hw/xen/hvm: Get target page size at runtime
[qemu/ar7.git] / target / arm / ptw.c
blob31ae43f60edb04b382700e81abf26f3907f33902
1 /*
2 * ARM page table walking.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "cpu-features.h"
17 #include "idau.h"
18 #ifdef CONFIG_TCG
19 # include "tcg/oversized-guest.h"
20 #endif
22 typedef struct S1Translate {
24 * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk.
25 * Together with in_space, specifies the architectural translation regime.
27 ARMMMUIdx in_mmu_idx;
29 * in_ptw_idx: specifies which mmuidx to use for the actual
30 * page table descriptor load operations. This will be one of the
31 * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes.
32 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
33 * this field is updated accordingly.
35 ARMMMUIdx in_ptw_idx;
37 * in_space: the security space for this walk. This plus
38 * the in_mmu_idx specify the architectural translation regime.
39 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
40 * this field is updated accordingly.
42 * Note that the security space for the in_ptw_idx may be different
43 * from that for the in_mmu_idx. We do not need to explicitly track
44 * the in_ptw_idx security space because:
45 * - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx
46 * itself specifies the security space
47 * - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security
48 * space used for ptw reads is the same as that of the security
49 * space of the stage 1 translation for all cases except where
50 * stage 1 is Secure; in that case the only possibilities for
51 * the ptw read are Secure and NonSecure, and the in_ptw_idx
52 * value being Stage2 vs Stage2_S distinguishes those.
54 ARMSecuritySpace in_space;
56 * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug
57 * accesses will not update the guest page table access flags
58 * and will not change the state of the softmmu TLBs.
60 bool in_debug;
62 * If this is stage 2 of a stage 1+2 page table walk, then this must
63 * be true if stage 1 is an EL0 access; otherwise this is ignored.
64 * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}.
66 bool in_s1_is_el0;
67 bool out_rw;
68 bool out_be;
69 ARMSecuritySpace out_space;
70 hwaddr out_virt;
71 hwaddr out_phys;
72 void *out_host;
73 } S1Translate;
75 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
76 target_ulong address,
77 MMUAccessType access_type,
78 GetPhysAddrResult *result,
79 ARMMMUFaultInfo *fi);
81 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
82 target_ulong address,
83 MMUAccessType access_type,
84 GetPhysAddrResult *result,
85 ARMMMUFaultInfo *fi);
87 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
88 static const uint8_t pamax_map[] = {
89 [0] = 32,
90 [1] = 36,
91 [2] = 40,
92 [3] = 42,
93 [4] = 44,
94 [5] = 48,
95 [6] = 52,
99 * The cpu-specific constant value of PAMax; also used by hw/arm/virt.
100 * Note that machvirt_init calls this on a CPU that is inited but not realized!
102 unsigned int arm_pamax(ARMCPU *cpu)
104 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
105 unsigned int parange =
106 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
109 * id_aa64mmfr0 is a read-only register so values outside of the
110 * supported mappings can be considered an implementation error.
112 assert(parange < ARRAY_SIZE(pamax_map));
113 return pamax_map[parange];
116 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
117 /* v7 or v8 with LPAE */
118 return 40;
120 /* Anything else */
121 return 32;
125 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
127 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
129 switch (mmu_idx) {
130 case ARMMMUIdx_E10_0:
131 return ARMMMUIdx_Stage1_E0;
132 case ARMMMUIdx_E10_1:
133 return ARMMMUIdx_Stage1_E1;
134 case ARMMMUIdx_E10_1_PAN:
135 return ARMMMUIdx_Stage1_E1_PAN;
136 default:
137 return mmu_idx;
141 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
143 return stage_1_mmu_idx(arm_mmu_idx(env));
147 * Return where we should do ptw loads from for a stage 2 walk.
148 * This depends on whether the address we are looking up is a
149 * Secure IPA or a NonSecure IPA, which we know from whether this is
150 * Stage2 or Stage2_S.
151 * If this is the Secure EL1&0 regime we need to check the NSW and SW bits.
153 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx)
155 bool s2walk_secure;
158 * We're OK to check the current state of the CPU here because
159 * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit
160 * changes.
161 * (2) there's no way to do a lookup that cares about Stage 2 for a
162 * different security state to the current one for AArch64, and AArch32
163 * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do
164 * an NS stage 1+2 lookup while the NS bit is 0.)
166 if (!arm_el_is_aa64(env, 3)) {
167 return ARMMMUIdx_Phys_NS;
170 switch (arm_security_space_below_el3(env)) {
171 case ARMSS_NonSecure:
172 return ARMMMUIdx_Phys_NS;
173 case ARMSS_Realm:
174 return ARMMMUIdx_Phys_Realm;
175 case ARMSS_Secure:
176 if (stage2idx == ARMMMUIdx_Stage2_S) {
177 s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
178 } else {
179 s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
181 return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
182 default:
183 g_assert_not_reached();
187 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
189 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
192 /* Return the TTBR associated with this translation regime */
193 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
195 if (mmu_idx == ARMMMUIdx_Stage2) {
196 return env->cp15.vttbr_el2;
198 if (mmu_idx == ARMMMUIdx_Stage2_S) {
199 return env->cp15.vsttbr_el2;
201 if (ttbrn == 0) {
202 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
203 } else {
204 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
208 /* Return true if the specified stage of address translation is disabled */
209 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
210 ARMSecuritySpace space)
212 uint64_t hcr_el2;
214 if (arm_feature(env, ARM_FEATURE_M)) {
215 bool is_secure = arm_space_is_secure(space);
216 switch (env->v7m.mpu_ctrl[is_secure] &
217 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
218 case R_V7M_MPU_CTRL_ENABLE_MASK:
219 /* Enabled, but not for HardFault and NMI */
220 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
221 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
222 /* Enabled for all cases */
223 return false;
224 case 0:
225 default:
227 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
228 * we warned about that in armv7m_nvic.c when the guest set it.
230 return true;
235 switch (mmu_idx) {
236 case ARMMMUIdx_Stage2:
237 case ARMMMUIdx_Stage2_S:
238 /* HCR.DC means HCR.VM behaves as 1 */
239 hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
240 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
242 case ARMMMUIdx_E10_0:
243 case ARMMMUIdx_E10_1:
244 case ARMMMUIdx_E10_1_PAN:
245 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
246 hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
247 if (hcr_el2 & HCR_TGE) {
248 return true;
250 break;
252 case ARMMMUIdx_Stage1_E0:
253 case ARMMMUIdx_Stage1_E1:
254 case ARMMMUIdx_Stage1_E1_PAN:
255 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
256 hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
257 if (hcr_el2 & HCR_DC) {
258 return true;
260 break;
262 case ARMMMUIdx_E20_0:
263 case ARMMMUIdx_E20_2:
264 case ARMMMUIdx_E20_2_PAN:
265 case ARMMMUIdx_E2:
266 case ARMMMUIdx_E3:
267 break;
269 case ARMMMUIdx_Phys_S:
270 case ARMMMUIdx_Phys_NS:
271 case ARMMMUIdx_Phys_Root:
272 case ARMMMUIdx_Phys_Realm:
273 /* No translation for physical address spaces. */
274 return true;
276 default:
277 g_assert_not_reached();
280 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
283 static bool granule_protection_check(CPUARMState *env, uint64_t paddress,
284 ARMSecuritySpace pspace,
285 ARMMMUFaultInfo *fi)
287 MemTxAttrs attrs = {
288 .secure = true,
289 .space = ARMSS_Root,
291 ARMCPU *cpu = env_archcpu(env);
292 uint64_t gpccr = env->cp15.gpccr_el3;
293 unsigned pps, pgs, l0gptsz, level = 0;
294 uint64_t tableaddr, pps_mask, align, entry, index;
295 AddressSpace *as;
296 MemTxResult result;
297 int gpi;
299 if (!FIELD_EX64(gpccr, GPCCR, GPC)) {
300 return true;
304 * GPC Priority 1 (R_GMGRR):
305 * R_JWCSM: If the configuration of GPCCR_EL3 is invalid,
306 * the access fails as GPT walk fault at level 0.
310 * Configuration of PPS to a value exceeding the implemented
311 * physical address size is invalid.
313 pps = FIELD_EX64(gpccr, GPCCR, PPS);
314 if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) {
315 goto fault_walk;
317 pps = pamax_map[pps];
318 pps_mask = MAKE_64BIT_MASK(0, pps);
320 switch (FIELD_EX64(gpccr, GPCCR, SH)) {
321 case 0b10: /* outer shareable */
322 break;
323 case 0b00: /* non-shareable */
324 case 0b11: /* inner shareable */
325 /* Inner and Outer non-cacheable requires Outer shareable. */
326 if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 &&
327 FIELD_EX64(gpccr, GPCCR, IRGN) == 0) {
328 goto fault_walk;
330 break;
331 default: /* reserved */
332 goto fault_walk;
335 switch (FIELD_EX64(gpccr, GPCCR, PGS)) {
336 case 0b00: /* 4KB */
337 pgs = 12;
338 break;
339 case 0b01: /* 64KB */
340 pgs = 16;
341 break;
342 case 0b10: /* 16KB */
343 pgs = 14;
344 break;
345 default: /* reserved */
346 goto fault_walk;
349 /* Note this field is read-only and fixed at reset. */
350 l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ);
353 * GPC Priority 2: Secure, Realm or Root address exceeds PPS.
354 * R_CPDSB: A NonSecure physical address input exceeding PPS
355 * does not experience any fault.
357 if (paddress & ~pps_mask) {
358 if (pspace == ARMSS_NonSecure) {
359 return true;
361 goto fault_size;
364 /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */
365 tableaddr = env->cp15.gptbr_el3 << 12;
366 if (tableaddr & ~pps_mask) {
367 goto fault_size;
371 * BADDR is aligned per a function of PPS and L0GPTSZ.
372 * These bits of GPTBR_EL3 are RES0, but are not a configuration error,
373 * unlike the RES0 bits of the GPT entries (R_XNKFZ).
375 align = MAX(pps - l0gptsz + 3, 12);
376 align = MAKE_64BIT_MASK(0, align);
377 tableaddr &= ~align;
379 as = arm_addressspace(env_cpu(env), attrs);
381 /* Level 0 lookup. */
382 index = extract64(paddress, l0gptsz, pps - l0gptsz);
383 tableaddr += index * 8;
384 entry = address_space_ldq_le(as, tableaddr, attrs, &result);
385 if (result != MEMTX_OK) {
386 goto fault_eabt;
389 switch (extract32(entry, 0, 4)) {
390 case 1: /* block descriptor */
391 if (entry >> 8) {
392 goto fault_walk; /* RES0 bits not 0 */
394 gpi = extract32(entry, 4, 4);
395 goto found;
396 case 3: /* table descriptor */
397 tableaddr = entry & ~0xf;
398 align = MAX(l0gptsz - pgs - 1, 12);
399 align = MAKE_64BIT_MASK(0, align);
400 if (tableaddr & (~pps_mask | align)) {
401 goto fault_walk; /* RES0 bits not 0 */
403 break;
404 default: /* invalid */
405 goto fault_walk;
408 /* Level 1 lookup */
409 level = 1;
410 index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4);
411 tableaddr += index * 8;
412 entry = address_space_ldq_le(as, tableaddr, attrs, &result);
413 if (result != MEMTX_OK) {
414 goto fault_eabt;
417 switch (extract32(entry, 0, 4)) {
418 case 1: /* contiguous descriptor */
419 if (entry >> 10) {
420 goto fault_walk; /* RES0 bits not 0 */
423 * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE,
424 * and because we cannot invalidate by pa, and thus will always
425 * flush entire tlbs, we don't actually care about the range here
426 * and can simply extract the GPI as the result.
428 if (extract32(entry, 8, 2) == 0) {
429 goto fault_walk; /* reserved contig */
431 gpi = extract32(entry, 4, 4);
432 break;
433 default:
434 index = extract64(paddress, pgs, 4);
435 gpi = extract64(entry, index * 4, 4);
436 break;
439 found:
440 switch (gpi) {
441 case 0b0000: /* no access */
442 break;
443 case 0b1111: /* all access */
444 return true;
445 case 0b1000:
446 case 0b1001:
447 case 0b1010:
448 case 0b1011:
449 if (pspace == (gpi & 3)) {
450 return true;
452 break;
453 default:
454 goto fault_walk; /* reserved */
457 fi->gpcf = GPCF_Fail;
458 goto fault_common;
459 fault_eabt:
460 fi->gpcf = GPCF_EABT;
461 goto fault_common;
462 fault_size:
463 fi->gpcf = GPCF_AddressSize;
464 goto fault_common;
465 fault_walk:
466 fi->gpcf = GPCF_Walk;
467 fault_common:
468 fi->level = level;
469 fi->paddr = paddress;
470 fi->paddr_space = pspace;
471 return false;
474 static bool S1_attrs_are_device(uint8_t attrs)
477 * This slightly under-decodes the MAIR_ELx field:
478 * 0b0000dd01 is Device with FEAT_XS, otherwise UNPREDICTABLE;
479 * 0b0000dd1x is UNPREDICTABLE.
481 return (attrs & 0xf0) == 0;
484 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
487 * For an S1 page table walk, the stage 1 attributes are always
488 * some form of "this is Normal memory". The combined S1+S2
489 * attributes are therefore only Device if stage 2 specifies Device.
490 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
491 * ie when cacheattrs.attrs bits [3:2] are 0b00.
492 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
493 * when cacheattrs.attrs bit [2] is 0.
495 if (hcr & HCR_FWB) {
496 return (attrs & 0x4) == 0;
497 } else {
498 return (attrs & 0xc) == 0;
502 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space,
503 ARMMMUIdx s2_mmu_idx)
506 * Return the security space to use for stage 2 when doing
507 * the S1 page table descriptor load.
509 if (regime_is_stage2(s2_mmu_idx)) {
511 * The security space for ptw reads is almost always the same
512 * as that of the security space of the stage 1 translation.
513 * The only exception is when stage 1 is Secure; in that case
514 * the ptw read might be to the Secure or the NonSecure space
515 * (but never Realm or Root), and the s2_mmu_idx tells us which.
516 * Root translations are always single-stage.
518 if (s1_space == ARMSS_Secure) {
519 return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S);
520 } else {
521 assert(s2_mmu_idx != ARMMMUIdx_Stage2_S);
522 assert(s1_space != ARMSS_Root);
523 return s1_space;
525 } else {
526 /* ptw loads are from phys: the mmu idx itself says which space */
527 return arm_phys_to_space(s2_mmu_idx);
531 static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx)
534 * For stage 2 faults in Secure EL22, S1NS indicates
535 * whether the faulting IPA is in the Secure or NonSecure
536 * IPA space. For all other kinds of fault, it is false.
538 return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx)
539 && s2_mmu_idx == ARMMMUIdx_Stage2_S;
542 /* Translate a S1 pagetable walk through S2 if needed. */
543 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
544 hwaddr addr, ARMMMUFaultInfo *fi)
546 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
547 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
548 uint8_t pte_attrs;
550 ptw->out_virt = addr;
552 if (unlikely(ptw->in_debug)) {
554 * From gdbstub, do not use softmmu so that we don't modify the
555 * state of the cpu at all, including softmmu tlb contents.
557 ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx);
558 S1Translate s2ptw = {
559 .in_mmu_idx = s2_mmu_idx,
560 .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx),
561 .in_space = s2_space,
562 .in_debug = true,
564 GetPhysAddrResult s2 = { };
566 if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, &s2, fi)) {
567 goto fail;
570 ptw->out_phys = s2.f.phys_addr;
571 pte_attrs = s2.cacheattrs.attrs;
572 ptw->out_host = NULL;
573 ptw->out_rw = false;
574 ptw->out_space = s2.f.attrs.space;
575 } else {
576 #ifdef CONFIG_TCG
577 CPUTLBEntryFull *full;
578 int flags;
580 env->tlb_fi = fi;
581 flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD,
582 arm_to_core_mmu_idx(s2_mmu_idx),
583 &ptw->out_host, &full);
584 env->tlb_fi = NULL;
586 if (unlikely(flags & TLB_INVALID_MASK)) {
587 goto fail;
589 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
590 ptw->out_rw = full->prot & PAGE_WRITE;
591 pte_attrs = full->extra.arm.pte_attrs;
592 ptw->out_space = full->attrs.space;
593 #else
594 g_assert_not_reached();
595 #endif
598 if (regime_is_stage2(s2_mmu_idx)) {
599 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
601 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
603 * PTW set and S1 walk touched S2 Device memory:
604 * generate Permission fault.
606 fi->type = ARMFault_Permission;
607 fi->s2addr = addr;
608 fi->stage2 = true;
609 fi->s1ptw = true;
610 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
611 return false;
615 ptw->out_be = regime_translation_big_endian(env, mmu_idx);
616 return true;
618 fail:
619 assert(fi->type != ARMFault_None);
620 if (fi->type == ARMFault_GPCFOnOutput) {
621 fi->type = ARMFault_GPCFOnWalk;
623 fi->s2addr = addr;
624 fi->stage2 = regime_is_stage2(s2_mmu_idx);
625 fi->s1ptw = fi->stage2;
626 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
627 return false;
630 /* All loads done in the course of a page table walk go through here. */
631 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
632 ARMMMUFaultInfo *fi)
634 CPUState *cs = env_cpu(env);
635 void *host = ptw->out_host;
636 uint32_t data;
638 if (likely(host)) {
639 /* Page tables are in RAM, and we have the host address. */
640 data = qatomic_read((uint32_t *)host);
641 if (ptw->out_be) {
642 data = be32_to_cpu(data);
643 } else {
644 data = le32_to_cpu(data);
646 } else {
647 /* Page tables are in MMIO. */
648 MemTxAttrs attrs = {
649 .space = ptw->out_space,
650 .secure = arm_space_is_secure(ptw->out_space),
652 AddressSpace *as = arm_addressspace(cs, attrs);
653 MemTxResult result = MEMTX_OK;
655 if (ptw->out_be) {
656 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
657 } else {
658 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
660 if (unlikely(result != MEMTX_OK)) {
661 fi->type = ARMFault_SyncExternalOnWalk;
662 fi->ea = arm_extabort_type(result);
663 return 0;
666 return data;
669 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
670 ARMMMUFaultInfo *fi)
672 CPUState *cs = env_cpu(env);
673 void *host = ptw->out_host;
674 uint64_t data;
676 if (likely(host)) {
677 /* Page tables are in RAM, and we have the host address. */
678 #ifdef CONFIG_ATOMIC64
679 data = qatomic_read__nocheck((uint64_t *)host);
680 if (ptw->out_be) {
681 data = be64_to_cpu(data);
682 } else {
683 data = le64_to_cpu(data);
685 #else
686 if (ptw->out_be) {
687 data = ldq_be_p(host);
688 } else {
689 data = ldq_le_p(host);
691 #endif
692 } else {
693 /* Page tables are in MMIO. */
694 MemTxAttrs attrs = {
695 .space = ptw->out_space,
696 .secure = arm_space_is_secure(ptw->out_space),
698 AddressSpace *as = arm_addressspace(cs, attrs);
699 MemTxResult result = MEMTX_OK;
701 if (ptw->out_be) {
702 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
703 } else {
704 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
706 if (unlikely(result != MEMTX_OK)) {
707 fi->type = ARMFault_SyncExternalOnWalk;
708 fi->ea = arm_extabort_type(result);
709 return 0;
712 return data;
715 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
716 uint64_t new_val, S1Translate *ptw,
717 ARMMMUFaultInfo *fi)
719 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG)
720 uint64_t cur_val;
721 void *host = ptw->out_host;
723 if (unlikely(!host)) {
724 /* Page table in MMIO Memory Region */
725 CPUState *cs = env_cpu(env);
726 MemTxAttrs attrs = {
727 .space = ptw->out_space,
728 .secure = arm_space_is_secure(ptw->out_space),
730 AddressSpace *as = arm_addressspace(cs, attrs);
731 MemTxResult result = MEMTX_OK;
732 bool need_lock = !bql_locked();
734 if (need_lock) {
735 bql_lock();
737 if (ptw->out_be) {
738 cur_val = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
739 if (unlikely(result != MEMTX_OK)) {
740 fi->type = ARMFault_SyncExternalOnWalk;
741 fi->ea = arm_extabort_type(result);
742 if (need_lock) {
743 bql_unlock();
745 return old_val;
747 if (cur_val == old_val) {
748 address_space_stq_be(as, ptw->out_phys, new_val, attrs, &result);
749 if (unlikely(result != MEMTX_OK)) {
750 fi->type = ARMFault_SyncExternalOnWalk;
751 fi->ea = arm_extabort_type(result);
752 if (need_lock) {
753 bql_unlock();
755 return old_val;
757 cur_val = new_val;
759 } else {
760 cur_val = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
761 if (unlikely(result != MEMTX_OK)) {
762 fi->type = ARMFault_SyncExternalOnWalk;
763 fi->ea = arm_extabort_type(result);
764 if (need_lock) {
765 bql_unlock();
767 return old_val;
769 if (cur_val == old_val) {
770 address_space_stq_le(as, ptw->out_phys, new_val, attrs, &result);
771 if (unlikely(result != MEMTX_OK)) {
772 fi->type = ARMFault_SyncExternalOnWalk;
773 fi->ea = arm_extabort_type(result);
774 if (need_lock) {
775 bql_unlock();
777 return old_val;
779 cur_val = new_val;
782 if (need_lock) {
783 bql_unlock();
785 return cur_val;
789 * Raising a stage2 Protection fault for an atomic update to a read-only
790 * page is delayed until it is certain that there is a change to make.
792 if (unlikely(!ptw->out_rw)) {
793 int flags;
795 env->tlb_fi = fi;
796 flags = probe_access_full_mmu(env, ptw->out_virt, 0,
797 MMU_DATA_STORE,
798 arm_to_core_mmu_idx(ptw->in_ptw_idx),
799 NULL, NULL);
800 env->tlb_fi = NULL;
802 if (unlikely(flags & TLB_INVALID_MASK)) {
804 * We know this must be a stage 2 fault because the granule
805 * protection table does not separately track read and write
806 * permission, so all GPC faults are caught in S1_ptw_translate():
807 * we only get here for "readable but not writeable".
809 assert(fi->type != ARMFault_None);
810 fi->s2addr = ptw->out_virt;
811 fi->stage2 = true;
812 fi->s1ptw = true;
813 fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx);
814 return 0;
817 /* In case CAS mismatches and we loop, remember writability. */
818 ptw->out_rw = true;
821 #ifdef CONFIG_ATOMIC64
822 if (ptw->out_be) {
823 old_val = cpu_to_be64(old_val);
824 new_val = cpu_to_be64(new_val);
825 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
826 cur_val = be64_to_cpu(cur_val);
827 } else {
828 old_val = cpu_to_le64(old_val);
829 new_val = cpu_to_le64(new_val);
830 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
831 cur_val = le64_to_cpu(cur_val);
833 #else
835 * We can't support the full 64-bit atomic cmpxchg on the host.
836 * Because this is only used for FEAT_HAFDBS, which is only for AA64,
837 * we know that TCG_OVERSIZED_GUEST is set, which means that we are
838 * running in round-robin mode and could only race with dma i/o.
840 #if !TCG_OVERSIZED_GUEST
841 # error "Unexpected configuration"
842 #endif
843 bool locked = bql_locked();
844 if (!locked) {
845 bql_lock();
847 if (ptw->out_be) {
848 cur_val = ldq_be_p(host);
849 if (cur_val == old_val) {
850 stq_be_p(host, new_val);
852 } else {
853 cur_val = ldq_le_p(host);
854 if (cur_val == old_val) {
855 stq_le_p(host, new_val);
858 if (!locked) {
859 bql_unlock();
861 #endif
863 return cur_val;
864 #else
865 /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */
866 g_assert_not_reached();
867 #endif
870 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
871 uint32_t *table, uint32_t address)
873 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
874 uint64_t tcr = regime_tcr(env, mmu_idx);
875 int maskshift = extract32(tcr, 0, 3);
876 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
877 uint32_t base_mask;
879 if (address & mask) {
880 if (tcr & TTBCR_PD1) {
881 /* Translation table walk disabled for TTBR1 */
882 return false;
884 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
885 } else {
886 if (tcr & TTBCR_PD0) {
887 /* Translation table walk disabled for TTBR0 */
888 return false;
890 base_mask = ~((uint32_t)0x3fffu >> maskshift);
891 *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
893 *table |= (address >> 18) & 0x3ffc;
894 return true;
898 * Translate section/page access permissions to page R/W protection flags
899 * @env: CPUARMState
900 * @mmu_idx: MMU index indicating required translation regime
901 * @ap: The 3-bit access permissions (AP[2:0])
902 * @domain_prot: The 2-bit domain access permissions
903 * @is_user: TRUE if accessing from PL0
905 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
906 int ap, int domain_prot, bool is_user)
908 if (domain_prot == 3) {
909 return PAGE_READ | PAGE_WRITE;
912 switch (ap) {
913 case 0:
914 if (arm_feature(env, ARM_FEATURE_V7)) {
915 return 0;
917 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
918 case SCTLR_S:
919 return is_user ? 0 : PAGE_READ;
920 case SCTLR_R:
921 return PAGE_READ;
922 default:
923 return 0;
925 case 1:
926 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
927 case 2:
928 if (is_user) {
929 return PAGE_READ;
930 } else {
931 return PAGE_READ | PAGE_WRITE;
933 case 3:
934 return PAGE_READ | PAGE_WRITE;
935 case 4: /* Reserved. */
936 return 0;
937 case 5:
938 return is_user ? 0 : PAGE_READ;
939 case 6:
940 return PAGE_READ;
941 case 7:
942 if (!arm_feature(env, ARM_FEATURE_V6K)) {
943 return 0;
945 return PAGE_READ;
946 default:
947 g_assert_not_reached();
952 * Translate section/page access permissions to page R/W protection flags
953 * @env: CPUARMState
954 * @mmu_idx: MMU index indicating required translation regime
955 * @ap: The 3-bit access permissions (AP[2:0])
956 * @domain_prot: The 2-bit domain access permissions
958 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
959 int ap, int domain_prot)
961 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
962 regime_is_user(env, mmu_idx));
966 * Translate section/page access permissions to page R/W protection flags.
967 * @ap: The 2-bit simple AP (AP[2:1])
968 * @is_user: TRUE if accessing from PL0
970 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
972 switch (ap) {
973 case 0:
974 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
975 case 1:
976 return PAGE_READ | PAGE_WRITE;
977 case 2:
978 return is_user ? 0 : PAGE_READ;
979 case 3:
980 return PAGE_READ;
981 default:
982 g_assert_not_reached();
986 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
988 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
991 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
992 uint32_t address, MMUAccessType access_type,
993 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
995 int level = 1;
996 uint32_t table;
997 uint32_t desc;
998 int type;
999 int ap;
1000 int domain = 0;
1001 int domain_prot;
1002 hwaddr phys_addr;
1003 uint32_t dacr;
1005 /* Pagetable walk. */
1006 /* Lookup l1 descriptor. */
1007 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
1008 /* Section translation fault if page walk is disabled by PD0 or PD1 */
1009 fi->type = ARMFault_Translation;
1010 goto do_fault;
1012 if (!S1_ptw_translate(env, ptw, table, fi)) {
1013 goto do_fault;
1015 desc = arm_ldl_ptw(env, ptw, fi);
1016 if (fi->type != ARMFault_None) {
1017 goto do_fault;
1019 type = (desc & 3);
1020 domain = (desc >> 5) & 0x0f;
1021 if (regime_el(env, ptw->in_mmu_idx) == 1) {
1022 dacr = env->cp15.dacr_ns;
1023 } else {
1024 dacr = env->cp15.dacr_s;
1026 domain_prot = (dacr >> (domain * 2)) & 3;
1027 if (type == 0) {
1028 /* Section translation fault. */
1029 fi->type = ARMFault_Translation;
1030 goto do_fault;
1032 if (type != 2) {
1033 level = 2;
1035 if (domain_prot == 0 || domain_prot == 2) {
1036 fi->type = ARMFault_Domain;
1037 goto do_fault;
1039 if (type == 2) {
1040 /* 1Mb section. */
1041 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1042 ap = (desc >> 10) & 3;
1043 result->f.lg_page_size = 20; /* 1MB */
1044 } else {
1045 /* Lookup l2 entry. */
1046 if (type == 1) {
1047 /* Coarse pagetable. */
1048 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1049 } else {
1050 /* Fine pagetable. */
1051 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
1053 if (!S1_ptw_translate(env, ptw, table, fi)) {
1054 goto do_fault;
1056 desc = arm_ldl_ptw(env, ptw, fi);
1057 if (fi->type != ARMFault_None) {
1058 goto do_fault;
1060 switch (desc & 3) {
1061 case 0: /* Page translation fault. */
1062 fi->type = ARMFault_Translation;
1063 goto do_fault;
1064 case 1: /* 64k page. */
1065 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1066 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1067 result->f.lg_page_size = 16;
1068 break;
1069 case 2: /* 4k page. */
1070 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1071 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
1072 result->f.lg_page_size = 12;
1073 break;
1074 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
1075 if (type == 1) {
1076 /* ARMv6/XScale extended small page format */
1077 if (arm_feature(env, ARM_FEATURE_XSCALE)
1078 || arm_feature(env, ARM_FEATURE_V6)) {
1079 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1080 result->f.lg_page_size = 12;
1081 } else {
1083 * UNPREDICTABLE in ARMv5; we choose to take a
1084 * page translation fault.
1086 fi->type = ARMFault_Translation;
1087 goto do_fault;
1089 } else {
1090 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1091 result->f.lg_page_size = 10;
1093 ap = (desc >> 4) & 3;
1094 break;
1095 default:
1096 /* Never happens, but compiler isn't smart enough to tell. */
1097 g_assert_not_reached();
1100 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
1101 result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
1102 if (!(result->f.prot & (1 << access_type))) {
1103 /* Access permission fault. */
1104 fi->type = ARMFault_Permission;
1105 goto do_fault;
1107 result->f.phys_addr = phys_addr;
1108 return false;
1109 do_fault:
1110 fi->domain = domain;
1111 fi->level = level;
1112 return true;
1115 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
1116 uint32_t address, MMUAccessType access_type,
1117 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1119 ARMCPU *cpu = env_archcpu(env);
1120 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1121 int level = 1;
1122 uint32_t table;
1123 uint32_t desc;
1124 uint32_t xn;
1125 uint32_t pxn = 0;
1126 int type;
1127 int ap;
1128 int domain = 0;
1129 int domain_prot;
1130 hwaddr phys_addr;
1131 uint32_t dacr;
1132 bool ns;
1133 int user_prot;
1135 /* Pagetable walk. */
1136 /* Lookup l1 descriptor. */
1137 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
1138 /* Section translation fault if page walk is disabled by PD0 or PD1 */
1139 fi->type = ARMFault_Translation;
1140 goto do_fault;
1142 if (!S1_ptw_translate(env, ptw, table, fi)) {
1143 goto do_fault;
1145 desc = arm_ldl_ptw(env, ptw, fi);
1146 if (fi->type != ARMFault_None) {
1147 goto do_fault;
1149 type = (desc & 3);
1150 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
1151 /* Section translation fault, or attempt to use the encoding
1152 * which is Reserved on implementations without PXN.
1154 fi->type = ARMFault_Translation;
1155 goto do_fault;
1157 if ((type == 1) || !(desc & (1 << 18))) {
1158 /* Page or Section. */
1159 domain = (desc >> 5) & 0x0f;
1161 if (regime_el(env, mmu_idx) == 1) {
1162 dacr = env->cp15.dacr_ns;
1163 } else {
1164 dacr = env->cp15.dacr_s;
1166 if (type == 1) {
1167 level = 2;
1169 domain_prot = (dacr >> (domain * 2)) & 3;
1170 if (domain_prot == 0 || domain_prot == 2) {
1171 /* Section or Page domain fault */
1172 fi->type = ARMFault_Domain;
1173 goto do_fault;
1175 if (type != 1) {
1176 if (desc & (1 << 18)) {
1177 /* Supersection. */
1178 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1179 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
1180 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
1181 result->f.lg_page_size = 24; /* 16MB */
1182 } else {
1183 /* Section. */
1184 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1185 result->f.lg_page_size = 20; /* 1MB */
1187 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1188 xn = desc & (1 << 4);
1189 pxn = desc & 1;
1190 ns = extract32(desc, 19, 1);
1191 } else {
1192 if (cpu_isar_feature(aa32_pxn, cpu)) {
1193 pxn = (desc >> 2) & 1;
1195 ns = extract32(desc, 3, 1);
1196 /* Lookup l2 entry. */
1197 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1198 if (!S1_ptw_translate(env, ptw, table, fi)) {
1199 goto do_fault;
1201 desc = arm_ldl_ptw(env, ptw, fi);
1202 if (fi->type != ARMFault_None) {
1203 goto do_fault;
1205 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1206 switch (desc & 3) {
1207 case 0: /* Page translation fault. */
1208 fi->type = ARMFault_Translation;
1209 goto do_fault;
1210 case 1: /* 64k page. */
1211 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1212 xn = desc & (1 << 15);
1213 result->f.lg_page_size = 16;
1214 break;
1215 case 2: case 3: /* 4k page. */
1216 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1217 xn = desc & 1;
1218 result->f.lg_page_size = 12;
1219 break;
1220 default:
1221 /* Never happens, but compiler isn't smart enough to tell. */
1222 g_assert_not_reached();
1225 if (domain_prot == 3) {
1226 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1227 } else {
1228 if (pxn && !regime_is_user(env, mmu_idx)) {
1229 xn = 1;
1231 if (xn && access_type == MMU_INST_FETCH) {
1232 fi->type = ARMFault_Permission;
1233 goto do_fault;
1236 if (arm_feature(env, ARM_FEATURE_V6K) &&
1237 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
1238 /* The simplified model uses AP[0] as an access control bit. */
1239 if ((ap & 1) == 0) {
1240 /* Access flag fault. */
1241 fi->type = ARMFault_AccessFlag;
1242 goto do_fault;
1244 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
1245 user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
1246 } else {
1247 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
1248 user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
1250 if (result->f.prot && !xn) {
1251 result->f.prot |= PAGE_EXEC;
1253 if (!(result->f.prot & (1 << access_type))) {
1254 /* Access permission fault. */
1255 fi->type = ARMFault_Permission;
1256 goto do_fault;
1258 if (regime_is_pan(env, mmu_idx) &&
1259 !regime_is_user(env, mmu_idx) &&
1260 user_prot &&
1261 access_type != MMU_INST_FETCH) {
1262 /* Privileged Access Never fault */
1263 fi->type = ARMFault_Permission;
1264 goto do_fault;
1267 if (ns) {
1268 /* The NS bit will (as required by the architecture) have no effect if
1269 * the CPU doesn't support TZ or this is a non-secure translation
1270 * regime, because the attribute will already be non-secure.
1272 result->f.attrs.secure = false;
1273 result->f.attrs.space = ARMSS_NonSecure;
1275 result->f.phys_addr = phys_addr;
1276 return false;
1277 do_fault:
1278 fi->domain = domain;
1279 fi->level = level;
1280 return true;
1284 * Translate S2 section/page access permissions to protection flags
1285 * @env: CPUARMState
1286 * @s2ap: The 2-bit stage2 access permissions (S2AP)
1287 * @xn: XN (execute-never) bits
1288 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
1290 static int get_S2prot_noexecute(int s2ap)
1292 int prot = 0;
1294 if (s2ap & 1) {
1295 prot |= PAGE_READ;
1297 if (s2ap & 2) {
1298 prot |= PAGE_WRITE;
1300 return prot;
1303 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
1305 int prot = get_S2prot_noexecute(s2ap);
1307 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
1308 switch (xn) {
1309 case 0:
1310 prot |= PAGE_EXEC;
1311 break;
1312 case 1:
1313 if (s1_is_el0) {
1314 prot |= PAGE_EXEC;
1316 break;
1317 case 2:
1318 break;
1319 case 3:
1320 if (!s1_is_el0) {
1321 prot |= PAGE_EXEC;
1323 break;
1324 default:
1325 g_assert_not_reached();
1327 } else {
1328 if (!extract32(xn, 1, 1)) {
1329 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
1330 prot |= PAGE_EXEC;
1334 return prot;
1338 * Translate section/page access permissions to protection flags
1339 * @env: CPUARMState
1340 * @mmu_idx: MMU index indicating required translation regime
1341 * @is_aa64: TRUE if AArch64
1342 * @ap: The 2-bit simple AP (AP[2:1])
1343 * @xn: XN (execute-never) bit
1344 * @pxn: PXN (privileged execute-never) bit
1345 * @in_pa: The original input pa space
1346 * @out_pa: The output pa space, modified by NSTable, NS, and NSE
1348 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
1349 int ap, int xn, int pxn,
1350 ARMSecuritySpace in_pa, ARMSecuritySpace out_pa)
1352 ARMCPU *cpu = env_archcpu(env);
1353 bool is_user = regime_is_user(env, mmu_idx);
1354 int prot_rw, user_rw;
1355 bool have_wxn;
1356 int wxn = 0;
1358 assert(!regime_is_stage2(mmu_idx));
1360 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
1361 if (is_user) {
1362 prot_rw = user_rw;
1363 } else {
1365 * PAN controls can forbid data accesses but don't affect insn fetch.
1366 * Plain PAN forbids data accesses if EL0 has data permissions;
1367 * PAN3 forbids data accesses if EL0 has either data or exec perms.
1368 * Note that for AArch64 the 'user can exec' case is exactly !xn.
1369 * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0
1370 * do not affect EPAN.
1372 if (user_rw && regime_is_pan(env, mmu_idx)) {
1373 prot_rw = 0;
1374 } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 &&
1375 regime_is_pan(env, mmu_idx) &&
1376 (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) {
1377 prot_rw = 0;
1378 } else {
1379 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
1383 if (in_pa != out_pa) {
1384 switch (in_pa) {
1385 case ARMSS_Root:
1387 * R_ZWRVD: permission fault for insn fetched from non-Root,
1388 * I_WWBFB: SIF has no effect in EL3.
1390 return prot_rw;
1391 case ARMSS_Realm:
1393 * R_PKTDS: permission fault for insn fetched from non-Realm,
1394 * for Realm EL2 or EL2&0. The corresponding fault for EL1&0
1395 * happens during any stage2 translation.
1397 switch (mmu_idx) {
1398 case ARMMMUIdx_E2:
1399 case ARMMMUIdx_E20_0:
1400 case ARMMMUIdx_E20_2:
1401 case ARMMMUIdx_E20_2_PAN:
1402 return prot_rw;
1403 default:
1404 break;
1406 break;
1407 case ARMSS_Secure:
1408 if (env->cp15.scr_el3 & SCR_SIF) {
1409 return prot_rw;
1411 break;
1412 default:
1413 /* Input NonSecure must have output NonSecure. */
1414 g_assert_not_reached();
1418 /* TODO have_wxn should be replaced with
1419 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
1420 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
1421 * compatible processors have EL2, which is required for [U]WXN.
1423 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
1425 if (have_wxn) {
1426 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
1429 if (is_aa64) {
1430 if (regime_has_2_ranges(mmu_idx) && !is_user) {
1431 xn = pxn || (user_rw & PAGE_WRITE);
1433 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1434 switch (regime_el(env, mmu_idx)) {
1435 case 1:
1436 case 3:
1437 if (is_user) {
1438 xn = xn || !(user_rw & PAGE_READ);
1439 } else {
1440 int uwxn = 0;
1441 if (have_wxn) {
1442 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
1444 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1445 (uwxn && (user_rw & PAGE_WRITE));
1447 break;
1448 case 2:
1449 break;
1451 } else {
1452 xn = wxn = 0;
1455 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1456 return prot_rw;
1458 return prot_rw | PAGE_EXEC;
1461 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1462 ARMMMUIdx mmu_idx)
1464 uint64_t tcr = regime_tcr(env, mmu_idx);
1465 uint32_t el = regime_el(env, mmu_idx);
1466 int select, tsz;
1467 bool epd, hpd;
1469 assert(mmu_idx != ARMMMUIdx_Stage2_S);
1471 if (mmu_idx == ARMMMUIdx_Stage2) {
1472 /* VTCR */
1473 bool sext = extract32(tcr, 4, 1);
1474 bool sign = extract32(tcr, 3, 1);
1477 * If the sign-extend bit is not the same as t0sz[3], the result
1478 * is unpredictable. Flag this as a guest error.
1480 if (sign != sext) {
1481 qemu_log_mask(LOG_GUEST_ERROR,
1482 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1484 tsz = sextract32(tcr, 0, 4) + 8;
1485 select = 0;
1486 hpd = false;
1487 epd = false;
1488 } else if (el == 2) {
1489 /* HTCR */
1490 tsz = extract32(tcr, 0, 3);
1491 select = 0;
1492 hpd = extract64(tcr, 24, 1);
1493 epd = false;
1494 } else {
1495 int t0sz = extract32(tcr, 0, 3);
1496 int t1sz = extract32(tcr, 16, 3);
1498 if (t1sz == 0) {
1499 select = va > (0xffffffffu >> t0sz);
1500 } else {
1501 /* Note that we will detect errors later. */
1502 select = va >= ~(0xffffffffu >> t1sz);
1504 if (!select) {
1505 tsz = t0sz;
1506 epd = extract32(tcr, 7, 1);
1507 hpd = extract64(tcr, 41, 1);
1508 } else {
1509 tsz = t1sz;
1510 epd = extract32(tcr, 23, 1);
1511 hpd = extract64(tcr, 42, 1);
1513 /* For aarch32, hpd0 is not enabled without t2e as well. */
1514 hpd &= extract32(tcr, 6, 1);
1517 return (ARMVAParameters) {
1518 .tsz = tsz,
1519 .select = select,
1520 .epd = epd,
1521 .hpd = hpd,
1526 * check_s2_mmu_setup
1527 * @cpu: ARMCPU
1528 * @is_aa64: True if the translation regime is in AArch64 state
1529 * @tcr: VTCR_EL2 or VSTCR_EL2
1530 * @ds: Effective value of TCR.DS.
1531 * @iasize: Bitsize of IPAs
1532 * @stride: Page-table stride (See the ARM ARM)
1534 * Decode the starting level of the S2 lookup, returning INT_MIN if
1535 * the configuration is invalid.
1537 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1538 bool ds, int iasize, int stride)
1540 int sl0, sl2, startlevel, granulebits, levels;
1541 int s1_min_iasize, s1_max_iasize;
1543 sl0 = extract32(tcr, 6, 2);
1544 if (is_aa64) {
1546 * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1547 * so interleave AArch64.S2StartLevel.
1549 switch (stride) {
1550 case 9: /* 4KB */
1551 /* SL2 is RES0 unless DS=1 & 4KB granule. */
1552 sl2 = extract64(tcr, 33, 1);
1553 if (ds && sl2) {
1554 if (sl0 != 0) {
1555 goto fail;
1557 startlevel = -1;
1558 } else {
1559 startlevel = 2 - sl0;
1560 switch (sl0) {
1561 case 2:
1562 if (arm_pamax(cpu) < 44) {
1563 goto fail;
1565 break;
1566 case 3:
1567 if (!cpu_isar_feature(aa64_st, cpu)) {
1568 goto fail;
1570 startlevel = 3;
1571 break;
1574 break;
1575 case 11: /* 16KB */
1576 switch (sl0) {
1577 case 2:
1578 if (arm_pamax(cpu) < 42) {
1579 goto fail;
1581 break;
1582 case 3:
1583 if (!ds) {
1584 goto fail;
1586 break;
1588 startlevel = 3 - sl0;
1589 break;
1590 case 13: /* 64KB */
1591 switch (sl0) {
1592 case 2:
1593 if (arm_pamax(cpu) < 44) {
1594 goto fail;
1596 break;
1597 case 3:
1598 goto fail;
1600 startlevel = 3 - sl0;
1601 break;
1602 default:
1603 g_assert_not_reached();
1605 } else {
1607 * Things are simpler for AArch32 EL2, with only 4k pages.
1608 * There is no separate S2InvalidSL function, but AArch32.S2Walk
1609 * begins with walkparms.sl0 in {'1x'}.
1611 assert(stride == 9);
1612 if (sl0 >= 2) {
1613 goto fail;
1615 startlevel = 2 - sl0;
1618 /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */
1619 levels = 3 - startlevel;
1620 granulebits = stride + 3;
1622 s1_min_iasize = levels * stride + granulebits + 1;
1623 s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1625 if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1626 return startlevel;
1629 fail:
1630 return INT_MIN;
1633 static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds,
1634 ARMGranuleSize gran, int level)
1637 * See pseudocode AArch46.BlockDescSupported(): block descriptors
1638 * are not valid at all levels, depending on the page size.
1640 switch (gran) {
1641 case Gran4K:
1642 return (level == 0 && ds) || level == 1 || level == 2;
1643 case Gran16K:
1644 return (level == 1 && ds) || level == 2;
1645 case Gran64K:
1646 return (level == 1 && arm_pamax(cpu) == 52) || level == 2;
1647 default:
1648 g_assert_not_reached();
1652 static bool nv_nv1_enabled(CPUARMState *env, S1Translate *ptw)
1654 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
1655 return (hcr & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1);
1659 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1661 * Returns false if the translation was successful. Otherwise, phys_ptr,
1662 * attrs, prot and page_size may not be filled in, and the populated fsr
1663 * value provides information on why the translation aborted, in the format
1664 * of a long-format DFSR/IFSR fault register, with the following caveat:
1665 * the WnR bit is never set (the caller must do this).
1667 * @env: CPUARMState
1668 * @ptw: Current and next stage parameters for the walk.
1669 * @address: virtual address to get physical address for
1670 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1671 * @result: set on translation success,
1672 * @fi: set to fault info if the translation fails
1674 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1675 uint64_t address,
1676 MMUAccessType access_type,
1677 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1679 ARMCPU *cpu = env_archcpu(env);
1680 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1681 int32_t level;
1682 ARMVAParameters param;
1683 uint64_t ttbr;
1684 hwaddr descaddr, indexmask, indexmask_grainsize;
1685 uint32_t tableattrs;
1686 target_ulong page_size;
1687 uint64_t attrs;
1688 int32_t stride;
1689 int addrsize, inputsize, outputsize;
1690 uint64_t tcr = regime_tcr(env, mmu_idx);
1691 int ap, xn, pxn;
1692 uint32_t el = regime_el(env, mmu_idx);
1693 uint64_t descaddrmask;
1694 bool aarch64 = arm_el_is_aa64(env, el);
1695 uint64_t descriptor, new_descriptor;
1696 ARMSecuritySpace out_space;
1697 bool device;
1699 /* TODO: This code does not support shareability levels. */
1700 if (aarch64) {
1701 int ps;
1703 param = aa64_va_parameters(env, address, mmu_idx,
1704 access_type != MMU_INST_FETCH,
1705 !arm_el_is_aa64(env, 1));
1706 level = 0;
1709 * If TxSZ is programmed to a value larger than the maximum,
1710 * or smaller than the effective minimum, it is IMPLEMENTATION
1711 * DEFINED whether we behave as if the field were programmed
1712 * within bounds, or if a level 0 Translation fault is generated.
1714 * With FEAT_LVA, fault on less than minimum becomes required,
1715 * so our choice is to always raise the fault.
1717 if (param.tsz_oob) {
1718 goto do_translation_fault;
1721 addrsize = 64 - 8 * param.tbi;
1722 inputsize = 64 - param.tsz;
1725 * Bound PS by PARANGE to find the effective output address size.
1726 * ID_AA64MMFR0 is a read-only register so values outside of the
1727 * supported mappings can be considered an implementation error.
1729 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1730 ps = MIN(ps, param.ps);
1731 assert(ps < ARRAY_SIZE(pamax_map));
1732 outputsize = pamax_map[ps];
1735 * With LPA2, the effective output address (OA) size is at most 48 bits
1736 * unless TCR.DS == 1
1738 if (!param.ds && param.gran != Gran64K) {
1739 outputsize = MIN(outputsize, 48);
1741 } else {
1742 param = aa32_va_parameters(env, address, mmu_idx);
1743 level = 1;
1744 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1745 inputsize = addrsize - param.tsz;
1746 outputsize = 40;
1750 * We determined the region when collecting the parameters, but we
1751 * have not yet validated that the address is valid for the region.
1752 * Extract the top bits and verify that they all match select.
1754 * For aa32, if inputsize == addrsize, then we have selected the
1755 * region by exclusion in aa32_va_parameters and there is no more
1756 * validation to do here.
1758 if (inputsize < addrsize) {
1759 target_ulong top_bits = sextract64(address, inputsize,
1760 addrsize - inputsize);
1761 if (-top_bits != param.select) {
1762 /* The gap between the two regions is a Translation fault */
1763 goto do_translation_fault;
1767 stride = arm_granule_bits(param.gran) - 3;
1770 * Note that QEMU ignores shareability and cacheability attributes,
1771 * so we don't need to do anything with the SH, ORGN, IRGN fields
1772 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
1773 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1774 * implement any ASID-like capability so we can ignore it (instead
1775 * we will always flush the TLB any time the ASID is changed).
1777 ttbr = regime_ttbr(env, mmu_idx, param.select);
1780 * Here we should have set up all the parameters for the translation:
1781 * inputsize, ttbr, epd, stride, tbi
1784 if (param.epd) {
1786 * Translation table walk disabled => Translation fault on TLB miss
1787 * Note: This is always 0 on 64-bit EL2 and EL3.
1789 goto do_translation_fault;
1792 if (!regime_is_stage2(mmu_idx)) {
1794 * The starting level depends on the virtual address size (which can
1795 * be up to 48 bits) and the translation granule size. It indicates
1796 * the number of strides (stride bits at a time) needed to
1797 * consume the bits of the input address. In the pseudocode this is:
1798 * level = 4 - RoundUp((inputsize - grainsize) / stride)
1799 * where their 'inputsize' is our 'inputsize', 'grainsize' is
1800 * our 'stride + 3' and 'stride' is our 'stride'.
1801 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1802 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1803 * = 4 - (inputsize - 4) / stride;
1805 level = 4 - (inputsize - 4) / stride;
1806 } else {
1807 int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1808 inputsize, stride);
1809 if (startlevel == INT_MIN) {
1810 level = 0;
1811 goto do_translation_fault;
1813 level = startlevel;
1816 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1817 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1819 /* Now we can extract the actual base address from the TTBR */
1820 descaddr = extract64(ttbr, 0, 48);
1823 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1825 * Otherwise, if the base address is out of range, raise AddressSizeFault.
1826 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1827 * but we've just cleared the bits above 47, so simplify the test.
1829 if (outputsize > 48) {
1830 descaddr |= extract64(ttbr, 2, 4) << 48;
1831 } else if (descaddr >> outputsize) {
1832 level = 0;
1833 fi->type = ARMFault_AddressSize;
1834 goto do_fault;
1838 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1839 * and also to mask out CnP (bit 0) which could validly be non-zero.
1841 descaddr &= ~indexmask;
1844 * For AArch32, the address field in the descriptor goes up to bit 39
1845 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0
1846 * or an AddressSize fault is raised. So for v8 we extract those SBZ
1847 * bits as part of the address, which will be checked via outputsize.
1848 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1849 * the highest bits of a 52-bit output are placed elsewhere.
1851 if (param.ds) {
1852 descaddrmask = MAKE_64BIT_MASK(0, 50);
1853 } else if (arm_feature(env, ARM_FEATURE_V8)) {
1854 descaddrmask = MAKE_64BIT_MASK(0, 48);
1855 } else {
1856 descaddrmask = MAKE_64BIT_MASK(0, 40);
1858 descaddrmask &= ~indexmask_grainsize;
1859 tableattrs = 0;
1861 next_level:
1862 descaddr |= (address >> (stride * (4 - level))) & indexmask;
1863 descaddr &= ~7ULL;
1866 * Process the NSTable bit from the previous level. This changes
1867 * the table address space and the output space from Secure to
1868 * NonSecure. With RME, the EL3 translation regime does not change
1869 * from Root to NonSecure.
1871 if (ptw->in_space == ARMSS_Secure
1872 && !regime_is_stage2(mmu_idx)
1873 && extract32(tableattrs, 4, 1)) {
1875 * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1876 * Assert the relative order of the secure/non-secure indexes.
1878 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS);
1879 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2);
1880 ptw->in_ptw_idx += 1;
1881 ptw->in_space = ARMSS_NonSecure;
1884 if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1885 goto do_fault;
1887 descriptor = arm_ldq_ptw(env, ptw, fi);
1888 if (fi->type != ARMFault_None) {
1889 goto do_fault;
1891 new_descriptor = descriptor;
1893 restart_atomic_update:
1894 if (!(descriptor & 1) ||
1895 (!(descriptor & 2) &&
1896 !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) {
1897 /* Invalid, or a block descriptor at an invalid level */
1898 goto do_translation_fault;
1901 descaddr = descriptor & descaddrmask;
1904 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1905 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of
1906 * descaddr are in [9:8]. Otherwise, if descaddr is out of range,
1907 * raise AddressSizeFault.
1909 if (outputsize > 48) {
1910 if (param.ds) {
1911 descaddr |= extract64(descriptor, 8, 2) << 50;
1912 } else {
1913 descaddr |= extract64(descriptor, 12, 4) << 48;
1915 } else if (descaddr >> outputsize) {
1916 fi->type = ARMFault_AddressSize;
1917 goto do_fault;
1920 if ((descriptor & 2) && (level < 3)) {
1922 * Table entry. The top five bits are attributes which may
1923 * propagate down through lower levels of the table (and
1924 * which are all arranged so that 0 means "no effect", so
1925 * we can gather them up by ORing in the bits at each level).
1927 tableattrs |= extract64(descriptor, 59, 5);
1928 level++;
1929 indexmask = indexmask_grainsize;
1930 goto next_level;
1934 * Block entry at level 1 or 2, or page entry at level 3.
1935 * These are basically the same thing, although the number
1936 * of bits we pull in from the vaddr varies. Note that although
1937 * descaddrmask masks enough of the low bits of the descriptor
1938 * to give a correct page or table address, the address field
1939 * in a block descriptor is smaller; so we need to explicitly
1940 * clear the lower bits here before ORing in the low vaddr bits.
1942 * Afterward, descaddr is the final physical address.
1944 page_size = (1ULL << ((stride * (4 - level)) + 3));
1945 descaddr &= ~(hwaddr)(page_size - 1);
1946 descaddr |= (address & (page_size - 1));
1948 if (likely(!ptw->in_debug)) {
1950 * Access flag.
1951 * If HA is enabled, prepare to update the descriptor below.
1952 * Otherwise, pass the access fault on to software.
1954 if (!(descriptor & (1 << 10))) {
1955 if (param.ha) {
1956 new_descriptor |= 1 << 10; /* AF */
1957 } else {
1958 fi->type = ARMFault_AccessFlag;
1959 goto do_fault;
1964 * Dirty Bit.
1965 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1966 * bit for writeback. The actual write protection test may still be
1967 * overridden by tableattrs, to be merged below.
1969 if (param.hd
1970 && extract64(descriptor, 51, 1) /* DBM */
1971 && access_type == MMU_DATA_STORE) {
1972 if (regime_is_stage2(mmu_idx)) {
1973 new_descriptor |= 1ull << 7; /* set S2AP[1] */
1974 } else {
1975 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1981 * Extract attributes from the (modified) descriptor, and apply
1982 * table descriptors. Stage 2 table descriptors do not include
1983 * any attribute fields. HPD disables all the table attributes
1984 * except NSTable (which we have already handled).
1986 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1987 if (!regime_is_stage2(mmu_idx)) {
1988 if (!param.hpd) {
1989 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */
1991 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1992 * means "force PL1 access only", which means forcing AP[1] to 0.
1994 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1995 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */
1999 ap = extract32(attrs, 6, 2);
2000 out_space = ptw->in_space;
2001 if (regime_is_stage2(mmu_idx)) {
2003 * R_GYNXY: For stage2 in Realm security state, bit 55 is NS.
2004 * The bit remains ignored for other security states.
2005 * R_YMCSL: Executing an insn fetched from non-Realm causes
2006 * a stage2 permission fault.
2008 if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) {
2009 out_space = ARMSS_NonSecure;
2010 result->f.prot = get_S2prot_noexecute(ap);
2011 } else {
2012 xn = extract64(attrs, 53, 2);
2013 result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0);
2015 } else {
2016 int nse, ns = extract32(attrs, 5, 1);
2017 switch (out_space) {
2018 case ARMSS_Root:
2020 * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime.
2021 * R_XTYPW: NSE and NS together select the output pa space.
2023 nse = extract32(attrs, 11, 1);
2024 out_space = (nse << 1) | ns;
2025 if (out_space == ARMSS_Secure &&
2026 !cpu_isar_feature(aa64_sel2, cpu)) {
2027 out_space = ARMSS_NonSecure;
2029 break;
2030 case ARMSS_Secure:
2031 if (ns) {
2032 out_space = ARMSS_NonSecure;
2034 break;
2035 case ARMSS_Realm:
2036 switch (mmu_idx) {
2037 case ARMMMUIdx_Stage1_E0:
2038 case ARMMMUIdx_Stage1_E1:
2039 case ARMMMUIdx_Stage1_E1_PAN:
2040 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */
2041 break;
2042 case ARMMMUIdx_E2:
2043 case ARMMMUIdx_E20_0:
2044 case ARMMMUIdx_E20_2:
2045 case ARMMMUIdx_E20_2_PAN:
2047 * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1,
2048 * NS changes the output to non-secure space.
2050 if (ns) {
2051 out_space = ARMSS_NonSecure;
2053 break;
2054 default:
2055 g_assert_not_reached();
2057 break;
2058 case ARMSS_NonSecure:
2059 /* R_QRMFF: For NonSecure state, the NS bit is RES0. */
2060 break;
2061 default:
2062 g_assert_not_reached();
2064 xn = extract64(attrs, 54, 1);
2065 pxn = extract64(attrs, 53, 1);
2067 if (el == 1 && nv_nv1_enabled(env, ptw)) {
2069 * With FEAT_NV, when HCR_EL2.{NV,NV1} == {1,1}, the block/page
2070 * descriptor bit 54 holds PXN, 53 is RES0, and the effective value
2071 * of UXN is 0. Similarly for bits 59 and 60 in table descriptors
2072 * (which we have already folded into bits 53 and 54 of attrs).
2073 * AP[1] (descriptor bit 6, our ap bit 0) is treated as 0.
2074 * Similarly, APTable[0] from the table descriptor is treated as 0;
2075 * we already folded this into AP[1] and squashing that to 0 does
2076 * the right thing.
2078 pxn = xn;
2079 xn = 0;
2080 ap &= ~1;
2083 * Note that we modified ptw->in_space earlier for NSTable, but
2084 * result->f.attrs retains a copy of the original security space.
2086 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, xn, pxn,
2087 result->f.attrs.space, out_space);
2090 if (!(result->f.prot & (1 << access_type))) {
2091 fi->type = ARMFault_Permission;
2092 goto do_fault;
2095 /* If FEAT_HAFDBS has made changes, update the PTE. */
2096 if (new_descriptor != descriptor) {
2097 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
2098 if (fi->type != ARMFault_None) {
2099 goto do_fault;
2102 * I_YZSVV says that if the in-memory descriptor has changed,
2103 * then we must use the information in that new value
2104 * (which might include a different output address, different
2105 * attributes, or generate a fault).
2106 * Restart the handling of the descriptor value from scratch.
2108 if (new_descriptor != descriptor) {
2109 descriptor = new_descriptor;
2110 goto restart_atomic_update;
2114 result->f.attrs.space = out_space;
2115 result->f.attrs.secure = arm_space_is_secure(out_space);
2117 if (regime_is_stage2(mmu_idx)) {
2118 result->cacheattrs.is_s2_format = true;
2119 result->cacheattrs.attrs = extract32(attrs, 2, 4);
2121 * Security state does not really affect HCR_EL2.FWB;
2122 * we only need to filter FWB for aa32 or other FEAT.
2124 device = S2_attrs_are_device(arm_hcr_el2_eff(env),
2125 result->cacheattrs.attrs);
2126 } else {
2127 /* Index into MAIR registers for cache attributes */
2128 uint8_t attrindx = extract32(attrs, 2, 3);
2129 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2130 assert(attrindx <= 7);
2131 result->cacheattrs.is_s2_format = false;
2132 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2134 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
2135 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
2136 result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */
2138 device = S1_attrs_are_device(result->cacheattrs.attrs);
2142 * Enable alignment checks on Device memory.
2144 * Per R_XCHFJ, this check is mis-ordered. The correct ordering
2145 * for alignment, permission, and stage 2 faults should be:
2146 * - Alignment fault caused by the memory type
2147 * - Permission fault
2148 * - A stage 2 fault on the memory access
2149 * but due to the way the TCG softmmu TLB operates, we will have
2150 * implicitly done the permission check and the stage2 lookup in
2151 * finding the TLB entry, so the alignment check cannot be done sooner.
2153 * In v7, for a CPU without the Virtualization Extensions this
2154 * access is UNPREDICTABLE; we choose to make it take the alignment
2155 * fault as is required for a v7VE CPU. (QEMU doesn't emulate any
2156 * CPUs with ARM_FEATURE_LPAE but not ARM_FEATURE_V7VE anyway.)
2158 if (device) {
2159 result->f.tlb_fill_flags |= TLB_CHECK_ALIGNED;
2163 * For FEAT_LPA2 and effective DS, the SH field in the attributes
2164 * was re-purposed for output address bits. The SH attribute in
2165 * that case comes from TCR_ELx, which we extracted earlier.
2167 if (param.ds) {
2168 result->cacheattrs.shareability = param.sh;
2169 } else {
2170 result->cacheattrs.shareability = extract32(attrs, 8, 2);
2173 result->f.phys_addr = descaddr;
2174 result->f.lg_page_size = ctz64(page_size);
2175 return false;
2177 do_translation_fault:
2178 fi->type = ARMFault_Translation;
2179 do_fault:
2180 if (fi->s1ptw) {
2181 /* Retain the existing stage 2 fi->level */
2182 assert(fi->stage2);
2183 } else {
2184 fi->level = level;
2185 fi->stage2 = regime_is_stage2(mmu_idx);
2187 fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx);
2188 return true;
2191 static bool get_phys_addr_pmsav5(CPUARMState *env,
2192 S1Translate *ptw,
2193 uint32_t address,
2194 MMUAccessType access_type,
2195 GetPhysAddrResult *result,
2196 ARMMMUFaultInfo *fi)
2198 int n;
2199 uint32_t mask;
2200 uint32_t base;
2201 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2202 bool is_user = regime_is_user(env, mmu_idx);
2204 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
2205 /* MPU disabled. */
2206 result->f.phys_addr = address;
2207 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2208 return false;
2211 result->f.phys_addr = address;
2212 for (n = 7; n >= 0; n--) {
2213 base = env->cp15.c6_region[n];
2214 if ((base & 1) == 0) {
2215 continue;
2217 mask = 1 << ((base >> 1) & 0x1f);
2218 /* Keep this shift separate from the above to avoid an
2219 (undefined) << 32. */
2220 mask = (mask << 1) - 1;
2221 if (((base ^ address) & ~mask) == 0) {
2222 break;
2225 if (n < 0) {
2226 fi->type = ARMFault_Background;
2227 return true;
2230 if (access_type == MMU_INST_FETCH) {
2231 mask = env->cp15.pmsav5_insn_ap;
2232 } else {
2233 mask = env->cp15.pmsav5_data_ap;
2235 mask = (mask >> (n * 4)) & 0xf;
2236 switch (mask) {
2237 case 0:
2238 fi->type = ARMFault_Permission;
2239 fi->level = 1;
2240 return true;
2241 case 1:
2242 if (is_user) {
2243 fi->type = ARMFault_Permission;
2244 fi->level = 1;
2245 return true;
2247 result->f.prot = PAGE_READ | PAGE_WRITE;
2248 break;
2249 case 2:
2250 result->f.prot = PAGE_READ;
2251 if (!is_user) {
2252 result->f.prot |= PAGE_WRITE;
2254 break;
2255 case 3:
2256 result->f.prot = PAGE_READ | PAGE_WRITE;
2257 break;
2258 case 5:
2259 if (is_user) {
2260 fi->type = ARMFault_Permission;
2261 fi->level = 1;
2262 return true;
2264 result->f.prot = PAGE_READ;
2265 break;
2266 case 6:
2267 result->f.prot = PAGE_READ;
2268 break;
2269 default:
2270 /* Bad permission. */
2271 fi->type = ARMFault_Permission;
2272 fi->level = 1;
2273 return true;
2275 result->f.prot |= PAGE_EXEC;
2276 return false;
2279 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
2280 int32_t address, uint8_t *prot)
2282 if (!arm_feature(env, ARM_FEATURE_M)) {
2283 *prot = PAGE_READ | PAGE_WRITE;
2284 switch (address) {
2285 case 0xF0000000 ... 0xFFFFFFFF:
2286 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
2287 /* hivecs execing is ok */
2288 *prot |= PAGE_EXEC;
2290 break;
2291 case 0x00000000 ... 0x7FFFFFFF:
2292 *prot |= PAGE_EXEC;
2293 break;
2295 } else {
2296 /* Default system address map for M profile cores.
2297 * The architecture specifies which regions are execute-never;
2298 * at the MPU level no other checks are defined.
2300 switch (address) {
2301 case 0x00000000 ... 0x1fffffff: /* ROM */
2302 case 0x20000000 ... 0x3fffffff: /* SRAM */
2303 case 0x60000000 ... 0x7fffffff: /* RAM */
2304 case 0x80000000 ... 0x9fffffff: /* RAM */
2305 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2306 break;
2307 case 0x40000000 ... 0x5fffffff: /* Peripheral */
2308 case 0xa0000000 ... 0xbfffffff: /* Device */
2309 case 0xc0000000 ... 0xdfffffff: /* Device */
2310 case 0xe0000000 ... 0xffffffff: /* System */
2311 *prot = PAGE_READ | PAGE_WRITE;
2312 break;
2313 default:
2314 g_assert_not_reached();
2319 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
2321 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
2322 return arm_feature(env, ARM_FEATURE_M) &&
2323 extract32(address, 20, 12) == 0xe00;
2326 static bool m_is_system_region(CPUARMState *env, uint32_t address)
2329 * True if address is in the M profile system region
2330 * 0xe0000000 - 0xffffffff
2332 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
2335 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
2336 bool is_secure, bool is_user)
2339 * Return true if we should use the default memory map as a
2340 * "background" region if there are no hits against any MPU regions.
2342 CPUARMState *env = &cpu->env;
2344 if (is_user) {
2345 return false;
2348 if (arm_feature(env, ARM_FEATURE_M)) {
2349 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
2352 if (mmu_idx == ARMMMUIdx_Stage2) {
2353 return false;
2356 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
2359 static bool get_phys_addr_pmsav7(CPUARMState *env,
2360 S1Translate *ptw,
2361 uint32_t address,
2362 MMUAccessType access_type,
2363 GetPhysAddrResult *result,
2364 ARMMMUFaultInfo *fi)
2366 ARMCPU *cpu = env_archcpu(env);
2367 int n;
2368 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2369 bool is_user = regime_is_user(env, mmu_idx);
2370 bool secure = arm_space_is_secure(ptw->in_space);
2372 result->f.phys_addr = address;
2373 result->f.lg_page_size = TARGET_PAGE_BITS;
2374 result->f.prot = 0;
2376 if (regime_translation_disabled(env, mmu_idx, ptw->in_space) ||
2377 m_is_ppb_region(env, address)) {
2379 * MPU disabled or M profile PPB access: use default memory map.
2380 * The other case which uses the default memory map in the
2381 * v7M ARM ARM pseudocode is exception vector reads from the vector
2382 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
2383 * which always does a direct read using address_space_ldl(), rather
2384 * than going via this function, so we don't need to check that here.
2386 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2387 } else { /* MPU enabled */
2388 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
2389 /* region search */
2390 uint32_t base = env->pmsav7.drbar[n];
2391 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
2392 uint32_t rmask;
2393 bool srdis = false;
2395 if (!(env->pmsav7.drsr[n] & 0x1)) {
2396 continue;
2399 if (!rsize) {
2400 qemu_log_mask(LOG_GUEST_ERROR,
2401 "DRSR[%d]: Rsize field cannot be 0\n", n);
2402 continue;
2404 rsize++;
2405 rmask = (1ull << rsize) - 1;
2407 if (base & rmask) {
2408 qemu_log_mask(LOG_GUEST_ERROR,
2409 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
2410 "to DRSR region size, mask = 0x%" PRIx32 "\n",
2411 n, base, rmask);
2412 continue;
2415 if (address < base || address > base + rmask) {
2417 * Address not in this region. We must check whether the
2418 * region covers addresses in the same page as our address.
2419 * In that case we must not report a size that covers the
2420 * whole page for a subsequent hit against a different MPU
2421 * region or the background region, because it would result in
2422 * incorrect TLB hits for subsequent accesses to addresses that
2423 * are in this MPU region.
2425 if (ranges_overlap(base, rmask,
2426 address & TARGET_PAGE_MASK,
2427 TARGET_PAGE_SIZE)) {
2428 result->f.lg_page_size = 0;
2430 continue;
2433 /* Region matched */
2435 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
2436 int i, snd;
2437 uint32_t srdis_mask;
2439 rsize -= 3; /* sub region size (power of 2) */
2440 snd = ((address - base) >> rsize) & 0x7;
2441 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
2443 srdis_mask = srdis ? 0x3 : 0x0;
2444 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
2446 * This will check in groups of 2, 4 and then 8, whether
2447 * the subregion bits are consistent. rsize is incremented
2448 * back up to give the region size, considering consistent
2449 * adjacent subregions as one region. Stop testing if rsize
2450 * is already big enough for an entire QEMU page.
2452 int snd_rounded = snd & ~(i - 1);
2453 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
2454 snd_rounded + 8, i);
2455 if (srdis_mask ^ srdis_multi) {
2456 break;
2458 srdis_mask = (srdis_mask << i) | srdis_mask;
2459 rsize++;
2462 if (srdis) {
2463 continue;
2465 if (rsize < TARGET_PAGE_BITS) {
2466 result->f.lg_page_size = rsize;
2468 break;
2471 if (n == -1) { /* no hits */
2472 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2473 /* background fault */
2474 fi->type = ARMFault_Background;
2475 return true;
2477 get_phys_addr_pmsav7_default(env, mmu_idx, address,
2478 &result->f.prot);
2479 } else { /* a MPU hit! */
2480 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
2481 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
2483 if (m_is_system_region(env, address)) {
2484 /* System space is always execute never */
2485 xn = 1;
2488 if (is_user) { /* User mode AP bit decoding */
2489 switch (ap) {
2490 case 0:
2491 case 1:
2492 case 5:
2493 break; /* no access */
2494 case 3:
2495 result->f.prot |= PAGE_WRITE;
2496 /* fall through */
2497 case 2:
2498 case 6:
2499 result->f.prot |= PAGE_READ | PAGE_EXEC;
2500 break;
2501 case 7:
2502 /* for v7M, same as 6; for R profile a reserved value */
2503 if (arm_feature(env, ARM_FEATURE_M)) {
2504 result->f.prot |= PAGE_READ | PAGE_EXEC;
2505 break;
2507 /* fall through */
2508 default:
2509 qemu_log_mask(LOG_GUEST_ERROR,
2510 "DRACR[%d]: Bad value for AP bits: 0x%"
2511 PRIx32 "\n", n, ap);
2513 } else { /* Priv. mode AP bits decoding */
2514 switch (ap) {
2515 case 0:
2516 break; /* no access */
2517 case 1:
2518 case 2:
2519 case 3:
2520 result->f.prot |= PAGE_WRITE;
2521 /* fall through */
2522 case 5:
2523 case 6:
2524 result->f.prot |= PAGE_READ | PAGE_EXEC;
2525 break;
2526 case 7:
2527 /* for v7M, same as 6; for R profile a reserved value */
2528 if (arm_feature(env, ARM_FEATURE_M)) {
2529 result->f.prot |= PAGE_READ | PAGE_EXEC;
2530 break;
2532 /* fall through */
2533 default:
2534 qemu_log_mask(LOG_GUEST_ERROR,
2535 "DRACR[%d]: Bad value for AP bits: 0x%"
2536 PRIx32 "\n", n, ap);
2540 /* execute never */
2541 if (xn) {
2542 result->f.prot &= ~PAGE_EXEC;
2547 fi->type = ARMFault_Permission;
2548 fi->level = 1;
2549 return !(result->f.prot & (1 << access_type));
2552 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
2553 uint32_t secure)
2555 if (regime_el(env, mmu_idx) == 2) {
2556 return env->pmsav8.hprbar;
2557 } else {
2558 return env->pmsav8.rbar[secure];
2562 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
2563 uint32_t secure)
2565 if (regime_el(env, mmu_idx) == 2) {
2566 return env->pmsav8.hprlar;
2567 } else {
2568 return env->pmsav8.rlar[secure];
2572 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2573 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2574 bool secure, GetPhysAddrResult *result,
2575 ARMMMUFaultInfo *fi, uint32_t *mregion)
2578 * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2579 * that a full phys-to-virt translation does).
2580 * mregion is (if not NULL) set to the region number which matched,
2581 * or -1 if no region number is returned (MPU off, address did not
2582 * hit a region, address hit in multiple regions).
2583 * If the region hit doesn't cover the entire TARGET_PAGE the address
2584 * is within, then we set the result page_size to 1 to force the
2585 * memory system to use a subpage.
2587 ARMCPU *cpu = env_archcpu(env);
2588 bool is_user = regime_is_user(env, mmu_idx);
2589 int n;
2590 int matchregion = -1;
2591 bool hit = false;
2592 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2593 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2594 int region_counter;
2596 if (regime_el(env, mmu_idx) == 2) {
2597 region_counter = cpu->pmsav8r_hdregion;
2598 } else {
2599 region_counter = cpu->pmsav7_dregion;
2602 result->f.lg_page_size = TARGET_PAGE_BITS;
2603 result->f.phys_addr = address;
2604 result->f.prot = 0;
2605 if (mregion) {
2606 *mregion = -1;
2609 if (mmu_idx == ARMMMUIdx_Stage2) {
2610 fi->stage2 = true;
2614 * Unlike the ARM ARM pseudocode, we don't need to check whether this
2615 * was an exception vector read from the vector table (which is always
2616 * done using the default system address map), because those accesses
2617 * are done in arm_v7m_load_vector(), which always does a direct
2618 * read using address_space_ldl(), rather than going via this function.
2620 if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) {
2621 /* MPU disabled */
2622 hit = true;
2623 } else if (m_is_ppb_region(env, address)) {
2624 hit = true;
2625 } else {
2626 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2627 hit = true;
2630 uint32_t bitmask;
2631 if (arm_feature(env, ARM_FEATURE_M)) {
2632 bitmask = 0x1f;
2633 } else {
2634 bitmask = 0x3f;
2635 fi->level = 0;
2638 for (n = region_counter - 1; n >= 0; n--) {
2639 /* region search */
2641 * Note that the base address is bits [31:x] from the register
2642 * with bits [x-1:0] all zeroes, but the limit address is bits
2643 * [31:x] from the register with bits [x:0] all ones. Where x is
2644 * 5 for Cortex-M and 6 for Cortex-R
2646 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2647 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2649 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2650 /* Region disabled */
2651 continue;
2654 if (address < base || address > limit) {
2656 * Address not in this region. We must check whether the
2657 * region covers addresses in the same page as our address.
2658 * In that case we must not report a size that covers the
2659 * whole page for a subsequent hit against a different MPU
2660 * region or the background region, because it would result in
2661 * incorrect TLB hits for subsequent accesses to addresses that
2662 * are in this MPU region.
2664 if (limit >= base &&
2665 ranges_overlap(base, limit - base + 1,
2666 addr_page_base,
2667 TARGET_PAGE_SIZE)) {
2668 result->f.lg_page_size = 0;
2670 continue;
2673 if (base > addr_page_base || limit < addr_page_limit) {
2674 result->f.lg_page_size = 0;
2677 if (matchregion != -1) {
2679 * Multiple regions match -- always a failure (unlike
2680 * PMSAv7 where highest-numbered-region wins)
2682 fi->type = ARMFault_Permission;
2683 if (arm_feature(env, ARM_FEATURE_M)) {
2684 fi->level = 1;
2686 return true;
2689 matchregion = n;
2690 hit = true;
2694 if (!hit) {
2695 if (arm_feature(env, ARM_FEATURE_M)) {
2696 fi->type = ARMFault_Background;
2697 } else {
2698 fi->type = ARMFault_Permission;
2700 return true;
2703 if (matchregion == -1) {
2704 /* hit using the background region */
2705 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2706 } else {
2707 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2708 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2709 uint32_t ap = extract32(matched_rbar, 1, 2);
2710 uint32_t xn = extract32(matched_rbar, 0, 1);
2711 bool pxn = false;
2713 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2714 pxn = extract32(matched_rlar, 4, 1);
2717 if (m_is_system_region(env, address)) {
2718 /* System space is always execute never */
2719 xn = 1;
2722 if (regime_el(env, mmu_idx) == 2) {
2723 result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2724 mmu_idx != ARMMMUIdx_E2);
2725 } else {
2726 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2729 if (!arm_feature(env, ARM_FEATURE_M)) {
2730 uint8_t attrindx = extract32(matched_rlar, 1, 3);
2731 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2732 uint8_t sh = extract32(matched_rlar, 3, 2);
2734 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2735 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2736 xn = 0x1;
2739 if ((regime_el(env, mmu_idx) == 1) &&
2740 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2741 pxn = 0x1;
2744 result->cacheattrs.is_s2_format = false;
2745 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2746 result->cacheattrs.shareability = sh;
2749 if (result->f.prot && !xn && !(pxn && !is_user)) {
2750 result->f.prot |= PAGE_EXEC;
2753 if (mregion) {
2754 *mregion = matchregion;
2758 fi->type = ARMFault_Permission;
2759 if (arm_feature(env, ARM_FEATURE_M)) {
2760 fi->level = 1;
2762 return !(result->f.prot & (1 << access_type));
2765 static bool v8m_is_sau_exempt(CPUARMState *env,
2766 uint32_t address, MMUAccessType access_type)
2769 * The architecture specifies that certain address ranges are
2770 * exempt from v8M SAU/IDAU checks.
2772 return
2773 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2774 (address >= 0xe0000000 && address <= 0xe0002fff) ||
2775 (address >= 0xe000e000 && address <= 0xe000efff) ||
2776 (address >= 0xe002e000 && address <= 0xe002efff) ||
2777 (address >= 0xe0040000 && address <= 0xe0041fff) ||
2778 (address >= 0xe00ff000 && address <= 0xe00fffff);
2781 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2782 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2783 bool is_secure, V8M_SAttributes *sattrs)
2786 * Look up the security attributes for this address. Compare the
2787 * pseudocode SecurityCheck() function.
2788 * We assume the caller has zero-initialized *sattrs.
2790 ARMCPU *cpu = env_archcpu(env);
2791 int r;
2792 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2793 int idau_region = IREGION_NOTVALID;
2794 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2795 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2797 if (cpu->idau) {
2798 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2799 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2801 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2802 &idau_nsc);
2805 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2806 /* 0xf0000000..0xffffffff is always S for insn fetches */
2807 return;
2810 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2811 sattrs->ns = !is_secure;
2812 return;
2815 if (idau_region != IREGION_NOTVALID) {
2816 sattrs->irvalid = true;
2817 sattrs->iregion = idau_region;
2820 switch (env->sau.ctrl & 3) {
2821 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2822 break;
2823 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2824 sattrs->ns = true;
2825 break;
2826 default: /* SAU.ENABLE == 1 */
2827 for (r = 0; r < cpu->sau_sregion; r++) {
2828 if (env->sau.rlar[r] & 1) {
2829 uint32_t base = env->sau.rbar[r] & ~0x1f;
2830 uint32_t limit = env->sau.rlar[r] | 0x1f;
2832 if (base <= address && limit >= address) {
2833 if (base > addr_page_base || limit < addr_page_limit) {
2834 sattrs->subpage = true;
2836 if (sattrs->srvalid) {
2838 * If we hit in more than one region then we must report
2839 * as Secure, not NS-Callable, with no valid region
2840 * number info.
2842 sattrs->ns = false;
2843 sattrs->nsc = false;
2844 sattrs->sregion = 0;
2845 sattrs->srvalid = false;
2846 break;
2847 } else {
2848 if (env->sau.rlar[r] & 2) {
2849 sattrs->nsc = true;
2850 } else {
2851 sattrs->ns = true;
2853 sattrs->srvalid = true;
2854 sattrs->sregion = r;
2856 } else {
2858 * Address not in this region. We must check whether the
2859 * region covers addresses in the same page as our address.
2860 * In that case we must not report a size that covers the
2861 * whole page for a subsequent hit against a different MPU
2862 * region or the background region, because it would result
2863 * in incorrect TLB hits for subsequent accesses to
2864 * addresses that are in this MPU region.
2866 if (limit >= base &&
2867 ranges_overlap(base, limit - base + 1,
2868 addr_page_base,
2869 TARGET_PAGE_SIZE)) {
2870 sattrs->subpage = true;
2875 break;
2879 * The IDAU will override the SAU lookup results if it specifies
2880 * higher security than the SAU does.
2882 if (!idau_ns) {
2883 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2884 sattrs->ns = false;
2885 sattrs->nsc = idau_nsc;
2890 static bool get_phys_addr_pmsav8(CPUARMState *env,
2891 S1Translate *ptw,
2892 uint32_t address,
2893 MMUAccessType access_type,
2894 GetPhysAddrResult *result,
2895 ARMMMUFaultInfo *fi)
2897 V8M_SAttributes sattrs = {};
2898 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2899 bool secure = arm_space_is_secure(ptw->in_space);
2900 bool ret;
2902 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2903 v8m_security_lookup(env, address, access_type, mmu_idx,
2904 secure, &sattrs);
2905 if (access_type == MMU_INST_FETCH) {
2907 * Instruction fetches always use the MMU bank and the
2908 * transaction attribute determined by the fetch address,
2909 * regardless of CPU state. This is painful for QEMU
2910 * to handle, because it would mean we need to encode
2911 * into the mmu_idx not just the (user, negpri) information
2912 * for the current security state but also that for the
2913 * other security state, which would balloon the number
2914 * of mmu_idx values needed alarmingly.
2915 * Fortunately we can avoid this because it's not actually
2916 * possible to arbitrarily execute code from memory with
2917 * the wrong security attribute: it will always generate
2918 * an exception of some kind or another, apart from the
2919 * special case of an NS CPU executing an SG instruction
2920 * in S&NSC memory. So we always just fail the translation
2921 * here and sort things out in the exception handler
2922 * (including possibly emulating an SG instruction).
2924 if (sattrs.ns != !secure) {
2925 if (sattrs.nsc) {
2926 fi->type = ARMFault_QEMU_NSCExec;
2927 } else {
2928 fi->type = ARMFault_QEMU_SFault;
2930 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2931 result->f.phys_addr = address;
2932 result->f.prot = 0;
2933 return true;
2935 } else {
2937 * For data accesses we always use the MMU bank indicated
2938 * by the current CPU state, but the security attributes
2939 * might downgrade a secure access to nonsecure.
2941 if (sattrs.ns) {
2942 result->f.attrs.secure = false;
2943 result->f.attrs.space = ARMSS_NonSecure;
2944 } else if (!secure) {
2946 * NS access to S memory must fault.
2947 * Architecturally we should first check whether the
2948 * MPU information for this address indicates that we
2949 * are doing an unaligned access to Device memory, which
2950 * should generate a UsageFault instead. QEMU does not
2951 * currently check for that kind of unaligned access though.
2952 * If we added it we would need to do so as a special case
2953 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2955 fi->type = ARMFault_QEMU_SFault;
2956 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2957 result->f.phys_addr = address;
2958 result->f.prot = 0;
2959 return true;
2964 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2965 result, fi, NULL);
2966 if (sattrs.subpage) {
2967 result->f.lg_page_size = 0;
2969 return ret;
2973 * Translate from the 4-bit stage 2 representation of
2974 * memory attributes (without cache-allocation hints) to
2975 * the 8-bit representation of the stage 1 MAIR registers
2976 * (which includes allocation hints).
2978 * ref: shared/translation/attrs/S2AttrDecode()
2979 * .../S2ConvertAttrsHints()
2981 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2983 uint8_t hiattr = extract32(s2attrs, 2, 2);
2984 uint8_t loattr = extract32(s2attrs, 0, 2);
2985 uint8_t hihint = 0, lohint = 0;
2987 if (hiattr != 0) { /* normal memory */
2988 if (hcr & HCR_CD) { /* cache disabled */
2989 hiattr = loattr = 1; /* non-cacheable */
2990 } else {
2991 if (hiattr != 1) { /* Write-through or write-back */
2992 hihint = 3; /* RW allocate */
2994 if (loattr != 1) { /* Write-through or write-back */
2995 lohint = 3; /* RW allocate */
3000 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
3004 * Combine either inner or outer cacheability attributes for normal
3005 * memory, according to table D4-42 and pseudocode procedure
3006 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
3008 * NB: only stage 1 includes allocation hints (RW bits), leading to
3009 * some asymmetry.
3011 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
3013 if (s1 == 4 || s2 == 4) {
3014 /* non-cacheable has precedence */
3015 return 4;
3016 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
3017 /* stage 1 write-through takes precedence */
3018 return s1;
3019 } else if (extract32(s2, 2, 2) == 2) {
3020 /* stage 2 write-through takes precedence, but the allocation hint
3021 * is still taken from stage 1
3023 return (2 << 2) | extract32(s1, 0, 2);
3024 } else { /* write-back */
3025 return s1;
3030 * Combine the memory type and cacheability attributes of
3031 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
3032 * combined attributes in MAIR_EL1 format.
3034 static uint8_t combined_attrs_nofwb(uint64_t hcr,
3035 ARMCacheAttrs s1, ARMCacheAttrs s2)
3037 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
3039 if (s2.is_s2_format) {
3040 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
3041 } else {
3042 s2_mair_attrs = s2.attrs;
3045 s1lo = extract32(s1.attrs, 0, 4);
3046 s2lo = extract32(s2_mair_attrs, 0, 4);
3047 s1hi = extract32(s1.attrs, 4, 4);
3048 s2hi = extract32(s2_mair_attrs, 4, 4);
3050 /* Combine memory type and cacheability attributes */
3051 if (s1hi == 0 || s2hi == 0) {
3052 /* Device has precedence over normal */
3053 if (s1lo == 0 || s2lo == 0) {
3054 /* nGnRnE has precedence over anything */
3055 ret_attrs = 0;
3056 } else if (s1lo == 4 || s2lo == 4) {
3057 /* non-Reordering has precedence over Reordering */
3058 ret_attrs = 4; /* nGnRE */
3059 } else if (s1lo == 8 || s2lo == 8) {
3060 /* non-Gathering has precedence over Gathering */
3061 ret_attrs = 8; /* nGRE */
3062 } else {
3063 ret_attrs = 0xc; /* GRE */
3065 } else { /* Normal memory */
3066 /* Outer/inner cacheability combine independently */
3067 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
3068 | combine_cacheattr_nibble(s1lo, s2lo);
3070 return ret_attrs;
3073 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
3076 * Given the 4 bits specifying the outer or inner cacheability
3077 * in MAIR format, return a value specifying Normal Write-Back,
3078 * with the allocation and transient hints taken from the input
3079 * if the input specified some kind of cacheable attribute.
3081 if (attr == 0 || attr == 4) {
3083 * 0 == an UNPREDICTABLE encoding
3084 * 4 == Non-cacheable
3085 * Either way, force Write-Back RW allocate non-transient
3087 return 0xf;
3089 /* Change WriteThrough to WriteBack, keep allocation and transient hints */
3090 return attr | 4;
3094 * Combine the memory type and cacheability attributes of
3095 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
3096 * combined attributes in MAIR_EL1 format.
3098 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
3100 assert(s2.is_s2_format && !s1.is_s2_format);
3102 switch (s2.attrs) {
3103 case 7:
3104 /* Use stage 1 attributes */
3105 return s1.attrs;
3106 case 6:
3108 * Force Normal Write-Back. Note that if S1 is Normal cacheable
3109 * then we take the allocation hints from it; otherwise it is
3110 * RW allocate, non-transient.
3112 if ((s1.attrs & 0xf0) == 0) {
3113 /* S1 is Device */
3114 return 0xff;
3116 /* Need to check the Inner and Outer nibbles separately */
3117 return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
3118 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
3119 case 5:
3120 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
3121 if ((s1.attrs & 0xf0) == 0) {
3122 return s1.attrs;
3124 return 0x44;
3125 case 0 ... 3:
3126 /* Force Device, of subtype specified by S2 */
3127 return s2.attrs << 2;
3128 default:
3130 * RESERVED values (including RES0 descriptor bit [5] being nonzero);
3131 * arbitrarily force Device.
3133 return 0;
3138 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
3139 * and CombineS1S2Desc()
3141 * @env: CPUARMState
3142 * @s1: Attributes from stage 1 walk
3143 * @s2: Attributes from stage 2 walk
3145 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
3146 ARMCacheAttrs s1, ARMCacheAttrs s2)
3148 ARMCacheAttrs ret;
3149 bool tagged = false;
3151 assert(!s1.is_s2_format);
3152 ret.is_s2_format = false;
3154 if (s1.attrs == 0xf0) {
3155 tagged = true;
3156 s1.attrs = 0xff;
3159 /* Combine shareability attributes (table D4-43) */
3160 if (s1.shareability == 2 || s2.shareability == 2) {
3161 /* if either are outer-shareable, the result is outer-shareable */
3162 ret.shareability = 2;
3163 } else if (s1.shareability == 3 || s2.shareability == 3) {
3164 /* if either are inner-shareable, the result is inner-shareable */
3165 ret.shareability = 3;
3166 } else {
3167 /* both non-shareable */
3168 ret.shareability = 0;
3171 /* Combine memory type and cacheability attributes */
3172 if (hcr & HCR_FWB) {
3173 ret.attrs = combined_attrs_fwb(s1, s2);
3174 } else {
3175 ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
3179 * Any location for which the resultant memory type is any
3180 * type of Device memory is always treated as Outer Shareable.
3181 * Any location for which the resultant memory type is Normal
3182 * Inner Non-cacheable, Outer Non-cacheable is always treated
3183 * as Outer Shareable.
3184 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
3186 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
3187 ret.shareability = 2;
3190 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
3191 if (tagged && ret.attrs == 0xff) {
3192 ret.attrs = 0xf0;
3195 return ret;
3199 * MMU disabled. S1 addresses within aa64 translation regimes are
3200 * still checked for bounds -- see AArch64.S1DisabledOutput().
3202 static bool get_phys_addr_disabled(CPUARMState *env,
3203 S1Translate *ptw,
3204 target_ulong address,
3205 MMUAccessType access_type,
3206 GetPhysAddrResult *result,
3207 ARMMMUFaultInfo *fi)
3209 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3210 uint8_t memattr = 0x00; /* Device nGnRnE */
3211 uint8_t shareability = 0; /* non-shareable */
3212 int r_el;
3214 switch (mmu_idx) {
3215 case ARMMMUIdx_Stage2:
3216 case ARMMMUIdx_Stage2_S:
3217 case ARMMMUIdx_Phys_S:
3218 case ARMMMUIdx_Phys_NS:
3219 case ARMMMUIdx_Phys_Root:
3220 case ARMMMUIdx_Phys_Realm:
3221 break;
3223 default:
3224 r_el = regime_el(env, mmu_idx);
3225 if (arm_el_is_aa64(env, r_el)) {
3226 int pamax = arm_pamax(env_archcpu(env));
3227 uint64_t tcr = env->cp15.tcr_el[r_el];
3228 int addrtop, tbi;
3230 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
3231 if (access_type == MMU_INST_FETCH) {
3232 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
3234 tbi = (tbi >> extract64(address, 55, 1)) & 1;
3235 addrtop = (tbi ? 55 : 63);
3237 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
3238 fi->type = ARMFault_AddressSize;
3239 fi->level = 0;
3240 fi->stage2 = false;
3241 return 1;
3245 * When TBI is disabled, we've just validated that all of the
3246 * bits above PAMax are zero, so logically we only need to
3247 * clear the top byte for TBI. But it's clearer to follow
3248 * the pseudocode set of addrdesc.paddress.
3250 address = extract64(address, 0, 52);
3253 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
3254 if (r_el == 1) {
3255 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
3256 if (hcr & HCR_DC) {
3257 if (hcr & HCR_DCT) {
3258 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
3259 } else {
3260 memattr = 0xff; /* Normal, WB, RWA */
3264 if (memattr == 0) {
3265 if (access_type == MMU_INST_FETCH) {
3266 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
3267 memattr = 0xee; /* Normal, WT, RA, NT */
3268 } else {
3269 memattr = 0x44; /* Normal, NC, No */
3272 shareability = 2; /* outer shareable */
3274 result->cacheattrs.is_s2_format = false;
3275 break;
3278 result->f.phys_addr = address;
3279 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3280 result->f.lg_page_size = TARGET_PAGE_BITS;
3281 result->cacheattrs.shareability = shareability;
3282 result->cacheattrs.attrs = memattr;
3283 return false;
3286 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
3287 target_ulong address,
3288 MMUAccessType access_type,
3289 GetPhysAddrResult *result,
3290 ARMMMUFaultInfo *fi)
3292 hwaddr ipa;
3293 int s1_prot, s1_lgpgsz;
3294 ARMSecuritySpace in_space = ptw->in_space;
3295 bool ret, ipa_secure, s1_guarded;
3296 ARMCacheAttrs cacheattrs1;
3297 ARMSecuritySpace ipa_space;
3298 uint64_t hcr;
3300 ret = get_phys_addr_nogpc(env, ptw, address, access_type, result, fi);
3302 /* If S1 fails, return early. */
3303 if (ret) {
3304 return ret;
3307 ipa = result->f.phys_addr;
3308 ipa_secure = result->f.attrs.secure;
3309 ipa_space = result->f.attrs.space;
3311 ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
3312 ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3313 ptw->in_space = ipa_space;
3314 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx);
3317 * S1 is done, now do S2 translation.
3318 * Save the stage1 results so that we may merge prot and cacheattrs later.
3320 s1_prot = result->f.prot;
3321 s1_lgpgsz = result->f.lg_page_size;
3322 s1_guarded = result->f.extra.arm.guarded;
3323 cacheattrs1 = result->cacheattrs;
3324 memset(result, 0, sizeof(*result));
3326 ret = get_phys_addr_nogpc(env, ptw, ipa, access_type, result, fi);
3327 fi->s2addr = ipa;
3329 /* Combine the S1 and S2 perms. */
3330 result->f.prot &= s1_prot;
3332 /* If S2 fails, return early. */
3333 if (ret) {
3334 return ret;
3338 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
3339 * this means "don't put this in the TLB"; in this case, return a
3340 * result with lg_page_size == 0 to achieve that. Otherwise,
3341 * use the maximum of the S1 & S2 page size, so that invalidation
3342 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
3343 * we know the combined result permissions etc only cover the minimum
3344 * of the S1 and S2 page size, because we know that the common TLB code
3345 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
3346 * and passing a larger page size value only affects invalidations.)
3348 if (result->f.lg_page_size < TARGET_PAGE_BITS ||
3349 s1_lgpgsz < TARGET_PAGE_BITS) {
3350 result->f.lg_page_size = 0;
3351 } else if (result->f.lg_page_size < s1_lgpgsz) {
3352 result->f.lg_page_size = s1_lgpgsz;
3355 /* Combine the S1 and S2 cache attributes. */
3356 hcr = arm_hcr_el2_eff_secstate(env, in_space);
3357 if (hcr & HCR_DC) {
3359 * HCR.DC forces the first stage attributes to
3360 * Normal Non-Shareable,
3361 * Inner Write-Back Read-Allocate Write-Allocate,
3362 * Outer Write-Back Read-Allocate Write-Allocate.
3363 * Do not overwrite Tagged within attrs.
3365 if (cacheattrs1.attrs != 0xf0) {
3366 cacheattrs1.attrs = 0xff;
3368 cacheattrs1.shareability = 0;
3370 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
3371 result->cacheattrs);
3373 /* No BTI GP information in stage 2, we just use the S1 value */
3374 result->f.extra.arm.guarded = s1_guarded;
3377 * Check if IPA translates to secure or non-secure PA space.
3378 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
3380 if (in_space == ARMSS_Secure) {
3381 result->f.attrs.secure =
3382 !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
3383 && (ipa_secure
3384 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)));
3385 result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure);
3388 return false;
3391 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
3392 target_ulong address,
3393 MMUAccessType access_type,
3394 GetPhysAddrResult *result,
3395 ARMMMUFaultInfo *fi)
3397 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3398 ARMMMUIdx s1_mmu_idx;
3401 * The page table entries may downgrade Secure to NonSecure, but
3402 * cannot upgrade a NonSecure translation regime's attributes
3403 * to Secure or Realm.
3405 result->f.attrs.space = ptw->in_space;
3406 result->f.attrs.secure = arm_space_is_secure(ptw->in_space);
3408 switch (mmu_idx) {
3409 case ARMMMUIdx_Phys_S:
3410 case ARMMMUIdx_Phys_NS:
3411 case ARMMMUIdx_Phys_Root:
3412 case ARMMMUIdx_Phys_Realm:
3413 /* Checking Phys early avoids special casing later vs regime_el. */
3414 return get_phys_addr_disabled(env, ptw, address, access_type,
3415 result, fi);
3417 case ARMMMUIdx_Stage1_E0:
3418 case ARMMMUIdx_Stage1_E1:
3419 case ARMMMUIdx_Stage1_E1_PAN:
3421 * First stage lookup uses second stage for ptw; only
3422 * Secure has both S and NS IPA and starts with Stage2_S.
3424 ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ?
3425 ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3426 break;
3428 case ARMMMUIdx_Stage2:
3429 case ARMMMUIdx_Stage2_S:
3431 * Second stage lookup uses physical for ptw; whether this is S or
3432 * NS may depend on the SW/NSW bits if this is a stage 2 lookup for
3433 * the Secure EL2&0 regime.
3435 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx);
3436 break;
3438 case ARMMMUIdx_E10_0:
3439 s1_mmu_idx = ARMMMUIdx_Stage1_E0;
3440 goto do_twostage;
3441 case ARMMMUIdx_E10_1:
3442 s1_mmu_idx = ARMMMUIdx_Stage1_E1;
3443 goto do_twostage;
3444 case ARMMMUIdx_E10_1_PAN:
3445 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3446 do_twostage:
3448 * Call ourselves recursively to do the stage 1 and then stage 2
3449 * translations if mmu_idx is a two-stage regime, and EL2 present.
3450 * Otherwise, a stage1+stage2 translation is just stage 1.
3452 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
3453 if (arm_feature(env, ARM_FEATURE_EL2) &&
3454 !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) {
3455 return get_phys_addr_twostage(env, ptw, address, access_type,
3456 result, fi);
3458 /* fall through */
3460 default:
3461 /* Single stage uses physical for ptw. */
3462 ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space);
3463 break;
3466 result->f.attrs.user = regime_is_user(env, mmu_idx);
3469 * Fast Context Switch Extension. This doesn't exist at all in v8.
3470 * In v7 and earlier it affects all stage 1 translations.
3472 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
3473 && !arm_feature(env, ARM_FEATURE_V8)) {
3474 if (regime_el(env, mmu_idx) == 3) {
3475 address += env->cp15.fcseidr_s;
3476 } else {
3477 address += env->cp15.fcseidr_ns;
3481 if (arm_feature(env, ARM_FEATURE_PMSA)) {
3482 bool ret;
3483 result->f.lg_page_size = TARGET_PAGE_BITS;
3485 if (arm_feature(env, ARM_FEATURE_V8)) {
3486 /* PMSAv8 */
3487 ret = get_phys_addr_pmsav8(env, ptw, address, access_type,
3488 result, fi);
3489 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3490 /* PMSAv7 */
3491 ret = get_phys_addr_pmsav7(env, ptw, address, access_type,
3492 result, fi);
3493 } else {
3494 /* Pre-v7 MPU */
3495 ret = get_phys_addr_pmsav5(env, ptw, address, access_type,
3496 result, fi);
3498 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
3499 " mmu_idx %u -> %s (prot %c%c%c)\n",
3500 access_type == MMU_DATA_LOAD ? "reading" :
3501 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
3502 (uint32_t)address, mmu_idx,
3503 ret ? "Miss" : "Hit",
3504 result->f.prot & PAGE_READ ? 'r' : '-',
3505 result->f.prot & PAGE_WRITE ? 'w' : '-',
3506 result->f.prot & PAGE_EXEC ? 'x' : '-');
3508 return ret;
3511 /* Definitely a real MMU, not an MPU */
3513 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
3514 return get_phys_addr_disabled(env, ptw, address, access_type,
3515 result, fi);
3518 if (regime_using_lpae_format(env, mmu_idx)) {
3519 return get_phys_addr_lpae(env, ptw, address, access_type, result, fi);
3520 } else if (arm_feature(env, ARM_FEATURE_V7) ||
3521 regime_sctlr(env, mmu_idx) & SCTLR_XP) {
3522 return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
3523 } else {
3524 return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
3528 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
3529 target_ulong address,
3530 MMUAccessType access_type,
3531 GetPhysAddrResult *result,
3532 ARMMMUFaultInfo *fi)
3534 if (get_phys_addr_nogpc(env, ptw, address, access_type, result, fi)) {
3535 return true;
3537 if (!granule_protection_check(env, result->f.phys_addr,
3538 result->f.attrs.space, fi)) {
3539 fi->type = ARMFault_GPCFOnOutput;
3540 return true;
3542 return false;
3545 bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address,
3546 MMUAccessType access_type,
3547 ARMMMUIdx mmu_idx, ARMSecuritySpace space,
3548 GetPhysAddrResult *result,
3549 ARMMMUFaultInfo *fi)
3551 S1Translate ptw = {
3552 .in_mmu_idx = mmu_idx,
3553 .in_space = space,
3555 return get_phys_addr_nogpc(env, &ptw, address, access_type, result, fi);
3558 bool get_phys_addr(CPUARMState *env, target_ulong address,
3559 MMUAccessType access_type, ARMMMUIdx mmu_idx,
3560 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
3562 S1Translate ptw = {
3563 .in_mmu_idx = mmu_idx,
3565 ARMSecuritySpace ss;
3567 switch (mmu_idx) {
3568 case ARMMMUIdx_E10_0:
3569 case ARMMMUIdx_E10_1:
3570 case ARMMMUIdx_E10_1_PAN:
3571 case ARMMMUIdx_E20_0:
3572 case ARMMMUIdx_E20_2:
3573 case ARMMMUIdx_E20_2_PAN:
3574 case ARMMMUIdx_Stage1_E0:
3575 case ARMMMUIdx_Stage1_E1:
3576 case ARMMMUIdx_Stage1_E1_PAN:
3577 case ARMMMUIdx_E2:
3578 ss = arm_security_space_below_el3(env);
3579 break;
3580 case ARMMMUIdx_Stage2:
3582 * For Secure EL2, we need this index to be NonSecure;
3583 * otherwise this will already be NonSecure or Realm.
3585 ss = arm_security_space_below_el3(env);
3586 if (ss == ARMSS_Secure) {
3587 ss = ARMSS_NonSecure;
3589 break;
3590 case ARMMMUIdx_Phys_NS:
3591 case ARMMMUIdx_MPrivNegPri:
3592 case ARMMMUIdx_MUserNegPri:
3593 case ARMMMUIdx_MPriv:
3594 case ARMMMUIdx_MUser:
3595 ss = ARMSS_NonSecure;
3596 break;
3597 case ARMMMUIdx_Stage2_S:
3598 case ARMMMUIdx_Phys_S:
3599 case ARMMMUIdx_MSPrivNegPri:
3600 case ARMMMUIdx_MSUserNegPri:
3601 case ARMMMUIdx_MSPriv:
3602 case ARMMMUIdx_MSUser:
3603 ss = ARMSS_Secure;
3604 break;
3605 case ARMMMUIdx_E3:
3606 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
3607 cpu_isar_feature(aa64_rme, env_archcpu(env))) {
3608 ss = ARMSS_Root;
3609 } else {
3610 ss = ARMSS_Secure;
3612 break;
3613 case ARMMMUIdx_Phys_Root:
3614 ss = ARMSS_Root;
3615 break;
3616 case ARMMMUIdx_Phys_Realm:
3617 ss = ARMSS_Realm;
3618 break;
3619 default:
3620 g_assert_not_reached();
3623 ptw.in_space = ss;
3624 return get_phys_addr_gpc(env, &ptw, address, access_type, result, fi);
3627 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
3628 MemTxAttrs *attrs)
3630 ARMCPU *cpu = ARM_CPU(cs);
3631 CPUARMState *env = &cpu->env;
3632 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
3633 ARMSecuritySpace ss = arm_security_space(env);
3634 S1Translate ptw = {
3635 .in_mmu_idx = mmu_idx,
3636 .in_space = ss,
3637 .in_debug = true,
3639 GetPhysAddrResult res = {};
3640 ARMMMUFaultInfo fi = {};
3641 bool ret;
3643 ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
3644 *attrs = res.f.attrs;
3646 if (ret) {
3647 return -1;
3649 return res.f.phys_addr;