hw/xen/hvm: Get target page size at runtime
[qemu/ar7.git] / target / arm / vfp_helper.c
blob3e5e37abbe8787652fa04bc8e968a08f39ec7426
1 /*
2 * ARM VFP floating-point operations
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "internals.h"
24 #include "cpu-features.h"
25 #ifdef CONFIG_TCG
26 #include "qemu/log.h"
27 #include "fpu/softfloat.h"
28 #endif
30 /* VFP support. We follow the convention used for VFP instructions:
31 Single precision routines have a "s" suffix, double precision a
32 "d" suffix. */
34 #ifdef CONFIG_TCG
36 /* Convert host exception flags to vfp form. */
37 static inline int vfp_exceptbits_from_host(int host_bits)
39 int target_bits = 0;
41 if (host_bits & float_flag_invalid) {
42 target_bits |= 1;
44 if (host_bits & float_flag_divbyzero) {
45 target_bits |= 2;
47 if (host_bits & float_flag_overflow) {
48 target_bits |= 4;
50 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) {
51 target_bits |= 8;
53 if (host_bits & float_flag_inexact) {
54 target_bits |= 0x10;
56 if (host_bits & float_flag_input_denormal) {
57 target_bits |= 0x80;
59 return target_bits;
62 /* Convert vfp exception flags to target form. */
63 static inline int vfp_exceptbits_to_host(int target_bits)
65 int host_bits = 0;
67 if (target_bits & 1) {
68 host_bits |= float_flag_invalid;
70 if (target_bits & 2) {
71 host_bits |= float_flag_divbyzero;
73 if (target_bits & 4) {
74 host_bits |= float_flag_overflow;
76 if (target_bits & 8) {
77 host_bits |= float_flag_underflow;
79 if (target_bits & 0x10) {
80 host_bits |= float_flag_inexact;
82 if (target_bits & 0x80) {
83 host_bits |= float_flag_input_denormal;
85 return host_bits;
88 static uint32_t vfp_get_fpscr_from_host(CPUARMState *env)
90 uint32_t i;
92 i = get_float_exception_flags(&env->vfp.fp_status);
93 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
94 /* FZ16 does not generate an input denormal exception. */
95 i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
96 & ~float_flag_input_denormal);
97 i |= (get_float_exception_flags(&env->vfp.standard_fp_status_f16)
98 & ~float_flag_input_denormal);
99 return vfp_exceptbits_from_host(i);
102 static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val)
104 int i;
105 uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR];
107 changed ^= val;
108 if (changed & (3 << 22)) {
109 i = (val >> 22) & 3;
110 switch (i) {
111 case FPROUNDING_TIEEVEN:
112 i = float_round_nearest_even;
113 break;
114 case FPROUNDING_POSINF:
115 i = float_round_up;
116 break;
117 case FPROUNDING_NEGINF:
118 i = float_round_down;
119 break;
120 case FPROUNDING_ZERO:
121 i = float_round_to_zero;
122 break;
124 set_float_rounding_mode(i, &env->vfp.fp_status);
125 set_float_rounding_mode(i, &env->vfp.fp_status_f16);
127 if (changed & FPCR_FZ16) {
128 bool ftz_enabled = val & FPCR_FZ16;
129 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
130 set_flush_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
131 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
132 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
134 if (changed & FPCR_FZ) {
135 bool ftz_enabled = val & FPCR_FZ;
136 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
137 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
139 if (changed & FPCR_DN) {
140 bool dnan_enabled = val & FPCR_DN;
141 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
142 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
146 * The exception flags are ORed together when we read fpscr so we
147 * only need to preserve the current state in one of our
148 * float_status values.
150 i = vfp_exceptbits_to_host(val);
151 set_float_exception_flags(i, &env->vfp.fp_status);
152 set_float_exception_flags(0, &env->vfp.fp_status_f16);
153 set_float_exception_flags(0, &env->vfp.standard_fp_status);
154 set_float_exception_flags(0, &env->vfp.standard_fp_status_f16);
157 #else
159 static uint32_t vfp_get_fpscr_from_host(CPUARMState *env)
161 return 0;
164 static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val)
168 #endif
170 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
172 uint32_t i, fpscr;
174 fpscr = env->vfp.xregs[ARM_VFP_FPSCR]
175 | (env->vfp.vec_len << 16)
176 | (env->vfp.vec_stride << 20);
179 * M-profile LTPSIZE overlaps A-profile Stride; whichever of the
180 * two is not applicable to this CPU will always be zero.
182 fpscr |= env->v7m.ltpsize << 16;
184 fpscr |= vfp_get_fpscr_from_host(env);
186 i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
187 fpscr |= i ? FPCR_QC : 0;
189 return fpscr;
192 uint32_t vfp_get_fpscr(CPUARMState *env)
194 return HELPER(vfp_get_fpscr)(env);
197 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
199 ARMCPU *cpu = env_archcpu(env);
201 /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */
202 if (!cpu_isar_feature(any_fp16, cpu)) {
203 val &= ~FPCR_FZ16;
206 vfp_set_fpscr_to_host(env, val);
208 if (!arm_feature(env, ARM_FEATURE_M)) {
210 * Short-vector length and stride; on M-profile these bits
211 * are used for different purposes.
212 * We can't make this conditional be "if MVFR0.FPShVec != 0",
213 * because in v7A no-short-vector-support cores still had to
214 * allow Stride/Len to be written with the only effect that
215 * some insns are required to UNDEF if the guest sets them.
217 env->vfp.vec_len = extract32(val, 16, 3);
218 env->vfp.vec_stride = extract32(val, 20, 2);
219 } else if (cpu_isar_feature(aa32_mve, cpu)) {
220 env->v7m.ltpsize = extract32(val, FPCR_LTPSIZE_SHIFT,
221 FPCR_LTPSIZE_LENGTH);
224 if (arm_feature(env, ARM_FEATURE_NEON) ||
225 cpu_isar_feature(aa32_mve, cpu)) {
227 * The bit we set within fpscr_q is arbitrary; the register as a
228 * whole being zero/non-zero is what counts.
229 * TODO: M-profile MVE also has a QC bit.
231 env->vfp.qc[0] = val & FPCR_QC;
232 env->vfp.qc[1] = 0;
233 env->vfp.qc[2] = 0;
234 env->vfp.qc[3] = 0;
238 * We don't implement trapped exception handling, so the
239 * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
241 * The exception flags IOC|DZC|OFC|UFC|IXC|IDC are stored in
242 * fp_status; QC, Len and Stride are stored separately earlier.
243 * Clear out all of those and the RES0 bits: only NZCV, AHP, DN,
244 * FZ, RMode and FZ16 are kept in vfp.xregs[FPSCR].
246 env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000;
249 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
251 HELPER(vfp_set_fpscr)(env, val);
254 #ifdef CONFIG_TCG
256 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
258 #define VFP_BINOP(name) \
259 dh_ctype_f16 VFP_HELPER(name, h)(dh_ctype_f16 a, dh_ctype_f16 b, void *fpstp) \
261 float_status *fpst = fpstp; \
262 return float16_ ## name(a, b, fpst); \
264 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
266 float_status *fpst = fpstp; \
267 return float32_ ## name(a, b, fpst); \
269 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
271 float_status *fpst = fpstp; \
272 return float64_ ## name(a, b, fpst); \
274 VFP_BINOP(add)
275 VFP_BINOP(sub)
276 VFP_BINOP(mul)
277 VFP_BINOP(div)
278 VFP_BINOP(min)
279 VFP_BINOP(max)
280 VFP_BINOP(minnum)
281 VFP_BINOP(maxnum)
282 #undef VFP_BINOP
284 dh_ctype_f16 VFP_HELPER(neg, h)(dh_ctype_f16 a)
286 return float16_chs(a);
289 float32 VFP_HELPER(neg, s)(float32 a)
291 return float32_chs(a);
294 float64 VFP_HELPER(neg, d)(float64 a)
296 return float64_chs(a);
299 dh_ctype_f16 VFP_HELPER(abs, h)(dh_ctype_f16 a)
301 return float16_abs(a);
304 float32 VFP_HELPER(abs, s)(float32 a)
306 return float32_abs(a);
309 float64 VFP_HELPER(abs, d)(float64 a)
311 return float64_abs(a);
314 dh_ctype_f16 VFP_HELPER(sqrt, h)(dh_ctype_f16 a, CPUARMState *env)
316 return float16_sqrt(a, &env->vfp.fp_status_f16);
319 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
321 return float32_sqrt(a, &env->vfp.fp_status);
324 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
326 return float64_sqrt(a, &env->vfp.fp_status);
329 static void softfloat_to_vfp_compare(CPUARMState *env, FloatRelation cmp)
331 uint32_t flags;
332 switch (cmp) {
333 case float_relation_equal:
334 flags = 0x6;
335 break;
336 case float_relation_less:
337 flags = 0x8;
338 break;
339 case float_relation_greater:
340 flags = 0x2;
341 break;
342 case float_relation_unordered:
343 flags = 0x3;
344 break;
345 default:
346 g_assert_not_reached();
348 env->vfp.xregs[ARM_VFP_FPSCR] =
349 deposit32(env->vfp.xregs[ARM_VFP_FPSCR], 28, 4, flags);
352 /* XXX: check quiet/signaling case */
353 #define DO_VFP_cmp(P, FLOATTYPE, ARGTYPE, FPST) \
354 void VFP_HELPER(cmp, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \
356 softfloat_to_vfp_compare(env, \
357 FLOATTYPE ## _compare_quiet(a, b, &env->vfp.FPST)); \
359 void VFP_HELPER(cmpe, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \
361 softfloat_to_vfp_compare(env, \
362 FLOATTYPE ## _compare(a, b, &env->vfp.FPST)); \
364 DO_VFP_cmp(h, float16, dh_ctype_f16, fp_status_f16)
365 DO_VFP_cmp(s, float32, float32, fp_status)
366 DO_VFP_cmp(d, float64, float64, fp_status)
367 #undef DO_VFP_cmp
369 /* Integer to float and float to integer conversions */
371 #define CONV_ITOF(name, ftype, fsz, sign) \
372 ftype HELPER(name)(uint32_t x, void *fpstp) \
374 float_status *fpst = fpstp; \
375 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
378 #define CONV_FTOI(name, ftype, fsz, sign, round) \
379 sign##int32_t HELPER(name)(ftype x, void *fpstp) \
381 float_status *fpst = fpstp; \
382 if (float##fsz##_is_any_nan(x)) { \
383 float_raise(float_flag_invalid, fpst); \
384 return 0; \
386 return float##fsz##_to_##sign##int32##round(x, fpst); \
389 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \
390 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \
391 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \
392 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
394 FLOAT_CONVS(si, h, uint32_t, 16, )
395 FLOAT_CONVS(si, s, float32, 32, )
396 FLOAT_CONVS(si, d, float64, 64, )
397 FLOAT_CONVS(ui, h, uint32_t, 16, u)
398 FLOAT_CONVS(ui, s, float32, 32, u)
399 FLOAT_CONVS(ui, d, float64, 64, u)
401 #undef CONV_ITOF
402 #undef CONV_FTOI
403 #undef FLOAT_CONVS
405 /* floating point conversion */
406 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
408 return float32_to_float64(x, &env->vfp.fp_status);
411 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
413 return float64_to_float32(x, &env->vfp.fp_status);
416 uint32_t HELPER(bfcvt)(float32 x, void *status)
418 return float32_to_bfloat16(x, status);
421 uint32_t HELPER(bfcvt_pair)(uint64_t pair, void *status)
423 bfloat16 lo = float32_to_bfloat16(extract64(pair, 0, 32), status);
424 bfloat16 hi = float32_to_bfloat16(extract64(pair, 32, 32), status);
425 return deposit32(lo, 16, 16, hi);
429 * VFP3 fixed point conversion. The AArch32 versions of fix-to-float
430 * must always round-to-nearest; the AArch64 ones honour the FPSCR
431 * rounding mode. (For AArch32 Neon the standard-FPSCR is set to
432 * round-to-nearest so either helper will work.) AArch32 float-to-fix
433 * must round-to-zero.
435 #define VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \
436 ftype HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
437 void *fpstp) \
438 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
440 #define VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \
441 ftype HELPER(vfp_##name##to##p##_round_to_nearest)(uint##isz##_t x, \
442 uint32_t shift, \
443 void *fpstp) \
445 ftype ret; \
446 float_status *fpst = fpstp; \
447 FloatRoundMode oldmode = fpst->float_rounding_mode; \
448 fpst->float_rounding_mode = float_round_nearest_even; \
449 ret = itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); \
450 fpst->float_rounding_mode = oldmode; \
451 return ret; \
454 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, ROUND, suff) \
455 uint##isz##_t HELPER(vfp_to##name##p##suff)(ftype x, uint32_t shift, \
456 void *fpst) \
458 if (unlikely(float##fsz##_is_any_nan(x))) { \
459 float_raise(float_flag_invalid, fpst); \
460 return 0; \
462 return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \
465 #define VFP_CONV_FIX(name, p, fsz, ftype, isz, itype) \
466 VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \
467 VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \
468 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \
469 float_round_to_zero, _round_to_zero) \
470 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \
471 get_float_rounding_mode(fpst), )
473 #define VFP_CONV_FIX_A64(name, p, fsz, ftype, isz, itype) \
474 VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \
475 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \
476 get_float_rounding_mode(fpst), )
478 VFP_CONV_FIX(sh, d, 64, float64, 64, int16)
479 VFP_CONV_FIX(sl, d, 64, float64, 64, int32)
480 VFP_CONV_FIX_A64(sq, d, 64, float64, 64, int64)
481 VFP_CONV_FIX(uh, d, 64, float64, 64, uint16)
482 VFP_CONV_FIX(ul, d, 64, float64, 64, uint32)
483 VFP_CONV_FIX_A64(uq, d, 64, float64, 64, uint64)
484 VFP_CONV_FIX(sh, s, 32, float32, 32, int16)
485 VFP_CONV_FIX(sl, s, 32, float32, 32, int32)
486 VFP_CONV_FIX_A64(sq, s, 32, float32, 64, int64)
487 VFP_CONV_FIX(uh, s, 32, float32, 32, uint16)
488 VFP_CONV_FIX(ul, s, 32, float32, 32, uint32)
489 VFP_CONV_FIX_A64(uq, s, 32, float32, 64, uint64)
490 VFP_CONV_FIX(sh, h, 16, dh_ctype_f16, 32, int16)
491 VFP_CONV_FIX(sl, h, 16, dh_ctype_f16, 32, int32)
492 VFP_CONV_FIX_A64(sq, h, 16, dh_ctype_f16, 64, int64)
493 VFP_CONV_FIX(uh, h, 16, dh_ctype_f16, 32, uint16)
494 VFP_CONV_FIX(ul, h, 16, dh_ctype_f16, 32, uint32)
495 VFP_CONV_FIX_A64(uq, h, 16, dh_ctype_f16, 64, uint64)
497 #undef VFP_CONV_FIX
498 #undef VFP_CONV_FIX_FLOAT
499 #undef VFP_CONV_FLOAT_FIX_ROUND
500 #undef VFP_CONV_FIX_A64
502 /* Set the current fp rounding mode and return the old one.
503 * The argument is a softfloat float_round_ value.
505 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
507 float_status *fp_status = fpstp;
509 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
510 set_float_rounding_mode(rmode, fp_status);
512 return prev_rmode;
515 /* Half precision conversions. */
516 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
518 /* Squash FZ16 to 0 for the duration of conversion. In this case,
519 * it would affect flushing input denormals.
521 float_status *fpst = fpstp;
522 bool save = get_flush_inputs_to_zero(fpst);
523 set_flush_inputs_to_zero(false, fpst);
524 float32 r = float16_to_float32(a, !ahp_mode, fpst);
525 set_flush_inputs_to_zero(save, fpst);
526 return r;
529 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
531 /* Squash FZ16 to 0 for the duration of conversion. In this case,
532 * it would affect flushing output denormals.
534 float_status *fpst = fpstp;
535 bool save = get_flush_to_zero(fpst);
536 set_flush_to_zero(false, fpst);
537 float16 r = float32_to_float16(a, !ahp_mode, fpst);
538 set_flush_to_zero(save, fpst);
539 return r;
542 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
544 /* Squash FZ16 to 0 for the duration of conversion. In this case,
545 * it would affect flushing input denormals.
547 float_status *fpst = fpstp;
548 bool save = get_flush_inputs_to_zero(fpst);
549 set_flush_inputs_to_zero(false, fpst);
550 float64 r = float16_to_float64(a, !ahp_mode, fpst);
551 set_flush_inputs_to_zero(save, fpst);
552 return r;
555 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
557 /* Squash FZ16 to 0 for the duration of conversion. In this case,
558 * it would affect flushing output denormals.
560 float_status *fpst = fpstp;
561 bool save = get_flush_to_zero(fpst);
562 set_flush_to_zero(false, fpst);
563 float16 r = float64_to_float16(a, !ahp_mode, fpst);
564 set_flush_to_zero(save, fpst);
565 return r;
568 /* NEON helpers. */
570 /* Constants 256 and 512 are used in some helpers; we avoid relying on
571 * int->float conversions at run-time. */
572 #define float64_256 make_float64(0x4070000000000000LL)
573 #define float64_512 make_float64(0x4080000000000000LL)
574 #define float16_maxnorm make_float16(0x7bff)
575 #define float32_maxnorm make_float32(0x7f7fffff)
576 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
578 /* Reciprocal functions
580 * The algorithm that must be used to calculate the estimate
581 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
584 /* See RecipEstimate()
586 * input is a 9 bit fixed point number
587 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
588 * result range 256 .. 511 for a number from 1.0 to 511/256.
591 static int recip_estimate(int input)
593 int a, b, r;
594 assert(256 <= input && input < 512);
595 a = (input * 2) + 1;
596 b = (1 << 19) / a;
597 r = (b + 1) >> 1;
598 assert(256 <= r && r < 512);
599 return r;
603 * Common wrapper to call recip_estimate
605 * The parameters are exponent and 64 bit fraction (without implicit
606 * bit) where the binary point is nominally at bit 52. Returns a
607 * float64 which can then be rounded to the appropriate size by the
608 * callee.
611 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
613 uint32_t scaled, estimate;
614 uint64_t result_frac;
615 int result_exp;
617 /* Handle sub-normals */
618 if (*exp == 0) {
619 if (extract64(frac, 51, 1) == 0) {
620 *exp = -1;
621 frac <<= 2;
622 } else {
623 frac <<= 1;
627 /* scaled = UInt('1':fraction<51:44>) */
628 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
629 estimate = recip_estimate(scaled);
631 result_exp = exp_off - *exp;
632 result_frac = deposit64(0, 44, 8, estimate);
633 if (result_exp == 0) {
634 result_frac = deposit64(result_frac >> 1, 51, 1, 1);
635 } else if (result_exp == -1) {
636 result_frac = deposit64(result_frac >> 2, 50, 2, 1);
637 result_exp = 0;
640 *exp = result_exp;
642 return result_frac;
645 static bool round_to_inf(float_status *fpst, bool sign_bit)
647 switch (fpst->float_rounding_mode) {
648 case float_round_nearest_even: /* Round to Nearest */
649 return true;
650 case float_round_up: /* Round to +Inf */
651 return !sign_bit;
652 case float_round_down: /* Round to -Inf */
653 return sign_bit;
654 case float_round_to_zero: /* Round to Zero */
655 return false;
656 default:
657 g_assert_not_reached();
661 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
663 float_status *fpst = fpstp;
664 float16 f16 = float16_squash_input_denormal(input, fpst);
665 uint32_t f16_val = float16_val(f16);
666 uint32_t f16_sign = float16_is_neg(f16);
667 int f16_exp = extract32(f16_val, 10, 5);
668 uint32_t f16_frac = extract32(f16_val, 0, 10);
669 uint64_t f64_frac;
671 if (float16_is_any_nan(f16)) {
672 float16 nan = f16;
673 if (float16_is_signaling_nan(f16, fpst)) {
674 float_raise(float_flag_invalid, fpst);
675 if (!fpst->default_nan_mode) {
676 nan = float16_silence_nan(f16, fpst);
679 if (fpst->default_nan_mode) {
680 nan = float16_default_nan(fpst);
682 return nan;
683 } else if (float16_is_infinity(f16)) {
684 return float16_set_sign(float16_zero, float16_is_neg(f16));
685 } else if (float16_is_zero(f16)) {
686 float_raise(float_flag_divbyzero, fpst);
687 return float16_set_sign(float16_infinity, float16_is_neg(f16));
688 } else if (float16_abs(f16) < (1 << 8)) {
689 /* Abs(value) < 2.0^-16 */
690 float_raise(float_flag_overflow | float_flag_inexact, fpst);
691 if (round_to_inf(fpst, f16_sign)) {
692 return float16_set_sign(float16_infinity, f16_sign);
693 } else {
694 return float16_set_sign(float16_maxnorm, f16_sign);
696 } else if (f16_exp >= 29 && fpst->flush_to_zero) {
697 float_raise(float_flag_underflow, fpst);
698 return float16_set_sign(float16_zero, float16_is_neg(f16));
701 f64_frac = call_recip_estimate(&f16_exp, 29,
702 ((uint64_t) f16_frac) << (52 - 10));
704 /* result = sign : result_exp<4:0> : fraction<51:42> */
705 f16_val = deposit32(0, 15, 1, f16_sign);
706 f16_val = deposit32(f16_val, 10, 5, f16_exp);
707 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
708 return make_float16(f16_val);
711 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
713 float_status *fpst = fpstp;
714 float32 f32 = float32_squash_input_denormal(input, fpst);
715 uint32_t f32_val = float32_val(f32);
716 bool f32_sign = float32_is_neg(f32);
717 int f32_exp = extract32(f32_val, 23, 8);
718 uint32_t f32_frac = extract32(f32_val, 0, 23);
719 uint64_t f64_frac;
721 if (float32_is_any_nan(f32)) {
722 float32 nan = f32;
723 if (float32_is_signaling_nan(f32, fpst)) {
724 float_raise(float_flag_invalid, fpst);
725 if (!fpst->default_nan_mode) {
726 nan = float32_silence_nan(f32, fpst);
729 if (fpst->default_nan_mode) {
730 nan = float32_default_nan(fpst);
732 return nan;
733 } else if (float32_is_infinity(f32)) {
734 return float32_set_sign(float32_zero, float32_is_neg(f32));
735 } else if (float32_is_zero(f32)) {
736 float_raise(float_flag_divbyzero, fpst);
737 return float32_set_sign(float32_infinity, float32_is_neg(f32));
738 } else if (float32_abs(f32) < (1ULL << 21)) {
739 /* Abs(value) < 2.0^-128 */
740 float_raise(float_flag_overflow | float_flag_inexact, fpst);
741 if (round_to_inf(fpst, f32_sign)) {
742 return float32_set_sign(float32_infinity, f32_sign);
743 } else {
744 return float32_set_sign(float32_maxnorm, f32_sign);
746 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
747 float_raise(float_flag_underflow, fpst);
748 return float32_set_sign(float32_zero, float32_is_neg(f32));
751 f64_frac = call_recip_estimate(&f32_exp, 253,
752 ((uint64_t) f32_frac) << (52 - 23));
754 /* result = sign : result_exp<7:0> : fraction<51:29> */
755 f32_val = deposit32(0, 31, 1, f32_sign);
756 f32_val = deposit32(f32_val, 23, 8, f32_exp);
757 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
758 return make_float32(f32_val);
761 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
763 float_status *fpst = fpstp;
764 float64 f64 = float64_squash_input_denormal(input, fpst);
765 uint64_t f64_val = float64_val(f64);
766 bool f64_sign = float64_is_neg(f64);
767 int f64_exp = extract64(f64_val, 52, 11);
768 uint64_t f64_frac = extract64(f64_val, 0, 52);
770 /* Deal with any special cases */
771 if (float64_is_any_nan(f64)) {
772 float64 nan = f64;
773 if (float64_is_signaling_nan(f64, fpst)) {
774 float_raise(float_flag_invalid, fpst);
775 if (!fpst->default_nan_mode) {
776 nan = float64_silence_nan(f64, fpst);
779 if (fpst->default_nan_mode) {
780 nan = float64_default_nan(fpst);
782 return nan;
783 } else if (float64_is_infinity(f64)) {
784 return float64_set_sign(float64_zero, float64_is_neg(f64));
785 } else if (float64_is_zero(f64)) {
786 float_raise(float_flag_divbyzero, fpst);
787 return float64_set_sign(float64_infinity, float64_is_neg(f64));
788 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
789 /* Abs(value) < 2.0^-1024 */
790 float_raise(float_flag_overflow | float_flag_inexact, fpst);
791 if (round_to_inf(fpst, f64_sign)) {
792 return float64_set_sign(float64_infinity, f64_sign);
793 } else {
794 return float64_set_sign(float64_maxnorm, f64_sign);
796 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
797 float_raise(float_flag_underflow, fpst);
798 return float64_set_sign(float64_zero, float64_is_neg(f64));
801 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
803 /* result = sign : result_exp<10:0> : fraction<51:0>; */
804 f64_val = deposit64(0, 63, 1, f64_sign);
805 f64_val = deposit64(f64_val, 52, 11, f64_exp);
806 f64_val = deposit64(f64_val, 0, 52, f64_frac);
807 return make_float64(f64_val);
810 /* The algorithm that must be used to calculate the estimate
811 * is specified by the ARM ARM.
814 static int do_recip_sqrt_estimate(int a)
816 int b, estimate;
818 assert(128 <= a && a < 512);
819 if (a < 256) {
820 a = a * 2 + 1;
821 } else {
822 a = (a >> 1) << 1;
823 a = (a + 1) * 2;
825 b = 512;
826 while (a * (b + 1) * (b + 1) < (1 << 28)) {
827 b += 1;
829 estimate = (b + 1) / 2;
830 assert(256 <= estimate && estimate < 512);
832 return estimate;
836 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
838 int estimate;
839 uint32_t scaled;
841 if (*exp == 0) {
842 while (extract64(frac, 51, 1) == 0) {
843 frac = frac << 1;
844 *exp -= 1;
846 frac = extract64(frac, 0, 51) << 1;
849 if (*exp & 1) {
850 /* scaled = UInt('01':fraction<51:45>) */
851 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
852 } else {
853 /* scaled = UInt('1':fraction<51:44>) */
854 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
856 estimate = do_recip_sqrt_estimate(scaled);
858 *exp = (exp_off - *exp) / 2;
859 return extract64(estimate, 0, 8) << 44;
862 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
864 float_status *s = fpstp;
865 float16 f16 = float16_squash_input_denormal(input, s);
866 uint16_t val = float16_val(f16);
867 bool f16_sign = float16_is_neg(f16);
868 int f16_exp = extract32(val, 10, 5);
869 uint16_t f16_frac = extract32(val, 0, 10);
870 uint64_t f64_frac;
872 if (float16_is_any_nan(f16)) {
873 float16 nan = f16;
874 if (float16_is_signaling_nan(f16, s)) {
875 float_raise(float_flag_invalid, s);
876 if (!s->default_nan_mode) {
877 nan = float16_silence_nan(f16, fpstp);
880 if (s->default_nan_mode) {
881 nan = float16_default_nan(s);
883 return nan;
884 } else if (float16_is_zero(f16)) {
885 float_raise(float_flag_divbyzero, s);
886 return float16_set_sign(float16_infinity, f16_sign);
887 } else if (f16_sign) {
888 float_raise(float_flag_invalid, s);
889 return float16_default_nan(s);
890 } else if (float16_is_infinity(f16)) {
891 return float16_zero;
894 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
895 * preserving the parity of the exponent. */
897 f64_frac = ((uint64_t) f16_frac) << (52 - 10);
899 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
901 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
902 val = deposit32(0, 15, 1, f16_sign);
903 val = deposit32(val, 10, 5, f16_exp);
904 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
905 return make_float16(val);
908 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
910 float_status *s = fpstp;
911 float32 f32 = float32_squash_input_denormal(input, s);
912 uint32_t val = float32_val(f32);
913 uint32_t f32_sign = float32_is_neg(f32);
914 int f32_exp = extract32(val, 23, 8);
915 uint32_t f32_frac = extract32(val, 0, 23);
916 uint64_t f64_frac;
918 if (float32_is_any_nan(f32)) {
919 float32 nan = f32;
920 if (float32_is_signaling_nan(f32, s)) {
921 float_raise(float_flag_invalid, s);
922 if (!s->default_nan_mode) {
923 nan = float32_silence_nan(f32, fpstp);
926 if (s->default_nan_mode) {
927 nan = float32_default_nan(s);
929 return nan;
930 } else if (float32_is_zero(f32)) {
931 float_raise(float_flag_divbyzero, s);
932 return float32_set_sign(float32_infinity, float32_is_neg(f32));
933 } else if (float32_is_neg(f32)) {
934 float_raise(float_flag_invalid, s);
935 return float32_default_nan(s);
936 } else if (float32_is_infinity(f32)) {
937 return float32_zero;
940 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
941 * preserving the parity of the exponent. */
943 f64_frac = ((uint64_t) f32_frac) << 29;
945 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
947 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
948 val = deposit32(0, 31, 1, f32_sign);
949 val = deposit32(val, 23, 8, f32_exp);
950 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
951 return make_float32(val);
954 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
956 float_status *s = fpstp;
957 float64 f64 = float64_squash_input_denormal(input, s);
958 uint64_t val = float64_val(f64);
959 bool f64_sign = float64_is_neg(f64);
960 int f64_exp = extract64(val, 52, 11);
961 uint64_t f64_frac = extract64(val, 0, 52);
963 if (float64_is_any_nan(f64)) {
964 float64 nan = f64;
965 if (float64_is_signaling_nan(f64, s)) {
966 float_raise(float_flag_invalid, s);
967 if (!s->default_nan_mode) {
968 nan = float64_silence_nan(f64, fpstp);
971 if (s->default_nan_mode) {
972 nan = float64_default_nan(s);
974 return nan;
975 } else if (float64_is_zero(f64)) {
976 float_raise(float_flag_divbyzero, s);
977 return float64_set_sign(float64_infinity, float64_is_neg(f64));
978 } else if (float64_is_neg(f64)) {
979 float_raise(float_flag_invalid, s);
980 return float64_default_nan(s);
981 } else if (float64_is_infinity(f64)) {
982 return float64_zero;
985 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
987 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
988 val = deposit64(0, 61, 1, f64_sign);
989 val = deposit64(val, 52, 11, f64_exp);
990 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
991 return make_float64(val);
994 uint32_t HELPER(recpe_u32)(uint32_t a)
996 int input, estimate;
998 if ((a & 0x80000000) == 0) {
999 return 0xffffffff;
1002 input = extract32(a, 23, 9);
1003 estimate = recip_estimate(input);
1005 return deposit32(0, (32 - 9), 9, estimate);
1008 uint32_t HELPER(rsqrte_u32)(uint32_t a)
1010 int estimate;
1012 if ((a & 0xc0000000) == 0) {
1013 return 0xffffffff;
1016 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
1018 return deposit32(0, 23, 9, estimate);
1021 /* VFPv4 fused multiply-accumulate */
1022 dh_ctype_f16 VFP_HELPER(muladd, h)(dh_ctype_f16 a, dh_ctype_f16 b,
1023 dh_ctype_f16 c, void *fpstp)
1025 float_status *fpst = fpstp;
1026 return float16_muladd(a, b, c, 0, fpst);
1029 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
1031 float_status *fpst = fpstp;
1032 return float32_muladd(a, b, c, 0, fpst);
1035 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
1037 float_status *fpst = fpstp;
1038 return float64_muladd(a, b, c, 0, fpst);
1041 /* ARMv8 round to integral */
1042 dh_ctype_f16 HELPER(rinth_exact)(dh_ctype_f16 x, void *fp_status)
1044 return float16_round_to_int(x, fp_status);
1047 float32 HELPER(rints_exact)(float32 x, void *fp_status)
1049 return float32_round_to_int(x, fp_status);
1052 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
1054 return float64_round_to_int(x, fp_status);
1057 dh_ctype_f16 HELPER(rinth)(dh_ctype_f16 x, void *fp_status)
1059 int old_flags = get_float_exception_flags(fp_status), new_flags;
1060 float16 ret;
1062 ret = float16_round_to_int(x, fp_status);
1064 /* Suppress any inexact exceptions the conversion produced */
1065 if (!(old_flags & float_flag_inexact)) {
1066 new_flags = get_float_exception_flags(fp_status);
1067 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1070 return ret;
1073 float32 HELPER(rints)(float32 x, void *fp_status)
1075 int old_flags = get_float_exception_flags(fp_status), new_flags;
1076 float32 ret;
1078 ret = float32_round_to_int(x, fp_status);
1080 /* Suppress any inexact exceptions the conversion produced */
1081 if (!(old_flags & float_flag_inexact)) {
1082 new_flags = get_float_exception_flags(fp_status);
1083 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1086 return ret;
1089 float64 HELPER(rintd)(float64 x, void *fp_status)
1091 int old_flags = get_float_exception_flags(fp_status), new_flags;
1092 float64 ret;
1094 ret = float64_round_to_int(x, fp_status);
1096 new_flags = get_float_exception_flags(fp_status);
1098 /* Suppress any inexact exceptions the conversion produced */
1099 if (!(old_flags & float_flag_inexact)) {
1100 new_flags = get_float_exception_flags(fp_status);
1101 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1104 return ret;
1107 /* Convert ARM rounding mode to softfloat */
1108 const FloatRoundMode arm_rmode_to_sf_map[] = {
1109 [FPROUNDING_TIEEVEN] = float_round_nearest_even,
1110 [FPROUNDING_POSINF] = float_round_up,
1111 [FPROUNDING_NEGINF] = float_round_down,
1112 [FPROUNDING_ZERO] = float_round_to_zero,
1113 [FPROUNDING_TIEAWAY] = float_round_ties_away,
1114 [FPROUNDING_ODD] = float_round_to_odd,
1118 * Implement float64 to int32_t conversion without saturation;
1119 * the result is supplied modulo 2^32.
1121 uint64_t HELPER(fjcvtzs)(float64 value, void *vstatus)
1123 float_status *status = vstatus;
1124 uint32_t inexact, frac;
1125 uint32_t e_old, e_new;
1127 e_old = get_float_exception_flags(status);
1128 set_float_exception_flags(0, status);
1129 frac = float64_to_int32_modulo(value, float_round_to_zero, status);
1130 e_new = get_float_exception_flags(status);
1131 set_float_exception_flags(e_old | e_new, status);
1133 if (value == float64_chs(float64_zero)) {
1134 /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript. */
1135 inexact = 1;
1136 } else {
1137 /* Normal inexact or overflow or NaN */
1138 inexact = e_new & (float_flag_inexact | float_flag_invalid);
1141 /* Pack the result and the env->ZF representation of Z together. */
1142 return deposit64(frac, 32, 32, inexact);
1145 uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env)
1147 uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status);
1148 uint32_t result = pair;
1149 uint32_t z = (pair >> 32) == 0;
1151 /* Store Z, clear NCV, in FPSCR.NZCV. */
1152 env->vfp.xregs[ARM_VFP_FPSCR]
1153 = (env->vfp.xregs[ARM_VFP_FPSCR] & ~CPSR_NZCV) | (z * CPSR_Z);
1155 return result;
1158 /* Round a float32 to an integer that fits in int32_t or int64_t. */
1159 static float32 frint_s(float32 f, float_status *fpst, int intsize)
1161 int old_flags = get_float_exception_flags(fpst);
1162 uint32_t exp = extract32(f, 23, 8);
1164 if (unlikely(exp == 0xff)) {
1165 /* NaN or Inf. */
1166 goto overflow;
1169 /* Round and re-extract the exponent. */
1170 f = float32_round_to_int(f, fpst);
1171 exp = extract32(f, 23, 8);
1173 /* Validate the range of the result. */
1174 if (exp < 126 + intsize) {
1175 /* abs(F) <= INT{N}_MAX */
1176 return f;
1178 if (exp == 126 + intsize) {
1179 uint32_t sign = extract32(f, 31, 1);
1180 uint32_t frac = extract32(f, 0, 23);
1181 if (sign && frac == 0) {
1182 /* F == INT{N}_MIN */
1183 return f;
1187 overflow:
1189 * Raise Invalid and return INT{N}_MIN as a float. Revert any
1190 * inexact exception float32_round_to_int may have raised.
1192 set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1193 return (0x100u + 126u + intsize) << 23;
1196 float32 HELPER(frint32_s)(float32 f, void *fpst)
1198 return frint_s(f, fpst, 32);
1201 float32 HELPER(frint64_s)(float32 f, void *fpst)
1203 return frint_s(f, fpst, 64);
1206 /* Round a float64 to an integer that fits in int32_t or int64_t. */
1207 static float64 frint_d(float64 f, float_status *fpst, int intsize)
1209 int old_flags = get_float_exception_flags(fpst);
1210 uint32_t exp = extract64(f, 52, 11);
1212 if (unlikely(exp == 0x7ff)) {
1213 /* NaN or Inf. */
1214 goto overflow;
1217 /* Round and re-extract the exponent. */
1218 f = float64_round_to_int(f, fpst);
1219 exp = extract64(f, 52, 11);
1221 /* Validate the range of the result. */
1222 if (exp < 1022 + intsize) {
1223 /* abs(F) <= INT{N}_MAX */
1224 return f;
1226 if (exp == 1022 + intsize) {
1227 uint64_t sign = extract64(f, 63, 1);
1228 uint64_t frac = extract64(f, 0, 52);
1229 if (sign && frac == 0) {
1230 /* F == INT{N}_MIN */
1231 return f;
1235 overflow:
1237 * Raise Invalid and return INT{N}_MIN as a float. Revert any
1238 * inexact exception float64_round_to_int may have raised.
1240 set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1241 return (uint64_t)(0x800 + 1022 + intsize) << 52;
1244 float64 HELPER(frint32_d)(float64 f, void *fpst)
1246 return frint_d(f, fpst, 32);
1249 float64 HELPER(frint64_d)(float64 f, void *fpst)
1251 return frint_d(f, fpst, 64);
1254 void HELPER(check_hcr_el2_trap)(CPUARMState *env, uint32_t rt, uint32_t reg)
1256 uint32_t syndrome;
1258 switch (reg) {
1259 case ARM_VFP_MVFR0:
1260 case ARM_VFP_MVFR1:
1261 case ARM_VFP_MVFR2:
1262 if (!(arm_hcr_el2_eff(env) & HCR_TID3)) {
1263 return;
1265 break;
1266 case ARM_VFP_FPSID:
1267 if (!(arm_hcr_el2_eff(env) & HCR_TID0)) {
1268 return;
1270 break;
1271 default:
1272 g_assert_not_reached();
1275 syndrome = ((EC_FPIDTRAP << ARM_EL_EC_SHIFT)
1276 | ARM_EL_IL
1277 | (1 << 24) | (0xe << 20) | (7 << 14)
1278 | (reg << 10) | (rt << 5) | 1);
1280 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
1283 #endif