hw/xen/hvm: Get target page size at runtime
[qemu/ar7.git] / target / ppc / fpu_helper.c
blob4b3dcad5d132800fb103bed6e454c4beaaee8fd5
1 /*
2 * PowerPC floating point and SPE emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "internal.h"
24 #include "fpu/softfloat.h"
26 static inline float128 float128_snan_to_qnan(float128 x)
28 float128 r;
30 r.high = x.high | 0x0000800000000000;
31 r.low = x.low;
32 return r;
35 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
36 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
37 #define float16_snan_to_qnan(x) ((x) | 0x0200)
39 static inline float32 bfp32_neg(float32 a)
41 if (unlikely(float32_is_any_nan(a))) {
42 return a;
43 } else {
44 return float32_chs(a);
48 static inline bool fp_exceptions_enabled(CPUPPCState *env)
50 #ifdef CONFIG_USER_ONLY
51 return true;
52 #else
53 return (env->msr & ((1U << MSR_FE0) | (1U << MSR_FE1))) != 0;
54 #endif
57 /*****************************************************************************/
58 /* Floating point operations helpers */
61 * This is the non-arithmatic conversion that happens e.g. on loads.
62 * In the Power ISA pseudocode, this is called DOUBLE.
64 uint64_t helper_todouble(uint32_t arg)
66 uint32_t abs_arg = arg & 0x7fffffff;
67 uint64_t ret;
69 if (likely(abs_arg >= 0x00800000)) {
70 if (unlikely(extract32(arg, 23, 8) == 0xff)) {
71 /* Inf or NAN. */
72 ret = (uint64_t)extract32(arg, 31, 1) << 63;
73 ret |= (uint64_t)0x7ff << 52;
74 ret |= (uint64_t)extract32(arg, 0, 23) << 29;
75 } else {
76 /* Normalized operand. */
77 ret = (uint64_t)extract32(arg, 30, 2) << 62;
78 ret |= ((extract32(arg, 30, 1) ^ 1) * (uint64_t)7) << 59;
79 ret |= (uint64_t)extract32(arg, 0, 30) << 29;
81 } else {
82 /* Zero or Denormalized operand. */
83 ret = (uint64_t)extract32(arg, 31, 1) << 63;
84 if (unlikely(abs_arg != 0)) {
86 * Denormalized operand.
87 * Shift fraction so that the msb is in the implicit bit position.
88 * Thus, shift is in the range [1:23].
90 int shift = clz32(abs_arg) - 8;
92 * The first 3 terms compute the float64 exponent. We then bias
93 * this result by -1 so that we can swallow the implicit bit below.
95 int exp = -126 - shift + 1023 - 1;
97 ret |= (uint64_t)exp << 52;
98 ret += (uint64_t)abs_arg << (52 - 23 + shift);
101 return ret;
105 * This is the non-arithmatic conversion that happens e.g. on stores.
106 * In the Power ISA pseudocode, this is called SINGLE.
108 uint32_t helper_tosingle(uint64_t arg)
110 int exp = extract64(arg, 52, 11);
111 uint32_t ret;
113 if (likely(exp > 896)) {
114 /* No denormalization required (includes Inf, NaN). */
115 ret = extract64(arg, 62, 2) << 30;
116 ret |= extract64(arg, 29, 30);
117 } else {
119 * Zero or Denormal result. If the exponent is in bounds for
120 * a single-precision denormal result, extract the proper
121 * bits. If the input is not zero, and the exponent is out of
122 * bounds, then the result is undefined; this underflows to
123 * zero.
125 ret = extract64(arg, 63, 1) << 31;
126 if (unlikely(exp >= 874)) {
127 /* Denormal result. */
128 ret |= ((1ULL << 52) | extract64(arg, 0, 52)) >> (896 + 30 - exp);
131 return ret;
134 static inline int ppc_float32_get_unbiased_exp(float32 f)
136 return ((f >> 23) & 0xFF) - 127;
139 static inline int ppc_float64_get_unbiased_exp(float64 f)
141 return ((f >> 52) & 0x7FF) - 1023;
144 #define COMPUTE_FPRF(tp) \
145 void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \
147 bool neg = tp##_is_neg(arg); \
148 target_ulong fprf; \
149 if (likely(tp##_is_normal(arg))) { \
150 fprf = neg ? 0x08 << FPSCR_FPRF : 0x04 << FPSCR_FPRF; \
151 } else if (tp##_is_zero(arg)) { \
152 fprf = neg ? 0x12 << FPSCR_FPRF : 0x02 << FPSCR_FPRF; \
153 } else if (tp##_is_zero_or_denormal(arg)) { \
154 fprf = neg ? 0x18 << FPSCR_FPRF : 0x14 << FPSCR_FPRF; \
155 } else if (tp##_is_infinity(arg)) { \
156 fprf = neg ? 0x09 << FPSCR_FPRF : 0x05 << FPSCR_FPRF; \
157 } else { \
158 float_status dummy = { }; /* snan_bit_is_one = 0 */ \
159 if (tp##_is_signaling_nan(arg, &dummy)) { \
160 fprf = 0x00 << FPSCR_FPRF; \
161 } else { \
162 fprf = 0x11 << FPSCR_FPRF; \
165 env->fpscr = (env->fpscr & ~FP_FPRF) | fprf; \
168 COMPUTE_FPRF(float16)
169 COMPUTE_FPRF(float32)
170 COMPUTE_FPRF(float64)
171 COMPUTE_FPRF(float128)
173 /* Floating-point invalid operations exception */
174 static void finish_invalid_op_excp(CPUPPCState *env, int op, uintptr_t retaddr)
176 /* Update the floating-point invalid operation summary */
177 env->fpscr |= FP_VX;
178 /* Update the floating-point exception summary */
179 env->fpscr |= FP_FX;
180 if (env->fpscr & FP_VE) {
181 /* Update the floating-point enabled exception summary */
182 env->fpscr |= FP_FEX;
183 if (fp_exceptions_enabled(env)) {
184 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
185 POWERPC_EXCP_FP | op, retaddr);
190 static void finish_invalid_op_arith(CPUPPCState *env, int op,
191 bool set_fpcc, uintptr_t retaddr)
193 env->fpscr &= ~(FP_FR | FP_FI);
194 if (!(env->fpscr & FP_VE)) {
195 if (set_fpcc) {
196 env->fpscr &= ~FP_FPCC;
197 env->fpscr |= (FP_C | FP_FU);
200 finish_invalid_op_excp(env, op, retaddr);
203 /* Signalling NaN */
204 static void float_invalid_op_vxsnan(CPUPPCState *env, uintptr_t retaddr)
206 env->fpscr |= FP_VXSNAN;
207 finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, retaddr);
210 /* Magnitude subtraction of infinities */
211 static void float_invalid_op_vxisi(CPUPPCState *env, bool set_fpcc,
212 uintptr_t retaddr)
214 env->fpscr |= FP_VXISI;
215 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXISI, set_fpcc, retaddr);
218 /* Division of infinity by infinity */
219 static void float_invalid_op_vxidi(CPUPPCState *env, bool set_fpcc,
220 uintptr_t retaddr)
222 env->fpscr |= FP_VXIDI;
223 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIDI, set_fpcc, retaddr);
226 /* Division of zero by zero */
227 static void float_invalid_op_vxzdz(CPUPPCState *env, bool set_fpcc,
228 uintptr_t retaddr)
230 env->fpscr |= FP_VXZDZ;
231 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXZDZ, set_fpcc, retaddr);
234 /* Multiplication of zero by infinity */
235 static void float_invalid_op_vximz(CPUPPCState *env, bool set_fpcc,
236 uintptr_t retaddr)
238 env->fpscr |= FP_VXIMZ;
239 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIMZ, set_fpcc, retaddr);
242 /* Square root of a negative number */
243 static void float_invalid_op_vxsqrt(CPUPPCState *env, bool set_fpcc,
244 uintptr_t retaddr)
246 env->fpscr |= FP_VXSQRT;
247 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXSQRT, set_fpcc, retaddr);
250 /* Ordered comparison of NaN */
251 static void float_invalid_op_vxvc(CPUPPCState *env, bool set_fpcc,
252 uintptr_t retaddr)
254 env->fpscr |= FP_VXVC;
255 if (set_fpcc) {
256 env->fpscr &= ~FP_FPCC;
257 env->fpscr |= (FP_C | FP_FU);
259 /* Update the floating-point invalid operation summary */
260 env->fpscr |= FP_VX;
261 /* Update the floating-point exception summary */
262 env->fpscr |= FP_FX;
263 /* We must update the target FPR before raising the exception */
264 if (env->fpscr & FP_VE) {
265 CPUState *cs = env_cpu(env);
267 cs->exception_index = POWERPC_EXCP_PROGRAM;
268 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
269 /* Update the floating-point enabled exception summary */
270 env->fpscr |= FP_FEX;
271 /* Exception is deferred */
275 /* Invalid conversion */
276 static void float_invalid_op_vxcvi(CPUPPCState *env, bool set_fpcc,
277 uintptr_t retaddr)
279 env->fpscr |= FP_VXCVI;
280 env->fpscr &= ~(FP_FR | FP_FI);
281 if (!(env->fpscr & FP_VE)) {
282 if (set_fpcc) {
283 env->fpscr &= ~FP_FPCC;
284 env->fpscr |= (FP_C | FP_FU);
287 finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, retaddr);
290 static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr)
292 env->fpscr |= FP_ZX;
293 env->fpscr &= ~(FP_FR | FP_FI);
294 /* Update the floating-point exception summary */
295 env->fpscr |= FP_FX;
296 if (env->fpscr & FP_ZE) {
297 /* Update the floating-point enabled exception summary */
298 env->fpscr |= FP_FEX;
299 if (fp_exceptions_enabled(env)) {
300 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
301 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX,
302 raddr);
307 static inline int float_overflow_excp(CPUPPCState *env)
309 CPUState *cs = env_cpu(env);
311 env->fpscr |= FP_OX;
312 /* Update the floating-point exception summary */
313 env->fpscr |= FP_FX;
315 bool overflow_enabled = !!(env->fpscr & FP_OE);
316 if (overflow_enabled) {
317 /* Update the floating-point enabled exception summary */
318 env->fpscr |= FP_FEX;
319 /* We must update the target FPR before raising the exception */
320 cs->exception_index = POWERPC_EXCP_PROGRAM;
321 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
324 return overflow_enabled ? 0 : float_flag_inexact;
327 static inline void float_underflow_excp(CPUPPCState *env)
329 CPUState *cs = env_cpu(env);
331 env->fpscr |= FP_UX;
332 /* Update the floating-point exception summary */
333 env->fpscr |= FP_FX;
334 if (env->fpscr & FP_UE) {
335 /* Update the floating-point enabled exception summary */
336 env->fpscr |= FP_FEX;
337 /* We must update the target FPR before raising the exception */
338 cs->exception_index = POWERPC_EXCP_PROGRAM;
339 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
343 static inline void float_inexact_excp(CPUPPCState *env)
345 CPUState *cs = env_cpu(env);
347 env->fpscr |= FP_XX;
348 /* Update the floating-point exception summary */
349 env->fpscr |= FP_FX;
350 if (env->fpscr & FP_XE) {
351 /* Update the floating-point enabled exception summary */
352 env->fpscr |= FP_FEX;
353 /* We must update the target FPR before raising the exception */
354 cs->exception_index = POWERPC_EXCP_PROGRAM;
355 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
359 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
361 uint32_t mask = 1u << bit;
362 if (env->fpscr & mask) {
363 ppc_store_fpscr(env, env->fpscr & ~(target_ulong)mask);
367 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
369 uint32_t mask = 1u << bit;
370 if (!(env->fpscr & mask)) {
371 ppc_store_fpscr(env, env->fpscr | mask);
375 void helper_store_fpscr(CPUPPCState *env, uint64_t val, uint32_t nibbles)
377 target_ulong mask = 0;
378 int i;
380 /* TODO: push this extension back to translation time */
381 for (i = 0; i < sizeof(target_ulong) * 2; i++) {
382 if (nibbles & (1 << i)) {
383 mask |= (target_ulong) 0xf << (4 * i);
386 val = (val & mask) | (env->fpscr & ~mask);
387 ppc_store_fpscr(env, val);
390 static void do_fpscr_check_status(CPUPPCState *env, uintptr_t raddr)
392 CPUState *cs = env_cpu(env);
393 target_ulong fpscr = env->fpscr;
394 int error = 0;
396 if ((fpscr & FP_OX) && (fpscr & FP_OE)) {
397 error = POWERPC_EXCP_FP_OX;
398 } else if ((fpscr & FP_UX) && (fpscr & FP_UE)) {
399 error = POWERPC_EXCP_FP_UX;
400 } else if ((fpscr & FP_XX) && (fpscr & FP_XE)) {
401 error = POWERPC_EXCP_FP_XX;
402 } else if ((fpscr & FP_ZX) && (fpscr & FP_ZE)) {
403 error = POWERPC_EXCP_FP_ZX;
404 } else if (fpscr & FP_VE) {
405 if (fpscr & FP_VXSOFT) {
406 error = POWERPC_EXCP_FP_VXSOFT;
407 } else if (fpscr & FP_VXSNAN) {
408 error = POWERPC_EXCP_FP_VXSNAN;
409 } else if (fpscr & FP_VXISI) {
410 error = POWERPC_EXCP_FP_VXISI;
411 } else if (fpscr & FP_VXIDI) {
412 error = POWERPC_EXCP_FP_VXIDI;
413 } else if (fpscr & FP_VXZDZ) {
414 error = POWERPC_EXCP_FP_VXZDZ;
415 } else if (fpscr & FP_VXIMZ) {
416 error = POWERPC_EXCP_FP_VXIMZ;
417 } else if (fpscr & FP_VXVC) {
418 error = POWERPC_EXCP_FP_VXVC;
419 } else if (fpscr & FP_VXSQRT) {
420 error = POWERPC_EXCP_FP_VXSQRT;
421 } else if (fpscr & FP_VXCVI) {
422 error = POWERPC_EXCP_FP_VXCVI;
423 } else {
424 return;
426 } else {
427 return;
429 cs->exception_index = POWERPC_EXCP_PROGRAM;
430 env->error_code = error | POWERPC_EXCP_FP;
431 env->fpscr |= FP_FEX;
432 /* Deferred floating-point exception after target FPSCR update */
433 if (fp_exceptions_enabled(env)) {
434 raise_exception_err_ra(env, cs->exception_index,
435 env->error_code, raddr);
439 void helper_fpscr_check_status(CPUPPCState *env)
441 do_fpscr_check_status(env, GETPC());
444 static void do_float_check_status(CPUPPCState *env, bool change_fi,
445 uintptr_t raddr)
447 CPUState *cs = env_cpu(env);
448 int status = get_float_exception_flags(&env->fp_status);
450 if (status & float_flag_overflow) {
451 status |= float_overflow_excp(env);
452 } else if (status & float_flag_underflow) {
453 float_underflow_excp(env);
455 if (status & float_flag_inexact) {
456 float_inexact_excp(env);
458 if (change_fi) {
459 env->fpscr = FIELD_DP64(env->fpscr, FPSCR, FI,
460 !!(status & float_flag_inexact));
463 if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
464 (env->error_code & POWERPC_EXCP_FP)) {
465 /* Deferred floating-point exception after target FPR update */
466 if (fp_exceptions_enabled(env)) {
467 raise_exception_err_ra(env, cs->exception_index,
468 env->error_code, raddr);
473 void helper_float_check_status(CPUPPCState *env)
475 do_float_check_status(env, true, GETPC());
478 void helper_reset_fpstatus(CPUPPCState *env)
480 set_float_exception_flags(0, &env->fp_status);
483 static void float_invalid_op_addsub(CPUPPCState *env, int flags,
484 bool set_fpcc, uintptr_t retaddr)
486 if (flags & float_flag_invalid_isi) {
487 float_invalid_op_vxisi(env, set_fpcc, retaddr);
488 } else if (flags & float_flag_invalid_snan) {
489 float_invalid_op_vxsnan(env, retaddr);
493 /* fadd - fadd. */
494 float64 helper_fadd(CPUPPCState *env, float64 arg1, float64 arg2)
496 float64 ret = float64_add(arg1, arg2, &env->fp_status);
497 int flags = get_float_exception_flags(&env->fp_status);
499 if (unlikely(flags & float_flag_invalid)) {
500 float_invalid_op_addsub(env, flags, 1, GETPC());
503 return ret;
506 /* fadds - fadds. */
507 float64 helper_fadds(CPUPPCState *env, float64 arg1, float64 arg2)
509 float64 ret = float64r32_add(arg1, arg2, &env->fp_status);
510 int flags = get_float_exception_flags(&env->fp_status);
512 if (unlikely(flags & float_flag_invalid)) {
513 float_invalid_op_addsub(env, flags, 1, GETPC());
515 return ret;
518 /* fsub - fsub. */
519 float64 helper_fsub(CPUPPCState *env, float64 arg1, float64 arg2)
521 float64 ret = float64_sub(arg1, arg2, &env->fp_status);
522 int flags = get_float_exception_flags(&env->fp_status);
524 if (unlikely(flags & float_flag_invalid)) {
525 float_invalid_op_addsub(env, flags, 1, GETPC());
528 return ret;
531 /* fsubs - fsubs. */
532 float64 helper_fsubs(CPUPPCState *env, float64 arg1, float64 arg2)
534 float64 ret = float64r32_sub(arg1, arg2, &env->fp_status);
535 int flags = get_float_exception_flags(&env->fp_status);
537 if (unlikely(flags & float_flag_invalid)) {
538 float_invalid_op_addsub(env, flags, 1, GETPC());
540 return ret;
543 static void float_invalid_op_mul(CPUPPCState *env, int flags,
544 bool set_fprc, uintptr_t retaddr)
546 if (flags & float_flag_invalid_imz) {
547 float_invalid_op_vximz(env, set_fprc, retaddr);
548 } else if (flags & float_flag_invalid_snan) {
549 float_invalid_op_vxsnan(env, retaddr);
553 /* fmul - fmul. */
554 float64 helper_fmul(CPUPPCState *env, float64 arg1, float64 arg2)
556 float64 ret = float64_mul(arg1, arg2, &env->fp_status);
557 int flags = get_float_exception_flags(&env->fp_status);
559 if (unlikely(flags & float_flag_invalid)) {
560 float_invalid_op_mul(env, flags, 1, GETPC());
563 return ret;
566 /* fmuls - fmuls. */
567 float64 helper_fmuls(CPUPPCState *env, float64 arg1, float64 arg2)
569 float64 ret = float64r32_mul(arg1, arg2, &env->fp_status);
570 int flags = get_float_exception_flags(&env->fp_status);
572 if (unlikely(flags & float_flag_invalid)) {
573 float_invalid_op_mul(env, flags, 1, GETPC());
575 return ret;
578 static void float_invalid_op_div(CPUPPCState *env, int flags,
579 bool set_fprc, uintptr_t retaddr)
581 if (flags & float_flag_invalid_idi) {
582 float_invalid_op_vxidi(env, set_fprc, retaddr);
583 } else if (flags & float_flag_invalid_zdz) {
584 float_invalid_op_vxzdz(env, set_fprc, retaddr);
585 } else if (flags & float_flag_invalid_snan) {
586 float_invalid_op_vxsnan(env, retaddr);
590 /* fdiv - fdiv. */
591 float64 helper_fdiv(CPUPPCState *env, float64 arg1, float64 arg2)
593 float64 ret = float64_div(arg1, arg2, &env->fp_status);
594 int flags = get_float_exception_flags(&env->fp_status);
596 if (unlikely(flags & float_flag_invalid)) {
597 float_invalid_op_div(env, flags, 1, GETPC());
599 if (unlikely(flags & float_flag_divbyzero)) {
600 float_zero_divide_excp(env, GETPC());
603 return ret;
606 /* fdivs - fdivs. */
607 float64 helper_fdivs(CPUPPCState *env, float64 arg1, float64 arg2)
609 float64 ret = float64r32_div(arg1, arg2, &env->fp_status);
610 int flags = get_float_exception_flags(&env->fp_status);
612 if (unlikely(flags & float_flag_invalid)) {
613 float_invalid_op_div(env, flags, 1, GETPC());
615 if (unlikely(flags & float_flag_divbyzero)) {
616 float_zero_divide_excp(env, GETPC());
619 return ret;
622 static uint64_t float_invalid_cvt(CPUPPCState *env, int flags,
623 uint64_t ret, uint64_t ret_nan,
624 bool set_fprc, uintptr_t retaddr)
627 * VXCVI is different from most in that it sets two exception bits,
628 * VXCVI and VXSNAN for an SNaN input.
630 if (flags & float_flag_invalid_snan) {
631 env->fpscr |= FP_VXSNAN;
633 float_invalid_op_vxcvi(env, set_fprc, retaddr);
635 return flags & float_flag_invalid_cvti ? ret : ret_nan;
638 #define FPU_FCTI(op, cvt, nanval) \
639 uint64_t helper_##op(CPUPPCState *env, float64 arg) \
641 uint64_t ret = float64_to_##cvt(arg, &env->fp_status); \
642 int flags = get_float_exception_flags(&env->fp_status); \
643 if (unlikely(flags & float_flag_invalid)) { \
644 ret = float_invalid_cvt(env, flags, ret, nanval, 1, GETPC()); \
646 return ret; \
649 FPU_FCTI(fctiw, int32, 0x80000000U)
650 FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
651 FPU_FCTI(fctiwu, uint32, 0x00000000U)
652 FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
653 FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
654 FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
655 FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
656 FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
658 #define FPU_FCFI(op, cvtr, is_single) \
659 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
661 CPU_DoubleU farg; \
663 if (is_single) { \
664 float32 tmp = cvtr(arg, &env->fp_status); \
665 farg.d = float32_to_float64(tmp, &env->fp_status); \
666 } else { \
667 farg.d = cvtr(arg, &env->fp_status); \
669 do_float_check_status(env, true, GETPC()); \
670 return farg.ll; \
673 FPU_FCFI(fcfid, int64_to_float64, 0)
674 FPU_FCFI(fcfids, int64_to_float32, 1)
675 FPU_FCFI(fcfidu, uint64_to_float64, 0)
676 FPU_FCFI(fcfidus, uint64_to_float32, 1)
678 static uint64_t do_fri(CPUPPCState *env, uint64_t arg,
679 FloatRoundMode rounding_mode)
681 FloatRoundMode old_rounding_mode = get_float_rounding_mode(&env->fp_status);
682 int flags;
684 set_float_rounding_mode(rounding_mode, &env->fp_status);
685 arg = float64_round_to_int(arg, &env->fp_status);
686 set_float_rounding_mode(old_rounding_mode, &env->fp_status);
688 flags = get_float_exception_flags(&env->fp_status);
689 if (flags & float_flag_invalid_snan) {
690 float_invalid_op_vxsnan(env, GETPC());
693 /* fri* does not set FPSCR[XX] */
694 set_float_exception_flags(flags & ~float_flag_inexact, &env->fp_status);
695 do_float_check_status(env, true, GETPC());
697 return arg;
700 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
702 return do_fri(env, arg, float_round_ties_away);
705 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
707 return do_fri(env, arg, float_round_to_zero);
710 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
712 return do_fri(env, arg, float_round_up);
715 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
717 return do_fri(env, arg, float_round_down);
720 static void float_invalid_op_madd(CPUPPCState *env, int flags,
721 bool set_fpcc, uintptr_t retaddr)
723 if (flags & float_flag_invalid_imz) {
724 float_invalid_op_vximz(env, set_fpcc, retaddr);
725 } else {
726 float_invalid_op_addsub(env, flags, set_fpcc, retaddr);
730 static float64 do_fmadd(CPUPPCState *env, float64 a, float64 b,
731 float64 c, int madd_flags, uintptr_t retaddr)
733 float64 ret = float64_muladd(a, b, c, madd_flags, &env->fp_status);
734 int flags = get_float_exception_flags(&env->fp_status);
736 if (unlikely(flags & float_flag_invalid)) {
737 float_invalid_op_madd(env, flags, 1, retaddr);
739 return ret;
742 static uint64_t do_fmadds(CPUPPCState *env, float64 a, float64 b,
743 float64 c, int madd_flags, uintptr_t retaddr)
745 float64 ret = float64r32_muladd(a, b, c, madd_flags, &env->fp_status);
746 int flags = get_float_exception_flags(&env->fp_status);
748 if (unlikely(flags & float_flag_invalid)) {
749 float_invalid_op_madd(env, flags, 1, retaddr);
751 return ret;
754 #define FPU_FMADD(op, madd_flags) \
755 uint64_t helper_##op(CPUPPCState *env, uint64_t arg1, \
756 uint64_t arg2, uint64_t arg3) \
757 { return do_fmadd(env, arg1, arg2, arg3, madd_flags, GETPC()); } \
758 uint64_t helper_##op##s(CPUPPCState *env, uint64_t arg1, \
759 uint64_t arg2, uint64_t arg3) \
760 { return do_fmadds(env, arg1, arg2, arg3, madd_flags, GETPC()); }
762 #define MADD_FLGS 0
763 #define MSUB_FLGS float_muladd_negate_c
764 #define NMADD_FLGS float_muladd_negate_result
765 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
767 FPU_FMADD(fmadd, MADD_FLGS)
768 FPU_FMADD(fnmadd, NMADD_FLGS)
769 FPU_FMADD(fmsub, MSUB_FLGS)
770 FPU_FMADD(fnmsub, NMSUB_FLGS)
772 /* frsp - frsp. */
773 static uint64_t do_frsp(CPUPPCState *env, uint64_t arg, uintptr_t retaddr)
775 float32 f32 = float64_to_float32(arg, &env->fp_status);
776 int flags = get_float_exception_flags(&env->fp_status);
778 if (unlikely(flags & float_flag_invalid_snan)) {
779 float_invalid_op_vxsnan(env, retaddr);
781 return helper_todouble(f32);
784 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
786 return do_frsp(env, arg, GETPC());
789 static void float_invalid_op_sqrt(CPUPPCState *env, int flags,
790 bool set_fpcc, uintptr_t retaddr)
792 if (unlikely(flags & float_flag_invalid_sqrt)) {
793 float_invalid_op_vxsqrt(env, set_fpcc, retaddr);
794 } else if (unlikely(flags & float_flag_invalid_snan)) {
795 float_invalid_op_vxsnan(env, retaddr);
799 #define FPU_FSQRT(name, op) \
800 float64 helper_##name(CPUPPCState *env, float64 arg) \
802 float64 ret = op(arg, &env->fp_status); \
803 int flags = get_float_exception_flags(&env->fp_status); \
805 if (unlikely(flags & float_flag_invalid)) { \
806 float_invalid_op_sqrt(env, flags, 1, GETPC()); \
809 return ret; \
812 FPU_FSQRT(FSQRT, float64_sqrt)
813 FPU_FSQRT(FSQRTS, float64r32_sqrt)
815 /* fre - fre. */
816 float64 helper_fre(CPUPPCState *env, float64 arg)
818 /* "Estimate" the reciprocal with actual division. */
819 float64 ret = float64_div(float64_one, arg, &env->fp_status);
820 int flags = get_float_exception_flags(&env->fp_status);
822 if (unlikely(flags & float_flag_invalid_snan)) {
823 float_invalid_op_vxsnan(env, GETPC());
825 if (unlikely(flags & float_flag_divbyzero)) {
826 float_zero_divide_excp(env, GETPC());
827 /* For FPSCR.ZE == 0, the result is 1/2. */
828 ret = float64_set_sign(float64_half, float64_is_neg(arg));
831 return ret;
834 /* fres - fres. */
835 uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
837 /* "Estimate" the reciprocal with actual division. */
838 float64 ret = float64r32_div(float64_one, arg, &env->fp_status);
839 int flags = get_float_exception_flags(&env->fp_status);
841 if (unlikely(flags & float_flag_invalid_snan)) {
842 float_invalid_op_vxsnan(env, GETPC());
844 if (unlikely(flags & float_flag_divbyzero)) {
845 float_zero_divide_excp(env, GETPC());
846 /* For FPSCR.ZE == 0, the result is 1/2. */
847 ret = float64_set_sign(float64_half, float64_is_neg(arg));
850 return ret;
853 /* frsqrte - frsqrte. */
854 float64 helper_frsqrte(CPUPPCState *env, float64 arg)
856 /* "Estimate" the reciprocal with actual division. */
857 float64 rets = float64_sqrt(arg, &env->fp_status);
858 float64 retd = float64_div(float64_one, rets, &env->fp_status);
859 int flags = get_float_exception_flags(&env->fp_status);
861 if (unlikely(flags & float_flag_invalid)) {
862 float_invalid_op_sqrt(env, flags, 1, GETPC());
864 if (unlikely(flags & float_flag_divbyzero)) {
865 /* Reciprocal of (square root of) zero. */
866 float_zero_divide_excp(env, GETPC());
869 return retd;
872 /* frsqrtes - frsqrtes. */
873 float64 helper_frsqrtes(CPUPPCState *env, float64 arg)
875 /* "Estimate" the reciprocal with actual division. */
876 float64 rets = float64_sqrt(arg, &env->fp_status);
877 float64 retd = float64r32_div(float64_one, rets, &env->fp_status);
878 int flags = get_float_exception_flags(&env->fp_status);
880 if (unlikely(flags & float_flag_invalid)) {
881 float_invalid_op_sqrt(env, flags, 1, GETPC());
883 if (unlikely(flags & float_flag_divbyzero)) {
884 /* Reciprocal of (square root of) zero. */
885 float_zero_divide_excp(env, GETPC());
888 return retd;
891 /* fsel - fsel. */
892 uint64_t helper_FSEL(uint64_t a, uint64_t b, uint64_t c)
894 CPU_DoubleU fa;
896 fa.ll = a;
898 if ((!float64_is_neg(fa.d) || float64_is_zero(fa.d)) &&
899 !float64_is_any_nan(fa.d)) {
900 return c;
901 } else {
902 return b;
906 uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
908 int fe_flag = 0;
909 int fg_flag = 0;
911 if (unlikely(float64_is_infinity(fra) ||
912 float64_is_infinity(frb) ||
913 float64_is_zero(frb))) {
914 fe_flag = 1;
915 fg_flag = 1;
916 } else {
917 int e_a = ppc_float64_get_unbiased_exp(fra);
918 int e_b = ppc_float64_get_unbiased_exp(frb);
920 if (unlikely(float64_is_any_nan(fra) ||
921 float64_is_any_nan(frb))) {
922 fe_flag = 1;
923 } else if ((e_b <= -1022) || (e_b >= 1021)) {
924 fe_flag = 1;
925 } else if (!float64_is_zero(fra) &&
926 (((e_a - e_b) >= 1023) ||
927 ((e_a - e_b) <= -1021) ||
928 (e_a <= -970))) {
929 fe_flag = 1;
932 if (unlikely(float64_is_zero_or_denormal(frb))) {
933 /* XB is not zero because of the above check and */
934 /* so must be denormalized. */
935 fg_flag = 1;
939 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
942 uint32_t helper_ftsqrt(uint64_t frb)
944 int fe_flag = 0;
945 int fg_flag = 0;
947 if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
948 fe_flag = 1;
949 fg_flag = 1;
950 } else {
951 int e_b = ppc_float64_get_unbiased_exp(frb);
953 if (unlikely(float64_is_any_nan(frb))) {
954 fe_flag = 1;
955 } else if (unlikely(float64_is_zero(frb))) {
956 fe_flag = 1;
957 } else if (unlikely(float64_is_neg(frb))) {
958 fe_flag = 1;
959 } else if (!float64_is_zero(frb) && (e_b <= (-1022 + 52))) {
960 fe_flag = 1;
963 if (unlikely(float64_is_zero_or_denormal(frb))) {
964 /* XB is not zero because of the above check and */
965 /* therefore must be denormalized. */
966 fg_flag = 1;
970 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
973 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
974 uint32_t crfD)
976 CPU_DoubleU farg1, farg2;
977 uint32_t ret = 0;
979 farg1.ll = arg1;
980 farg2.ll = arg2;
982 if (unlikely(float64_is_any_nan(farg1.d) ||
983 float64_is_any_nan(farg2.d))) {
984 ret = 0x01UL;
985 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
986 ret = 0x08UL;
987 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
988 ret = 0x04UL;
989 } else {
990 ret = 0x02UL;
993 env->fpscr &= ~FP_FPCC;
994 env->fpscr |= ret << FPSCR_FPCC;
995 env->crf[crfD] = ret;
996 if (unlikely(ret == 0x01UL
997 && (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
998 float64_is_signaling_nan(farg2.d, &env->fp_status)))) {
999 /* sNaN comparison */
1000 float_invalid_op_vxsnan(env, GETPC());
1004 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1005 uint32_t crfD)
1007 CPU_DoubleU farg1, farg2;
1008 uint32_t ret = 0;
1010 farg1.ll = arg1;
1011 farg2.ll = arg2;
1013 if (unlikely(float64_is_any_nan(farg1.d) ||
1014 float64_is_any_nan(farg2.d))) {
1015 ret = 0x01UL;
1016 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1017 ret = 0x08UL;
1018 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1019 ret = 0x04UL;
1020 } else {
1021 ret = 0x02UL;
1024 env->fpscr &= ~FP_FPCC;
1025 env->fpscr |= ret << FPSCR_FPCC;
1026 env->crf[crfD] = (uint32_t) ret;
1027 if (unlikely(ret == 0x01UL)) {
1028 float_invalid_op_vxvc(env, 1, GETPC());
1029 if (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1030 float64_is_signaling_nan(farg2.d, &env->fp_status)) {
1031 /* sNaN comparison */
1032 float_invalid_op_vxsnan(env, GETPC());
1037 /* Single-precision floating-point conversions */
1038 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1040 CPU_FloatU u;
1042 u.f = int32_to_float32(val, &env->vec_status);
1044 return u.l;
1047 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1049 CPU_FloatU u;
1051 u.f = uint32_to_float32(val, &env->vec_status);
1053 return u.l;
1056 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1058 CPU_FloatU u;
1060 u.l = val;
1061 /* NaN are not treated the same way IEEE 754 does */
1062 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1063 return 0;
1066 return float32_to_int32(u.f, &env->vec_status);
1069 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1071 CPU_FloatU u;
1073 u.l = val;
1074 /* NaN are not treated the same way IEEE 754 does */
1075 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1076 return 0;
1079 return float32_to_uint32(u.f, &env->vec_status);
1082 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1084 CPU_FloatU u;
1086 u.l = val;
1087 /* NaN are not treated the same way IEEE 754 does */
1088 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1089 return 0;
1092 return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1095 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1097 CPU_FloatU u;
1099 u.l = val;
1100 /* NaN are not treated the same way IEEE 754 does */
1101 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1102 return 0;
1105 return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1108 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1110 CPU_FloatU u;
1111 float32 tmp;
1113 u.f = int32_to_float32(val, &env->vec_status);
1114 tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1115 u.f = float32_div(u.f, tmp, &env->vec_status);
1117 return u.l;
1120 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1122 CPU_FloatU u;
1123 float32 tmp;
1125 u.f = uint32_to_float32(val, &env->vec_status);
1126 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1127 u.f = float32_div(u.f, tmp, &env->vec_status);
1129 return u.l;
1132 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1134 CPU_FloatU u;
1135 float32 tmp;
1137 u.l = val;
1138 /* NaN are not treated the same way IEEE 754 does */
1139 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1140 return 0;
1142 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1143 u.f = float32_mul(u.f, tmp, &env->vec_status);
1145 return float32_to_int32(u.f, &env->vec_status);
1148 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1150 CPU_FloatU u;
1151 float32 tmp;
1153 u.l = val;
1154 /* NaN are not treated the same way IEEE 754 does */
1155 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1156 return 0;
1158 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1159 u.f = float32_mul(u.f, tmp, &env->vec_status);
1161 return float32_to_uint32(u.f, &env->vec_status);
1164 #define HELPER_SPE_SINGLE_CONV(name) \
1165 uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \
1167 return e##name(env, val); \
1169 /* efscfsi */
1170 HELPER_SPE_SINGLE_CONV(fscfsi);
1171 /* efscfui */
1172 HELPER_SPE_SINGLE_CONV(fscfui);
1173 /* efscfuf */
1174 HELPER_SPE_SINGLE_CONV(fscfuf);
1175 /* efscfsf */
1176 HELPER_SPE_SINGLE_CONV(fscfsf);
1177 /* efsctsi */
1178 HELPER_SPE_SINGLE_CONV(fsctsi);
1179 /* efsctui */
1180 HELPER_SPE_SINGLE_CONV(fsctui);
1181 /* efsctsiz */
1182 HELPER_SPE_SINGLE_CONV(fsctsiz);
1183 /* efsctuiz */
1184 HELPER_SPE_SINGLE_CONV(fsctuiz);
1185 /* efsctsf */
1186 HELPER_SPE_SINGLE_CONV(fsctsf);
1187 /* efsctuf */
1188 HELPER_SPE_SINGLE_CONV(fsctuf);
1190 #define HELPER_SPE_VECTOR_CONV(name) \
1191 uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \
1193 return ((uint64_t)e##name(env, val >> 32) << 32) | \
1194 (uint64_t)e##name(env, val); \
1196 /* evfscfsi */
1197 HELPER_SPE_VECTOR_CONV(fscfsi);
1198 /* evfscfui */
1199 HELPER_SPE_VECTOR_CONV(fscfui);
1200 /* evfscfuf */
1201 HELPER_SPE_VECTOR_CONV(fscfuf);
1202 /* evfscfsf */
1203 HELPER_SPE_VECTOR_CONV(fscfsf);
1204 /* evfsctsi */
1205 HELPER_SPE_VECTOR_CONV(fsctsi);
1206 /* evfsctui */
1207 HELPER_SPE_VECTOR_CONV(fsctui);
1208 /* evfsctsiz */
1209 HELPER_SPE_VECTOR_CONV(fsctsiz);
1210 /* evfsctuiz */
1211 HELPER_SPE_VECTOR_CONV(fsctuiz);
1212 /* evfsctsf */
1213 HELPER_SPE_VECTOR_CONV(fsctsf);
1214 /* evfsctuf */
1215 HELPER_SPE_VECTOR_CONV(fsctuf);
1217 /* Single-precision floating-point arithmetic */
1218 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1220 CPU_FloatU u1, u2;
1222 u1.l = op1;
1223 u2.l = op2;
1224 u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1225 return u1.l;
1228 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1230 CPU_FloatU u1, u2;
1232 u1.l = op1;
1233 u2.l = op2;
1234 u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1235 return u1.l;
1238 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1240 CPU_FloatU u1, u2;
1242 u1.l = op1;
1243 u2.l = op2;
1244 u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1245 return u1.l;
1248 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1250 CPU_FloatU u1, u2;
1252 u1.l = op1;
1253 u2.l = op2;
1254 u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1255 return u1.l;
1258 #define HELPER_SPE_SINGLE_ARITH(name) \
1259 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1261 return e##name(env, op1, op2); \
1263 /* efsadd */
1264 HELPER_SPE_SINGLE_ARITH(fsadd);
1265 /* efssub */
1266 HELPER_SPE_SINGLE_ARITH(fssub);
1267 /* efsmul */
1268 HELPER_SPE_SINGLE_ARITH(fsmul);
1269 /* efsdiv */
1270 HELPER_SPE_SINGLE_ARITH(fsdiv);
1272 #define HELPER_SPE_VECTOR_ARITH(name) \
1273 uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1275 return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \
1276 (uint64_t)e##name(env, op1, op2); \
1278 /* evfsadd */
1279 HELPER_SPE_VECTOR_ARITH(fsadd);
1280 /* evfssub */
1281 HELPER_SPE_VECTOR_ARITH(fssub);
1282 /* evfsmul */
1283 HELPER_SPE_VECTOR_ARITH(fsmul);
1284 /* evfsdiv */
1285 HELPER_SPE_VECTOR_ARITH(fsdiv);
1287 /* Single-precision floating-point comparisons */
1288 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1290 CPU_FloatU u1, u2;
1292 u1.l = op1;
1293 u2.l = op2;
1294 return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1297 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1299 CPU_FloatU u1, u2;
1301 u1.l = op1;
1302 u2.l = op2;
1303 return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1306 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1308 CPU_FloatU u1, u2;
1310 u1.l = op1;
1311 u2.l = op2;
1312 return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1315 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1317 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1318 return efscmplt(env, op1, op2);
1321 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1323 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1324 return efscmpgt(env, op1, op2);
1327 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1329 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1330 return efscmpeq(env, op1, op2);
1333 #define HELPER_SINGLE_SPE_CMP(name) \
1334 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1336 return e##name(env, op1, op2); \
1338 /* efststlt */
1339 HELPER_SINGLE_SPE_CMP(fststlt);
1340 /* efststgt */
1341 HELPER_SINGLE_SPE_CMP(fststgt);
1342 /* efststeq */
1343 HELPER_SINGLE_SPE_CMP(fststeq);
1344 /* efscmplt */
1345 HELPER_SINGLE_SPE_CMP(fscmplt);
1346 /* efscmpgt */
1347 HELPER_SINGLE_SPE_CMP(fscmpgt);
1348 /* efscmpeq */
1349 HELPER_SINGLE_SPE_CMP(fscmpeq);
1351 static inline uint32_t evcmp_merge(int t0, int t1)
1353 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1356 #define HELPER_VECTOR_SPE_CMP(name) \
1357 uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1359 return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \
1360 e##name(env, op1, op2)); \
1362 /* evfststlt */
1363 HELPER_VECTOR_SPE_CMP(fststlt);
1364 /* evfststgt */
1365 HELPER_VECTOR_SPE_CMP(fststgt);
1366 /* evfststeq */
1367 HELPER_VECTOR_SPE_CMP(fststeq);
1368 /* evfscmplt */
1369 HELPER_VECTOR_SPE_CMP(fscmplt);
1370 /* evfscmpgt */
1371 HELPER_VECTOR_SPE_CMP(fscmpgt);
1372 /* evfscmpeq */
1373 HELPER_VECTOR_SPE_CMP(fscmpeq);
1375 /* Double-precision floating-point conversion */
1376 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1378 CPU_DoubleU u;
1380 u.d = int32_to_float64(val, &env->vec_status);
1382 return u.ll;
1385 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1387 CPU_DoubleU u;
1389 u.d = int64_to_float64(val, &env->vec_status);
1391 return u.ll;
1394 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1396 CPU_DoubleU u;
1398 u.d = uint32_to_float64(val, &env->vec_status);
1400 return u.ll;
1403 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1405 CPU_DoubleU u;
1407 u.d = uint64_to_float64(val, &env->vec_status);
1409 return u.ll;
1412 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1414 CPU_DoubleU u;
1416 u.ll = val;
1417 /* NaN are not treated the same way IEEE 754 does */
1418 if (unlikely(float64_is_any_nan(u.d))) {
1419 return 0;
1422 return float64_to_int32(u.d, &env->vec_status);
1425 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1427 CPU_DoubleU u;
1429 u.ll = val;
1430 /* NaN are not treated the same way IEEE 754 does */
1431 if (unlikely(float64_is_any_nan(u.d))) {
1432 return 0;
1435 return float64_to_uint32(u.d, &env->vec_status);
1438 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1440 CPU_DoubleU u;
1442 u.ll = val;
1443 /* NaN are not treated the same way IEEE 754 does */
1444 if (unlikely(float64_is_any_nan(u.d))) {
1445 return 0;
1448 return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1451 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1453 CPU_DoubleU u;
1455 u.ll = val;
1456 /* NaN are not treated the same way IEEE 754 does */
1457 if (unlikely(float64_is_any_nan(u.d))) {
1458 return 0;
1461 return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1464 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1466 CPU_DoubleU u;
1468 u.ll = val;
1469 /* NaN are not treated the same way IEEE 754 does */
1470 if (unlikely(float64_is_any_nan(u.d))) {
1471 return 0;
1474 return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1477 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1479 CPU_DoubleU u;
1481 u.ll = val;
1482 /* NaN are not treated the same way IEEE 754 does */
1483 if (unlikely(float64_is_any_nan(u.d))) {
1484 return 0;
1487 return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1490 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1492 CPU_DoubleU u;
1493 float64 tmp;
1495 u.d = int32_to_float64(val, &env->vec_status);
1496 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1497 u.d = float64_div(u.d, tmp, &env->vec_status);
1499 return u.ll;
1502 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1504 CPU_DoubleU u;
1505 float64 tmp;
1507 u.d = uint32_to_float64(val, &env->vec_status);
1508 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1509 u.d = float64_div(u.d, tmp, &env->vec_status);
1511 return u.ll;
1514 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1516 CPU_DoubleU u;
1517 float64 tmp;
1519 u.ll = val;
1520 /* NaN are not treated the same way IEEE 754 does */
1521 if (unlikely(float64_is_any_nan(u.d))) {
1522 return 0;
1524 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1525 u.d = float64_mul(u.d, tmp, &env->vec_status);
1527 return float64_to_int32(u.d, &env->vec_status);
1530 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1532 CPU_DoubleU u;
1533 float64 tmp;
1535 u.ll = val;
1536 /* NaN are not treated the same way IEEE 754 does */
1537 if (unlikely(float64_is_any_nan(u.d))) {
1538 return 0;
1540 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1541 u.d = float64_mul(u.d, tmp, &env->vec_status);
1543 return float64_to_uint32(u.d, &env->vec_status);
1546 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1548 CPU_DoubleU u1;
1549 CPU_FloatU u2;
1551 u1.ll = val;
1552 u2.f = float64_to_float32(u1.d, &env->vec_status);
1554 return u2.l;
1557 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1559 CPU_DoubleU u2;
1560 CPU_FloatU u1;
1562 u1.l = val;
1563 u2.d = float32_to_float64(u1.f, &env->vec_status);
1565 return u2.ll;
1568 /* Double precision fixed-point arithmetic */
1569 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1571 CPU_DoubleU u1, u2;
1573 u1.ll = op1;
1574 u2.ll = op2;
1575 u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1576 return u1.ll;
1579 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1581 CPU_DoubleU u1, u2;
1583 u1.ll = op1;
1584 u2.ll = op2;
1585 u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1586 return u1.ll;
1589 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1591 CPU_DoubleU u1, u2;
1593 u1.ll = op1;
1594 u2.ll = op2;
1595 u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1596 return u1.ll;
1599 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1601 CPU_DoubleU u1, u2;
1603 u1.ll = op1;
1604 u2.ll = op2;
1605 u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1606 return u1.ll;
1609 /* Double precision floating point helpers */
1610 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1612 CPU_DoubleU u1, u2;
1614 u1.ll = op1;
1615 u2.ll = op2;
1616 return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1619 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1621 CPU_DoubleU u1, u2;
1623 u1.ll = op1;
1624 u2.ll = op2;
1625 return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1628 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1630 CPU_DoubleU u1, u2;
1632 u1.ll = op1;
1633 u2.ll = op2;
1634 return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1637 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1639 /* XXX: TODO: test special values (NaN, infinites, ...) */
1640 return helper_efdtstlt(env, op1, op2);
1643 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1645 /* XXX: TODO: test special values (NaN, infinites, ...) */
1646 return helper_efdtstgt(env, op1, op2);
1649 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1651 /* XXX: TODO: test special values (NaN, infinites, ...) */
1652 return helper_efdtsteq(env, op1, op2);
1655 #define float64_to_float64(x, env) x
1659 * VSX_ADD_SUB - VSX floating point add/subtract
1660 * name - instruction mnemonic
1661 * op - operation (add or sub)
1662 * nels - number of elements (1, 2 or 4)
1663 * tp - type (float32 or float64)
1664 * fld - vsr_t field (VsrD(*) or VsrW(*))
1665 * sfifprf - set FI and FPRF
1667 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfifprf, r2sp) \
1668 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \
1669 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1671 ppc_vsr_t t = { }; \
1672 int i; \
1674 helper_reset_fpstatus(env); \
1676 for (i = 0; i < nels; i++) { \
1677 float_status tstat = env->fp_status; \
1678 set_float_exception_flags(0, &tstat); \
1679 t.fld = tp##_##op(xa->fld, xb->fld, &tstat); \
1680 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1682 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1683 float_invalid_op_addsub(env, tstat.float_exception_flags, \
1684 sfifprf, GETPC()); \
1687 if (r2sp) { \
1688 t.fld = do_frsp(env, t.fld, GETPC()); \
1691 if (sfifprf) { \
1692 helper_compute_fprf_float64(env, t.fld); \
1695 *xt = t; \
1696 do_float_check_status(env, sfifprf, GETPC()); \
1699 VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1700 VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1701 VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1702 VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1703 VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1704 VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1705 VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1706 VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1708 void helper_xsaddqp(CPUPPCState *env, uint32_t opcode,
1709 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1711 ppc_vsr_t t = *xt;
1712 float_status tstat;
1714 helper_reset_fpstatus(env);
1716 tstat = env->fp_status;
1717 if (unlikely(Rc(opcode) != 0)) {
1718 tstat.float_rounding_mode = float_round_to_odd;
1721 set_float_exception_flags(0, &tstat);
1722 t.f128 = float128_add(xa->f128, xb->f128, &tstat);
1723 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1725 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1726 float_invalid_op_addsub(env, tstat.float_exception_flags, 1, GETPC());
1729 helper_compute_fprf_float128(env, t.f128);
1731 *xt = t;
1732 do_float_check_status(env, true, GETPC());
1736 * VSX_MUL - VSX floating point multiply
1737 * op - instruction mnemonic
1738 * nels - number of elements (1, 2 or 4)
1739 * tp - type (float32 or float64)
1740 * fld - vsr_t field (VsrD(*) or VsrW(*))
1741 * sfifprf - set FI and FPRF
1743 #define VSX_MUL(op, nels, tp, fld, sfifprf, r2sp) \
1744 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
1745 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1747 ppc_vsr_t t = { }; \
1748 int i; \
1750 helper_reset_fpstatus(env); \
1752 for (i = 0; i < nels; i++) { \
1753 float_status tstat = env->fp_status; \
1754 set_float_exception_flags(0, &tstat); \
1755 t.fld = tp##_mul(xa->fld, xb->fld, &tstat); \
1756 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1758 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1759 float_invalid_op_mul(env, tstat.float_exception_flags, \
1760 sfifprf, GETPC()); \
1763 if (r2sp) { \
1764 t.fld = do_frsp(env, t.fld, GETPC()); \
1767 if (sfifprf) { \
1768 helper_compute_fprf_float64(env, t.fld); \
1772 *xt = t; \
1773 do_float_check_status(env, sfifprf, GETPC()); \
1776 VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1777 VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1778 VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1779 VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1781 void helper_xsmulqp(CPUPPCState *env, uint32_t opcode,
1782 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1784 ppc_vsr_t t = *xt;
1785 float_status tstat;
1787 helper_reset_fpstatus(env);
1788 tstat = env->fp_status;
1789 if (unlikely(Rc(opcode) != 0)) {
1790 tstat.float_rounding_mode = float_round_to_odd;
1793 set_float_exception_flags(0, &tstat);
1794 t.f128 = float128_mul(xa->f128, xb->f128, &tstat);
1795 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1797 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1798 float_invalid_op_mul(env, tstat.float_exception_flags, 1, GETPC());
1800 helper_compute_fprf_float128(env, t.f128);
1802 *xt = t;
1803 do_float_check_status(env, true, GETPC());
1807 * VSX_DIV - VSX floating point divide
1808 * op - instruction mnemonic
1809 * nels - number of elements (1, 2 or 4)
1810 * tp - type (float32 or float64)
1811 * fld - vsr_t field (VsrD(*) or VsrW(*))
1812 * sfifprf - set FI and FPRF
1814 #define VSX_DIV(op, nels, tp, fld, sfifprf, r2sp) \
1815 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
1816 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1818 ppc_vsr_t t = { }; \
1819 int i; \
1821 helper_reset_fpstatus(env); \
1823 for (i = 0; i < nels; i++) { \
1824 float_status tstat = env->fp_status; \
1825 set_float_exception_flags(0, &tstat); \
1826 t.fld = tp##_div(xa->fld, xb->fld, &tstat); \
1827 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1829 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1830 float_invalid_op_div(env, tstat.float_exception_flags, \
1831 sfifprf, GETPC()); \
1833 if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) { \
1834 float_zero_divide_excp(env, GETPC()); \
1837 if (r2sp) { \
1838 t.fld = do_frsp(env, t.fld, GETPC()); \
1841 if (sfifprf) { \
1842 helper_compute_fprf_float64(env, t.fld); \
1846 *xt = t; \
1847 do_float_check_status(env, sfifprf, GETPC()); \
1850 VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
1851 VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
1852 VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
1853 VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
1855 void helper_xsdivqp(CPUPPCState *env, uint32_t opcode,
1856 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1858 ppc_vsr_t t = *xt;
1859 float_status tstat;
1861 helper_reset_fpstatus(env);
1862 tstat = env->fp_status;
1863 if (unlikely(Rc(opcode) != 0)) {
1864 tstat.float_rounding_mode = float_round_to_odd;
1867 set_float_exception_flags(0, &tstat);
1868 t.f128 = float128_div(xa->f128, xb->f128, &tstat);
1869 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1871 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1872 float_invalid_op_div(env, tstat.float_exception_flags, 1, GETPC());
1874 if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {
1875 float_zero_divide_excp(env, GETPC());
1878 helper_compute_fprf_float128(env, t.f128);
1879 *xt = t;
1880 do_float_check_status(env, true, GETPC());
1884 * VSX_RE - VSX floating point reciprocal estimate
1885 * op - instruction mnemonic
1886 * nels - number of elements (1, 2 or 4)
1887 * tp - type (float32 or float64)
1888 * fld - vsr_t field (VsrD(*) or VsrW(*))
1889 * sfifprf - set FI and FPRF
1891 #define VSX_RE(op, nels, tp, fld, sfifprf, r2sp) \
1892 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
1894 ppc_vsr_t t = { }; \
1895 int i; \
1897 helper_reset_fpstatus(env); \
1899 for (i = 0; i < nels; i++) { \
1900 if (unlikely(tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \
1901 float_invalid_op_vxsnan(env, GETPC()); \
1903 t.fld = tp##_div(tp##_one, xb->fld, &env->fp_status); \
1905 if (r2sp) { \
1906 t.fld = do_frsp(env, t.fld, GETPC()); \
1909 if (sfifprf) { \
1910 helper_compute_fprf_float64(env, t.fld); \
1914 *xt = t; \
1915 do_float_check_status(env, sfifprf, GETPC()); \
1918 VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
1919 VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
1920 VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
1921 VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
1924 * VSX_SQRT - VSX floating point square root
1925 * op - instruction mnemonic
1926 * nels - number of elements (1, 2 or 4)
1927 * tp - type (float32 or float64)
1928 * fld - vsr_t field (VsrD(*) or VsrW(*))
1929 * sfifprf - set FI and FPRF
1931 #define VSX_SQRT(op, nels, tp, fld, sfifprf, r2sp) \
1932 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
1934 ppc_vsr_t t = { }; \
1935 int i; \
1937 helper_reset_fpstatus(env); \
1939 for (i = 0; i < nels; i++) { \
1940 float_status tstat = env->fp_status; \
1941 set_float_exception_flags(0, &tstat); \
1942 t.fld = tp##_sqrt(xb->fld, &tstat); \
1943 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1945 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1946 float_invalid_op_sqrt(env, tstat.float_exception_flags, \
1947 sfifprf, GETPC()); \
1950 if (r2sp) { \
1951 t.fld = do_frsp(env, t.fld, GETPC()); \
1954 if (sfifprf) { \
1955 helper_compute_fprf_float64(env, t.fld); \
1959 *xt = t; \
1960 do_float_check_status(env, sfifprf, GETPC()); \
1963 VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
1964 VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
1965 VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
1966 VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
1969 *VSX_RSQRTE - VSX floating point reciprocal square root estimate
1970 * op - instruction mnemonic
1971 * nels - number of elements (1, 2 or 4)
1972 * tp - type (float32 or float64)
1973 * fld - vsr_t field (VsrD(*) or VsrW(*))
1974 * sfifprf - set FI and FPRF
1976 #define VSX_RSQRTE(op, nels, tp, fld, sfifprf, r2sp) \
1977 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
1979 ppc_vsr_t t = { }; \
1980 int i; \
1982 helper_reset_fpstatus(env); \
1984 for (i = 0; i < nels; i++) { \
1985 float_status tstat = env->fp_status; \
1986 set_float_exception_flags(0, &tstat); \
1987 t.fld = tp##_sqrt(xb->fld, &tstat); \
1988 t.fld = tp##_div(tp##_one, t.fld, &tstat); \
1989 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1990 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1991 float_invalid_op_sqrt(env, tstat.float_exception_flags, \
1992 sfifprf, GETPC()); \
1994 if (r2sp) { \
1995 t.fld = do_frsp(env, t.fld, GETPC()); \
1998 if (sfifprf) { \
1999 helper_compute_fprf_float64(env, t.fld); \
2003 *xt = t; \
2004 do_float_check_status(env, sfifprf, GETPC()); \
2007 VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
2008 VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
2009 VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
2010 VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
2013 * VSX_TDIV - VSX floating point test for divide
2014 * op - instruction mnemonic
2015 * nels - number of elements (1, 2 or 4)
2016 * tp - type (float32 or float64)
2017 * fld - vsr_t field (VsrD(*) or VsrW(*))
2018 * emin - minimum unbiased exponent
2019 * emax - maximum unbiased exponent
2020 * nbits - number of fraction bits
2022 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \
2023 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2024 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2026 int i; \
2027 int fe_flag = 0; \
2028 int fg_flag = 0; \
2030 for (i = 0; i < nels; i++) { \
2031 if (unlikely(tp##_is_infinity(xa->fld) || \
2032 tp##_is_infinity(xb->fld) || \
2033 tp##_is_zero(xb->fld))) { \
2034 fe_flag = 1; \
2035 fg_flag = 1; \
2036 } else { \
2037 int e_a = ppc_##tp##_get_unbiased_exp(xa->fld); \
2038 int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \
2040 if (unlikely(tp##_is_any_nan(xa->fld) || \
2041 tp##_is_any_nan(xb->fld))) { \
2042 fe_flag = 1; \
2043 } else if ((e_b <= emin) || (e_b >= (emax - 2))) { \
2044 fe_flag = 1; \
2045 } else if (!tp##_is_zero(xa->fld) && \
2046 (((e_a - e_b) >= emax) || \
2047 ((e_a - e_b) <= (emin + 1)) || \
2048 (e_a <= (emin + nbits)))) { \
2049 fe_flag = 1; \
2052 if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \
2053 /* \
2054 * XB is not zero because of the above check and so \
2055 * must be denormalized. \
2056 */ \
2057 fg_flag = 1; \
2062 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2065 VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2066 VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2067 VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2070 * VSX_TSQRT - VSX floating point test for square root
2071 * op - instruction mnemonic
2072 * nels - number of elements (1, 2 or 4)
2073 * tp - type (float32 or float64)
2074 * fld - vsr_t field (VsrD(*) or VsrW(*))
2075 * emin - minimum unbiased exponent
2076 * emax - maximum unbiased exponent
2077 * nbits - number of fraction bits
2079 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \
2080 void helper_##op(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb) \
2082 int i; \
2083 int fe_flag = 0; \
2084 int fg_flag = 0; \
2086 for (i = 0; i < nels; i++) { \
2087 if (unlikely(tp##_is_infinity(xb->fld) || \
2088 tp##_is_zero(xb->fld))) { \
2089 fe_flag = 1; \
2090 fg_flag = 1; \
2091 } else { \
2092 int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \
2094 if (unlikely(tp##_is_any_nan(xb->fld))) { \
2095 fe_flag = 1; \
2096 } else if (unlikely(tp##_is_zero(xb->fld))) { \
2097 fe_flag = 1; \
2098 } else if (unlikely(tp##_is_neg(xb->fld))) { \
2099 fe_flag = 1; \
2100 } else if (!tp##_is_zero(xb->fld) && \
2101 (e_b <= (emin + nbits))) { \
2102 fe_flag = 1; \
2105 if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \
2106 /* \
2107 * XB is not zero because of the above check and \
2108 * therefore must be denormalized. \
2109 */ \
2110 fg_flag = 1; \
2115 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2118 VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2119 VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2120 VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2123 * VSX_MADD - VSX floating point muliply/add variations
2124 * op - instruction mnemonic
2125 * nels - number of elements (1, 2 or 4)
2126 * tp - type (float32 or float64)
2127 * fld - vsr_t field (VsrD(*) or VsrW(*))
2128 * maddflgs - flags for the float*muladd routine that control the
2129 * various forms (madd, msub, nmadd, nmsub)
2130 * sfifprf - set FI and FPRF
2132 #define VSX_MADD(op, nels, tp, fld, maddflgs, sfifprf) \
2133 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2134 ppc_vsr_t *s1, ppc_vsr_t *s2, ppc_vsr_t *s3) \
2136 ppc_vsr_t t = { }; \
2137 int i; \
2139 helper_reset_fpstatus(env); \
2141 for (i = 0; i < nels; i++) { \
2142 float_status tstat = env->fp_status; \
2143 set_float_exception_flags(0, &tstat); \
2144 t.fld = tp##_muladd(s1->fld, s3->fld, s2->fld, maddflgs, &tstat); \
2145 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2147 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2148 float_invalid_op_madd(env, tstat.float_exception_flags, \
2149 sfifprf, GETPC()); \
2152 if (sfifprf) { \
2153 helper_compute_fprf_float64(env, t.fld); \
2156 *xt = t; \
2157 do_float_check_status(env, sfifprf, GETPC()); \
2160 VSX_MADD(XSMADDDP, 1, float64, VsrD(0), MADD_FLGS, 1)
2161 VSX_MADD(XSMSUBDP, 1, float64, VsrD(0), MSUB_FLGS, 1)
2162 VSX_MADD(XSNMADDDP, 1, float64, VsrD(0), NMADD_FLGS, 1)
2163 VSX_MADD(XSNMSUBDP, 1, float64, VsrD(0), NMSUB_FLGS, 1)
2164 VSX_MADD(XSMADDSP, 1, float64r32, VsrD(0), MADD_FLGS, 1)
2165 VSX_MADD(XSMSUBSP, 1, float64r32, VsrD(0), MSUB_FLGS, 1)
2166 VSX_MADD(XSNMADDSP, 1, float64r32, VsrD(0), NMADD_FLGS, 1)
2167 VSX_MADD(XSNMSUBSP, 1, float64r32, VsrD(0), NMSUB_FLGS, 1)
2169 VSX_MADD(xvmadddp, 2, float64, VsrD(i), MADD_FLGS, 0)
2170 VSX_MADD(xvmsubdp, 2, float64, VsrD(i), MSUB_FLGS, 0)
2171 VSX_MADD(xvnmadddp, 2, float64, VsrD(i), NMADD_FLGS, 0)
2172 VSX_MADD(xvnmsubdp, 2, float64, VsrD(i), NMSUB_FLGS, 0)
2174 VSX_MADD(xvmaddsp, 4, float32, VsrW(i), MADD_FLGS, 0)
2175 VSX_MADD(xvmsubsp, 4, float32, VsrW(i), MSUB_FLGS, 0)
2176 VSX_MADD(xvnmaddsp, 4, float32, VsrW(i), NMADD_FLGS, 0)
2177 VSX_MADD(xvnmsubsp, 4, float32, VsrW(i), NMSUB_FLGS, 0)
2180 * VSX_MADDQ - VSX floating point quad-precision muliply/add
2181 * op - instruction mnemonic
2182 * maddflgs - flags for the float*muladd routine that control the
2183 * various forms (madd, msub, nmadd, nmsub)
2184 * ro - round to odd
2186 #define VSX_MADDQ(op, maddflgs, ro) \
2187 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *s1, ppc_vsr_t *s2,\
2188 ppc_vsr_t *s3) \
2190 ppc_vsr_t t = *xt; \
2192 helper_reset_fpstatus(env); \
2194 float_status tstat = env->fp_status; \
2195 set_float_exception_flags(0, &tstat); \
2196 if (ro) { \
2197 tstat.float_rounding_mode = float_round_to_odd; \
2199 t.f128 = float128_muladd(s1->f128, s3->f128, s2->f128, maddflgs, &tstat); \
2200 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2202 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2203 float_invalid_op_madd(env, tstat.float_exception_flags, \
2204 false, GETPC()); \
2207 helper_compute_fprf_float128(env, t.f128); \
2208 *xt = t; \
2209 do_float_check_status(env, true, GETPC()); \
2212 VSX_MADDQ(XSMADDQP, MADD_FLGS, 0)
2213 VSX_MADDQ(XSMADDQPO, MADD_FLGS, 1)
2214 VSX_MADDQ(XSMSUBQP, MSUB_FLGS, 0)
2215 VSX_MADDQ(XSMSUBQPO, MSUB_FLGS, 1)
2216 VSX_MADDQ(XSNMADDQP, NMADD_FLGS, 0)
2217 VSX_MADDQ(XSNMADDQPO, NMADD_FLGS, 1)
2218 VSX_MADDQ(XSNMSUBQP, NMSUB_FLGS, 0)
2219 VSX_MADDQ(XSNMSUBQPO, NMSUB_FLGS, 0)
2222 * VSX_SCALAR_CMP - VSX scalar floating point compare
2223 * op - instruction mnemonic
2224 * tp - type
2225 * cmp - comparison operation
2226 * fld - vsr_t field
2227 * svxvc - set VXVC bit
2229 #define VSX_SCALAR_CMP(op, tp, cmp, fld, svxvc) \
2230 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2231 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2233 int flags; \
2234 bool r, vxvc; \
2236 helper_reset_fpstatus(env); \
2238 if (svxvc) { \
2239 r = tp##_##cmp(xb->fld, xa->fld, &env->fp_status); \
2240 } else { \
2241 r = tp##_##cmp##_quiet(xb->fld, xa->fld, &env->fp_status); \
2244 flags = get_float_exception_flags(&env->fp_status); \
2245 if (unlikely(flags & float_flag_invalid)) { \
2246 vxvc = svxvc; \
2247 if (flags & float_flag_invalid_snan) { \
2248 float_invalid_op_vxsnan(env, GETPC()); \
2249 vxvc &= !(env->fpscr & FP_VE); \
2251 if (vxvc) { \
2252 float_invalid_op_vxvc(env, 0, GETPC()); \
2256 memset(xt, 0, sizeof(*xt)); \
2257 memset(&xt->fld, -r, sizeof(xt->fld)); \
2258 do_float_check_status(env, false, GETPC()); \
2261 VSX_SCALAR_CMP(XSCMPEQDP, float64, eq, VsrD(0), 0)
2262 VSX_SCALAR_CMP(XSCMPGEDP, float64, le, VsrD(0), 1)
2263 VSX_SCALAR_CMP(XSCMPGTDP, float64, lt, VsrD(0), 1)
2264 VSX_SCALAR_CMP(XSCMPEQQP, float128, eq, f128, 0)
2265 VSX_SCALAR_CMP(XSCMPGEQP, float128, le, f128, 1)
2266 VSX_SCALAR_CMP(XSCMPGTQP, float128, lt, f128, 1)
2268 void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode,
2269 ppc_vsr_t *xa, ppc_vsr_t *xb)
2271 int64_t exp_a, exp_b;
2272 uint32_t cc;
2274 exp_a = extract64(xa->VsrD(0), 52, 11);
2275 exp_b = extract64(xb->VsrD(0), 52, 11);
2277 if (unlikely(float64_is_any_nan(xa->VsrD(0)) ||
2278 float64_is_any_nan(xb->VsrD(0)))) {
2279 cc = CRF_SO;
2280 } else {
2281 if (exp_a < exp_b) {
2282 cc = CRF_LT;
2283 } else if (exp_a > exp_b) {
2284 cc = CRF_GT;
2285 } else {
2286 cc = CRF_EQ;
2290 env->fpscr &= ~FP_FPCC;
2291 env->fpscr |= cc << FPSCR_FPCC;
2292 env->crf[BF(opcode)] = cc;
2294 do_float_check_status(env, false, GETPC());
2297 void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode,
2298 ppc_vsr_t *xa, ppc_vsr_t *xb)
2300 int64_t exp_a, exp_b;
2301 uint32_t cc;
2303 exp_a = extract64(xa->VsrD(0), 48, 15);
2304 exp_b = extract64(xb->VsrD(0), 48, 15);
2306 if (unlikely(float128_is_any_nan(xa->f128) ||
2307 float128_is_any_nan(xb->f128))) {
2308 cc = CRF_SO;
2309 } else {
2310 if (exp_a < exp_b) {
2311 cc = CRF_LT;
2312 } else if (exp_a > exp_b) {
2313 cc = CRF_GT;
2314 } else {
2315 cc = CRF_EQ;
2319 env->fpscr &= ~FP_FPCC;
2320 env->fpscr |= cc << FPSCR_FPCC;
2321 env->crf[BF(opcode)] = cc;
2323 do_float_check_status(env, false, GETPC());
2326 static inline void do_scalar_cmp(CPUPPCState *env, ppc_vsr_t *xa, ppc_vsr_t *xb,
2327 int crf_idx, bool ordered)
2329 uint32_t cc;
2330 bool vxsnan_flag = false, vxvc_flag = false;
2332 helper_reset_fpstatus(env);
2334 switch (float64_compare(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) {
2335 case float_relation_less:
2336 cc = CRF_LT;
2337 break;
2338 case float_relation_equal:
2339 cc = CRF_EQ;
2340 break;
2341 case float_relation_greater:
2342 cc = CRF_GT;
2343 break;
2344 case float_relation_unordered:
2345 cc = CRF_SO;
2347 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) ||
2348 float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) {
2349 vxsnan_flag = true;
2350 if (!(env->fpscr & FP_VE) && ordered) {
2351 vxvc_flag = true;
2353 } else if (float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) ||
2354 float64_is_quiet_nan(xb->VsrD(0), &env->fp_status)) {
2355 if (ordered) {
2356 vxvc_flag = true;
2360 break;
2361 default:
2362 g_assert_not_reached();
2365 env->fpscr &= ~FP_FPCC;
2366 env->fpscr |= cc << FPSCR_FPCC;
2367 env->crf[crf_idx] = cc;
2369 if (vxsnan_flag) {
2370 float_invalid_op_vxsnan(env, GETPC());
2372 if (vxvc_flag) {
2373 float_invalid_op_vxvc(env, 0, GETPC());
2376 do_float_check_status(env, false, GETPC());
2379 void helper_xscmpodp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2380 ppc_vsr_t *xb)
2382 do_scalar_cmp(env, xa, xb, BF(opcode), true);
2385 void helper_xscmpudp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2386 ppc_vsr_t *xb)
2388 do_scalar_cmp(env, xa, xb, BF(opcode), false);
2391 static inline void do_scalar_cmpq(CPUPPCState *env, ppc_vsr_t *xa,
2392 ppc_vsr_t *xb, int crf_idx, bool ordered)
2394 uint32_t cc;
2395 bool vxsnan_flag = false, vxvc_flag = false;
2397 helper_reset_fpstatus(env);
2399 switch (float128_compare(xa->f128, xb->f128, &env->fp_status)) {
2400 case float_relation_less:
2401 cc = CRF_LT;
2402 break;
2403 case float_relation_equal:
2404 cc = CRF_EQ;
2405 break;
2406 case float_relation_greater:
2407 cc = CRF_GT;
2408 break;
2409 case float_relation_unordered:
2410 cc = CRF_SO;
2412 if (float128_is_signaling_nan(xa->f128, &env->fp_status) ||
2413 float128_is_signaling_nan(xb->f128, &env->fp_status)) {
2414 vxsnan_flag = true;
2415 if (!(env->fpscr & FP_VE) && ordered) {
2416 vxvc_flag = true;
2418 } else if (float128_is_quiet_nan(xa->f128, &env->fp_status) ||
2419 float128_is_quiet_nan(xb->f128, &env->fp_status)) {
2420 if (ordered) {
2421 vxvc_flag = true;
2425 break;
2426 default:
2427 g_assert_not_reached();
2430 env->fpscr &= ~FP_FPCC;
2431 env->fpscr |= cc << FPSCR_FPCC;
2432 env->crf[crf_idx] = cc;
2434 if (vxsnan_flag) {
2435 float_invalid_op_vxsnan(env, GETPC());
2437 if (vxvc_flag) {
2438 float_invalid_op_vxvc(env, 0, GETPC());
2441 do_float_check_status(env, false, GETPC());
2444 void helper_xscmpoqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2445 ppc_vsr_t *xb)
2447 do_scalar_cmpq(env, xa, xb, BF(opcode), true);
2450 void helper_xscmpuqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2451 ppc_vsr_t *xb)
2453 do_scalar_cmpq(env, xa, xb, BF(opcode), false);
2457 * VSX_MAX_MIN - VSX floating point maximum/minimum
2458 * name - instruction mnemonic
2459 * op - operation (max or min)
2460 * nels - number of elements (1, 2 or 4)
2461 * tp - type (float32 or float64)
2462 * fld - vsr_t field (VsrD(*) or VsrW(*))
2464 #define VSX_MAX_MIN(name, op, nels, tp, fld) \
2465 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \
2466 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2468 ppc_vsr_t t = { }; \
2469 int i; \
2471 for (i = 0; i < nels; i++) { \
2472 t.fld = tp##_##op(xa->fld, xb->fld, &env->fp_status); \
2473 if (unlikely(tp##_is_signaling_nan(xa->fld, &env->fp_status) || \
2474 tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \
2475 float_invalid_op_vxsnan(env, GETPC()); \
2479 *xt = t; \
2480 do_float_check_status(env, false, GETPC()); \
2483 VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2484 VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2485 VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2486 VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2487 VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2488 VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2490 #define VSX_MAX_MINC(name, max, tp, fld) \
2491 void helper_##name(CPUPPCState *env, \
2492 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \
2494 ppc_vsr_t t = { }; \
2495 bool first; \
2497 helper_reset_fpstatus(env); \
2499 if (max) { \
2500 first = tp##_le_quiet(xb->fld, xa->fld, &env->fp_status); \
2501 } else { \
2502 first = tp##_lt_quiet(xa->fld, xb->fld, &env->fp_status); \
2505 if (first) { \
2506 t.fld = xa->fld; \
2507 } else { \
2508 t.fld = xb->fld; \
2509 if (env->fp_status.float_exception_flags & float_flag_invalid_snan) { \
2510 float_invalid_op_vxsnan(env, GETPC()); \
2514 *xt = t; \
2517 VSX_MAX_MINC(XSMAXCDP, true, float64, VsrD(0));
2518 VSX_MAX_MINC(XSMINCDP, false, float64, VsrD(0));
2519 VSX_MAX_MINC(XSMAXCQP, true, float128, f128);
2520 VSX_MAX_MINC(XSMINCQP, false, float128, f128);
2522 #define VSX_MAX_MINJ(name, max) \
2523 void helper_##name(CPUPPCState *env, \
2524 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \
2526 ppc_vsr_t t = { }; \
2527 bool vxsnan_flag = false, vex_flag = false; \
2529 if (unlikely(float64_is_any_nan(xa->VsrD(0)))) { \
2530 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status)) { \
2531 vxsnan_flag = true; \
2533 t.VsrD(0) = xa->VsrD(0); \
2534 } else if (unlikely(float64_is_any_nan(xb->VsrD(0)))) { \
2535 if (float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2536 vxsnan_flag = true; \
2538 t.VsrD(0) = xb->VsrD(0); \
2539 } else if (float64_is_zero(xa->VsrD(0)) && \
2540 float64_is_zero(xb->VsrD(0))) { \
2541 if (max) { \
2542 if (!float64_is_neg(xa->VsrD(0)) || \
2543 !float64_is_neg(xb->VsrD(0))) { \
2544 t.VsrD(0) = 0ULL; \
2545 } else { \
2546 t.VsrD(0) = 0x8000000000000000ULL; \
2548 } else { \
2549 if (float64_is_neg(xa->VsrD(0)) || \
2550 float64_is_neg(xb->VsrD(0))) { \
2551 t.VsrD(0) = 0x8000000000000000ULL; \
2552 } else { \
2553 t.VsrD(0) = 0ULL; \
2556 } else if ((max && \
2557 !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \
2558 (!max && \
2559 float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \
2560 t.VsrD(0) = xa->VsrD(0); \
2561 } else { \
2562 t.VsrD(0) = xb->VsrD(0); \
2565 vex_flag = (env->fpscr & FP_VE) && vxsnan_flag; \
2566 if (vxsnan_flag) { \
2567 float_invalid_op_vxsnan(env, GETPC()); \
2569 if (!vex_flag) { \
2570 *xt = t; \
2574 VSX_MAX_MINJ(XSMAXJDP, 1);
2575 VSX_MAX_MINJ(XSMINJDP, 0);
2578 * VSX_CMP - VSX floating point compare
2579 * op - instruction mnemonic
2580 * nels - number of elements (1, 2 or 4)
2581 * tp - type (float32 or float64)
2582 * fld - vsr_t field (VsrD(*) or VsrW(*))
2583 * cmp - comparison operation
2584 * svxvc - set VXVC bit
2585 * exp - expected result of comparison
2587 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp) \
2588 uint32_t helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2589 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2591 ppc_vsr_t t = *xt; \
2592 uint32_t crf6 = 0; \
2593 int i; \
2594 int all_true = 1; \
2595 int all_false = 1; \
2597 helper_reset_fpstatus(env); \
2599 for (i = 0; i < nels; i++) { \
2600 if (unlikely(tp##_is_any_nan(xa->fld) || \
2601 tp##_is_any_nan(xb->fld))) { \
2602 if (tp##_is_signaling_nan(xa->fld, &env->fp_status) || \
2603 tp##_is_signaling_nan(xb->fld, &env->fp_status)) { \
2604 float_invalid_op_vxsnan(env, GETPC()); \
2606 if (svxvc) { \
2607 float_invalid_op_vxvc(env, 0, GETPC()); \
2609 t.fld = 0; \
2610 all_true = 0; \
2611 } else { \
2612 if (tp##_##cmp(xb->fld, xa->fld, &env->fp_status) == exp) { \
2613 t.fld = -1; \
2614 all_false = 0; \
2615 } else { \
2616 t.fld = 0; \
2617 all_true = 0; \
2622 *xt = t; \
2623 crf6 = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \
2624 return crf6; \
2627 VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1)
2628 VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1)
2629 VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1, 1)
2630 VSX_CMP(xvcmpnedp, 2, float64, VsrD(i), eq, 0, 0)
2631 VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0, 1)
2632 VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1, 1)
2633 VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1, 1)
2634 VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0)
2637 * VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2638 * op - instruction mnemonic
2639 * nels - number of elements (1, 2 or 4)
2640 * stp - source type (float32 or float64)
2641 * ttp - target type (float32 or float64)
2642 * sfld - source vsr_t field
2643 * tfld - target vsr_t field (f32 or f64)
2644 * sfifprf - set FI and FPRF
2646 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfifprf) \
2647 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2649 ppc_vsr_t t = { }; \
2650 int i; \
2652 helper_reset_fpstatus(env); \
2654 for (i = 0; i < nels; i++) { \
2655 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
2656 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2657 &env->fp_status))) { \
2658 float_invalid_op_vxsnan(env, GETPC()); \
2659 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2661 if (sfifprf) { \
2662 helper_compute_fprf_##ttp(env, t.tfld); \
2666 *xt = t; \
2667 do_float_check_status(env, sfifprf, GETPC()); \
2670 VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2671 VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2 * i), VsrD(i), 0)
2673 #define VSX_CVT_FP_TO_FP2(op, nels, stp, ttp, sfifprf) \
2674 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2676 ppc_vsr_t t = { }; \
2677 int i; \
2679 helper_reset_fpstatus(env); \
2681 for (i = 0; i < nels; i++) { \
2682 t.VsrW(2 * i) = stp##_to_##ttp(xb->VsrD(i), &env->fp_status); \
2683 if (unlikely(stp##_is_signaling_nan(xb->VsrD(i), \
2684 &env->fp_status))) { \
2685 float_invalid_op_vxsnan(env, GETPC()); \
2686 t.VsrW(2 * i) = ttp##_snan_to_qnan(t.VsrW(2 * i)); \
2688 if (sfifprf) { \
2689 helper_compute_fprf_##ttp(env, t.VsrW(2 * i)); \
2691 t.VsrW(2 * i + 1) = t.VsrW(2 * i); \
2694 *xt = t; \
2695 do_float_check_status(env, sfifprf, GETPC()); \
2698 VSX_CVT_FP_TO_FP2(xvcvdpsp, 2, float64, float32, 0)
2699 VSX_CVT_FP_TO_FP2(xscvdpsp, 1, float64, float32, 1)
2702 * VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion
2703 * op - instruction mnemonic
2704 * nels - number of elements (1, 2 or 4)
2705 * stp - source type (float32 or float64)
2706 * ttp - target type (float32 or float64)
2707 * sfld - source vsr_t field
2708 * tfld - target vsr_t field (f32 or f64)
2709 * sfprf - set FPRF
2711 #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf) \
2712 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2713 ppc_vsr_t *xt, ppc_vsr_t *xb) \
2715 ppc_vsr_t t = *xt; \
2716 int i; \
2718 helper_reset_fpstatus(env); \
2720 for (i = 0; i < nels; i++) { \
2721 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
2722 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2723 &env->fp_status))) { \
2724 float_invalid_op_vxsnan(env, GETPC()); \
2725 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2727 if (sfprf) { \
2728 helper_compute_fprf_##ttp(env, t.tfld); \
2732 *xt = t; \
2733 do_float_check_status(env, true, GETPC()); \
2736 VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1)
2739 * VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion
2740 * involving one half precision value
2741 * op - instruction mnemonic
2742 * nels - number of elements (1, 2 or 4)
2743 * stp - source type
2744 * ttp - target type
2745 * sfld - source vsr_t field
2746 * tfld - target vsr_t field
2747 * sfifprf - set FI and FPRF
2749 #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfifprf) \
2750 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2752 ppc_vsr_t t = { }; \
2753 int i; \
2755 helper_reset_fpstatus(env); \
2757 for (i = 0; i < nels; i++) { \
2758 t.tfld = stp##_to_##ttp(xb->sfld, 1, &env->fp_status); \
2759 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2760 &env->fp_status))) { \
2761 float_invalid_op_vxsnan(env, GETPC()); \
2762 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2764 if (sfifprf) { \
2765 helper_compute_fprf_##ttp(env, t.tfld); \
2769 *xt = t; \
2770 do_float_check_status(env, sfifprf, GETPC()); \
2773 VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1)
2774 VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1)
2775 VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i + 1), 0)
2776 VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0)
2778 void helper_XVCVSPBF16(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)
2780 ppc_vsr_t t = { };
2781 int i, status;
2783 helper_reset_fpstatus(env);
2785 for (i = 0; i < 4; i++) {
2786 t.VsrH(2 * i + 1) = float32_to_bfloat16(xb->VsrW(i), &env->fp_status);
2789 status = get_float_exception_flags(&env->fp_status);
2790 if (unlikely(status & float_flag_invalid_snan)) {
2791 float_invalid_op_vxsnan(env, GETPC());
2794 *xt = t;
2795 do_float_check_status(env, false, GETPC());
2798 void helper_XSCVQPDP(CPUPPCState *env, uint32_t ro, ppc_vsr_t *xt,
2799 ppc_vsr_t *xb)
2801 ppc_vsr_t t = { };
2802 float_status tstat;
2804 helper_reset_fpstatus(env);
2806 tstat = env->fp_status;
2807 if (ro != 0) {
2808 tstat.float_rounding_mode = float_round_to_odd;
2811 t.VsrD(0) = float128_to_float64(xb->f128, &tstat);
2812 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2813 if (unlikely(float128_is_signaling_nan(xb->f128, &tstat))) {
2814 float_invalid_op_vxsnan(env, GETPC());
2815 t.VsrD(0) = float64_snan_to_qnan(t.VsrD(0));
2817 helper_compute_fprf_float64(env, t.VsrD(0));
2819 *xt = t;
2820 do_float_check_status(env, true, GETPC());
2823 uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2825 uint64_t result, sign, exp, frac;
2827 helper_reset_fpstatus(env);
2828 float_status tstat = env->fp_status;
2829 set_float_exception_flags(0, &tstat);
2831 sign = extract64(xb, 63, 1);
2832 exp = extract64(xb, 52, 11);
2833 frac = extract64(xb, 0, 52) | 0x10000000000000ULL;
2835 if (unlikely(exp == 0 && extract64(frac, 0, 52) != 0)) {
2836 /* DP denormal operand. */
2837 /* Exponent override to DP min exp. */
2838 exp = 1;
2839 /* Implicit bit override to 0. */
2840 frac = deposit64(frac, 53, 1, 0);
2843 if (unlikely(exp < 897 && frac != 0)) {
2844 /* SP tiny operand. */
2845 if (897 - exp > 63) {
2846 frac = 0;
2847 } else {
2848 /* Denormalize until exp = SP min exp. */
2849 frac >>= (897 - exp);
2851 /* Exponent override to SP min exp - 1. */
2852 exp = 896;
2855 result = sign << 31;
2856 result |= extract64(exp, 10, 1) << 30;
2857 result |= extract64(exp, 0, 7) << 23;
2858 result |= extract64(frac, 29, 23);
2860 /* hardware replicates result to both words of the doubleword result. */
2861 return (result << 32) | result;
2864 uint64_t helper_XSCVSPDPN(uint64_t xb)
2866 return helper_todouble(xb >> 32);
2870 * VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2871 * op - instruction mnemonic
2872 * nels - number of elements (1, 2 or 4)
2873 * stp - source type (float32 or float64)
2874 * ttp - target type (int32, uint32, int64 or uint64)
2875 * sfld - source vsr_t field
2876 * tfld - target vsr_t field
2877 * sfi - set FI
2878 * rnan - resulting NaN
2880 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, sfi, rnan) \
2881 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2883 int all_flags = 0; \
2884 ppc_vsr_t t = { }; \
2885 int i, flags; \
2887 for (i = 0; i < nels; i++) { \
2888 helper_reset_fpstatus(env); \
2889 t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \
2890 flags = env->fp_status.float_exception_flags; \
2891 all_flags |= flags; \
2892 if (unlikely(flags & float_flag_invalid)) { \
2893 t.tfld = float_invalid_cvt(env, flags, t.tfld, rnan, 0, GETPC());\
2897 *xt = t; \
2898 env->fp_status.float_exception_flags = all_flags; \
2899 do_float_check_status(env, sfi, GETPC()); \
2902 VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), true, \
2903 0x8000000000000000ULL)
2904 VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), true, 0ULL)
2905 VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), false, \
2906 0x8000000000000000ULL)
2907 VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), false, \
2908 0ULL)
2909 VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2 * i), VsrD(i), false, \
2910 0x8000000000000000ULL)
2911 VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), false, \
2912 0x80000000ULL)
2913 VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2 * i), VsrD(i), \
2914 false, 0ULL)
2915 VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), false, 0U)
2917 #define VSX_CVT_FP_TO_INT128(op, tp, rnan) \
2918 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2920 ppc_vsr_t t; \
2921 int flags; \
2923 helper_reset_fpstatus(env); \
2924 t.s128 = float128_to_##tp##_round_to_zero(xb->f128, &env->fp_status); \
2925 flags = get_float_exception_flags(&env->fp_status); \
2926 if (unlikely(flags & float_flag_invalid)) { \
2927 t.VsrD(0) = float_invalid_cvt(env, flags, t.VsrD(0), rnan, 0, GETPC());\
2928 t.VsrD(1) = -(t.VsrD(0) & 1); \
2931 *xt = t; \
2932 do_float_check_status(env, true, GETPC()); \
2935 VSX_CVT_FP_TO_INT128(XSCVQPUQZ, uint128, 0)
2936 VSX_CVT_FP_TO_INT128(XSCVQPSQZ, int128, 0x8000000000000000ULL);
2939 * Likewise, except that the result is duplicated into both subwords.
2940 * Power ISA v3.1 has Programming Notes for these insns:
2941 * Previous versions of the architecture allowed the contents of
2942 * word 0 of the result register to be undefined. However, all
2943 * processors that support this instruction write the result into
2944 * words 0 and 1 (and words 2 and 3) of the result register, as
2945 * is required by this version of the architecture.
2947 #define VSX_CVT_FP_TO_INT2(op, nels, stp, ttp, sfi, rnan) \
2948 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2950 int all_flags = 0; \
2951 ppc_vsr_t t = { }; \
2952 int i, flags; \
2954 for (i = 0; i < nels; i++) { \
2955 helper_reset_fpstatus(env); \
2956 t.VsrW(2 * i) = stp##_to_##ttp##_round_to_zero(xb->VsrD(i), \
2957 &env->fp_status); \
2958 flags = env->fp_status.float_exception_flags; \
2959 all_flags |= flags; \
2960 if (unlikely(flags & float_flag_invalid)) { \
2961 t.VsrW(2 * i) = float_invalid_cvt(env, flags, t.VsrW(2 * i), \
2962 rnan, 0, GETPC()); \
2964 t.VsrW(2 * i + 1) = t.VsrW(2 * i); \
2967 *xt = t; \
2968 env->fp_status.float_exception_flags = all_flags; \
2969 do_float_check_status(env, sfi, GETPC()); \
2972 VSX_CVT_FP_TO_INT2(xscvdpsxws, 1, float64, int32, true, 0x80000000U)
2973 VSX_CVT_FP_TO_INT2(xscvdpuxws, 1, float64, uint32, true, 0U)
2974 VSX_CVT_FP_TO_INT2(xvcvdpsxws, 2, float64, int32, false, 0x80000000U)
2975 VSX_CVT_FP_TO_INT2(xvcvdpuxws, 2, float64, uint32, false, 0U)
2978 * VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion
2979 * op - instruction mnemonic
2980 * stp - source type (float32 or float64)
2981 * ttp - target type (int32, uint32, int64 or uint64)
2982 * sfld - source vsr_t field
2983 * tfld - target vsr_t field
2984 * rnan - resulting NaN
2986 #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan) \
2987 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2988 ppc_vsr_t *xt, ppc_vsr_t *xb) \
2990 ppc_vsr_t t = { }; \
2991 int flags; \
2993 helper_reset_fpstatus(env); \
2995 t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \
2996 flags = get_float_exception_flags(&env->fp_status); \
2997 if (flags & float_flag_invalid) { \
2998 t.tfld = float_invalid_cvt(env, flags, t.tfld, rnan, 0, GETPC()); \
3001 *xt = t; \
3002 do_float_check_status(env, true, GETPC()); \
3005 VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0), \
3006 0x8000000000000000ULL)
3007 VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0), \
3008 0xffffffff80000000ULL)
3009 VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz, float128, uint64, f128, VsrD(0), 0x0ULL)
3010 VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL)
3013 * VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
3014 * op - instruction mnemonic
3015 * nels - number of elements (1, 2 or 4)
3016 * stp - source type (int32, uint32, int64 or uint64)
3017 * ttp - target type (float32 or float64)
3018 * sfld - source vsr_t field
3019 * tfld - target vsr_t field
3020 * jdef - definition of the j index (i or 2*i)
3021 * sfifprf - set FI and FPRF
3023 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfifprf, r2sp)\
3024 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
3026 ppc_vsr_t t = { }; \
3027 int i; \
3029 helper_reset_fpstatus(env); \
3031 for (i = 0; i < nels; i++) { \
3032 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
3033 if (r2sp) { \
3034 t.tfld = do_frsp(env, t.tfld, GETPC()); \
3036 if (sfifprf) { \
3037 helper_compute_fprf_float64(env, t.tfld); \
3041 *xt = t; \
3042 do_float_check_status(env, sfifprf, GETPC()); \
3045 VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
3046 VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
3047 VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
3048 VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
3049 VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
3050 VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
3051 VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2 * i), VsrD(i), 0, 0)
3052 VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2 * i), VsrD(i), 0, 0)
3053 VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
3054 VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
3056 #define VSX_CVT_INT_TO_FP2(op, stp, ttp) \
3057 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
3059 ppc_vsr_t t = { }; \
3060 int i; \
3062 for (i = 0; i < 2; i++) { \
3063 t.VsrW(2 * i) = stp##_to_##ttp(xb->VsrD(i), &env->fp_status); \
3064 t.VsrW(2 * i + 1) = t.VsrW(2 * i); \
3067 *xt = t; \
3068 do_float_check_status(env, false, GETPC()); \
3071 VSX_CVT_INT_TO_FP2(xvcvsxdsp, int64, float32)
3072 VSX_CVT_INT_TO_FP2(xvcvuxdsp, uint64, float32)
3074 #define VSX_CVT_INT128_TO_FP(op, tp) \
3075 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)\
3077 helper_reset_fpstatus(env); \
3078 xt->f128 = tp##_to_float128(xb->s128, &env->fp_status); \
3079 helper_compute_fprf_float128(env, xt->f128); \
3080 do_float_check_status(env, true, GETPC()); \
3083 VSX_CVT_INT128_TO_FP(XSCVUQQP, uint128);
3084 VSX_CVT_INT128_TO_FP(XSCVSQQP, int128);
3087 * VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion
3088 * op - instruction mnemonic
3089 * stp - source type (int32, uint32, int64 or uint64)
3090 * ttp - target type (float32 or float64)
3091 * sfld - source vsr_t field
3092 * tfld - target vsr_t field
3094 #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld) \
3095 void helper_##op(CPUPPCState *env, uint32_t opcode, \
3096 ppc_vsr_t *xt, ppc_vsr_t *xb) \
3098 ppc_vsr_t t = *xt; \
3100 helper_reset_fpstatus(env); \
3101 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
3102 helper_compute_fprf_##ttp(env, t.tfld); \
3104 *xt = t; \
3105 do_float_check_status(env, true, GETPC()); \
3108 VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128)
3109 VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128)
3112 * For "use current rounding mode", define a value that will not be
3113 * one of the existing rounding model enums.
3115 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
3116 float_round_up + float_round_to_zero)
3119 * VSX_ROUND - VSX floating point round
3120 * op - instruction mnemonic
3121 * nels - number of elements (1, 2 or 4)
3122 * tp - type (float32 or float64)
3123 * fld - vsr_t field (VsrD(*) or VsrW(*))
3124 * rmode - rounding mode
3125 * sfifprf - set FI and FPRF
3127 #define VSX_ROUND(op, nels, tp, fld, rmode, sfifprf) \
3128 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
3130 ppc_vsr_t t = { }; \
3131 int i; \
3132 FloatRoundMode curr_rounding_mode; \
3134 helper_reset_fpstatus(env); \
3136 if (rmode != FLOAT_ROUND_CURRENT) { \
3137 curr_rounding_mode = get_float_rounding_mode(&env->fp_status); \
3138 set_float_rounding_mode(rmode, &env->fp_status); \
3141 for (i = 0; i < nels; i++) { \
3142 if (unlikely(tp##_is_signaling_nan(xb->fld, \
3143 &env->fp_status))) { \
3144 float_invalid_op_vxsnan(env, GETPC()); \
3145 t.fld = tp##_snan_to_qnan(xb->fld); \
3146 } else { \
3147 t.fld = tp##_round_to_int(xb->fld, &env->fp_status); \
3149 if (sfifprf) { \
3150 helper_compute_fprf_float64(env, t.fld); \
3154 /* \
3155 * If this is not a "use current rounding mode" instruction, \
3156 * then inhibit setting of the XX bit and restore rounding \
3157 * mode from FPSCR \
3158 */ \
3159 if (rmode != FLOAT_ROUND_CURRENT) { \
3160 set_float_rounding_mode(curr_rounding_mode, &env->fp_status); \
3161 env->fp_status.float_exception_flags &= ~float_flag_inexact; \
3164 *xt = t; \
3165 do_float_check_status(env, sfifprf, GETPC()); \
3168 VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1)
3169 VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
3170 VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
3171 VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
3172 VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
3174 VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0)
3175 VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
3176 VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
3177 VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
3178 VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
3180 VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0)
3181 VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
3182 VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
3183 VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
3184 VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
3186 uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
3188 helper_reset_fpstatus(env);
3190 uint64_t xt = do_frsp(env, xb, GETPC());
3192 helper_compute_fprf_float64(env, xt);
3193 do_float_check_status(env, true, GETPC());
3194 return xt;
3197 void helper_XVXSIGSP(ppc_vsr_t *xt, ppc_vsr_t *xb)
3199 ppc_vsr_t t = { };
3200 uint32_t exp, i, fraction;
3202 for (i = 0; i < 4; i++) {
3203 exp = (xb->VsrW(i) >> 23) & 0xFF;
3204 fraction = xb->VsrW(i) & 0x7FFFFF;
3205 if (exp != 0 && exp != 255) {
3206 t.VsrW(i) = fraction | 0x00800000;
3207 } else {
3208 t.VsrW(i) = fraction;
3211 *xt = t;
3214 #define VSX_TSTDC(tp) \
3215 static int32_t tp##_tstdc(tp b, uint32_t dcmx) \
3217 uint32_t match = 0; \
3218 uint32_t sign = tp##_is_neg(b); \
3219 if (tp##_is_any_nan(b)) { \
3220 match = extract32(dcmx, 6, 1); \
3221 } else if (tp##_is_infinity(b)) { \
3222 match = extract32(dcmx, 4 + !sign, 1); \
3223 } else if (tp##_is_zero(b)) { \
3224 match = extract32(dcmx, 2 + !sign, 1); \
3225 } else if (tp##_is_zero_or_denormal(b)) { \
3226 match = extract32(dcmx, 0 + !sign, 1); \
3228 return (match != 0); \
3231 VSX_TSTDC(float32)
3232 VSX_TSTDC(float64)
3233 VSX_TSTDC(float128)
3234 #undef VSX_TSTDC
3236 void helper_XVTSTDCDP(ppc_vsr_t *t, ppc_vsr_t *b, uint64_t dcmx, uint32_t v)
3238 int i;
3239 for (i = 0; i < 2; i++) {
3240 t->s64[i] = (int64_t)-float64_tstdc(b->f64[i], dcmx);
3244 void helper_XVTSTDCSP(ppc_vsr_t *t, ppc_vsr_t *b, uint64_t dcmx, uint32_t v)
3246 int i;
3247 for (i = 0; i < 4; i++) {
3248 t->s32[i] = (int32_t)-float32_tstdc(b->f32[i], dcmx);
3252 static bool not_SP_value(float64 val)
3254 return val != helper_todouble(helper_tosingle(val));
3258 * VSX_XS_TSTDC - VSX Scalar Test Data Class
3259 * NAME - instruction name
3260 * FLD - vsr_t field (VsrD(0) or f128)
3261 * TP - type (float64 or float128)
3263 #define VSX_XS_TSTDC(NAME, FLD, TP) \
3264 void helper_##NAME(CPUPPCState *env, uint32_t bf, \
3265 uint32_t dcmx, ppc_vsr_t *b) \
3267 uint32_t cc, match, sign = TP##_is_neg(b->FLD); \
3268 match = TP##_tstdc(b->FLD, dcmx); \
3269 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT; \
3270 env->fpscr &= ~FP_FPCC; \
3271 env->fpscr |= cc << FPSCR_FPCC; \
3272 env->crf[bf] = cc; \
3275 VSX_XS_TSTDC(XSTSTDCDP, VsrD(0), float64)
3276 VSX_XS_TSTDC(XSTSTDCQP, f128, float128)
3277 #undef VSX_XS_TSTDC
3279 void helper_XSTSTDCSP(CPUPPCState *env, uint32_t bf,
3280 uint32_t dcmx, ppc_vsr_t *b)
3282 uint32_t cc, match, sign = float64_is_neg(b->VsrD(0));
3283 uint32_t exp = (b->VsrD(0) >> 52) & 0x7FF;
3284 int not_sp = (int)not_SP_value(b->VsrD(0));
3285 match = float64_tstdc(b->VsrD(0), dcmx) || (exp > 0 && exp < 0x381);
3286 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT;
3287 env->fpscr &= ~FP_FPCC;
3288 env->fpscr |= cc << FPSCR_FPCC;
3289 env->crf[bf] = cc;
3292 void helper_xsrqpi(CPUPPCState *env, uint32_t opcode,
3293 ppc_vsr_t *xt, ppc_vsr_t *xb)
3295 ppc_vsr_t t = { };
3296 uint8_t r = Rrm(opcode);
3297 uint8_t ex = Rc(opcode);
3298 uint8_t rmc = RMC(opcode);
3299 uint8_t rmode = 0;
3300 float_status tstat;
3302 helper_reset_fpstatus(env);
3304 if (r == 0 && rmc == 0) {
3305 rmode = float_round_ties_away;
3306 } else if (r == 0 && rmc == 0x3) {
3307 rmode = env->fpscr & FP_RN;
3308 } else if (r == 1) {
3309 switch (rmc) {
3310 case 0:
3311 rmode = float_round_nearest_even;
3312 break;
3313 case 1:
3314 rmode = float_round_to_zero;
3315 break;
3316 case 2:
3317 rmode = float_round_up;
3318 break;
3319 case 3:
3320 rmode = float_round_down;
3321 break;
3322 default:
3323 abort();
3327 tstat = env->fp_status;
3328 set_float_exception_flags(0, &tstat);
3329 set_float_rounding_mode(rmode, &tstat);
3330 t.f128 = float128_round_to_int(xb->f128, &tstat);
3331 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3333 if (unlikely(tstat.float_exception_flags & float_flag_invalid_snan)) {
3334 float_invalid_op_vxsnan(env, GETPC());
3337 if (ex == 0 && (tstat.float_exception_flags & float_flag_inexact)) {
3338 env->fp_status.float_exception_flags &= ~float_flag_inexact;
3341 helper_compute_fprf_float128(env, t.f128);
3342 do_float_check_status(env, true, GETPC());
3343 *xt = t;
3346 void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode,
3347 ppc_vsr_t *xt, ppc_vsr_t *xb)
3349 ppc_vsr_t t = { };
3350 uint8_t r = Rrm(opcode);
3351 uint8_t rmc = RMC(opcode);
3352 uint8_t rmode = 0;
3353 floatx80 round_res;
3354 float_status tstat;
3356 helper_reset_fpstatus(env);
3358 if (r == 0 && rmc == 0) {
3359 rmode = float_round_ties_away;
3360 } else if (r == 0 && rmc == 0x3) {
3361 rmode = env->fpscr & FP_RN;
3362 } else if (r == 1) {
3363 switch (rmc) {
3364 case 0:
3365 rmode = float_round_nearest_even;
3366 break;
3367 case 1:
3368 rmode = float_round_to_zero;
3369 break;
3370 case 2:
3371 rmode = float_round_up;
3372 break;
3373 case 3:
3374 rmode = float_round_down;
3375 break;
3376 default:
3377 abort();
3381 tstat = env->fp_status;
3382 set_float_exception_flags(0, &tstat);
3383 set_float_rounding_mode(rmode, &tstat);
3384 round_res = float128_to_floatx80(xb->f128, &tstat);
3385 t.f128 = floatx80_to_float128(round_res, &tstat);
3386 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3388 if (unlikely(tstat.float_exception_flags & float_flag_invalid_snan)) {
3389 float_invalid_op_vxsnan(env, GETPC());
3390 t.f128 = float128_snan_to_qnan(t.f128);
3393 helper_compute_fprf_float128(env, t.f128);
3394 *xt = t;
3395 do_float_check_status(env, true, GETPC());
3398 void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode,
3399 ppc_vsr_t *xt, ppc_vsr_t *xb)
3401 ppc_vsr_t t = { };
3402 float_status tstat;
3404 helper_reset_fpstatus(env);
3406 tstat = env->fp_status;
3407 if (unlikely(Rc(opcode) != 0)) {
3408 tstat.float_rounding_mode = float_round_to_odd;
3411 set_float_exception_flags(0, &tstat);
3412 t.f128 = float128_sqrt(xb->f128, &tstat);
3413 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3415 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3416 float_invalid_op_sqrt(env, tstat.float_exception_flags, 1, GETPC());
3419 helper_compute_fprf_float128(env, t.f128);
3420 *xt = t;
3421 do_float_check_status(env, true, GETPC());
3424 void helper_xssubqp(CPUPPCState *env, uint32_t opcode,
3425 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
3427 ppc_vsr_t t = *xt;
3428 float_status tstat;
3430 helper_reset_fpstatus(env);
3432 tstat = env->fp_status;
3433 if (unlikely(Rc(opcode) != 0)) {
3434 tstat.float_rounding_mode = float_round_to_odd;
3437 set_float_exception_flags(0, &tstat);
3438 t.f128 = float128_sub(xa->f128, xb->f128, &tstat);
3439 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3441 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3442 float_invalid_op_addsub(env, tstat.float_exception_flags, 1, GETPC());
3445 helper_compute_fprf_float128(env, t.f128);
3446 *xt = t;
3447 do_float_check_status(env, true, GETPC());
3450 static inline void vsxger_excp(CPUPPCState *env, uintptr_t retaddr)
3453 * XV*GER instructions execute and set the FPSCR as if exceptions
3454 * are disabled and only at the end throw an exception
3456 target_ulong enable;
3457 enable = env->fpscr & (FP_ENABLES | FP_FI | FP_FR);
3458 env->fpscr &= ~(FP_ENABLES | FP_FI | FP_FR);
3459 int status = get_float_exception_flags(&env->fp_status);
3460 if (unlikely(status & float_flag_invalid)) {
3461 if (status & float_flag_invalid_snan) {
3462 float_invalid_op_vxsnan(env, 0);
3464 if (status & float_flag_invalid_imz) {
3465 float_invalid_op_vximz(env, false, 0);
3467 if (status & float_flag_invalid_isi) {
3468 float_invalid_op_vxisi(env, false, 0);
3471 do_float_check_status(env, false, retaddr);
3472 env->fpscr |= enable;
3473 do_fpscr_check_status(env, retaddr);
3476 typedef float64 extract_f16(float16, float_status *);
3478 static float64 extract_hf16(float16 in, float_status *fp_status)
3480 return float16_to_float64(in, true, fp_status);
3483 static float64 extract_bf16(bfloat16 in, float_status *fp_status)
3485 return bfloat16_to_float64(in, fp_status);
3488 static void vsxger16(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3489 ppc_acc_t *at, uint32_t mask, bool acc,
3490 bool neg_mul, bool neg_acc, extract_f16 extract)
3492 float32 r, aux_acc;
3493 float64 psum, va, vb, vc, vd;
3494 int i, j, xmsk_bit, ymsk_bit;
3495 uint8_t pmsk = FIELD_EX32(mask, GER_MSK, PMSK),
3496 xmsk = FIELD_EX32(mask, GER_MSK, XMSK),
3497 ymsk = FIELD_EX32(mask, GER_MSK, YMSK);
3498 float_status *excp_ptr = &env->fp_status;
3499 for (i = 0, xmsk_bit = 1 << 3; i < 4; i++, xmsk_bit >>= 1) {
3500 for (j = 0, ymsk_bit = 1 << 3; j < 4; j++, ymsk_bit >>= 1) {
3501 if ((xmsk_bit & xmsk) && (ymsk_bit & ymsk)) {
3502 va = !(pmsk & 2) ? float64_zero :
3503 extract(a->VsrHF(2 * i), excp_ptr);
3504 vb = !(pmsk & 2) ? float64_zero :
3505 extract(b->VsrHF(2 * j), excp_ptr);
3506 vc = !(pmsk & 1) ? float64_zero :
3507 extract(a->VsrHF(2 * i + 1), excp_ptr);
3508 vd = !(pmsk & 1) ? float64_zero :
3509 extract(b->VsrHF(2 * j + 1), excp_ptr);
3510 psum = float64_mul(va, vb, excp_ptr);
3511 psum = float64r32_muladd(vc, vd, psum, 0, excp_ptr);
3512 r = float64_to_float32(psum, excp_ptr);
3513 if (acc) {
3514 aux_acc = at[i].VsrSF(j);
3515 if (neg_mul) {
3516 r = bfp32_neg(r);
3518 if (neg_acc) {
3519 aux_acc = bfp32_neg(aux_acc);
3521 r = float32_add(r, aux_acc, excp_ptr);
3523 at[i].VsrSF(j) = r;
3524 } else {
3525 at[i].VsrSF(j) = float32_zero;
3529 vsxger_excp(env, GETPC());
3532 typedef void vsxger_zero(ppc_vsr_t *at, int, int);
3534 typedef void vsxger_muladd_f(ppc_vsr_t *, ppc_vsr_t *, ppc_vsr_t *, int, int,
3535 int flags, float_status *s);
3537 static void vsxger_muladd32(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i,
3538 int j, int flags, float_status *s)
3540 at[i].VsrSF(j) = float32_muladd(a->VsrSF(i), b->VsrSF(j),
3541 at[i].VsrSF(j), flags, s);
3544 static void vsxger_mul32(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i,
3545 int j, int flags, float_status *s)
3547 at[i].VsrSF(j) = float32_mul(a->VsrSF(i), b->VsrSF(j), s);
3550 static void vsxger_zero32(ppc_vsr_t *at, int i, int j)
3552 at[i].VsrSF(j) = float32_zero;
3555 static void vsxger_muladd64(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i,
3556 int j, int flags, float_status *s)
3558 if (j >= 2) {
3559 j -= 2;
3560 at[i].VsrDF(j) = float64_muladd(a[i / 2].VsrDF(i % 2), b->VsrDF(j),
3561 at[i].VsrDF(j), flags, s);
3565 static void vsxger_mul64(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i,
3566 int j, int flags, float_status *s)
3568 if (j >= 2) {
3569 j -= 2;
3570 at[i].VsrDF(j) = float64_mul(a[i / 2].VsrDF(i % 2), b->VsrDF(j), s);
3574 static void vsxger_zero64(ppc_vsr_t *at, int i, int j)
3576 if (j >= 2) {
3577 j -= 2;
3578 at[i].VsrDF(j) = float64_zero;
3582 static void vsxger(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3583 ppc_acc_t *at, uint32_t mask, bool acc, bool neg_mul,
3584 bool neg_acc, vsxger_muladd_f mul, vsxger_muladd_f muladd,
3585 vsxger_zero zero)
3587 int i, j, xmsk_bit, ymsk_bit, op_flags;
3588 uint8_t xmsk = mask & 0x0F;
3589 uint8_t ymsk = (mask >> 4) & 0x0F;
3590 float_status *excp_ptr = &env->fp_status;
3591 op_flags = (neg_acc ^ neg_mul) ? float_muladd_negate_c : 0;
3592 op_flags |= (neg_mul) ? float_muladd_negate_result : 0;
3593 helper_reset_fpstatus(env);
3594 for (i = 0, xmsk_bit = 1 << 3; i < 4; i++, xmsk_bit >>= 1) {
3595 for (j = 0, ymsk_bit = 1 << 3; j < 4; j++, ymsk_bit >>= 1) {
3596 if ((xmsk_bit & xmsk) && (ymsk_bit & ymsk)) {
3597 if (acc) {
3598 muladd(at, a, b, i, j, op_flags, excp_ptr);
3599 } else {
3600 mul(at, a, b, i, j, op_flags, excp_ptr);
3602 } else {
3603 zero(at, i, j);
3607 vsxger_excp(env, GETPC());
3610 QEMU_FLATTEN
3611 void helper_XVBF16GER2(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3612 ppc_acc_t *at, uint32_t mask)
3614 vsxger16(env, a, b, at, mask, false, false, false, extract_bf16);
3617 QEMU_FLATTEN
3618 void helper_XVBF16GER2PP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3619 ppc_acc_t *at, uint32_t mask)
3621 vsxger16(env, a, b, at, mask, true, false, false, extract_bf16);
3624 QEMU_FLATTEN
3625 void helper_XVBF16GER2PN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3626 ppc_acc_t *at, uint32_t mask)
3628 vsxger16(env, a, b, at, mask, true, false, true, extract_bf16);
3631 QEMU_FLATTEN
3632 void helper_XVBF16GER2NP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3633 ppc_acc_t *at, uint32_t mask)
3635 vsxger16(env, a, b, at, mask, true, true, false, extract_bf16);
3638 QEMU_FLATTEN
3639 void helper_XVBF16GER2NN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3640 ppc_acc_t *at, uint32_t mask)
3642 vsxger16(env, a, b, at, mask, true, true, true, extract_bf16);
3645 QEMU_FLATTEN
3646 void helper_XVF16GER2(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3647 ppc_acc_t *at, uint32_t mask)
3649 vsxger16(env, a, b, at, mask, false, false, false, extract_hf16);
3652 QEMU_FLATTEN
3653 void helper_XVF16GER2PP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3654 ppc_acc_t *at, uint32_t mask)
3656 vsxger16(env, a, b, at, mask, true, false, false, extract_hf16);
3659 QEMU_FLATTEN
3660 void helper_XVF16GER2PN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3661 ppc_acc_t *at, uint32_t mask)
3663 vsxger16(env, a, b, at, mask, true, false, true, extract_hf16);
3666 QEMU_FLATTEN
3667 void helper_XVF16GER2NP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3668 ppc_acc_t *at, uint32_t mask)
3670 vsxger16(env, a, b, at, mask, true, true, false, extract_hf16);
3673 QEMU_FLATTEN
3674 void helper_XVF16GER2NN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3675 ppc_acc_t *at, uint32_t mask)
3677 vsxger16(env, a, b, at, mask, true, true, true, extract_hf16);
3680 QEMU_FLATTEN
3681 void helper_XVF32GER(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3682 ppc_acc_t *at, uint32_t mask)
3684 vsxger(env, a, b, at, mask, false, false, false, vsxger_mul32,
3685 vsxger_muladd32, vsxger_zero32);
3688 QEMU_FLATTEN
3689 void helper_XVF32GERPP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3690 ppc_acc_t *at, uint32_t mask)
3692 vsxger(env, a, b, at, mask, true, false, false, vsxger_mul32,
3693 vsxger_muladd32, vsxger_zero32);
3696 QEMU_FLATTEN
3697 void helper_XVF32GERPN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3698 ppc_acc_t *at, uint32_t mask)
3700 vsxger(env, a, b, at, mask, true, false, true, vsxger_mul32,
3701 vsxger_muladd32, vsxger_zero32);
3704 QEMU_FLATTEN
3705 void helper_XVF32GERNP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3706 ppc_acc_t *at, uint32_t mask)
3708 vsxger(env, a, b, at, mask, true, true, false, vsxger_mul32,
3709 vsxger_muladd32, vsxger_zero32);
3712 QEMU_FLATTEN
3713 void helper_XVF32GERNN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3714 ppc_acc_t *at, uint32_t mask)
3716 vsxger(env, a, b, at, mask, true, true, true, vsxger_mul32,
3717 vsxger_muladd32, vsxger_zero32);
3720 QEMU_FLATTEN
3721 void helper_XVF64GER(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3722 ppc_acc_t *at, uint32_t mask)
3724 vsxger(env, a, b, at, mask, false, false, false, vsxger_mul64,
3725 vsxger_muladd64, vsxger_zero64);
3728 QEMU_FLATTEN
3729 void helper_XVF64GERPP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3730 ppc_acc_t *at, uint32_t mask)
3732 vsxger(env, a, b, at, mask, true, false, false, vsxger_mul64,
3733 vsxger_muladd64, vsxger_zero64);
3736 QEMU_FLATTEN
3737 void helper_XVF64GERPN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3738 ppc_acc_t *at, uint32_t mask)
3740 vsxger(env, a, b, at, mask, true, false, true, vsxger_mul64,
3741 vsxger_muladd64, vsxger_zero64);
3744 QEMU_FLATTEN
3745 void helper_XVF64GERNP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3746 ppc_acc_t *at, uint32_t mask)
3748 vsxger(env, a, b, at, mask, true, true, false, vsxger_mul64,
3749 vsxger_muladd64, vsxger_zero64);
3752 QEMU_FLATTEN
3753 void helper_XVF64GERNN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3754 ppc_acc_t *at, uint32_t mask)
3756 vsxger(env, a, b, at, mask, true, true, true, vsxger_mul64,
3757 vsxger_muladd64, vsxger_zero64);