_vm_check_extension(s
, KVM_CAP_PPC_AIL_MODE_3
);
162 kvm_ppc_register_host_cpu_type();
167 int kvm_arch_irqchip_create(KVMState
*s
)
172 static int kvm_arch_sync_sregs(PowerPCCPU
*cpu
)
174 CPUPPCState
*cenv
= &cpu
->env
;
175 CPUState
*cs
= CPU(cpu
);
176 struct kvm_sregs sregs
;
179 if (cenv
->excp_model
== POWERPC_EXCP_BOOKE
) {
181 * What we're really trying to say is "if we're on BookE, we
182 * use the native PVR for now". This is the only sane way to
183 * check it though, so we potentially confuse users that they
184 * can run BookE guests on BookS. Let's hope nobody dares
190 fprintf(stderr
, "kvm error: missing PVR setting capability\n");
195 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_SREGS
, &sregs
);
200 sregs
.pvr
= cenv
->spr
[SPR_PVR
];
201 return kvm_vcpu_ioctl(cs
, KVM_SET_SREGS
, &sregs
);
204 /* Set up a shared TLB array with KVM */
205 static int kvm_booke206_tlb_init(PowerPCCPU
*cpu
)
207 CPUPPCState
*env
= &cpu
->env
;
208 CPUState
*cs
= CPU(cpu
);
209 struct kvm_book3e_206_tlb_params params
= {};
210 struct kvm_config_tlb cfg
= {};
211 unsigned int entries
= 0;
214 if (!kvm_enabled() ||
215 !kvm_check_extension(cs
->kvm_state
, KVM_CAP_SW_TLB
)) {
219 assert(ARRAY_SIZE(params
.tlb_sizes
) == BOOKE206_MAX_TLBN
);
221 for (i
= 0; i
< BOOKE206_MAX_TLBN
; i
++) {
222 params
.tlb_sizes
[i
] = booke206_tlb_size(env
, i
);
223 params
.tlb_ways
[i
] = booke206_tlb_ways(env
, i
);
224 entries
+= params
.tlb_sizes
[i
];
227 assert(entries
== env
->nb_tlb
);
228 assert(sizeof(struct kvm_book3e_206_tlb_entry
) == sizeof(ppcmas_tlb_t
));
230 env
->tlb_dirty
= true;
232 cfg
.array
= (uintptr_t)env
->tlb
.tlbm
;
233 cfg
.array_len
= sizeof(ppcmas_tlb_t
) * entries
;
234 cfg
.params
= (uintptr_t)¶ms
;
235 cfg
.mmu_type
= KVM_MMU_FSL_BOOKE_NOHV
;
237 ret
= kvm_vcpu_enable_cap(cs
, KVM_CAP_SW_TLB
, 0, (uintptr_t)&cfg
);
239 fprintf(stderr
, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
240 __func__
, strerror(-ret
));
244 env
->kvm_sw_tlb
= true;
249 #if defined(TARGET_PPC64)
250 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info
*info
, Error
**errp
)
254 assert(kvm_state
!= NULL
);
256 if (!kvm_check_extension(kvm_state
, KVM_CAP_PPC_GET_SMMU_INFO
)) {
257 error_setg(errp
, "KVM doesn't expose the MMU features it supports");
258 error_append_hint(errp
, "Consider switching to a newer KVM\n");
262 ret
= kvm_vm_ioctl(kvm_state
, KVM_PPC_GET_SMMU_INFO
, info
);
267 error_setg_errno(errp
, -ret
,
268 "KVM failed to provide the MMU features it supports");
271 static struct ppc_radix_page_info
*kvmppc_get_radix_page_info(void)
273 KVMState
*s
= KVM_STATE(current_accel());
274 struct ppc_radix_page_info
*radix_page_info
;
275 struct kvm_ppc_rmmu_info rmmu_info
= { };
278 if (!kvm_check_extension(s
, KVM_CAP_PPC_MMU_RADIX
)) {
281 if (kvm_vm_ioctl(s
, KVM_PPC_GET_RMMU_INFO
, &rmmu_info
)) {
284 radix_page_info
= g_malloc0(sizeof(*radix_page_info
));
285 radix_page_info
->count
= 0;
286 for (i
= 0; i
< PPC_PAGE_SIZES_MAX_SZ
; i
++) {
287 if (rmmu_info
.ap_encodings
[i
]) {
288 radix_page_info
->entries
[i
] = rmmu_info
.ap_encodings
[i
];
289 radix_page_info
->count
++;
292 return radix_page_info
;
295 target_ulong
kvmppc_configure_v3_mmu(PowerPCCPU
*cpu
,
296 bool radix
, bool gtse
,
299 CPUState
*cs
= CPU(cpu
);
302 struct kvm_ppc_mmuv3_cfg cfg
= {
303 .process_table
= proc_tbl
,
307 flags
|= KVM_PPC_MMUV3_RADIX
;
310 flags
|= KVM_PPC_MMUV3_GTSE
;
313 ret
= kvm_vm_ioctl(cs
->kvm_state
, KVM_PPC_CONFIGURE_V3_MMU
, &cfg
);
320 return H_NOT_AVAILABLE
;
326 bool kvmppc_hpt_needs_host_contiguous_pages(void)
328 static struct kvm_ppc_smmu_info smmu_info
;
330 if (!kvm_enabled()) {
334 kvm_get_smmu_info(&smmu_info
, &error_fatal
);
335 return !!(smmu_info
.flags
& KVM_PPC_PAGE_SIZES_REAL
);
338 void kvm_check_mmu(PowerPCCPU
*cpu
, Error
**errp
)
340 struct kvm_ppc_smmu_info smmu_info
;
342 Error
*local_err
= NULL
;
344 /* For now, we only have anything to check on hash64 MMUs */
345 if (!cpu
->hash64_opts
|| !kvm_enabled()) {
349 kvm_get_smmu_info(&smmu_info
, &local_err
);
351 error_propagate(errp
, local_err
);
355 if (ppc_hash64_has(cpu
, PPC_HASH64_1TSEG
)
356 && !(smmu_info
.flags
& KVM_PPC_1T_SEGMENTS
)) {
358 "KVM does not support 1TiB segments which guest expects");
362 if (smmu_info
.slb_size
< cpu
->hash64_opts
->slb_size
) {
363 error_setg(errp
, "KVM only supports %u SLB entries, but guest needs %u",
364 smmu_info
.slb_size
, cpu
->hash64_opts
->slb_size
);
369 * Verify that every pagesize supported by the cpu model is
370 * supported by KVM with the same encodings
372 for (iq
= 0; iq
< ARRAY_SIZE(cpu
->hash64_opts
->sps
); iq
++) {
373 PPCHash64SegmentPageSizes
*qsps
= &cpu
->hash64_opts
->sps
[iq
];
374 struct kvm_ppc_one_seg_page_size
*ksps
;
376 for (ik
= 0; ik
< ARRAY_SIZE(smmu_info
.sps
); ik
++) {
377 if (qsps
->page_shift
== smmu_info
.sps
[ik
].page_shift
) {
381 if (ik
>= ARRAY_SIZE(smmu_info
.sps
)) {
382 error_setg(errp
, "KVM doesn't support for base page shift %u",
387 ksps
= &smmu_info
.sps
[ik
];
388 if (ksps
->slb_enc
!= qsps
->slb_enc
) {
390 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
391 ksps
->slb_enc
, ksps
->page_shift
, qsps
->slb_enc
);
395 for (jq
= 0; jq
< ARRAY_SIZE(qsps
->enc
); jq
++) {
396 for (jk
= 0; jk
< ARRAY_SIZE(ksps
->enc
); jk
++) {
397 if (qsps
->enc
[jq
].page_shift
== ksps
->enc
[jk
].page_shift
) {
402 if (jk
>= ARRAY_SIZE(ksps
->enc
)) {
403 error_setg(errp
, "KVM doesn't support page shift %u/%u",
404 qsps
->enc
[jq
].page_shift
, qsps
->page_shift
);
407 if (qsps
->enc
[jq
].pte_enc
!= ksps
->enc
[jk
].pte_enc
) {
409 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
410 ksps
->enc
[jk
].pte_enc
, qsps
->enc
[jq
].page_shift
,
411 qsps
->page_shift
, qsps
->enc
[jq
].pte_enc
);
417 if (ppc_hash64_has(cpu
, PPC_HASH64_CI_LARGEPAGE
)) {
419 * Mostly what guest pagesizes we can use are related to the
420 * host pages used to map guest RAM, which is handled in the
421 * platform code. Cache-Inhibited largepages (64k) however are
422 * used for I/O, so if they're mapped to the host at all it
423 * will be a normal mapping, not a special hugepage one used
426 if (qemu_real_host_page_size() < 0x10000) {
428 "KVM can't supply 64kiB CI pages, which guest expects");
432 #endif /* !defined (TARGET_PPC64) */
434 unsigned long kvm_arch_vcpu_id(CPUState
*cpu
)
436 return POWERPC_CPU(cpu
)->vcpu_id
;
440 * e500 supports 2 h/w breakpoint and 2 watchpoint. book3s supports
441 * only 1 watchpoint, so array size of 4 is sufficient for now.
443 #define MAX_HW_BKPTS 4
445 static struct HWBreakpoint
{
448 } hw_debug_points
[MAX_HW_BKPTS
];
450 static CPUWatchpoint hw_watchpoint
;
452 /* Default there is no breakpoint and watchpoint supported */
453 static int max_hw_breakpoint
;
454 static int max_hw_watchpoint
;
455 static int nb_hw_breakpoint
;
456 static int nb_hw_watchpoint
;
458 static void kvmppc_hw_debug_points_init(CPUPPCState
*cenv
)
460 if (cenv
->excp_model
== POWERPC_EXCP_BOOKE
) {
461 max_hw_breakpoint
= 2;
462 max_hw_watchpoint
= 2;
465 if ((max_hw_breakpoint
+ max_hw_watchpoint
) > MAX_HW_BKPTS
) {
466 fprintf(stderr
, "Error initializing h/w breakpoints\n");
471 int kvm_arch_init_vcpu(CPUState
*cs
)
473 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
474 CPUPPCState
*cenv
= &cpu
->env
;
477 /* Synchronize sregs with kvm */
478 ret
= kvm_arch_sync_sregs(cpu
);
480 if (ret
== -EINVAL
) {
481 error_report("Register sync failed... If you're using kvm-hv.ko,"
482 " only \"-cpu host\" is possible");
487 switch (cenv
->mmu_model
) {
488 case POWERPC_MMU_BOOKE206
:
489 /* This target supports access to KVM's guest TLB */
490 ret
= kvm_booke206_tlb_init(cpu
);
492 case POWERPC_MMU_2_07
:
493 if (!cap_htm
&& !kvmppc_is_pr(cs
->kvm_state
)) {
495 * KVM-HV has transactional memory on POWER8 also without
496 * the KVM_CAP_PPC_HTM extension, so enable it here
497 * instead as long as it's available to userspace on the
500 if (qemu_getauxval(AT_HWCAP2
) & PPC_FEATURE2_HAS_HTM
) {
509 kvm_get_one_reg(cs
, KVM_REG_PPC_DEBUG_INST
, &debug_inst_opcode
);
510 kvmppc_hw_debug_points_init(cenv
);
515 int kvm_arch_destroy_vcpu(CPUState
*cs
)
520 static void kvm_sw_tlb_put(PowerPCCPU
*cpu
)
522 CPUPPCState
*env
= &cpu
->env
;
523 CPUState
*cs
= CPU(cpu
);
524 struct kvm_dirty_tlb dirty_tlb
;
525 unsigned char *bitmap
;
528 if (!env
->kvm_sw_tlb
) {
532 bitmap
= g_malloc((env
->nb_tlb
+ 7) / 8);
533 memset(bitmap
, 0xFF, (env
->nb_tlb
+ 7) / 8);
535 dirty_tlb
.bitmap
= (uintptr_t)bitmap
;
536 dirty_tlb
.num_dirty
= env
->nb_tlb
;
538 ret
= kvm_vcpu_ioctl(cs
, KVM_DIRTY_TLB
, &dirty_tlb
);
540 fprintf(stderr
, "%s: KVM_DIRTY_TLB: %s\n",
541 __func__
, strerror(-ret
));
547 static void kvm_get_one_spr(CPUState
*cs
, uint64_t id
, int spr
)
549 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
550 CPUPPCState
*env
= &cpu
->env
;
551 /* Init 'val' to avoid "uninitialised value" Valgrind warnings */
556 struct kvm_one_reg reg
= {
558 .addr
= (uintptr_t) &val
,
562 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
564 trace_kvm_failed_spr_get(spr
, strerror(errno
));
566 switch (id
& KVM_REG_SIZE_MASK
) {
567 case KVM_REG_SIZE_U32
:
568 env
->spr
[spr
] = val
.u32
;
571 case KVM_REG_SIZE_U64
:
572 env
->spr
[spr
] = val
.u64
;
576 /* Don't handle this size yet */
582 static void kvm_put_one_spr(CPUState
*cs
, uint64_t id
, int spr
)
584 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
585 CPUPPCState
*env
= &cpu
->env
;
590 struct kvm_one_reg reg
= {
592 .addr
= (uintptr_t) &val
,
596 switch (id
& KVM_REG_SIZE_MASK
) {
597 case KVM_REG_SIZE_U32
:
598 val
.u32
= env
->spr
[spr
];
601 case KVM_REG_SIZE_U64
:
602 val
.u64
= env
->spr
[spr
];
606 /* Don't handle this size yet */
610 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
612 trace_kvm_failed_spr_set(spr
, strerror(errno
));
616 static int kvm_put_fp(CPUState
*cs
)
618 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
619 CPUPPCState
*env
= &cpu
->env
;
620 struct kvm_one_reg reg
;
624 if (env
->insns_flags
& PPC_FLOAT
) {
625 uint64_t fpscr
= env
->fpscr
;
626 bool vsx
= !!(env
->insns_flags2
& PPC2_VSX
);
628 reg
.id
= KVM_REG_PPC_FPSCR
;
629 reg
.addr
= (uintptr_t)&fpscr
;
630 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
632 trace_kvm_failed_fpscr_set(strerror(errno
));
636 for (i
= 0; i
< 32; i
++) {
638 uint64_t *fpr
= cpu_fpr_ptr(&cpu
->env
, i
);
639 uint64_t *vsrl
= cpu_vsrl_ptr(&cpu
->env
, i
);
642 vsr
[0] = float64_val(*fpr
);
646 vsr
[1] = float64_val(*fpr
);
648 reg
.addr
= (uintptr_t) &vsr
;
649 reg
.id
= vsx
? KVM_REG_PPC_VSR(i
) : KVM_REG_PPC_FPR(i
);
651 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
653 trace_kvm_failed_fp_set(vsx
? "VSR" : "FPR", i
,
660 if (env
->insns_flags
& PPC_ALTIVEC
) {
661 reg
.id
= KVM_REG_PPC_VSCR
;
662 reg
.addr
= (uintptr_t)&env
->vscr
;
663 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
665 trace_kvm_failed_vscr_set(strerror(errno
));
669 for (i
= 0; i
< 32; i
++) {
670 reg
.id
= KVM_REG_PPC_VR(i
);
671 reg
.addr
= (uintptr_t)cpu_avr_ptr(env
, i
);
672 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
674 trace_kvm_failed_vr_set(i
, strerror(errno
));
683 static int kvm_get_fp(CPUState
*cs
)
685 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
686 CPUPPCState
*env
= &cpu
->env
;
687 struct kvm_one_reg reg
;
691 if (env
->insns_flags
& PPC_FLOAT
) {
693 bool vsx
= !!(env
->insns_flags2
& PPC2_VSX
);
695 reg
.id
= KVM_REG_PPC_FPSCR
;
696 reg
.addr
= (uintptr_t)&fpscr
;
697 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
699 trace_kvm_failed_fpscr_get(strerror(errno
));
705 for (i
= 0; i
< 32; i
++) {
707 uint64_t *fpr
= cpu_fpr_ptr(&cpu
->env
, i
);
708 uint64_t *vsrl
= cpu_vsrl_ptr(&cpu
->env
, i
);
710 reg
.addr
= (uintptr_t) &vsr
;
711 reg
.id
= vsx
? KVM_REG_PPC_VSR(i
) : KVM_REG_PPC_FPR(i
);
713 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
715 trace_kvm_failed_fp_get(vsx
? "VSR" : "FPR", i
,
734 if (env
->insns_flags
& PPC_ALTIVEC
) {
735 reg
.id
= KVM_REG_PPC_VSCR
;
736 reg
.addr
= (uintptr_t)&env
->vscr
;
737 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
739 trace_kvm_failed_vscr_get(strerror(errno
));
743 for (i
= 0; i
< 32; i
++) {
744 reg
.id
= KVM_REG_PPC_VR(i
);
745 reg
.addr
= (uintptr_t)cpu_avr_ptr(env
, i
);
746 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
748 trace_kvm_failed_vr_get(i
, strerror(errno
));
757 #if defined(TARGET_PPC64)
758 static int kvm_get_vpa(CPUState
*cs
)
760 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
761 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
762 struct kvm_one_reg reg
;
765 reg
.id
= KVM_REG_PPC_VPA_ADDR
;
766 reg
.addr
= (uintptr_t)&spapr_cpu
->vpa_addr
;
767 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
769 trace_kvm_failed_vpa_addr_get(strerror(errno
));
773 assert((uintptr_t)&spapr_cpu
->slb_shadow_size
774 == ((uintptr_t)&spapr_cpu
->slb_shadow_addr
+ 8));
775 reg
.id
= KVM_REG_PPC_VPA_SLB
;
776 reg
.addr
= (uintptr_t)&spapr_cpu
->slb_shadow_addr
;
777 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
779 trace_kvm_failed_slb_get(strerror(errno
));
783 assert((uintptr_t)&spapr_cpu
->dtl_size
784 == ((uintptr_t)&spapr_cpu
->dtl_addr
+ 8));
785 reg
.id
= KVM_REG_PPC_VPA_DTL
;
786 reg
.addr
= (uintptr_t)&spapr_cpu
->dtl_addr
;
787 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
789 trace_kvm_failed_dtl_get(strerror(errno
));
796 static int kvm_put_vpa(CPUState
*cs
)
798 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
799 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
800 struct kvm_one_reg reg
;
804 * SLB shadow or DTL can't be registered unless a master VPA is
805 * registered. That means when restoring state, if a VPA *is*
806 * registered, we need to set that up first. If not, we need to
807 * deregister the others before deregistering the master VPA
809 assert(spapr_cpu
->vpa_addr
810 || !(spapr_cpu
->slb_shadow_addr
|| spapr_cpu
->dtl_addr
));
812 if (spapr_cpu
->vpa_addr
) {
813 reg
.id
= KVM_REG_PPC_VPA_ADDR
;
814 reg
.addr
= (uintptr_t)&spapr_cpu
->vpa_addr
;
815 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
817 trace_kvm_failed_vpa_addr_set(strerror(errno
));
822 assert((uintptr_t)&spapr_cpu
->slb_shadow_size
823 == ((uintptr_t)&spapr_cpu
->slb_shadow_addr
+ 8));
824 reg
.id
= KVM_REG_PPC_VPA_SLB
;
825 reg
.addr
= (uintptr_t)&spapr_cpu
->slb_shadow_addr
;
826 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
828 trace_kvm_failed_slb_set(strerror(errno
));
832 assert((uintptr_t)&spapr_cpu
->dtl_size
833 == ((uintptr_t)&spapr_cpu
->dtl_addr
+ 8));
834 reg
.id
= KVM_REG_PPC_VPA_DTL
;
835 reg
.addr
= (uintptr_t)&spapr_cpu
->dtl_addr
;
836 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
838 trace_kvm_failed_dtl_set(strerror(errno
));
842 if (!spapr_cpu
->vpa_addr
) {
843 reg
.id
= KVM_REG_PPC_VPA_ADDR
;
844 reg
.addr
= (uintptr_t)&spapr_cpu
->vpa_addr
;
845 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
847 trace_kvm_failed_null_vpa_addr_set(strerror(errno
));
854 #endif /* TARGET_PPC64 */
856 int kvmppc_put_books_sregs(PowerPCCPU
*cpu
)
858 CPUPPCState
*env
= &cpu
->env
;
859 struct kvm_sregs sregs
= { };
862 sregs
.pvr
= env
->spr
[SPR_PVR
];
865 PPCVirtualHypervisorClass
*vhc
=
866 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu
->vhyp
);
867 sregs
.u
.s
.sdr1
= vhc
->encode_hpt_for_kvm_pr(cpu
->vhyp
);
869 sregs
.u
.s
.sdr1
= env
->spr
[SPR_SDR1
];
874 for (i
= 0; i
< ARRAY_SIZE(env
->slb
); i
++) {
875 sregs
.u
.s
.ppc64
.slb
[i
].slbe
= env
->slb
[i
].esid
;
876 if (env
->slb
[i
].esid
& SLB_ESID_V
) {
877 sregs
.u
.s
.ppc64
.slb
[i
].slbe
|= i
;
879 sregs
.u
.s
.ppc64
.slb
[i
].slbv
= env
->slb
[i
].vsid
;
884 for (i
= 0; i
< 16; i
++) {
885 sregs
.u
.s
.ppc32
.sr
[i
] = env
->sr
[i
];
889 for (i
= 0; i
< 8; i
++) {
890 /* Beware. We have to swap upper and lower bits here */
891 sregs
.u
.s
.ppc32
.dbat
[i
] = ((uint64_t)env
->DBAT
[0][i
] << 32)
893 sregs
.u
.s
.ppc32
.ibat
[i
] = ((uint64_t)env
->IBAT
[0][i
] << 32)
897 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_SREGS
, &sregs
);
900 int kvm_arch_put_registers(CPUState
*cs
, int level
)
902 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
903 CPUPPCState
*env
= &cpu
->env
;
904 struct kvm_regs regs
;
908 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REGS
, ®s
);
915 regs
.xer
= cpu_read_xer(env
);
919 regs
.srr0
= env
->spr
[SPR_SRR0
];
920 regs
.srr1
= env
->spr
[SPR_SRR1
];
922 regs
.sprg0
= env
->spr
[SPR_SPRG0
];
923 regs
.sprg1
= env
->spr
[SPR_SPRG1
];
924 regs
.sprg2
= env
->spr
[SPR_SPRG2
];
925 regs
.sprg3
= env
->spr
[SPR_SPRG3
];
926 regs
.sprg4
= env
->spr
[SPR_SPRG4
];
927 regs
.sprg5
= env
->spr
[SPR_SPRG5
];
928 regs
.sprg6
= env
->spr
[SPR_SPRG6
];
929 regs
.sprg7
= env
->spr
[SPR_SPRG7
];
931 regs
.pid
= env
->spr
[SPR_BOOKE_PID
];
933 for (i
= 0; i
< 32; i
++) {
934 regs
.gpr
[i
] = env
->gpr
[i
];
937 regs
.cr
= ppc_get_cr(env
);
939 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_REGS
, ®s
);
946 if (env
->tlb_dirty
) {
948 env
->tlb_dirty
= false;
951 if (cap_segstate
&& (level
>= KVM_PUT_RESET_STATE
)) {
952 ret
= kvmppc_put_books_sregs(cpu
);
958 if (cap_hior
&& (level
>= KVM_PUT_RESET_STATE
)) {
959 kvm_put_one_spr(cs
, KVM_REG_PPC_HIOR
, SPR_HIOR
);
964 * We deliberately ignore errors here, for kernels which have
965 * the ONE_REG calls, but don't support the specific
966 * registers, there's a reasonable chance things will still
967 * work, at least until we try to migrate.
969 for (i
= 0; i
< 1024; i
++) {
970 uint64_t id
= env
->spr_cb
[i
].one_reg_id
;
973 kvm_put_one_spr(cs
, id
, i
);
978 if (FIELD_EX64(env
->msr
, MSR
, TS
)) {
979 for (i
= 0; i
< ARRAY_SIZE(env
->tm_gpr
); i
++) {
980 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_GPR(i
), &env
->tm_gpr
[i
]);
982 for (i
= 0; i
< ARRAY_SIZE(env
->tm_vsr
); i
++) {
983 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_VSR(i
), &env
->tm_vsr
[i
]);
985 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_CR
, &env
->tm_cr
);
986 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_LR
, &env
->tm_lr
);
987 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_CTR
, &env
->tm_ctr
);
988 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_FPSCR
, &env
->tm_fpscr
);
989 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_AMR
, &env
->tm_amr
);
990 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_PPR
, &env
->tm_ppr
);
991 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_VRSAVE
, &env
->tm_vrsave
);
992 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_VSCR
, &env
->tm_vscr
);
993 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_DSCR
, &env
->tm_dscr
);
994 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_TAR
, &env
->tm_tar
);
998 if (kvm_put_vpa(cs
) < 0) {
999 trace_kvm_failed_put_vpa();
1003 kvm_set_one_reg(cs
, KVM_REG_PPC_TB_OFFSET
, &env
->tb_env
->tb_offset
);
1005 if (level
> KVM_PUT_RUNTIME_STATE
) {
1006 kvm_put_one_spr(cs
, KVM_REG_PPC_DPDES
, SPR_DPDES
);
1008 #endif /* TARGET_PPC64 */
1014 static void kvm_sync_excp(CPUPPCState
*env
, int vector
, int ivor
)
1016 env
->excp_vectors
[vector
] = env
->spr
[ivor
] + env
->spr
[SPR_BOOKE_IVPR
];
1019 static int kvmppc_get_booke_sregs(PowerPCCPU
*cpu
)
1021 CPUPPCState
*env
= &cpu
->env
;
1022 struct kvm_sregs sregs
;
1025 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
1030 if (sregs
.u
.e
.features
& KVM_SREGS_E_BASE
) {
1031 env
->spr
[SPR_BOOKE_CSRR0
] = sregs
.u
.e
.csrr0
;
1032 env
->spr
[SPR_BOOKE_CSRR1
] = sregs
.u
.e
.csrr1
;
1033 env
->spr
[SPR_BOOKE_ESR
] = sregs
.u
.e
.esr
;
1034 env
->spr
[SPR_BOOKE_DEAR
] = sregs
.u
.e
.dear
;
1035 env
->spr
[SPR_BOOKE_MCSR
] = sregs
.u
.e
.mcsr
;
1036 env
->spr
[SPR_BOOKE_TSR
] = sregs
.u
.e
.tsr
;
1037 env
->spr
[SPR_BOOKE_TCR
] = sregs
.u
.e
.tcr
;
1038 env
->spr
[SPR_DECR
] = sregs
.u
.e
.dec
;
1039 env
->spr
[SPR_TBL
] = sregs
.u
.e
.tb
& 0xffffffff;
1040 env
->spr
[SPR_TBU
] = sregs
.u
.e
.tb
>> 32;
1041 env
->spr
[SPR_VRSAVE
] = sregs
.u
.e
.vrsave
;
1044 if (sregs
.u
.e
.features
& KVM_SREGS_E_ARCH206
) {
1045 env
->spr
[SPR_BOOKE_PIR
] = sregs
.u
.e
.pir
;
1046 env
->spr
[SPR_BOOKE_MCSRR0
] = sregs
.u
.e
.mcsrr0
;
1047 env
->spr
[SPR_BOOKE_MCSRR1
] = sregs
.u
.e
.mcsrr1
;
1048 env
->spr
[SPR_BOOKE_DECAR
] = sregs
.u
.e
.decar
;
1049 env
->spr
[SPR_BOOKE_IVPR
] = sregs
.u
.e
.ivpr
;
1052 if (sregs
.u
.e
.features
& KVM_SREGS_E_64
) {
1053 env
->spr
[SPR_BOOKE_EPCR
] = sregs
.u
.e
.epcr
;
1056 if (sregs
.u
.e
.features
& KVM_SREGS_E_SPRG8
) {
1057 env
->spr
[SPR_BOOKE_SPRG8
] = sregs
.u
.e
.sprg8
;
1060 if (sregs
.u
.e
.features
& KVM_SREGS_E_IVOR
) {
1061 env
->spr
[SPR_BOOKE_IVOR0
] = sregs
.u
.e
.ivor_low
[0];
1062 kvm_sync_excp(env
, POWERPC_EXCP_CRITICAL
, SPR_BOOKE_IVOR0
);
1063 env
->spr
[SPR_BOOKE_IVOR1
] = sregs
.u
.e
.ivor_low
[1];
1064 kvm_sync_excp(env
, POWERPC_EXCP_MCHECK
, SPR_BOOKE_IVOR1
);
1065 env
->spr
[SPR_BOOKE_IVOR2
] = sregs
.u
.e
.ivor_low
[2];
1066 kvm_sync_excp(env
, POWERPC_EXCP_DSI
, SPR_BOOKE_IVOR2
);
1067 env
->spr
[SPR_BOOKE_IVOR3
] = sregs
.u
.e
.ivor_low
[3];
1068 kvm_sync_excp(env
, POWERPC_EXCP_ISI
, SPR_BOOKE_IVOR3
);
1069 env
->spr
[SPR_BOOKE_IVOR4
] = sregs
.u
.e
.ivor_low
[4];
1070 kvm_sync_excp(env
, POWERPC_EXCP_EXTERNAL
, SPR_BOOKE_IVOR4
);
1071 env
->spr
[SPR_BOOKE_IVOR5
] = sregs
.u
.e
.ivor_low
[5];
1072 kvm_sync_excp(env
, POWERPC_EXCP_ALIGN
, SPR_BOOKE_IVOR5
);
1073 env
->spr
[SPR_BOOKE_IVOR6
] = sregs
.u
.e
.ivor_low
[6];
1074 kvm_sync_excp(env
, POWERPC_EXCP_PROGRAM
, SPR_BOOKE_IVOR6
);
1075 env
->spr
[SPR_BOOKE_IVOR7
] = sregs
.u
.e
.ivor_low
[7];
1076 kvm_sync_excp(env
, POWERPC_EXCP_FPU
, SPR_BOOKE_IVOR7
);
1077 env
->spr
[SPR_BOOKE_IVOR8
] = sregs
.u
.e
.ivor_low
[8];
1078 kvm_sync_excp(env
, POWERPC_EXCP_SYSCALL
, SPR_BOOKE_IVOR8
);
1079 env
->spr
[SPR_BOOKE_IVOR9
] = sregs
.u
.e
.ivor_low
[9];
1080 kvm_sync_excp(env
, POWERPC_EXCP_APU
, SPR_BOOKE_IVOR9
);
1081 env
->spr
[SPR_BOOKE_IVOR10
] = sregs
.u
.e
.ivor_low
[10];
1082 kvm_sync_excp(env
, POWERPC_EXCP_DECR
, SPR_BOOKE_IVOR10
);
1083 env
->spr
[SPR_BOOKE_IVOR11
] = sregs
.u
.e
.ivor_low
[11];
1084 kvm_sync_excp(env
, POWERPC_EXCP_FIT
, SPR_BOOKE_IVOR11
);
1085 env
->spr
[SPR_BOOKE_IVOR12
] = sregs
.u
.e
.ivor_low
[12];
1086 kvm_sync_excp(env
, POWERPC_EXCP_WDT
, SPR_BOOKE_IVOR12
);
1087 env
->spr
[SPR_BOOKE_IVOR13
] = sregs
.u
.e
.ivor_low
[13];
1088 kvm_sync_excp(env
, POWERPC_EXCP_DTLB
, SPR_BOOKE_IVOR13
);
1089 env
->spr
[SPR_BOOKE_IVOR14
] = sregs
.u
.e
.ivor_low
[14];
1090 kvm_sync_excp(env
, POWERPC_EXCP_ITLB
, SPR_BOOKE_IVOR14
);
1091 env
->spr
[SPR_BOOKE_IVOR15
] = sregs
.u
.e
.ivor_low
[15];
1092 kvm_sync_excp(env
, POWERPC_EXCP_DEBUG
, SPR_BOOKE_IVOR15
);
1094 if (sregs
.u
.e
.features
& KVM_SREGS_E_SPE
) {
1095 env
->spr
[SPR_BOOKE_IVOR32
] = sregs
.u
.e
.ivor_high
[0];
1096 kvm_sync_excp(env
, POWERPC_EXCP_SPEU
, SPR_BOOKE_IVOR32
);
1097 env
->spr
[SPR_BOOKE_IVOR33
] = sregs
.u
.e
.ivor_high
[1];
1098 kvm_sync_excp(env
, POWERPC_EXCP_EFPDI
, SPR_BOOKE_IVOR33
);
1099 env
->spr
[SPR_BOOKE_IVOR34
] = sregs
.u
.e
.ivor_high
[2];
1100 kvm_sync_excp(env
, POWERPC_EXCP_EFPRI
, SPR_BOOKE_IVOR34
);
1103 if (sregs
.u
.e
.features
& KVM_SREGS_E_PM
) {
1104 env
->spr
[SPR_BOOKE_IVOR35
] = sregs
.u
.e
.ivor_high
[3];
1105 kvm_sync_excp(env
, POWERPC_EXCP_EPERFM
, SPR_BOOKE_IVOR35
);
1108 if (sregs
.u
.e
.features
& KVM_SREGS_E_PC
) {
1109 env
->spr
[SPR_BOOKE_IVOR36
] = sregs
.u
.e
.ivor_high
[4];
1110 kvm_sync_excp(env
, POWERPC_EXCP_DOORI
, SPR_BOOKE_IVOR36
);
1111 env
->spr
[SPR_BOOKE_IVOR37
] = sregs
.u
.e
.ivor_high
[5];
1112 kvm_sync_excp(env
, POWERPC_EXCP_DOORCI
, SPR_BOOKE_IVOR37
);
1116 if (sregs
.u
.e
.features
& KVM_SREGS_E_ARCH206_MMU
) {
1117 env
->spr
[SPR_BOOKE_MAS0
] = sregs
.u
.e
.mas0
;
1118 env
->spr
[SPR_BOOKE_MAS1
] = sregs
.u
.e
.mas1
;
1119 env
->spr
[SPR_BOOKE_MAS2
] = sregs
.u
.e
.mas2
;
1120 env
->spr
[SPR_BOOKE_MAS3
] = sregs
.u
.e
.mas7_3
& 0xffffffff;
1121 env
->spr
[SPR_BOOKE_MAS4
] = sregs
.u
.e
.mas4
;
1122 env
->spr
[SPR_BOOKE_MAS6
] = sregs
.u
.e
.mas6
;
1123 env
->spr
[SPR_BOOKE_MAS7
] = sregs
.u
.e
.mas7_3
>> 32;
1124 env
->spr
[SPR_MMUCFG
] = sregs
.u
.e
.mmucfg
;
1125 env
->spr
[SPR_BOOKE_TLB0CFG
] = sregs
.u
.e
.tlbcfg
[0];
1126 env
->spr
[SPR_BOOKE_TLB1CFG
] = sregs
.u
.e
.tlbcfg
[1];
1129 if (sregs
.u
.e
.features
& KVM_SREGS_EXP
) {
1130 env
->spr
[SPR_BOOKE_EPR
] = sregs
.u
.e
.epr
;
1133 if (sregs
.u
.e
.features
& KVM_SREGS_E_PD
) {
1134 env
->spr
[SPR_BOOKE_EPLC
] = sregs
.u
.e
.eplc
;
1135 env
->spr
[SPR_BOOKE_EPSC
] = sregs
.u
.e
.epsc
;
1138 if (sregs
.u
.e
.impl_id
== KVM_SREGS_E_IMPL_FSL
) {
1139 env
->spr
[SPR_E500_SVR
] = sregs
.u
.e
.impl
.fsl
.svr
;
1140 env
->spr
[SPR_Exxx_MCAR
] = sregs
.u
.e
.impl
.fsl
.mcar
;
1141 env
->spr
[SPR_HID0
] = sregs
.u
.e
.impl
.fsl
.hid0
;
1143 if (sregs
.u
.e
.impl
.fsl
.features
& KVM_SREGS_E_FSL_PIDn
) {
1144 env
->spr
[SPR_BOOKE_PID1
] = sregs
.u
.e
.impl
.fsl
.pid1
;
1145 env
->spr
[SPR_BOOKE_PID2
] = sregs
.u
.e
.impl
.fsl
.pid2
;
1152 static int kvmppc_get_books_sregs(PowerPCCPU
*cpu
)
1154 CPUPPCState
*env
= &cpu
->env
;
1155 struct kvm_sregs sregs
;
1159 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
1165 ppc_store_sdr1(env
, sregs
.u
.s
.sdr1
);
1171 * The packed SLB array we get from KVM_GET_SREGS only contains
1172 * information about valid entries. So we flush our internal copy
1173 * to get rid of stale ones, then put all valid SLB entries back
1176 memset(env
->slb
, 0, sizeof(env
->slb
));
1177 for (i
= 0; i
< ARRAY_SIZE(env
->slb
); i
++) {
1178 target_ulong rb
= sregs
.u
.s
.ppc64
.slb
[i
].slbe
;
1179 target_ulong rs
= sregs
.u
.s
.ppc64
.slb
[i
].slbv
;
1181 * Only restore valid entries
1183 if (rb
& SLB_ESID_V
) {
1184 ppc_store_slb(cpu
, rb
& 0xfff, rb
& ~0xfffULL
, rs
);
1190 for (i
= 0; i
< 16; i
++) {
1191 env
->sr
[i
] = sregs
.u
.s
.ppc32
.sr
[i
];
1195 for (i
= 0; i
< 8; i
++) {
1196 env
->DBAT
[0][i
] = sregs
.u
.s
.ppc32
.dbat
[i
] & 0xffffffff;
1197 env
->DBAT
[1][i
] = sregs
.u
.s
.ppc32
.dbat
[i
] >> 32;
1198 env
->IBAT
[0][i
] = sregs
.u
.s
.ppc32
.ibat
[i
] & 0xffffffff;
1199 env
->IBAT
[1][i
] = sregs
.u
.s
.ppc32
.ibat
[i
] >> 32;
1205 int kvm_arch_get_registers(CPUState
*cs
)
1207 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1208 CPUPPCState
*env
= &cpu
->env
;
1209 struct kvm_regs regs
;
1212 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REGS
, ®s
);
1217 ppc_set_cr(env
, regs
.cr
);
1218 env
->ctr
= regs
.ctr
;
1220 cpu_write_xer(env
, regs
.xer
);
1221 env
->msr
= regs
.msr
;
1224 env
->spr
[SPR_SRR0
] = regs
.srr0
;
1225 env
->spr
[SPR_SRR1
] = regs
.srr1
;
1227 env
->spr
[SPR_SPRG0
] = regs
.sprg0
;
1228 env
->spr
[SPR_SPRG1
] = regs
.sprg1
;
1229 env
->spr
[SPR_SPRG2
] = regs
.sprg2
;
1230 env
->spr
[SPR_SPRG3
] = regs
.sprg3
;
1231 env
->spr
[SPR_SPRG4
] = regs
.sprg4
;
1232 env
->spr
[SPR_SPRG5
] = regs
.sprg5
;
1233 env
->spr
[SPR_SPRG6
] = regs
.sprg6
;
1234 env
->spr
[SPR_SPRG7
] = regs
.sprg7
;
1236 env
->spr
[SPR_BOOKE_PID
] = regs
.pid
;
1238 for (i
= 0; i
< 32; i
++) {
1239 env
->gpr
[i
] = regs
.gpr
[i
];
1244 if (cap_booke_sregs
) {
1245 ret
= kvmppc_get_booke_sregs(cpu
);
1252 ret
= kvmppc_get_books_sregs(cpu
);
1259 kvm_get_one_spr(cs
, KVM_REG_PPC_HIOR
, SPR_HIOR
);
1264 * We deliberately ignore errors here, for kernels which have
1265 * the ONE_REG calls, but don't support the specific
1266 * registers, there's a reasonable chance things will still
1267 * work, at least until we try to migrate.
1269 for (i
= 0; i
< 1024; i
++) {
1270 uint64_t id
= env
->spr_cb
[i
].one_reg_id
;
1273 kvm_get_one_spr(cs
, id
, i
);
1278 if (FIELD_EX64(env
->msr
, MSR
, TS
)) {
1279 for (i
= 0; i
< ARRAY_SIZE(env
->tm_gpr
); i
++) {
1280 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_GPR(i
), &env
->tm_gpr
[i
]);
1282 for (i
= 0; i
< ARRAY_SIZE(env
->tm_vsr
); i
++) {
1283 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_VSR(i
), &env
->tm_vsr
[i
]);
1285 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_CR
, &env
->tm_cr
);
1286 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_LR
, &env
->tm_lr
);
1287 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_CTR
, &env
->tm_ctr
);
1288 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_FPSCR
, &env
->tm_fpscr
);
1289 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_AMR
, &env
->tm_amr
);
1290 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_PPR
, &env
->tm_ppr
);
1291 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_VRSAVE
, &env
->tm_vrsave
);
1292 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_VSCR
, &env
->tm_vscr
);
1293 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_DSCR
, &env
->tm_dscr
);
1294 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_TAR
, &env
->tm_tar
);
1298 if (kvm_get_vpa(cs
) < 0) {
1299 trace_kvm_failed_get_vpa();
1303 kvm_get_one_reg(cs
, KVM_REG_PPC_TB_OFFSET
, &env
->tb_env
->tb_offset
);
1304 kvm_get_one_spr(cs
, KVM_REG_PPC_DPDES
, SPR_DPDES
);
1311 int kvmppc_set_interrupt(PowerPCCPU
*cpu
, int irq
, int level
)
1313 unsigned virq
= level
? KVM_INTERRUPT_SET_LEVEL
: KVM_INTERRUPT_UNSET
;
1315 if (irq
!= PPC_INTERRUPT_EXT
) {
1319 if (!cap_interrupt_unset
) {
1323 kvm_vcpu_ioctl(CPU(cpu
), KVM_INTERRUPT
, &virq
);
1328 void kvm_arch_pre_run(CPUState
*cs
, struct kvm_run
*run
)
1333 MemTxAttrs
kvm_arch_post_run(CPUState
*cs
, struct kvm_run
*run
)
1335 return MEMTXATTRS_UNSPECIFIED
;
1338 int kvm_arch_process_async_events(CPUState
*cs
)
1343 static int kvmppc_handle_halt(PowerPCCPU
*cpu
)
1345 CPUState
*cs
= CPU(cpu
);
1346 CPUPPCState
*env
= &cpu
->env
;
1348 if (!(cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
1349 FIELD_EX64(env
->msr
, MSR
, EE
)) {
1351 cs
->exception_index
= EXCP_HLT
;
1357 /* map dcr access to existing qemu dcr emulation */
1358 static int kvmppc_handle_dcr_read(CPUPPCState
*env
,
1359 uint32_t dcrn
, uint32_t *data
)
1361 if (ppc_dcr_read(env
->dcr_env
, dcrn
, data
) < 0) {
1362 fprintf(stderr
, "Read to unhandled DCR (0x%x)\n", dcrn
);
1368 static int kvmppc_handle_dcr_write(CPUPPCState
*env
,
1369 uint32_t dcrn
, uint32_t data
)
1371 if (ppc_dcr_write(env
->dcr_env
, dcrn
, data
) < 0) {
1372 fprintf(stderr
, "Write to unhandled DCR (0x%x)\n", dcrn
);
1378 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
1380 /* Mixed endian case is not handled */
1381 uint32_t sc
= debug_inst_opcode
;
1383 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
,
1385 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&sc
, sizeof(sc
), 1)) {
1392 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
1396 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&sc
, sizeof(sc
), 0) ||
1397 sc
!= debug_inst_opcode
||
1398 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
,
1406 static int find_hw_breakpoint(target_ulong addr
, int type
)
1410 assert((nb_hw_breakpoint
+ nb_hw_watchpoint
)
1411 <= ARRAY_SIZE(hw_debug_points
));
1413 for (n
= 0; n
< nb_hw_breakpoint
+ nb_hw_watchpoint
; n
++) {
1414 if (hw_debug_points
[n
].addr
== addr
&&
1415 hw_debug_points
[n
].type
== type
) {
1423 static int find_hw_watchpoint(target_ulong addr
, int *flag
)
1427 n
= find_hw_breakpoint(addr
, GDB_WATCHPOINT_ACCESS
);
1429 *flag
= BP_MEM_ACCESS
;
1433 n
= find_hw_breakpoint(addr
, GDB_WATCHPOINT_WRITE
);
1435 *flag
= BP_MEM_WRITE
;
1439 n
= find_hw_breakpoint(addr
, GDB_WATCHPOINT_READ
);
1441 *flag
= BP_MEM_READ
;
1448 int kvm_arch_insert_hw_breakpoint(vaddr addr
, vaddr len
, int type
)
1450 const unsigned breakpoint_index
= nb_hw_breakpoint
+ nb_hw_watchpoint
;
1451 if (breakpoint_index
>= ARRAY_SIZE(hw_debug_points
)) {
1455 hw_debug_points
[breakpoint_index
].addr
= addr
;
1456 hw_debug_points
[breakpoint_index
].type
= type
;
1459 case GDB_BREAKPOINT_HW
:
1460 if (nb_hw_breakpoint
>= max_hw_breakpoint
) {
1464 if (find_hw_breakpoint(addr
, type
) >= 0) {
1471 case GDB_WATCHPOINT_WRITE
:
1472 case GDB_WATCHPOINT_READ
:
1473 case GDB_WATCHPOINT_ACCESS
:
1474 if (nb_hw_watchpoint
>= max_hw_watchpoint
) {
1478 if (find_hw_breakpoint(addr
, type
) >= 0) {
1492 int kvm_arch_remove_hw_breakpoint(vaddr addr
, vaddr len
, int type
)
1496 n
= find_hw_breakpoint(addr
, type
);
1502 case GDB_BREAKPOINT_HW
:
1506 case GDB_WATCHPOINT_WRITE
:
1507 case GDB_WATCHPOINT_READ
:
1508 case GDB_WATCHPOINT_ACCESS
:
1515 hw_debug_points
[n
] = hw_debug_points
[nb_hw_breakpoint
+ nb_hw_watchpoint
];
1520 void kvm_arch_remove_all_hw_breakpoints(void)
1522 nb_hw_breakpoint
= nb_hw_watchpoint
= 0;
1525 void kvm_arch_update_guest_debug(CPUState
*cs
, struct kvm_guest_debug
*dbg
)
1529 /* Software Breakpoint updates */
1530 if (kvm_sw_breakpoints_active(cs
)) {
1531 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
1534 assert((nb_hw_breakpoint
+ nb_hw_watchpoint
)
1535 <= ARRAY_SIZE(hw_debug_points
));
1536 assert((nb_hw_breakpoint
+ nb_hw_watchpoint
) <= ARRAY_SIZE(dbg
->arch
.bp
));
1538 if (nb_hw_breakpoint
+ nb_hw_watchpoint
> 0) {
1539 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
1540 memset(dbg
->arch
.bp
, 0, sizeof(dbg
->arch
.bp
));
1541 for (n
= 0; n
< nb_hw_breakpoint
+ nb_hw_watchpoint
; n
++) {
1542 switch (hw_debug_points
[n
].type
) {
1543 case GDB_BREAKPOINT_HW
:
1544 dbg
->arch
.bp
[n
].type
= KVMPPC_DEBUG_BREAKPOINT
;
1546 case GDB_WATCHPOINT_WRITE
:
1547 dbg
->arch
.bp
[n
].type
= KVMPPC_DEBUG_WATCH_WRITE
;
1549 case GDB_WATCHPOINT_READ
:
1550 dbg
->arch
.bp
[n
].type
= KVMPPC_DEBUG_WATCH_READ
;
1552 case GDB_WATCHPOINT_ACCESS
:
1553 dbg
->arch
.bp
[n
].type
= KVMPPC_DEBUG_WATCH_WRITE
|
1554 KVMPPC_DEBUG_WATCH_READ
;
1557 cpu_abort(cs
, "Unsupported breakpoint type\n");
1559 dbg
->arch
.bp
[n
].addr
= hw_debug_points
[n
].addr
;
1564 static int kvm_handle_hw_breakpoint(CPUState
*cs
,
1565 struct kvm_debug_exit_arch
*arch_info
)
1567 int handle
= DEBUG_RETURN_GUEST
;
1571 if (nb_hw_breakpoint
+ nb_hw_watchpoint
> 0) {
1572 if (arch_info
->status
& KVMPPC_DEBUG_BREAKPOINT
) {
1573 n
= find_hw_breakpoint(arch_info
->address
, GDB_BREAKPOINT_HW
);
1575 handle
= DEBUG_RETURN_GDB
;
1577 } else if (arch_info
->status
& (KVMPPC_DEBUG_WATCH_READ
|
1578 KVMPPC_DEBUG_WATCH_WRITE
)) {
1579 n
= find_hw_watchpoint(arch_info
->address
, &flag
);
1581 handle
= DEBUG_RETURN_GDB
;
1582 cs
->watchpoint_hit
= &hw_watchpoint
;
1583 hw_watchpoint
.vaddr
= hw_debug_points
[n
].addr
;
1584 hw_watchpoint
.flags
= flag
;
1591 static int kvm_handle_singlestep(void)
1593 return DEBUG_RETURN_GDB
;
1596 static int kvm_handle_sw_breakpoint(void)
1598 return DEBUG_RETURN_GDB
;
1601 static int kvm_handle_debug(PowerPCCPU
*cpu
, struct kvm_run
*run
)
1603 CPUState
*cs
= CPU(cpu
);
1604 CPUPPCState
*env
= &cpu
->env
;
1605 struct kvm_debug_exit_arch
*arch_info
= &run
->debug
.arch
;
1607 if (cs
->singlestep_enabled
) {
1608 return kvm_handle_singlestep();
1611 if (arch_info
->status
) {
1612 return kvm_handle_hw_breakpoint(cs
, arch_info
);
1615 if (kvm_find_sw_breakpoint(cs
, arch_info
->address
)) {
1616 return kvm_handle_sw_breakpoint();
1620 * QEMU is not able to handle debug exception, so inject
1621 * program exception to guest;
1622 * Yes program exception NOT debug exception !!
1623 * When QEMU is using debug resources then debug exception must
1624 * be always set. To achieve this we set MSR_DE and also set
1625 * MSRP_DEP so guest cannot change MSR_DE.
1626 * When emulating debug resource for guest we want guest
1627 * to control MSR_DE (enable/disable debug interrupt on need).
1628 * Supporting both configurations are NOT possible.
1629 * So the result is that we cannot share debug resources
1630 * between QEMU and Guest on BOOKE architecture.
1631 * In the current design QEMU gets the priority over guest,
1632 * this means that if QEMU is using debug resources then guest
1634 * For software breakpoint QEMU uses a privileged instruction;
1635 * So there cannot be any reason that we are here for guest
1636 * set debug exception, only possibility is guest executed a
1637 * privileged / illegal instruction and that's why we are
1638 * injecting a program interrupt.
1640 cpu_synchronize_state(cs
);
1642 * env->nip is PC, so increment this by 4 to use
1643 * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1646 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
1647 env
->error_code
= POWERPC_EXCP_INVAL
;
1648 ppc_cpu_do_interrupt(cs
);
1650 return DEBUG_RETURN_GUEST
;
1653 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
1655 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1656 CPUPPCState
*env
= &cpu
->env
;
1661 switch (run
->exit_reason
) {
1663 if (run
->dcr
.is_write
) {
1664 trace_kvm_handle_dcr_write();
1665 ret
= kvmppc_handle_dcr_write(env
, run
->dcr
.dcrn
, run
->dcr
.data
);
1667 trace_kvm_handle_dcr_read();
1668 ret
= kvmppc_handle_dcr_read(env
, run
->dcr
.dcrn
, &run
->dcr
.data
);
1672 trace_kvm_handle_halt();
1673 ret
= kvmppc_handle_halt(cpu
);
1675 #if defined(TARGET_PPC64)
1676 case KVM_EXIT_PAPR_HCALL
:
1677 trace_kvm_handle_papr_hcall(run
->papr_hcall
.nr
);
1678 run
->papr_hcall
.ret
= spapr_hypercall(cpu
,
1680 run
->papr_hcall
.args
);
1685 trace_kvm_handle_epr();
1686 run
->epr
.epr
= ldl_phys(cs
->as
, env
->mpic_iack
);
1689 case KVM_EXIT_WATCHDOG
:
1690 trace_kvm_handle_watchdog_expiry();
1691 watchdog_perform_action();
1695 case KVM_EXIT_DEBUG
:
1696 trace_kvm_handle_debug_exception();
1697 if (kvm_handle_debug(cpu
, run
)) {
1701 /* re-enter, this exception was guest-internal */
1705 #if defined(TARGET_PPC64)
1707 trace_kvm_handle_nmi_exception();
1708 ret
= kvm_handle_nmi(cpu
, run
);
1713 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
1722 int kvmppc_or_tsr_bits(PowerPCCPU
*cpu
, uint32_t tsr_bits
)
1724 CPUState
*cs
= CPU(cpu
);
1725 uint32_t bits
= tsr_bits
;
1726 struct kvm_one_reg reg
= {
1727 .id
= KVM_REG_PPC_OR_TSR
,
1728 .addr
= (uintptr_t) &bits
,
1731 if (!kvm_enabled()) {
1735 return kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1738 int kvmppc_clear_tsr_bits(PowerPCCPU
*cpu
, uint32_t tsr_bits
)
1741 CPUState
*cs
= CPU(cpu
);
1742 uint32_t bits
= tsr_bits
;
1743 struct kvm_one_reg reg
= {
1744 .id
= KVM_REG_PPC_CLEAR_TSR
,
1745 .addr
= (uintptr_t) &bits
,
1748 if (!kvm_enabled()) {
1752 return kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1755 int kvmppc_set_tcr(PowerPCCPU
*cpu
)
1757 CPUState
*cs
= CPU(cpu
);
1758 CPUPPCState
*env
= &cpu
->env
;
1759 uint32_t tcr
= env
->spr
[SPR_BOOKE_TCR
];
1761 struct kvm_one_reg reg
= {
1762 .id
= KVM_REG_PPC_TCR
,
1763 .addr
= (uintptr_t) &tcr
,
1766 if (!kvm_enabled()) {
1770 return kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1773 int kvmppc_booke_watchdog_enable(PowerPCCPU
*cpu
)
1775 CPUState
*cs
= CPU(cpu
);
1778 if (!kvm_enabled()) {
1782 if (!cap_ppc_watchdog
) {
1783 printf("warning: KVM does not support watchdog");
1787 ret
= kvm_vcpu_enable_cap(cs
, KVM_CAP_PPC_BOOKE_WATCHDOG
, 0);
1789 fprintf(stderr
, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1790 __func__
, strerror(-ret
));
1797 static int read_cpuinfo(const char *field
, char *value
, int len
)
1801 int field_len
= strlen(field
);
1804 f
= fopen("/proc/cpuinfo", "r");
1810 if (!fgets(line
, sizeof(line
), f
)) {
1813 if (!strncmp(line
, field
, field_len
)) {
1814 pstrcpy(value
, len
, line
);
1825 static uint32_t kvmppc_get_tbfreq_procfs(void)
1829 uint32_t tbfreq_fallback
= NANOSECONDS_PER_SECOND
;
1830 uint32_t tbfreq_procfs
;
1832 if (read_cpuinfo("timebase", line
, sizeof(line
))) {
1833 return tbfreq_fallback
;
1836 ns
= strchr(line
, ':');
1838 return tbfreq_fallback
;
1841 tbfreq_procfs
= atoi(++ns
);
1843 /* 0 is certainly not acceptable by the guest, return fallback value */
1844 return tbfreq_procfs
? tbfreq_procfs
: tbfreq_fallback
;
1847 uint32_t kvmppc_get_tbfreq(void)
1849 static uint32_t cached_tbfreq
;
1851 if (!cached_tbfreq
) {
1852 cached_tbfreq
= kvmppc_get_tbfreq_procfs();
1855 return cached_tbfreq
;
1858 bool kvmppc_get_host_serial(char **value
)
1860 return g_file_get_contents("/proc/device-tree/system-id", value
, NULL
,
1864 bool kvmppc_get_host_model(char **value
)
1866 return g_file_get_contents("/proc/device-tree/model", value
, NULL
, NULL
);
1869 /* Try to find a device tree node for a CPU with clock-frequency property */
1870 static int kvmppc_find_cpu_dt(char *buf
, int buf_len
)
1872 struct dirent
*dirp
;
1875 dp
= opendir(PROC_DEVTREE_CPU
);
1877 printf("Can't open directory " PROC_DEVTREE_CPU
"\n");
1882 while ((dirp
= readdir(dp
)) != NULL
) {
1885 /* Don't accidentally read from the current and parent directories */
1886 if (strcmp(dirp
->d_name
, ".") == 0 || strcmp(dirp
->d_name
, "..") == 0) {
1890 snprintf(buf
, buf_len
, "%s%s/clock-frequency", PROC_DEVTREE_CPU
,
1892 f
= fopen(buf
, "r");
1894 snprintf(buf
, buf_len
, "%s%s", PROC_DEVTREE_CPU
, dirp
->d_name
);
1901 if (buf
[0] == '\0') {
1902 printf("Unknown host!\n");
1909 static uint64_t kvmppc_read_int_dt(const char *filename
)
1918 f
= fopen(filename
, "rb");
1923 len
= fread(&u
, 1, sizeof(u
), f
);
1927 /* property is a 32-bit quantity */
1928 return be32_to_cpu(u
.v32
);
1930 return be64_to_cpu(u
.v64
);
1937 * Read a CPU node property from the host device tree that's a single
1938 * integer (32-bit or 64-bit). Returns 0 if anything goes wrong
1939 * (can't find or open the property, or doesn't understand the format)
1941 static uint64_t kvmppc_read_int_cpu_dt(const char *propname
)
1943 char buf
[PATH_MAX
], *tmp
;
1946 if (kvmppc_find_cpu_dt(buf
, sizeof(buf
))) {
1950 tmp
= g_strdup_printf("%s/%s", buf
, propname
);
1951 val
= kvmppc_read_int_dt(tmp
);
1957 uint64_t kvmppc_get_clockfreq(void)
1959 return kvmppc_read_int_cpu_dt("clock-frequency");
1962 static int kvmppc_get_dec_bits(void)
1964 int nr_bits
= kvmppc_read_int_cpu_dt("ibm,dec-bits");
1972 static int kvmppc_get_pvinfo(CPUPPCState
*env
, struct kvm_ppc_pvinfo
*pvinfo
)
1974 CPUState
*cs
= env_cpu(env
);
1976 if (kvm_vm_check_extension(cs
->kvm_state
, KVM_CAP_PPC_GET_PVINFO
) &&
1977 !kvm_vm_ioctl(cs
->kvm_state
, KVM_PPC_GET_PVINFO
, pvinfo
)) {
1984 int kvmppc_get_hasidle(CPUPPCState
*env
)
1986 struct kvm_ppc_pvinfo pvinfo
;
1988 if (!kvmppc_get_pvinfo(env
, &pvinfo
) &&
1989 (pvinfo
.flags
& KVM_PPC_PVINFO_FLAGS_EV_IDLE
)) {
1996 int kvmppc_get_hypercall(CPUPPCState
*env
, uint8_t *buf
, int buf_len
)
1998 uint32_t *hc
= (uint32_t *)buf
;
1999 struct kvm_ppc_pvinfo pvinfo
;
2001 if (!kvmppc_get_pvinfo(env
, &pvinfo
)) {
2002 memcpy(buf
, pvinfo
.hcall
, buf_len
);
2007 * Fallback to always fail hypercalls regardless of endianness:
2009 * tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
2011 * b .+8 (becomes nop in wrong endian)
2012 * bswap32(li r3, -1)
2015 hc
[0] = cpu_to_be32(0x08000048);
2016 hc
[1] = cpu_to_be32(0x3860ffff);
2017 hc
[2] = cpu_to_be32(0x48000008);
2018 hc
[3] = cpu_to_be32(bswap32(0x3860ffff));
2023 static inline int kvmppc_enable_hcall(KVMState
*s
, target_ulong hcall
)
2025 return kvm_vm_enable_cap(s
, KVM_CAP_PPC_ENABLE_HCALL
, 0, hcall
, 1);
2028 void kvmppc_enable_logical_ci_hcalls(void)
2031 * FIXME: it would be nice if we could detect the cases where
2032 * we're using a device which requires the in kernel
2033 * implementation of these hcalls, but the kernel lacks them and
2034 * produce a warning.
2036 kvmppc_enable_hcall(kvm_state
, H_LOGICAL_CI_LOAD
);
2037 kvmppc_enable_hcall(kvm_state
, H_LOGICAL_CI_STORE
);
2040 void kvmppc_enable_set_mode_hcall(void)
2042 kvmppc_enable_hcall(kvm_state
, H_SET_MODE
);
2045 void kvmppc_enable_clear_ref_mod_hcalls(void)
2047 kvmppc_enable_hcall(kvm_state
, H_CLEAR_REF
);
2048 kvmppc_enable_hcall(kvm_state
, H_CLEAR_MOD
);
2051 void kvmppc_enable_h_page_init(void)
2053 kvmppc_enable_hcall(kvm_state
, H_PAGE_INIT
);
2056 void kvmppc_enable_h_rpt_invalidate(void)
2058 kvmppc_enable_hcall(kvm_state
, H_RPT_INVALIDATE
);
2061 void kvmppc_set_papr(PowerPCCPU
*cpu
)
2063 CPUState
*cs
= CPU(cpu
);
2066 if (!kvm_enabled()) {
2070 ret
= kvm_vcpu_enable_cap(cs
, KVM_CAP_PPC_PAPR
, 0);
2072 error_report("This vCPU type or KVM version does not support PAPR");
2077 * Update the capability flag so we sync the right information
2083 int kvmppc_set_compat(PowerPCCPU
*cpu
, uint32_t compat_pvr
)
2085 return kvm_set_one_reg(CPU(cpu
), KVM_REG_PPC_ARCH_COMPAT
, &compat_pvr
);
2088 void kvmppc_set_mpic_proxy(PowerPCCPU
*cpu
, int mpic_proxy
)
2090 CPUState
*cs
= CPU(cpu
);
2093 ret
= kvm_vcpu_enable_cap(cs
, KVM_CAP_PPC_EPR
, 0, mpic_proxy
);
2094 if (ret
&& mpic_proxy
) {
2095 error_report("This KVM version does not support EPR");
2100 bool kvmppc_get_fwnmi(void)
2105 int kvmppc_set_fwnmi(PowerPCCPU
*cpu
)
2107 CPUState
*cs
= CPU(cpu
);
2109 return kvm_vcpu_enable_cap(cs
, KVM_CAP_PPC_FWNMI
, 0);
2112 int kvmppc_smt_threads(void)
2114 return cap_ppc_smt
? cap_ppc_smt
: 1;
2117 int kvmppc_set_smt_threads(int smt
)
2121 ret
= kvm_vm_enable_cap(kvm_state
, KVM_CAP_PPC_SMT
, 0, smt
, 0);
2128 void kvmppc_error_append_smt_possible_hint(Error
*const *errp
)
2134 assert(kvm_enabled());
2135 if (cap_ppc_smt_possible
) {
2136 g
= g_string_new("Available VSMT modes:");
2137 for (i
= 63; i
>= 0; i
--) {
2138 if ((1UL << i
) & cap_ppc_smt_possible
) {
2139 g_string_append_printf(g
, " %lu", (1UL << i
));
2142 s
= g_string_free(g
, false);
2143 error_append_hint(errp
, "%s.\n", s
);
2146 error_append_hint(errp
,
2147 "This KVM seems to be too old to support VSMT.\n");
2153 uint64_t kvmppc_vrma_limit(unsigned int hash_shift
)
2155 struct kvm_ppc_smmu_info info
;
2156 long rampagesize
, best_page_shift
;
2160 * Find the largest hardware supported page size that's less than
2161 * or equal to the (logical) backing page size of guest RAM
2163 kvm_get_smmu_info(&info
, &error_fatal
);
2164 rampagesize
= qemu_minrampagesize();
2165 best_page_shift
= 0;
2167 for (i
= 0; i
< KVM_PPC_PAGE_SIZES_MAX_SZ
; i
++) {
2168 struct kvm_ppc_one_seg_page_size
*sps
= &info
.sps
[i
];
2170 if (!sps
->page_shift
) {
2174 if ((sps
->page_shift
> best_page_shift
)
2175 && ((1UL << sps
->page_shift
) <= rampagesize
)) {
2176 best_page_shift
= sps
->page_shift
;
2180 return 1ULL << (best_page_shift
+ hash_shift
- 7);
2184 bool kvmppc_spapr_use_multitce(void)
2186 return cap_spapr_multitce
;
2189 int kvmppc_spapr_enable_inkernel_multitce(void)
2193 ret
= kvm_vm_enable_cap(kvm_state
, KVM_CAP_PPC_ENABLE_HCALL
, 0,
2194 H_PUT_TCE_INDIRECT
, 1);
2196 ret
= kvm_vm_enable_cap(kvm_state
, KVM_CAP_PPC_ENABLE_HCALL
, 0,
2203 void *kvmppc_create_spapr_tce(uint32_t liobn
, uint32_t page_shift
,
2204 uint64_t bus_offset
, uint32_t nb_table
,
2205 int *pfd
, bool need_vfio
)
2212 * Must set fd to -1 so we don't try to munmap when called for
2213 * destroying the table, which the upper layers -will- do
2216 if (!cap_spapr_tce
|| (need_vfio
&& !cap_spapr_vfio
)) {
2220 if (cap_spapr_tce_64
) {
2221 struct kvm_create_spapr_tce_64 args
= {
2223 .page_shift
= page_shift
,
2224 .offset
= bus_offset
>> page_shift
,
2228 fd
= kvm_vm_ioctl(kvm_state
, KVM_CREATE_SPAPR_TCE_64
, &args
);
2231 "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2235 } else if (cap_spapr_tce
) {
2236 uint64_t window_size
= (uint64_t) nb_table
<< page_shift
;
2237 struct kvm_create_spapr_tce args
= {
2239 .window_size
= window_size
,
2241 if ((window_size
!= args
.window_size
) || bus_offset
) {
2244 fd
= kvm_vm_ioctl(kvm_state
, KVM_CREATE_SPAPR_TCE
, &args
);
2246 fprintf(stderr
, "KVM: Failed to create TCE table for liobn 0x%x\n",
2254 len
= nb_table
* sizeof(uint64_t);
2255 /* FIXME: round this up to page size */
2257 table
= mmap(NULL
, len
, PROT_READ
| PROT_WRITE
, MAP_SHARED
, fd
, 0);
2258 if (table
== MAP_FAILED
) {
2259 fprintf(stderr
, "KVM: Failed to map TCE table for liobn 0x%x\n",
2269 int kvmppc_remove_spapr_tce(void *table
, int fd
, uint32_t nb_table
)
2277 len
= nb_table
* sizeof(uint64_t);
2278 if ((munmap(table
, len
) < 0) ||
2280 fprintf(stderr
, "KVM: Unexpected error removing TCE table: %s",
2282 /* Leak the table */
2288 int kvmppc_reset_htab(int shift_hint
)
2290 uint32_t shift
= shift_hint
;
2292 if (!kvm_enabled()) {
2293 /* Full emulation, tell caller to allocate htab itself */
2296 if (kvm_vm_check_extension(kvm_state
, KVM_CAP_PPC_ALLOC_HTAB
)) {
2298 ret
= kvm_vm_ioctl(kvm_state
, KVM_PPC_ALLOCATE_HTAB
, &shift
);
2299 if (ret
== -ENOTTY
) {
2301 * At least some versions of PR KVM advertise the
2302 * capability, but don't implement the ioctl(). Oops.
2303 * Return 0 so that we allocate the htab in qemu, as is
2307 } else if (ret
< 0) {
2314 * We have a kernel that predates the htab reset calls. For PR
2315 * KVM, we need to allocate the htab ourselves, for an HV KVM of
2316 * this era, it has allocated a 16MB fixed size hash table
2319 if (kvmppc_is_pr(kvm_state
)) {
2320 /* PR - tell caller to allocate htab */
2323 /* HV - assume 16MB kernel allocated htab */
2328 static inline uint32_t mfpvr(void)
2337 static void alter_insns(uint64_t *word
, uint64_t flags
, bool on
)
2346 static void kvmppc_host_cpu_class_init(ObjectClass
*oc
, void *data
)
2348 PowerPCCPUClass
*pcc
= POWERPC_CPU_CLASS(oc
);
2349 uint32_t dcache_size
= kvmppc_read_int_cpu_dt("d-cache-size");
2350 uint32_t icache_size
= kvmppc_read_int_cpu_dt("i-cache-size");
2352 /* Now fix up the class with information we can query from the host */
2355 alter_insns(&pcc
->insns_flags
, PPC_ALTIVEC
,
2356 qemu_getauxval(AT_HWCAP
) & PPC_FEATURE_HAS_ALTIVEC
);
2357 alter_insns(&pcc
->insns_flags2
, PPC2_VSX
,
2358 qemu_getauxval(AT_HWCAP
) & PPC_FEATURE_HAS_VSX
);
2359 alter_insns(&pcc
->insns_flags2
, PPC2_DFP
,
2360 qemu_getauxval(AT_HWCAP
) & PPC_FEATURE_HAS_DFP
);
2362 if (dcache_size
!= -1) {
2363 pcc
->l1_dcache_size
= dcache_size
;
2366 if (icache_size
!= -1) {
2367 pcc
->l1_icache_size
= icache_size
;
2370 #if defined(TARGET_PPC64)
2371 pcc
->radix_page_info
= kvmppc_get_radix_page_info();
2373 if ((pcc
->pvr
& 0xffffff00) == CPU_POWERPC_POWER9_DD1
) {
2375 * POWER9 DD1 has some bugs which make it not really ISA 3.00
2376 * compliant. More importantly, advertising ISA 3.00
2377 * architected mode may prevent guests from activating
2378 * necessary DD1 workarounds.
2380 pcc
->pcr_supported
&= ~(PCR_COMPAT_3_00
| PCR_COMPAT_2_07
2381 | PCR_COMPAT_2_06
| PCR_COMPAT_2_05
);
2383 #endif /* defined(TARGET_PPC64) */
2386 bool kvmppc_has_cap_epr(void)
2391 bool kvmppc_has_cap_fixup_hcalls(void)
2393 return cap_fixup_hcalls
;
2396 bool kvmppc_has_cap_htm(void)
2401 bool kvmppc_has_cap_mmu_radix(void)
2403 return cap_mmu_radix
;
2406 bool kvmppc_has_cap_mmu_hash_v3(void)
2408 return cap_mmu_hash_v3
;
2411 static bool kvmppc_power8_host(void)
2416 uint32_t base_pvr
= CPU_POWERPC_POWER_SERVER_MASK
& mfpvr();
2417 ret
= (base_pvr
== CPU_POWERPC_POWER8E_BASE
) ||
2418 (base_pvr
== CPU_POWERPC_POWER8NVL_BASE
) ||
2419 (base_pvr
== CPU_POWERPC_POWER8_BASE
);
2421 #endif /* TARGET_PPC64 */
2425 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c
)
2427 bool l1d_thread_priv_req
= !kvmppc_power8_host();
2429 if (~c
.behaviour
& c
.behaviour_mask
& H_CPU_BEHAV_L1D_FLUSH_PR
) {
2431 } else if ((!l1d_thread_priv_req
||
2432 c
.character
& c
.character_mask
& H_CPU_CHAR_L1D_THREAD_PRIV
) &&
2433 (c
.character
& c
.character_mask
2434 & (H_CPU_CHAR_L1D_FLUSH_ORI30
| H_CPU_CHAR_L1D_FLUSH_TRIG2
))) {
2441 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c
)
2443 if (~c
.behaviour
& c
.behaviour_mask
& H_CPU_BEHAV_BNDS_CHK_SPEC_BAR
) {
2445 } else if (c
.character
& c
.character_mask
& H_CPU_CHAR_SPEC_BAR_ORI31
) {
2452 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c
)
2454 if ((~c
.behaviour
& c
.behaviour_mask
& H_CPU_BEHAV_FLUSH_COUNT_CACHE
) &&
2455 (~c
.character
& c
.character_mask
& H_CPU_CHAR_CACHE_COUNT_DIS
) &&
2456 (~c
.character
& c
.character_mask
& H_CPU_CHAR_BCCTRL_SERIALISED
)) {
2457 return SPAPR_CAP_FIXED_NA
;
2458 } else if (c
.behaviour
& c
.behaviour_mask
& H_CPU_BEHAV_FLUSH_COUNT_CACHE
) {
2459 return SPAPR_CAP_WORKAROUND
;
2460 } else if (c
.character
& c
.character_mask
& H_CPU_CHAR_CACHE_COUNT_DIS
) {
2461 return SPAPR_CAP_FIXED_CCD
;
2462 } else if (c
.character
& c
.character_mask
& H_CPU_CHAR_BCCTRL_SERIALISED
) {
2463 return SPAPR_CAP_FIXED_IBS
;
2469 static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c
)
2471 if (c
.character
& c
.character_mask
& H_CPU_CHAR_BCCTR_FLUSH_ASSIST
) {
2477 bool kvmppc_has_cap_xive(void)
2482 static void kvmppc_get_cpu_characteristics(KVMState
*s
)
2484 struct kvm_ppc_cpu_char c
;
2488 cap_ppc_safe_cache
= 0;
2489 cap_ppc_safe_bounds_check
= 0;
2490 cap_ppc_safe_indirect_branch
= 0;
2492 ret
= kvm_vm_check_extension(s
, KVM_CAP_PPC_GET_CPU_CHAR
);
2496 ret
= kvm_vm_ioctl(s
, KVM_PPC_GET_CPU_CHAR
, &c
);
2501 cap_ppc_safe_cache
= parse_cap_ppc_safe_cache(c
);
2502 cap_ppc_safe_bounds_check
= parse_cap_ppc_safe_bounds_check(c
);
2503 cap_ppc_safe_indirect_branch
= parse_cap_ppc_safe_indirect_branch(c
);
2504 cap_ppc_count_cache_flush_assist
=
2505 parse_cap_ppc_count_cache_flush_assist(c
);
2508 int kvmppc_get_cap_safe_cache(void)
2510 return cap_ppc_safe_cache
;
2513 int kvmppc_get_cap_safe_bounds_check(void)
2515 return cap_ppc_safe_bounds_check
;
2518 int kvmppc_get_cap_safe_indirect_branch(void)
2520 return cap_ppc_safe_indirect_branch
;
2523 int kvmppc_get_cap_count_cache_flush_assist(void)
2525 return cap_ppc_count_cache_flush_assist
;
2528 bool kvmppc_has_cap_nested_kvm_hv(void)
2530 return !!cap_ppc_nested_kvm_hv
;
2533 int kvmppc_set_cap_nested_kvm_hv(int enable
)
2535 return kvm_vm_enable_cap(kvm_state
, KVM_CAP_PPC_NESTED_HV
, 0, enable
);
2538 bool kvmppc_has_cap_spapr_vfio(void)
2540 return cap_spapr_vfio
;
2543 int kvmppc_get_cap_large_decr(void)
2545 return cap_large_decr
;
2548 int kvmppc_enable_cap_large_decr(PowerPCCPU
*cpu
, int enable
)
2550 CPUState
*cs
= CPU(cpu
);
2553 kvm_get_one_reg(cs
, KVM_REG_PPC_LPCR_64
, &lpcr
);
2554 /* Do we need to modify the LPCR? */
2555 if (!!(lpcr
& LPCR_LD
) != !!enable
) {
2561 kvm_set_one_reg(cs
, KVM_REG_PPC_LPCR_64
, &lpcr
);
2562 kvm_get_one_reg(cs
, KVM_REG_PPC_LPCR_64
, &lpcr
);
2564 if (!!(lpcr
& LPCR_LD
) != !!enable
) {
2572 int kvmppc_has_cap_rpt_invalidate(void)
2574 return cap_rpt_invalidate
;
2577 bool kvmppc_supports_ail_3(void)
2579 return cap_ail_mode_3
;
2582 PowerPCCPUClass
*kvm_ppc_get_host_cpu_class(void)
2584 uint32_t host_pvr
= mfpvr();
2585 PowerPCCPUClass
*pvr_pcc
;
2587 pvr_pcc
= ppc_cpu_class_by_pvr(host_pvr
);
2588 if (pvr_pcc
== NULL
) {
2589 pvr_pcc
= ppc_cpu_class_by_pvr_mask(host_pvr
);
2595 static void pseries_machine_class_fixup(ObjectClass
*oc
, void *opaque
)
2597 MachineClass
*mc
= MACHINE_CLASS(oc
);
2599 mc
->default_cpu_type
= TYPE_HOST_POWERPC_CPU
;
2602 static int kvm_ppc_register_host_cpu_type(void)
2604 TypeInfo type_info
= {
2605 .name
= TYPE_HOST_POWERPC_CPU
,
2606 .class_init
= kvmppc_host_cpu_class_init
,
2608 PowerPCCPUClass
*pvr_pcc
;
2613 pvr_pcc
= kvm_ppc_get_host_cpu_class();
2614 if (pvr_pcc
== NULL
) {
2617 type_info
.parent
= object_class_get_name(OBJECT_CLASS(pvr_pcc
));
2618 type_register(&type_info
);
2619 /* override TCG default cpu type with 'host' cpu model */
2620 object_class_foreach(pseries_machine_class_fixup
, TYPE_SPAPR_MACHINE
,
2623 oc
= object_class_by_name(type_info
.name
);
2627 * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2628 * we want "POWER8" to be a "family" alias that points to the current
2629 * host CPU type, too)
2631 dc
= DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc
));
2632 for (i
= 0; ppc_cpu_aliases
[i
].alias
!= NULL
; i
++) {
2633 if (strcasecmp(ppc_cpu_aliases
[i
].alias
, dc
->desc
) == 0) {
2636 ppc_cpu_aliases
[i
].model
= g_strdup(object_class_get_name(oc
));
2637 suffix
= strstr(ppc_cpu_aliases
[i
].model
, POWERPC_CPU_TYPE_SUFFIX
);
2648 int kvmppc_define_rtas_kernel_token(uint32_t token
, const char *function
)
2650 struct kvm_rtas_token_args args
= {
2654 if (!kvm_check_extension(kvm_state
, KVM_CAP_PPC_RTAS
)) {
2658 strncpy(args
.name
, function
, sizeof(args
.name
) - 1);
2660 return kvm_vm_ioctl(kvm_state
, KVM_PPC_RTAS_DEFINE_TOKEN
, &args
);
2663 int kvmppc_get_htab_fd(bool write
, uint64_t index
, Error
**errp
)
2665 struct kvm_get_htab_fd s
= {
2666 .flags
= write
? KVM_GET_HTAB_WRITE
: 0,
2667 .start_index
= index
,
2672 error_setg(errp
, "KVM version doesn't support %s the HPT",
2673 write
? "writing" : "reading");
2677 ret
= kvm_vm_ioctl(kvm_state
, KVM_PPC_GET_HTAB_FD
, &s
);
2679 error_setg(errp
, "Unable to open fd for %s HPT %s KVM: %s",
2680 write
? "writing" : "reading", write
? "to" : "from",
2688 int kvmppc_save_htab(QEMUFile
*f
, int fd
, size_t bufsize
, int64_t max_ns
)
2690 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2691 g_autofree
uint8_t *buf
= g_malloc(bufsize
);
2695 rc
= read(fd
, buf
, bufsize
);
2697 fprintf(stderr
, "Error reading data from KVM HTAB fd: %s\n",
2701 uint8_t *buffer
= buf
;
2704 struct kvm_get_htab_header
*head
=
2705 (struct kvm_get_htab_header
*) buffer
;
2706 size_t chunksize
= sizeof(*head
) +
2707 HASH_PTE_SIZE_64
* head
->n_valid
;
2709 qemu_put_be32(f
, head
->index
);
2710 qemu_put_be16(f
, head
->n_valid
);
2711 qemu_put_be16(f
, head
->n_invalid
);
2712 qemu_put_buffer(f
, (void *)(head
+ 1),
2713 HASH_PTE_SIZE_64
* head
->n_valid
);
2715 buffer
+= chunksize
;
2721 ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) < max_ns
)));
2723 return (rc
== 0) ? 1 : 0;
2726 int kvmppc_load_htab_chunk(QEMUFile
*f
, int fd
, uint32_t index
,
2727 uint16_t n_valid
, uint16_t n_invalid
, Error
**errp
)
2729 struct kvm_get_htab_header
*buf
;
2730 size_t chunksize
= sizeof(*buf
) + n_valid
* HASH_PTE_SIZE_64
;
2733 buf
= alloca(chunksize
);
2735 buf
->n_valid
= n_valid
;
2736 buf
->n_invalid
= n_invalid
;
2738 qemu_get_buffer(f
, (void *)(buf
+ 1), HASH_PTE_SIZE_64
* n_valid
);
2740 rc
= write(fd
, buf
, chunksize
);
2742 error_setg_errno(errp
, errno
, "Error writing the KVM hash table");
2745 if (rc
!= chunksize
) {
2746 /* We should never get a short write on a single chunk */
2747 error_setg(errp
, "Short write while restoring the KVM hash table");
2753 bool kvm_arch_stop_on_emulation_error(CPUState
*cpu
)
2758 void kvm_arch_init_irq_routing(KVMState
*s
)
2762 void kvmppc_read_hptes(ppc_hash_pte64_t
*hptes
, hwaddr ptex
, int n
)
2767 fd
= kvmppc_get_htab_fd(false, ptex
, &error_abort
);
2771 struct kvm_get_htab_header
*hdr
;
2772 int m
= n
< HPTES_PER_GROUP
? n
: HPTES_PER_GROUP
;
2773 char buf
[sizeof(*hdr
) + HPTES_PER_GROUP
* HASH_PTE_SIZE_64
];
2775 rc
= read(fd
, buf
, sizeof(*hdr
) + m
* HASH_PTE_SIZE_64
);
2777 hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2780 hdr
= (struct kvm_get_htab_header
*)buf
;
2781 while ((i
< n
) && ((char *)hdr
< (buf
+ rc
))) {
2782 int invalid
= hdr
->n_invalid
, valid
= hdr
->n_valid
;
2784 if (hdr
->index
!= (ptex
+ i
)) {
2785 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2786 " != (%"HWADDR_PRIu
" + %d", hdr
->index
, ptex
, i
);
2789 if (n
- i
< valid
) {
2792 memcpy(hptes
+ i
, hdr
+ 1, HASH_PTE_SIZE_64
* valid
);
2795 if ((n
- i
) < invalid
) {
2798 memset(hptes
+ i
, 0, invalid
* HASH_PTE_SIZE_64
);
2801 hdr
= (struct kvm_get_htab_header
*)
2802 ((char *)(hdr
+ 1) + HASH_PTE_SIZE_64
* hdr
->n_valid
);
2809 void kvmppc_write_hpte(hwaddr ptex
, uint64_t pte0
, uint64_t pte1
)
2813 struct kvm_get_htab_header hdr
;
2818 fd
= kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort
);
2820 buf
.hdr
.n_valid
= 1;
2821 buf
.hdr
.n_invalid
= 0;
2822 buf
.hdr
.index
= ptex
;
2823 buf
.pte0
= cpu_to_be64(pte0
);
2824 buf
.pte1
= cpu_to_be64(pte1
);
2826 rc
= write(fd
, &buf
, sizeof(buf
));
2827 if (rc
!= sizeof(buf
)) {
2828 hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2833 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
2834 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
2839 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry
*route
,
2840 int vector
, PCIDevice
*dev
)
2845 int kvm_arch_release_virq_post(int virq
)
2850 int kvm_arch_msi_data_to_gsi(uint32_t data
)
2852 return data
& 0xffff;
2855 #if defined(TARGET_PPC64)
2856 int kvm_handle_nmi(PowerPCCPU
*cpu
, struct kvm_run
*run
)
2858 uint16_t flags
= run
->flags
& KVM_RUN_PPC_NMI_DISP_MASK
;
2860 cpu_synchronize_state(CPU(cpu
));
2862 spapr_mce_req_event(cpu
, flags
== KVM_RUN_PPC_NMI_DISP_FULLY_RECOV
);
2868 int kvmppc_enable_hwrng(void)
2870 if (!kvm_enabled() || !kvm_check_extension(kvm_state
, KVM_CAP_PPC_HWRNG
)) {
2874 return kvmppc_enable_hcall(kvm_state
, H_RANDOM
);
2877 void kvmppc_check_papr_resize_hpt(Error
**errp
)
2879 if (!kvm_enabled()) {
2880 return; /* No KVM, we're good */
2883 if (cap_resize_hpt
) {
2884 return; /* Kernel has explicit support, we're good */
2887 /* Otherwise fallback on looking for PR KVM */
2888 if (kvmppc_is_pr(kvm_state
)) {
2893 "Hash page table resizing not available with this KVM version");
2896 int kvmppc_resize_hpt_prepare(PowerPCCPU
*cpu
, target_ulong flags
, int shift
)
2898 CPUState
*cs
= CPU(cpu
);
2899 struct kvm_ppc_resize_hpt rhpt
= {
2904 if (!cap_resize_hpt
) {
2908 return kvm_vm_ioctl(cs
->kvm_state
, KVM_PPC_RESIZE_HPT_PREPARE
, &rhpt
);
2911 int kvmppc_resize_hpt_commit(PowerPCCPU
*cpu
, target_ulong flags
, int shift
)
2913 CPUState
*cs
= CPU(cpu
);
2914 struct kvm_ppc_resize_hpt rhpt
= {
2919 if (!cap_resize_hpt
) {
2923 return kvm_vm_ioctl(cs
->kvm_state
, KVM_PPC_RESIZE_HPT_COMMIT
, &rhpt
);
2927 * This is a helper function to detect a post migration scenario
2928 * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2929 * the guest kernel can't handle a PVR value other than the actual host
2930 * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2932 * If we don't have cap_ppc_pvr_compat and we're not running in PR
2933 * (so, we're HV), return true. The workaround itself is done in
2936 * The order here is important: we'll only check for KVM PR as a
2937 * fallback if the guest kernel can't handle the situation itself.
2938 * We need to avoid as much as possible querying the running KVM type
2941 bool kvmppc_pvr_workaround_required(PowerPCCPU
*cpu
)
2943 CPUState
*cs
= CPU(cpu
);
2945 if (!kvm_enabled()) {
2949 if (cap_ppc_pvr_compat
) {
2953 return !kvmppc_is_pr(cs
->kvm_state
);
2956 void kvmppc_set_reg_ppc_online(PowerPCCPU
*cpu
, unsigned int online
)
2958 CPUState
*cs
= CPU(cpu
);
2960 if (kvm_enabled()) {
2961 kvm_set_one_reg(cs
, KVM_REG_PPC_ONLINE
, &online
);
2965 void kvmppc_set_reg_tb_offset(PowerPCCPU
*cpu
, int64_t tb_offset
)
2967 CPUState
*cs
= CPU(cpu
);
2969 if (kvm_enabled()) {
2970 kvm_set_one_reg(cs
, KVM_REG_PPC_TB_OFFSET
, &tb_offset
);
2974 bool kvm_arch_cpu_check_are_resettable(void)
2979 void kvm_arch_accel_class_init(ObjectClass
*oc
)