hw/xen/hvm: Get target page size at runtime
[qemu/ar7.git] / target / arm / helper.c
blob3f3a5b55d4aa6d9849f998ae6fc7e53dc2244ea8
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "cpu-features.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/timer.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include <zlib.h> /* For crc32 */
23 #include "hw/irq.h"
24 #include "sysemu/cpu-timers.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/tcg.h"
27 #include "qapi/error.h"
28 #include "qemu/guest-random.h"
29 #ifdef CONFIG_TCG
30 #include "semihosting/common-semi.h"
31 #endif
32 #include "cpregs.h"
33 #include "target/arm/gtimer.h"
35 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
37 static void switch_mode(CPUARMState *env, int mode);
39 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
41 assert(ri->fieldoffset);
42 if (cpreg_field_is_64bit(ri)) {
43 return CPREG_FIELD64(env, ri);
44 } else {
45 return CPREG_FIELD32(env, ri);
49 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
51 assert(ri->fieldoffset);
52 if (cpreg_field_is_64bit(ri)) {
53 CPREG_FIELD64(env, ri) = value;
54 } else {
55 CPREG_FIELD32(env, ri) = value;
59 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
61 return (char *)env + ri->fieldoffset;
64 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
66 /* Raw read of a coprocessor register (as needed for migration, etc). */
67 if (ri->type & ARM_CP_CONST) {
68 return ri->resetvalue;
69 } else if (ri->raw_readfn) {
70 return ri->raw_readfn(env, ri);
71 } else if (ri->readfn) {
72 return ri->readfn(env, ri);
73 } else {
74 return raw_read(env, ri);
78 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
79 uint64_t v)
82 * Raw write of a coprocessor register (as needed for migration, etc).
83 * Note that constant registers are treated as write-ignored; the
84 * caller should check for success by whether a readback gives the
85 * value written.
87 if (ri->type & ARM_CP_CONST) {
88 return;
89 } else if (ri->raw_writefn) {
90 ri->raw_writefn(env, ri, v);
91 } else if (ri->writefn) {
92 ri->writefn(env, ri, v);
93 } else {
94 raw_write(env, ri, v);
98 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
101 * Return true if the regdef would cause an assertion if you called
102 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
103 * program bug for it not to have the NO_RAW flag).
104 * NB that returning false here doesn't necessarily mean that calling
105 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
106 * read/write access functions which are safe for raw use" from "has
107 * read/write access functions which have side effects but has forgotten
108 * to provide raw access functions".
109 * The tests here line up with the conditions in read/write_raw_cp_reg()
110 * and assertions in raw_read()/raw_write().
112 if ((ri->type & ARM_CP_CONST) ||
113 ri->fieldoffset ||
114 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
115 return false;
117 return true;
120 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
122 /* Write the coprocessor state from cpu->env to the (index,value) list. */
123 int i;
124 bool ok = true;
126 for (i = 0; i < cpu->cpreg_array_len; i++) {
127 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
128 const ARMCPRegInfo *ri;
129 uint64_t newval;
131 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
132 if (!ri) {
133 ok = false;
134 continue;
136 if (ri->type & ARM_CP_NO_RAW) {
137 continue;
140 newval = read_raw_cp_reg(&cpu->env, ri);
141 if (kvm_sync) {
143 * Only sync if the previous list->cpustate sync succeeded.
144 * Rather than tracking the success/failure state for every
145 * item in the list, we just recheck "does the raw write we must
146 * have made in write_list_to_cpustate() read back OK" here.
148 uint64_t oldval = cpu->cpreg_values[i];
150 if (oldval == newval) {
151 continue;
154 write_raw_cp_reg(&cpu->env, ri, oldval);
155 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
156 continue;
159 write_raw_cp_reg(&cpu->env, ri, newval);
161 cpu->cpreg_values[i] = newval;
163 return ok;
166 bool write_list_to_cpustate(ARMCPU *cpu)
168 int i;
169 bool ok = true;
171 for (i = 0; i < cpu->cpreg_array_len; i++) {
172 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
173 uint64_t v = cpu->cpreg_values[i];
174 const ARMCPRegInfo *ri;
176 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
177 if (!ri) {
178 ok = false;
179 continue;
181 if (ri->type & ARM_CP_NO_RAW) {
182 continue;
185 * Write value and confirm it reads back as written
186 * (to catch read-only registers and partially read-only
187 * registers where the incoming migration value doesn't match)
189 write_raw_cp_reg(&cpu->env, ri, v);
190 if (read_raw_cp_reg(&cpu->env, ri) != v) {
191 ok = false;
194 return ok;
197 static void add_cpreg_to_list(gpointer key, gpointer opaque)
199 ARMCPU *cpu = opaque;
200 uint32_t regidx = (uintptr_t)key;
201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
203 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
204 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
205 /* The value array need not be initialized at this point */
206 cpu->cpreg_array_len++;
210 static void count_cpreg(gpointer key, gpointer opaque)
212 ARMCPU *cpu = opaque;
213 const ARMCPRegInfo *ri;
215 ri = g_hash_table_lookup(cpu->cp_regs, key);
217 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
218 cpu->cpreg_array_len++;
222 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
224 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
225 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
227 if (aidx > bidx) {
228 return 1;
230 if (aidx < bidx) {
231 return -1;
233 return 0;
236 void init_cpreg_list(ARMCPU *cpu)
239 * Initialise the cpreg_tuples[] array based on the cp_regs hash.
240 * Note that we require cpreg_tuples[] to be sorted by key ID.
242 GList *keys;
243 int arraylen;
245 keys = g_hash_table_get_keys(cpu->cp_regs);
246 keys = g_list_sort(keys, cpreg_key_compare);
248 cpu->cpreg_array_len = 0;
250 g_list_foreach(keys, count_cpreg, cpu);
252 arraylen = cpu->cpreg_array_len;
253 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
254 cpu->cpreg_values = g_new(uint64_t, arraylen);
255 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
256 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
257 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
258 cpu->cpreg_array_len = 0;
260 g_list_foreach(keys, add_cpreg_to_list, cpu);
262 assert(cpu->cpreg_array_len == arraylen);
264 g_list_free(keys);
267 static bool arm_pan_enabled(CPUARMState *env)
269 if (is_a64(env)) {
270 if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) {
271 return false;
273 return env->pstate & PSTATE_PAN;
274 } else {
275 return env->uncached_cpsr & CPSR_PAN;
280 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
282 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
283 const ARMCPRegInfo *ri,
284 bool isread)
286 if (!is_a64(env) && arm_current_el(env) == 3 &&
287 arm_is_secure_below_el3(env)) {
288 return CP_ACCESS_TRAP_UNCATEGORIZED;
290 return CP_ACCESS_OK;
294 * Some secure-only AArch32 registers trap to EL3 if used from
295 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
296 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
297 * We assume that the .access field is set to PL1_RW.
299 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
300 const ARMCPRegInfo *ri,
301 bool isread)
303 if (arm_current_el(env) == 3) {
304 return CP_ACCESS_OK;
306 if (arm_is_secure_below_el3(env)) {
307 if (env->cp15.scr_el3 & SCR_EEL2) {
308 return CP_ACCESS_TRAP_EL2;
310 return CP_ACCESS_TRAP_EL3;
312 /* This will be EL1 NS and EL2 NS, which just UNDEF */
313 return CP_ACCESS_TRAP_UNCATEGORIZED;
317 * Check for traps to performance monitor registers, which are controlled
318 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
320 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
321 bool isread)
323 int el = arm_current_el(env);
324 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
326 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
327 return CP_ACCESS_TRAP_EL2;
329 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
330 return CP_ACCESS_TRAP_EL3;
332 return CP_ACCESS_OK;
335 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
336 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
337 bool isread)
339 if (arm_current_el(env) == 1) {
340 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
341 if (arm_hcr_el2_eff(env) & trap) {
342 return CP_ACCESS_TRAP_EL2;
345 return CP_ACCESS_OK;
348 /* Check for traps from EL1 due to HCR_EL2.TSW. */
349 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
350 bool isread)
352 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
353 return CP_ACCESS_TRAP_EL2;
355 return CP_ACCESS_OK;
358 /* Check for traps from EL1 due to HCR_EL2.TACR. */
359 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
360 bool isread)
362 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
363 return CP_ACCESS_TRAP_EL2;
365 return CP_ACCESS_OK;
368 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
369 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
370 bool isread)
372 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
373 return CP_ACCESS_TRAP_EL2;
375 return CP_ACCESS_OK;
378 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
379 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
380 bool isread)
382 if (arm_current_el(env) == 1 &&
383 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
384 return CP_ACCESS_TRAP_EL2;
386 return CP_ACCESS_OK;
389 #ifdef TARGET_AARCH64
390 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
391 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
392 bool isread)
394 if (arm_current_el(env) == 1 &&
395 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
396 return CP_ACCESS_TRAP_EL2;
398 return CP_ACCESS_OK;
400 #endif
402 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
404 ARMCPU *cpu = env_archcpu(env);
406 raw_write(env, ri, value);
407 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
410 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
412 ARMCPU *cpu = env_archcpu(env);
414 if (raw_read(env, ri) != value) {
416 * Unlike real hardware the qemu TLB uses virtual addresses,
417 * not modified virtual addresses, so this causes a TLB flush.
419 tlb_flush(CPU(cpu));
420 raw_write(env, ri, value);
424 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
425 uint64_t value)
427 ARMCPU *cpu = env_archcpu(env);
429 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
430 && !extended_addresses_enabled(env)) {
432 * For VMSA (when not using the LPAE long descriptor page table
433 * format) this register includes the ASID, so do a TLB flush.
434 * For PMSA it is purely a process ID and no action is needed.
436 tlb_flush(CPU(cpu));
438 raw_write(env, ri, value);
441 static int alle1_tlbmask(CPUARMState *env)
444 * Note that the 'ALL' scope must invalidate both stage 1 and
445 * stage 2 translations, whereas most other scopes only invalidate
446 * stage 1 translations.
448 return (ARMMMUIdxBit_E10_1 |
449 ARMMMUIdxBit_E10_1_PAN |
450 ARMMMUIdxBit_E10_0 |
451 ARMMMUIdxBit_Stage2 |
452 ARMMMUIdxBit_Stage2_S);
456 /* IS variants of TLB operations must affect all cores */
457 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
458 uint64_t value)
460 CPUState *cs = env_cpu(env);
462 tlb_flush_all_cpus_synced(cs);
465 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
466 uint64_t value)
468 CPUState *cs = env_cpu(env);
470 tlb_flush_all_cpus_synced(cs);
473 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
474 uint64_t value)
476 CPUState *cs = env_cpu(env);
478 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
481 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
482 uint64_t value)
484 CPUState *cs = env_cpu(env);
486 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
490 * Non-IS variants of TLB operations are upgraded to
491 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
492 * force broadcast of these operations.
494 static bool tlb_force_broadcast(CPUARMState *env)
496 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
502 /* Invalidate all (TLBIALL) */
503 CPUState *cs = env_cpu(env);
505 if (tlb_force_broadcast(env)) {
506 tlb_flush_all_cpus_synced(cs);
507 } else {
508 tlb_flush(cs);
512 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
513 uint64_t value)
515 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
516 CPUState *cs = env_cpu(env);
518 value &= TARGET_PAGE_MASK;
519 if (tlb_force_broadcast(env)) {
520 tlb_flush_page_all_cpus_synced(cs, value);
521 } else {
522 tlb_flush_page(cs, value);
526 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
529 /* Invalidate by ASID (TLBIASID) */
530 CPUState *cs = env_cpu(env);
532 if (tlb_force_broadcast(env)) {
533 tlb_flush_all_cpus_synced(cs);
534 } else {
535 tlb_flush(cs);
539 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
540 uint64_t value)
542 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
543 CPUState *cs = env_cpu(env);
545 value &= TARGET_PAGE_MASK;
546 if (tlb_force_broadcast(env)) {
547 tlb_flush_page_all_cpus_synced(cs, value);
548 } else {
549 tlb_flush_page(cs, value);
553 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
554 uint64_t value)
556 CPUState *cs = env_cpu(env);
558 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
561 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
562 uint64_t value)
564 CPUState *cs = env_cpu(env);
566 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
570 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
571 uint64_t value)
573 CPUState *cs = env_cpu(env);
575 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
578 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
579 uint64_t value)
581 CPUState *cs = env_cpu(env);
583 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
586 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
587 uint64_t value)
589 CPUState *cs = env_cpu(env);
590 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
592 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
595 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
596 uint64_t value)
598 CPUState *cs = env_cpu(env);
599 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
601 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
602 ARMMMUIdxBit_E2);
605 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
606 uint64_t value)
608 CPUState *cs = env_cpu(env);
609 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
611 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
614 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
615 uint64_t value)
617 CPUState *cs = env_cpu(env);
618 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
620 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
623 static const ARMCPRegInfo cp_reginfo[] = {
625 * Define the secure and non-secure FCSE identifier CP registers
626 * separately because there is no secure bank in V8 (no _EL3). This allows
627 * the secure register to be properly reset and migrated. There is also no
628 * v8 EL1 version of the register so the non-secure instance stands alone.
630 { .name = "FCSEIDR",
631 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
632 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
633 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
634 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
635 { .name = "FCSEIDR_S",
636 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
637 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
638 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
639 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
641 * Define the secure and non-secure context identifier CP registers
642 * separately because there is no secure bank in V8 (no _EL3). This allows
643 * the secure register to be properly reset and migrated. In the
644 * non-secure case, the 32-bit register will have reset and migration
645 * disabled during registration as it is handled by the 64-bit instance.
647 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
648 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
649 .access = PL1_RW, .accessfn = access_tvm_trvm,
650 .fgt = FGT_CONTEXTIDR_EL1,
651 .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1,
652 .secure = ARM_CP_SECSTATE_NS,
653 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
654 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
655 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
656 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
657 .access = PL1_RW, .accessfn = access_tvm_trvm,
658 .secure = ARM_CP_SECSTATE_S,
659 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
660 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
663 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
665 * NB: Some of these registers exist in v8 but with more precise
666 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
668 /* MMU Domain access control / MPU write buffer control */
669 { .name = "DACR",
670 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
671 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
672 .writefn = dacr_write, .raw_writefn = raw_write,
673 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
674 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
676 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
677 * For v6 and v5, these mappings are overly broad.
679 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
680 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
681 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
682 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
683 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
684 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
685 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
686 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
687 /* Cache maintenance ops; some of this space may be overridden later. */
688 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
689 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
690 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
693 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
695 * Not all pre-v6 cores implemented this WFI, so this is slightly
696 * over-broad.
698 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
699 .access = PL1_W, .type = ARM_CP_WFI },
702 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
704 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
705 * is UNPREDICTABLE; we choose to NOP as most implementations do).
707 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
708 .access = PL1_W, .type = ARM_CP_WFI },
710 * L1 cache lockdown. Not architectural in v6 and earlier but in practice
711 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
712 * OMAPCP will override this space.
714 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
715 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
716 .resetvalue = 0 },
717 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
718 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
719 .resetvalue = 0 },
720 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
721 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
722 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
723 .resetvalue = 0 },
725 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
726 * implementing it as RAZ means the "debug architecture version" bits
727 * will read as a reserved value, which should cause Linux to not try
728 * to use the debug hardware.
730 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
731 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
733 * MMU TLB control. Note that the wildcarding means we cover not just
734 * the unified TLB ops but also the dside/iside/inner-shareable variants.
736 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
737 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
738 .type = ARM_CP_NO_RAW },
739 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
740 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
741 .type = ARM_CP_NO_RAW },
742 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
743 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
744 .type = ARM_CP_NO_RAW },
745 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
746 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
747 .type = ARM_CP_NO_RAW },
748 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
749 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
750 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
751 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
754 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
755 uint64_t value)
757 uint32_t mask = 0;
759 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
760 if (!arm_feature(env, ARM_FEATURE_V8)) {
762 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
763 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
764 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
766 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
767 /* VFP coprocessor: cp10 & cp11 [23:20] */
768 mask |= R_CPACR_ASEDIS_MASK |
769 R_CPACR_D32DIS_MASK |
770 R_CPACR_CP11_MASK |
771 R_CPACR_CP10_MASK;
773 if (!arm_feature(env, ARM_FEATURE_NEON)) {
774 /* ASEDIS [31] bit is RAO/WI */
775 value |= R_CPACR_ASEDIS_MASK;
779 * VFPv3 and upwards with NEON implement 32 double precision
780 * registers (D0-D31).
782 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
783 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
784 value |= R_CPACR_D32DIS_MASK;
787 value &= mask;
791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
794 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
795 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
796 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
797 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
800 env->cp15.cpacr_el1 = value;
803 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
806 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
807 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
809 uint64_t value = env->cp15.cpacr_el1;
811 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
812 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
813 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
815 return value;
819 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
822 * Call cpacr_write() so that we reset with the correct RAO bits set
823 * for our CPU features.
825 cpacr_write(env, ri, 0);
828 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
829 bool isread)
831 if (arm_feature(env, ARM_FEATURE_V8)) {
832 /* Check if CPACR accesses are to be trapped to EL2 */
833 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
834 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
835 return CP_ACCESS_TRAP_EL2;
836 /* Check if CPACR accesses are to be trapped to EL3 */
837 } else if (arm_current_el(env) < 3 &&
838 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
839 return CP_ACCESS_TRAP_EL3;
843 return CP_ACCESS_OK;
846 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
847 bool isread)
849 /* Check if CPTR accesses are set to trap to EL3 */
850 if (arm_current_el(env) == 2 &&
851 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
852 return CP_ACCESS_TRAP_EL3;
855 return CP_ACCESS_OK;
858 static const ARMCPRegInfo v6_cp_reginfo[] = {
859 /* prefetch by MVA in v6, NOP in v7 */
860 { .name = "MVA_prefetch",
861 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
862 .access = PL1_W, .type = ARM_CP_NOP },
864 * We need to break the TB after ISB to execute self-modifying code
865 * correctly and also to take any pending interrupts immediately.
866 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
868 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
869 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
870 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
871 .access = PL0_W, .type = ARM_CP_NOP },
872 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
873 .access = PL0_W, .type = ARM_CP_NOP },
874 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
875 .access = PL1_RW, .accessfn = access_tvm_trvm,
876 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
877 offsetof(CPUARMState, cp15.ifar_ns) },
878 .resetvalue = 0, },
880 * Watchpoint Fault Address Register : should actually only be present
881 * for 1136, 1176, 11MPCore.
883 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
884 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
885 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
886 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
887 .fgt = FGT_CPACR_EL1,
888 .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1,
889 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
890 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
893 typedef struct pm_event {
894 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
895 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
896 bool (*supported)(CPUARMState *);
898 * Retrieve the current count of the underlying event. The programmed
899 * counters hold a difference from the return value from this function
901 uint64_t (*get_count)(CPUARMState *);
903 * Return how many nanoseconds it will take (at a minimum) for count events
904 * to occur. A negative value indicates the counter will never overflow, or
905 * that the counter has otherwise arranged for the overflow bit to be set
906 * and the PMU interrupt to be raised on overflow.
908 int64_t (*ns_per_count)(uint64_t);
909 } pm_event;
911 static bool event_always_supported(CPUARMState *env)
913 return true;
916 static uint64_t swinc_get_count(CPUARMState *env)
919 * SW_INCR events are written directly to the pmevcntr's by writes to
920 * PMSWINC, so there is no underlying count maintained by the PMU itself
922 return 0;
925 static int64_t swinc_ns_per(uint64_t ignored)
927 return -1;
931 * Return the underlying cycle count for the PMU cycle counters. If we're in
932 * usermode, simply return 0.
934 static uint64_t cycles_get_count(CPUARMState *env)
936 #ifndef CONFIG_USER_ONLY
937 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
938 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
939 #else
940 return cpu_get_host_ticks();
941 #endif
944 #ifndef CONFIG_USER_ONLY
945 static int64_t cycles_ns_per(uint64_t cycles)
947 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
950 static bool instructions_supported(CPUARMState *env)
952 /* Precise instruction counting */
953 return icount_enabled() == ICOUNT_PRECISE;
956 static uint64_t instructions_get_count(CPUARMState *env)
958 assert(icount_enabled() == ICOUNT_PRECISE);
959 return (uint64_t)icount_get_raw();
962 static int64_t instructions_ns_per(uint64_t icount)
964 assert(icount_enabled() == ICOUNT_PRECISE);
965 return icount_to_ns((int64_t)icount);
967 #endif
969 static bool pmuv3p1_events_supported(CPUARMState *env)
971 /* For events which are supported in any v8.1 PMU */
972 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
975 static bool pmuv3p4_events_supported(CPUARMState *env)
977 /* For events which are supported in any v8.1 PMU */
978 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
981 static uint64_t zero_event_get_count(CPUARMState *env)
983 /* For events which on QEMU never fire, so their count is always zero */
984 return 0;
987 static int64_t zero_event_ns_per(uint64_t cycles)
989 /* An event which never fires can never overflow */
990 return -1;
993 static const pm_event pm_events[] = {
994 { .number = 0x000, /* SW_INCR */
995 .supported = event_always_supported,
996 .get_count = swinc_get_count,
997 .ns_per_count = swinc_ns_per,
999 #ifndef CONFIG_USER_ONLY
1000 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1001 .supported = instructions_supported,
1002 .get_count = instructions_get_count,
1003 .ns_per_count = instructions_ns_per,
1005 { .number = 0x011, /* CPU_CYCLES, Cycle */
1006 .supported = event_always_supported,
1007 .get_count = cycles_get_count,
1008 .ns_per_count = cycles_ns_per,
1010 #endif
1011 { .number = 0x023, /* STALL_FRONTEND */
1012 .supported = pmuv3p1_events_supported,
1013 .get_count = zero_event_get_count,
1014 .ns_per_count = zero_event_ns_per,
1016 { .number = 0x024, /* STALL_BACKEND */
1017 .supported = pmuv3p1_events_supported,
1018 .get_count = zero_event_get_count,
1019 .ns_per_count = zero_event_ns_per,
1021 { .number = 0x03c, /* STALL */
1022 .supported = pmuv3p4_events_supported,
1023 .get_count = zero_event_get_count,
1024 .ns_per_count = zero_event_ns_per,
1029 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1030 * events (i.e. the statistical profiling extension), this implementation
1031 * should first be updated to something sparse instead of the current
1032 * supported_event_map[] array.
1034 #define MAX_EVENT_ID 0x3c
1035 #define UNSUPPORTED_EVENT UINT16_MAX
1036 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1039 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1040 * of ARM event numbers to indices in our pm_events array.
1042 * Note: Events in the 0x40XX range are not currently supported.
1044 void pmu_init(ARMCPU *cpu)
1046 unsigned int i;
1049 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1050 * events to them
1052 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1053 supported_event_map[i] = UNSUPPORTED_EVENT;
1055 cpu->pmceid0 = 0;
1056 cpu->pmceid1 = 0;
1058 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1059 const pm_event *cnt = &pm_events[i];
1060 assert(cnt->number <= MAX_EVENT_ID);
1061 /* We do not currently support events in the 0x40xx range */
1062 assert(cnt->number <= 0x3f);
1064 if (cnt->supported(&cpu->env)) {
1065 supported_event_map[cnt->number] = i;
1066 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1067 if (cnt->number & 0x20) {
1068 cpu->pmceid1 |= event_mask;
1069 } else {
1070 cpu->pmceid0 |= event_mask;
1077 * Check at runtime whether a PMU event is supported for the current machine
1079 static bool event_supported(uint16_t number)
1081 if (number > MAX_EVENT_ID) {
1082 return false;
1084 return supported_event_map[number] != UNSUPPORTED_EVENT;
1087 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1088 bool isread)
1091 * Performance monitor registers user accessibility is controlled
1092 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1093 * trapping to EL2 or EL3 for other accesses.
1095 int el = arm_current_el(env);
1096 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1098 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1099 return CP_ACCESS_TRAP;
1101 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1102 return CP_ACCESS_TRAP_EL2;
1104 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1105 return CP_ACCESS_TRAP_EL3;
1108 return CP_ACCESS_OK;
1111 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1112 const ARMCPRegInfo *ri,
1113 bool isread)
1115 /* ER: event counter read trap control */
1116 if (arm_feature(env, ARM_FEATURE_V8)
1117 && arm_current_el(env) == 0
1118 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1119 && isread) {
1120 return CP_ACCESS_OK;
1123 return pmreg_access(env, ri, isread);
1126 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1127 const ARMCPRegInfo *ri,
1128 bool isread)
1130 /* SW: software increment write trap control */
1131 if (arm_feature(env, ARM_FEATURE_V8)
1132 && arm_current_el(env) == 0
1133 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1134 && !isread) {
1135 return CP_ACCESS_OK;
1138 return pmreg_access(env, ri, isread);
1141 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1142 const ARMCPRegInfo *ri,
1143 bool isread)
1145 /* ER: event counter read trap control */
1146 if (arm_feature(env, ARM_FEATURE_V8)
1147 && arm_current_el(env) == 0
1148 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1149 return CP_ACCESS_OK;
1152 return pmreg_access(env, ri, isread);
1155 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1156 const ARMCPRegInfo *ri,
1157 bool isread)
1159 /* CR: cycle counter read trap control */
1160 if (arm_feature(env, ARM_FEATURE_V8)
1161 && arm_current_el(env) == 0
1162 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1163 && isread) {
1164 return CP_ACCESS_OK;
1167 return pmreg_access(env, ri, isread);
1171 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1172 * We use these to decide whether we need to wrap a write to MDCR_EL2
1173 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1175 #define MDCR_EL2_PMU_ENABLE_BITS \
1176 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1177 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1180 * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1181 * the current EL, security state, and register configuration.
1183 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1185 uint64_t filter;
1186 bool e, p, u, nsk, nsu, nsh, m;
1187 bool enabled, prohibited = false, filtered;
1188 bool secure = arm_is_secure(env);
1189 int el = arm_current_el(env);
1190 uint64_t mdcr_el2;
1191 uint8_t hpmn;
1194 * We might be called for M-profile cores where MDCR_EL2 doesn't
1195 * exist and arm_mdcr_el2_eff() will assert, so this early-exit check
1196 * must be before we read that value.
1198 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1199 return false;
1202 mdcr_el2 = arm_mdcr_el2_eff(env);
1203 hpmn = mdcr_el2 & MDCR_HPMN;
1205 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1206 (counter < hpmn || counter == 31)) {
1207 e = env->cp15.c9_pmcr & PMCRE;
1208 } else {
1209 e = mdcr_el2 & MDCR_HPME;
1211 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1213 /* Is event counting prohibited? */
1214 if (el == 2 && (counter < hpmn || counter == 31)) {
1215 prohibited = mdcr_el2 & MDCR_HPMD;
1217 if (secure) {
1218 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1221 if (counter == 31) {
1223 * The cycle counter defaults to running. PMCR.DP says "disable
1224 * the cycle counter when event counting is prohibited".
1225 * Some MDCR bits disable the cycle counter specifically.
1227 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1228 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1229 if (secure) {
1230 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1232 if (el == 2) {
1233 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1238 if (counter == 31) {
1239 filter = env->cp15.pmccfiltr_el0;
1240 } else {
1241 filter = env->cp15.c14_pmevtyper[counter];
1244 p = filter & PMXEVTYPER_P;
1245 u = filter & PMXEVTYPER_U;
1246 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1247 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1248 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1249 m = arm_el_is_aa64(env, 1) &&
1250 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1252 if (el == 0) {
1253 filtered = secure ? u : u != nsu;
1254 } else if (el == 1) {
1255 filtered = secure ? p : p != nsk;
1256 } else if (el == 2) {
1257 filtered = !nsh;
1258 } else { /* EL3 */
1259 filtered = m != p;
1262 if (counter != 31) {
1264 * If not checking PMCCNTR, ensure the counter is setup to an event we
1265 * support
1267 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1268 if (!event_supported(event)) {
1269 return false;
1273 return enabled && !prohibited && !filtered;
1276 static void pmu_update_irq(CPUARMState *env)
1278 ARMCPU *cpu = env_archcpu(env);
1279 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1280 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1283 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1286 * Return true if the clock divider is enabled and the cycle counter
1287 * is supposed to tick only once every 64 clock cycles. This is
1288 * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1289 * (64-bit) cycle counter PMCR.D has no effect.
1291 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1294 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1296 /* Return true if the specified event counter is configured to be 64 bit */
1298 /* This isn't intended to be used with the cycle counter */
1299 assert(counter < 31);
1301 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1302 return false;
1305 if (arm_feature(env, ARM_FEATURE_EL2)) {
1307 * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1308 * current security state, so we don't use arm_mdcr_el2_eff() here.
1310 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1311 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1313 if (counter >= hpmn) {
1314 return hlp;
1317 return env->cp15.c9_pmcr & PMCRLP;
1321 * Ensure c15_ccnt is the guest-visible count so that operations such as
1322 * enabling/disabling the counter or filtering, modifying the count itself,
1323 * etc. can be done logically. This is essentially a no-op if the counter is
1324 * not enabled at the time of the call.
1326 static void pmccntr_op_start(CPUARMState *env)
1328 uint64_t cycles = cycles_get_count(env);
1330 if (pmu_counter_enabled(env, 31)) {
1331 uint64_t eff_cycles = cycles;
1332 if (pmccntr_clockdiv_enabled(env)) {
1333 eff_cycles /= 64;
1336 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1338 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1339 1ull << 63 : 1ull << 31;
1340 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1341 env->cp15.c9_pmovsr |= (1ULL << 31);
1342 pmu_update_irq(env);
1345 env->cp15.c15_ccnt = new_pmccntr;
1347 env->cp15.c15_ccnt_delta = cycles;
1351 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1352 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1353 * pmccntr_op_start.
1355 static void pmccntr_op_finish(CPUARMState *env)
1357 if (pmu_counter_enabled(env, 31)) {
1358 #ifndef CONFIG_USER_ONLY
1359 /* Calculate when the counter will next overflow */
1360 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1361 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1362 remaining_cycles = (uint32_t)remaining_cycles;
1364 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1366 if (overflow_in > 0) {
1367 int64_t overflow_at;
1369 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1370 overflow_in, &overflow_at)) {
1371 ARMCPU *cpu = env_archcpu(env);
1372 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1375 #endif
1377 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1378 if (pmccntr_clockdiv_enabled(env)) {
1379 prev_cycles /= 64;
1381 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1385 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1388 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1389 uint64_t count = 0;
1390 if (event_supported(event)) {
1391 uint16_t event_idx = supported_event_map[event];
1392 count = pm_events[event_idx].get_count(env);
1395 if (pmu_counter_enabled(env, counter)) {
1396 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1397 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1398 1ULL << 63 : 1ULL << 31;
1400 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1401 env->cp15.c9_pmovsr |= (1 << counter);
1402 pmu_update_irq(env);
1404 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1406 env->cp15.c14_pmevcntr_delta[counter] = count;
1409 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1411 if (pmu_counter_enabled(env, counter)) {
1412 #ifndef CONFIG_USER_ONLY
1413 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1414 uint16_t event_idx = supported_event_map[event];
1415 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1416 int64_t overflow_in;
1418 if (!pmevcntr_is_64_bit(env, counter)) {
1419 delta = (uint32_t)delta;
1421 overflow_in = pm_events[event_idx].ns_per_count(delta);
1423 if (overflow_in > 0) {
1424 int64_t overflow_at;
1426 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1427 overflow_in, &overflow_at)) {
1428 ARMCPU *cpu = env_archcpu(env);
1429 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1432 #endif
1434 env->cp15.c14_pmevcntr_delta[counter] -=
1435 env->cp15.c14_pmevcntr[counter];
1439 void pmu_op_start(CPUARMState *env)
1441 unsigned int i;
1442 pmccntr_op_start(env);
1443 for (i = 0; i < pmu_num_counters(env); i++) {
1444 pmevcntr_op_start(env, i);
1448 void pmu_op_finish(CPUARMState *env)
1450 unsigned int i;
1451 pmccntr_op_finish(env);
1452 for (i = 0; i < pmu_num_counters(env); i++) {
1453 pmevcntr_op_finish(env, i);
1457 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1459 pmu_op_start(&cpu->env);
1462 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1464 pmu_op_finish(&cpu->env);
1467 void arm_pmu_timer_cb(void *opaque)
1469 ARMCPU *cpu = opaque;
1472 * Update all the counter values based on the current underlying counts,
1473 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1474 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1475 * counter may expire.
1477 pmu_op_start(&cpu->env);
1478 pmu_op_finish(&cpu->env);
1481 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1482 uint64_t value)
1484 pmu_op_start(env);
1486 if (value & PMCRC) {
1487 /* The counter has been reset */
1488 env->cp15.c15_ccnt = 0;
1491 if (value & PMCRP) {
1492 unsigned int i;
1493 for (i = 0; i < pmu_num_counters(env); i++) {
1494 env->cp15.c14_pmevcntr[i] = 0;
1498 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1499 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1501 pmu_op_finish(env);
1504 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1506 uint64_t pmcr = env->cp15.c9_pmcr;
1509 * If EL2 is implemented and enabled for the current security state, reads
1510 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN.
1512 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) {
1513 pmcr &= ~PMCRN_MASK;
1514 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT;
1517 return pmcr;
1520 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1521 uint64_t value)
1523 unsigned int i;
1524 uint64_t overflow_mask, new_pmswinc;
1526 for (i = 0; i < pmu_num_counters(env); i++) {
1527 /* Increment a counter's count iff: */
1528 if ((value & (1 << i)) && /* counter's bit is set */
1529 /* counter is enabled and not filtered */
1530 pmu_counter_enabled(env, i) &&
1531 /* counter is SW_INCR */
1532 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1533 pmevcntr_op_start(env, i);
1536 * Detect if this write causes an overflow since we can't predict
1537 * PMSWINC overflows like we can for other events
1539 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1541 overflow_mask = pmevcntr_is_64_bit(env, i) ?
1542 1ULL << 63 : 1ULL << 31;
1544 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1545 env->cp15.c9_pmovsr |= (1 << i);
1546 pmu_update_irq(env);
1549 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1551 pmevcntr_op_finish(env, i);
1556 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1558 uint64_t ret;
1559 pmccntr_op_start(env);
1560 ret = env->cp15.c15_ccnt;
1561 pmccntr_op_finish(env);
1562 return ret;
1565 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1566 uint64_t value)
1569 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1570 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1571 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1572 * accessed.
1574 env->cp15.c9_pmselr = value & 0x1f;
1577 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1578 uint64_t value)
1580 pmccntr_op_start(env);
1581 env->cp15.c15_ccnt = value;
1582 pmccntr_op_finish(env);
1585 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1586 uint64_t value)
1588 uint64_t cur_val = pmccntr_read(env, NULL);
1590 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1593 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1594 uint64_t value)
1596 pmccntr_op_start(env);
1597 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1598 pmccntr_op_finish(env);
1601 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1602 uint64_t value)
1604 pmccntr_op_start(env);
1605 /* M is not accessible from AArch32 */
1606 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1607 (value & PMCCFILTR);
1608 pmccntr_op_finish(env);
1611 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1613 /* M is not visible in AArch32 */
1614 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1617 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1618 uint64_t value)
1620 pmu_op_start(env);
1621 value &= pmu_counter_mask(env);
1622 env->cp15.c9_pmcnten |= value;
1623 pmu_op_finish(env);
1626 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1627 uint64_t value)
1629 pmu_op_start(env);
1630 value &= pmu_counter_mask(env);
1631 env->cp15.c9_pmcnten &= ~value;
1632 pmu_op_finish(env);
1635 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1636 uint64_t value)
1638 value &= pmu_counter_mask(env);
1639 env->cp15.c9_pmovsr &= ~value;
1640 pmu_update_irq(env);
1643 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1644 uint64_t value)
1646 value &= pmu_counter_mask(env);
1647 env->cp15.c9_pmovsr |= value;
1648 pmu_update_irq(env);
1651 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1652 uint64_t value, const uint8_t counter)
1654 if (counter == 31) {
1655 pmccfiltr_write(env, ri, value);
1656 } else if (counter < pmu_num_counters(env)) {
1657 pmevcntr_op_start(env, counter);
1660 * If this counter's event type is changing, store the current
1661 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1662 * pmevcntr_op_finish has the correct baseline when it converts back to
1663 * a delta.
1665 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1666 PMXEVTYPER_EVTCOUNT;
1667 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1668 if (old_event != new_event) {
1669 uint64_t count = 0;
1670 if (event_supported(new_event)) {
1671 uint16_t event_idx = supported_event_map[new_event];
1672 count = pm_events[event_idx].get_count(env);
1674 env->cp15.c14_pmevcntr_delta[counter] = count;
1677 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1678 pmevcntr_op_finish(env, counter);
1681 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1682 * PMSELR value is equal to or greater than the number of implemented
1683 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1687 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1688 const uint8_t counter)
1690 if (counter == 31) {
1691 return env->cp15.pmccfiltr_el0;
1692 } else if (counter < pmu_num_counters(env)) {
1693 return env->cp15.c14_pmevtyper[counter];
1694 } else {
1696 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1697 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1699 return 0;
1703 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1704 uint64_t value)
1706 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1707 pmevtyper_write(env, ri, value, counter);
1710 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1711 uint64_t value)
1713 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1714 env->cp15.c14_pmevtyper[counter] = value;
1717 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1718 * pmu_op_finish calls when loading saved state for a migration. Because
1719 * we're potentially updating the type of event here, the value written to
1720 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1721 * different counter type. Therefore, we need to set this value to the
1722 * current count for the counter type we're writing so that pmu_op_finish
1723 * has the correct count for its calculation.
1725 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1726 if (event_supported(event)) {
1727 uint16_t event_idx = supported_event_map[event];
1728 env->cp15.c14_pmevcntr_delta[counter] =
1729 pm_events[event_idx].get_count(env);
1733 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1735 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1736 return pmevtyper_read(env, ri, counter);
1739 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1740 uint64_t value)
1742 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1745 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1747 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1750 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1751 uint64_t value, uint8_t counter)
1753 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1754 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1755 value &= MAKE_64BIT_MASK(0, 32);
1757 if (counter < pmu_num_counters(env)) {
1758 pmevcntr_op_start(env, counter);
1759 env->cp15.c14_pmevcntr[counter] = value;
1760 pmevcntr_op_finish(env, counter);
1763 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1764 * are CONSTRAINED UNPREDICTABLE.
1768 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1769 uint8_t counter)
1771 if (counter < pmu_num_counters(env)) {
1772 uint64_t ret;
1773 pmevcntr_op_start(env, counter);
1774 ret = env->cp15.c14_pmevcntr[counter];
1775 pmevcntr_op_finish(env, counter);
1776 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1777 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1778 ret &= MAKE_64BIT_MASK(0, 32);
1780 return ret;
1781 } else {
1783 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1784 * are CONSTRAINED UNPREDICTABLE.
1786 return 0;
1790 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1791 uint64_t value)
1793 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1794 pmevcntr_write(env, ri, value, counter);
1797 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1799 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1800 return pmevcntr_read(env, ri, counter);
1803 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1804 uint64_t value)
1806 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1807 assert(counter < pmu_num_counters(env));
1808 env->cp15.c14_pmevcntr[counter] = value;
1809 pmevcntr_write(env, ri, value, counter);
1812 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1814 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1815 assert(counter < pmu_num_counters(env));
1816 return env->cp15.c14_pmevcntr[counter];
1819 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1820 uint64_t value)
1822 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1825 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1827 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1830 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1831 uint64_t value)
1833 if (arm_feature(env, ARM_FEATURE_V8)) {
1834 env->cp15.c9_pmuserenr = value & 0xf;
1835 } else {
1836 env->cp15.c9_pmuserenr = value & 1;
1840 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1841 uint64_t value)
1843 /* We have no event counters so only the C bit can be changed */
1844 value &= pmu_counter_mask(env);
1845 env->cp15.c9_pminten |= value;
1846 pmu_update_irq(env);
1849 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1850 uint64_t value)
1852 value &= pmu_counter_mask(env);
1853 env->cp15.c9_pminten &= ~value;
1854 pmu_update_irq(env);
1857 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1858 uint64_t value)
1861 * Note that even though the AArch64 view of this register has bits
1862 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1863 * architectural requirements for bits which are RES0 only in some
1864 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1865 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1867 raw_write(env, ri, value & ~0x1FULL);
1870 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1872 /* Begin with base v8.0 state. */
1873 uint64_t valid_mask = 0x3fff;
1874 ARMCPU *cpu = env_archcpu(env);
1875 uint64_t changed;
1878 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1879 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1880 * Instead, choose the format based on the mode of EL3.
1882 if (arm_el_is_aa64(env, 3)) {
1883 value |= SCR_FW | SCR_AW; /* RES1 */
1884 valid_mask &= ~SCR_NET; /* RES0 */
1886 if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1887 !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1888 value |= SCR_RW; /* RAO/WI */
1890 if (cpu_isar_feature(aa64_ras, cpu)) {
1891 valid_mask |= SCR_TERR;
1893 if (cpu_isar_feature(aa64_lor, cpu)) {
1894 valid_mask |= SCR_TLOR;
1896 if (cpu_isar_feature(aa64_pauth, cpu)) {
1897 valid_mask |= SCR_API | SCR_APK;
1899 if (cpu_isar_feature(aa64_sel2, cpu)) {
1900 valid_mask |= SCR_EEL2;
1901 } else if (cpu_isar_feature(aa64_rme, cpu)) {
1902 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1903 value |= SCR_NS;
1905 if (cpu_isar_feature(aa64_mte, cpu)) {
1906 valid_mask |= SCR_ATA;
1908 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1909 valid_mask |= SCR_ENSCXT;
1911 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1912 valid_mask |= SCR_EASE | SCR_NMEA;
1914 if (cpu_isar_feature(aa64_sme, cpu)) {
1915 valid_mask |= SCR_ENTP2;
1917 if (cpu_isar_feature(aa64_hcx, cpu)) {
1918 valid_mask |= SCR_HXEN;
1920 if (cpu_isar_feature(aa64_fgt, cpu)) {
1921 valid_mask |= SCR_FGTEN;
1923 if (cpu_isar_feature(aa64_rme, cpu)) {
1924 valid_mask |= SCR_NSE | SCR_GPF;
1926 if (cpu_isar_feature(aa64_ecv, cpu)) {
1927 valid_mask |= SCR_ECVEN;
1929 } else {
1930 valid_mask &= ~(SCR_RW | SCR_ST);
1931 if (cpu_isar_feature(aa32_ras, cpu)) {
1932 valid_mask |= SCR_TERR;
1936 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1937 valid_mask &= ~SCR_HCE;
1940 * On ARMv7, SMD (or SCD as it is called in v7) is only
1941 * supported if EL2 exists. The bit is UNK/SBZP when
1942 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1943 * when EL2 is unavailable.
1944 * On ARMv8, this bit is always available.
1946 if (arm_feature(env, ARM_FEATURE_V7) &&
1947 !arm_feature(env, ARM_FEATURE_V8)) {
1948 valid_mask &= ~SCR_SMD;
1952 /* Clear all-context RES0 bits. */
1953 value &= valid_mask;
1954 changed = env->cp15.scr_el3 ^ value;
1955 env->cp15.scr_el3 = value;
1958 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1959 * we must invalidate all TLBs below EL3.
1961 if (changed & (SCR_NS | SCR_NSE)) {
1962 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1963 ARMMMUIdxBit_E20_0 |
1964 ARMMMUIdxBit_E10_1 |
1965 ARMMMUIdxBit_E20_2 |
1966 ARMMMUIdxBit_E10_1_PAN |
1967 ARMMMUIdxBit_E20_2_PAN |
1968 ARMMMUIdxBit_E2));
1972 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1975 * scr_write will set the RES1 bits on an AArch64-only CPU.
1976 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1978 scr_write(env, ri, 0);
1981 static CPAccessResult access_tid4(CPUARMState *env,
1982 const ARMCPRegInfo *ri,
1983 bool isread)
1985 if (arm_current_el(env) == 1 &&
1986 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1987 return CP_ACCESS_TRAP_EL2;
1990 return CP_ACCESS_OK;
1993 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1995 ARMCPU *cpu = env_archcpu(env);
1998 * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1999 * bank
2001 uint32_t index = A32_BANKED_REG_GET(env, csselr,
2002 ri->secure & ARM_CP_SECSTATE_S);
2004 return cpu->ccsidr[index];
2007 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2008 uint64_t value)
2010 raw_write(env, ri, value & 0xf);
2013 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2015 CPUState *cs = env_cpu(env);
2016 bool el1 = arm_current_el(env) == 1;
2017 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2018 uint64_t ret = 0;
2020 if (hcr_el2 & HCR_IMO) {
2021 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2022 ret |= CPSR_I;
2024 } else {
2025 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2026 ret |= CPSR_I;
2030 if (hcr_el2 & HCR_FMO) {
2031 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2032 ret |= CPSR_F;
2034 } else {
2035 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2036 ret |= CPSR_F;
2040 if (hcr_el2 & HCR_AMO) {
2041 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
2042 ret |= CPSR_A;
2046 return ret;
2049 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2050 bool isread)
2052 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2053 return CP_ACCESS_TRAP_EL2;
2056 return CP_ACCESS_OK;
2059 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2060 bool isread)
2062 if (arm_feature(env, ARM_FEATURE_V8)) {
2063 return access_aa64_tid1(env, ri, isread);
2066 return CP_ACCESS_OK;
2069 static const ARMCPRegInfo v7_cp_reginfo[] = {
2070 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2071 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2072 .access = PL1_W, .type = ARM_CP_NOP },
2074 * Performance monitors are implementation defined in v7,
2075 * but with an ARM recommended set of registers, which we
2076 * follow.
2078 * Performance registers fall into three categories:
2079 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2080 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2081 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2082 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2083 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2085 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2086 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2087 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2088 .writefn = pmcntenset_write,
2089 .accessfn = pmreg_access,
2090 .fgt = FGT_PMCNTEN,
2091 .raw_writefn = raw_write },
2092 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2093 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2094 .access = PL0_RW, .accessfn = pmreg_access,
2095 .fgt = FGT_PMCNTEN,
2096 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2097 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2098 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2099 .access = PL0_RW,
2100 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2101 .accessfn = pmreg_access,
2102 .fgt = FGT_PMCNTEN,
2103 .writefn = pmcntenclr_write,
2104 .type = ARM_CP_ALIAS | ARM_CP_IO },
2105 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2106 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2107 .access = PL0_RW, .accessfn = pmreg_access,
2108 .fgt = FGT_PMCNTEN,
2109 .type = ARM_CP_ALIAS | ARM_CP_IO,
2110 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2111 .writefn = pmcntenclr_write },
2112 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2113 .access = PL0_RW, .type = ARM_CP_IO,
2114 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2115 .accessfn = pmreg_access,
2116 .fgt = FGT_PMOVS,
2117 .writefn = pmovsr_write,
2118 .raw_writefn = raw_write },
2119 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2120 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2121 .access = PL0_RW, .accessfn = pmreg_access,
2122 .fgt = FGT_PMOVS,
2123 .type = ARM_CP_ALIAS | ARM_CP_IO,
2124 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2125 .writefn = pmovsr_write,
2126 .raw_writefn = raw_write },
2127 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2128 .access = PL0_W, .accessfn = pmreg_access_swinc,
2129 .fgt = FGT_PMSWINC_EL0,
2130 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2131 .writefn = pmswinc_write },
2132 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2133 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2134 .access = PL0_W, .accessfn = pmreg_access_swinc,
2135 .fgt = FGT_PMSWINC_EL0,
2136 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2137 .writefn = pmswinc_write },
2138 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2139 .access = PL0_RW, .type = ARM_CP_ALIAS,
2140 .fgt = FGT_PMSELR_EL0,
2141 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2142 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2143 .raw_writefn = raw_write},
2144 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2145 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2146 .access = PL0_RW, .accessfn = pmreg_access_selr,
2147 .fgt = FGT_PMSELR_EL0,
2148 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2149 .writefn = pmselr_write, .raw_writefn = raw_write, },
2150 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2151 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2152 .fgt = FGT_PMCCNTR_EL0,
2153 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2154 .accessfn = pmreg_access_ccntr },
2155 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2156 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2157 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2158 .fgt = FGT_PMCCNTR_EL0,
2159 .type = ARM_CP_IO,
2160 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2161 .readfn = pmccntr_read, .writefn = pmccntr_write,
2162 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2163 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2164 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2165 .access = PL0_RW, .accessfn = pmreg_access,
2166 .fgt = FGT_PMCCFILTR_EL0,
2167 .type = ARM_CP_ALIAS | ARM_CP_IO,
2168 .resetvalue = 0, },
2169 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2170 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2171 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2172 .access = PL0_RW, .accessfn = pmreg_access,
2173 .fgt = FGT_PMCCFILTR_EL0,
2174 .type = ARM_CP_IO,
2175 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2176 .resetvalue = 0, },
2177 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2178 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2179 .accessfn = pmreg_access,
2180 .fgt = FGT_PMEVTYPERN_EL0,
2181 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2182 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2183 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2184 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2185 .accessfn = pmreg_access,
2186 .fgt = FGT_PMEVTYPERN_EL0,
2187 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2188 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2189 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2190 .accessfn = pmreg_access_xevcntr,
2191 .fgt = FGT_PMEVCNTRN_EL0,
2192 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2193 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2194 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2195 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2196 .accessfn = pmreg_access_xevcntr,
2197 .fgt = FGT_PMEVCNTRN_EL0,
2198 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2199 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2200 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2201 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2202 .resetvalue = 0,
2203 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2204 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2205 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2206 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2207 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2208 .resetvalue = 0,
2209 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2210 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2211 .access = PL1_RW, .accessfn = access_tpm,
2212 .fgt = FGT_PMINTEN,
2213 .type = ARM_CP_ALIAS | ARM_CP_IO,
2214 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2215 .resetvalue = 0,
2216 .writefn = pmintenset_write, .raw_writefn = raw_write },
2217 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2218 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2219 .access = PL1_RW, .accessfn = access_tpm,
2220 .fgt = FGT_PMINTEN,
2221 .type = ARM_CP_IO,
2222 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2223 .writefn = pmintenset_write, .raw_writefn = raw_write,
2224 .resetvalue = 0x0 },
2225 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2226 .access = PL1_RW, .accessfn = access_tpm,
2227 .fgt = FGT_PMINTEN,
2228 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2229 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2230 .writefn = pmintenclr_write, },
2231 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2232 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2233 .access = PL1_RW, .accessfn = access_tpm,
2234 .fgt = FGT_PMINTEN,
2235 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2236 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2237 .writefn = pmintenclr_write },
2238 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2239 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2240 .access = PL1_R,
2241 .accessfn = access_tid4,
2242 .fgt = FGT_CCSIDR_EL1,
2243 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2244 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2245 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2246 .access = PL1_RW,
2247 .accessfn = access_tid4,
2248 .fgt = FGT_CSSELR_EL1,
2249 .writefn = csselr_write, .resetvalue = 0,
2250 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2251 offsetof(CPUARMState, cp15.csselr_ns) } },
2253 * Auxiliary ID register: this actually has an IMPDEF value but for now
2254 * just RAZ for all cores:
2256 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2257 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2258 .access = PL1_R, .type = ARM_CP_CONST,
2259 .accessfn = access_aa64_tid1,
2260 .fgt = FGT_AIDR_EL1,
2261 .resetvalue = 0 },
2263 * Auxiliary fault status registers: these also are IMPDEF, and we
2264 * choose to RAZ/WI for all cores.
2266 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2267 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2268 .access = PL1_RW, .accessfn = access_tvm_trvm,
2269 .fgt = FGT_AFSR0_EL1,
2270 .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1,
2271 .type = ARM_CP_CONST, .resetvalue = 0 },
2272 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2273 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2274 .access = PL1_RW, .accessfn = access_tvm_trvm,
2275 .fgt = FGT_AFSR1_EL1,
2276 .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1,
2277 .type = ARM_CP_CONST, .resetvalue = 0 },
2279 * MAIR can just read-as-written because we don't implement caches
2280 * and so don't need to care about memory attributes.
2282 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2283 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2284 .access = PL1_RW, .accessfn = access_tvm_trvm,
2285 .fgt = FGT_MAIR_EL1,
2286 .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1,
2287 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2288 .resetvalue = 0 },
2289 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2290 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2291 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2292 .resetvalue = 0 },
2294 * For non-long-descriptor page tables these are PRRR and NMRR;
2295 * regardless they still act as reads-as-written for QEMU.
2298 * MAIR0/1 are defined separately from their 64-bit counterpart which
2299 * allows them to assign the correct fieldoffset based on the endianness
2300 * handled in the field definitions.
2302 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2303 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2304 .access = PL1_RW, .accessfn = access_tvm_trvm,
2305 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2306 offsetof(CPUARMState, cp15.mair0_ns) },
2307 .resetfn = arm_cp_reset_ignore },
2308 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2309 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2310 .access = PL1_RW, .accessfn = access_tvm_trvm,
2311 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2312 offsetof(CPUARMState, cp15.mair1_ns) },
2313 .resetfn = arm_cp_reset_ignore },
2314 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2315 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2316 .fgt = FGT_ISR_EL1,
2317 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2318 /* 32 bit ITLB invalidates */
2319 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2320 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2321 .writefn = tlbiall_write },
2322 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2323 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2324 .writefn = tlbimva_write },
2325 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2326 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2327 .writefn = tlbiasid_write },
2328 /* 32 bit DTLB invalidates */
2329 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2330 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2331 .writefn = tlbiall_write },
2332 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2333 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2334 .writefn = tlbimva_write },
2335 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2336 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2337 .writefn = tlbiasid_write },
2338 /* 32 bit TLB invalidates */
2339 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2340 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2341 .writefn = tlbiall_write },
2342 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2343 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2344 .writefn = tlbimva_write },
2345 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2346 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2347 .writefn = tlbiasid_write },
2348 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2349 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2350 .writefn = tlbimvaa_write },
2353 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2354 /* 32 bit TLB invalidates, Inner Shareable */
2355 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2356 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2357 .writefn = tlbiall_is_write },
2358 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2359 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2360 .writefn = tlbimva_is_write },
2361 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2362 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2363 .writefn = tlbiasid_is_write },
2364 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2365 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2366 .writefn = tlbimvaa_is_write },
2369 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2370 /* PMOVSSET is not implemented in v7 before v7ve */
2371 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2372 .access = PL0_RW, .accessfn = pmreg_access,
2373 .fgt = FGT_PMOVS,
2374 .type = ARM_CP_ALIAS | ARM_CP_IO,
2375 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2376 .writefn = pmovsset_write,
2377 .raw_writefn = raw_write },
2378 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2379 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2380 .access = PL0_RW, .accessfn = pmreg_access,
2381 .fgt = FGT_PMOVS,
2382 .type = ARM_CP_ALIAS | ARM_CP_IO,
2383 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2384 .writefn = pmovsset_write,
2385 .raw_writefn = raw_write },
2388 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2389 uint64_t value)
2391 value &= 1;
2392 env->teecr = value;
2395 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2396 bool isread)
2399 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2400 * at all, so we don't need to check whether we're v8A.
2402 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2403 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2404 return CP_ACCESS_TRAP_EL2;
2406 return CP_ACCESS_OK;
2409 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2410 bool isread)
2412 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2413 return CP_ACCESS_TRAP;
2415 return teecr_access(env, ri, isread);
2418 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2419 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2420 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2421 .resetvalue = 0,
2422 .writefn = teecr_write, .accessfn = teecr_access },
2423 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2424 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2425 .accessfn = teehbr_access, .resetvalue = 0 },
2428 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2429 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2430 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2431 .access = PL0_RW,
2432 .fgt = FGT_TPIDR_EL0,
2433 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2434 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2435 .access = PL0_RW,
2436 .fgt = FGT_TPIDR_EL0,
2437 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2438 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2439 .resetfn = arm_cp_reset_ignore },
2440 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2441 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2442 .access = PL0_R | PL1_W,
2443 .fgt = FGT_TPIDRRO_EL0,
2444 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2445 .resetvalue = 0},
2446 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2447 .access = PL0_R | PL1_W,
2448 .fgt = FGT_TPIDRRO_EL0,
2449 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2450 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2451 .resetfn = arm_cp_reset_ignore },
2452 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2453 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2454 .access = PL1_RW,
2455 .fgt = FGT_TPIDR_EL1,
2456 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2457 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2458 .access = PL1_RW,
2459 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2460 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2461 .resetvalue = 0 },
2464 #ifndef CONFIG_USER_ONLY
2466 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2467 bool isread)
2470 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2471 * Writable only at the highest implemented exception level.
2473 int el = arm_current_el(env);
2474 uint64_t hcr;
2475 uint32_t cntkctl;
2477 switch (el) {
2478 case 0:
2479 hcr = arm_hcr_el2_eff(env);
2480 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2481 cntkctl = env->cp15.cnthctl_el2;
2482 } else {
2483 cntkctl = env->cp15.c14_cntkctl;
2485 if (!extract32(cntkctl, 0, 2)) {
2486 return CP_ACCESS_TRAP;
2488 break;
2489 case 1:
2490 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2491 arm_is_secure_below_el3(env)) {
2492 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2493 return CP_ACCESS_TRAP_UNCATEGORIZED;
2495 break;
2496 case 2:
2497 case 3:
2498 break;
2501 if (!isread && el < arm_highest_el(env)) {
2502 return CP_ACCESS_TRAP_UNCATEGORIZED;
2505 return CP_ACCESS_OK;
2508 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2509 bool isread)
2511 unsigned int cur_el = arm_current_el(env);
2512 bool has_el2 = arm_is_el2_enabled(env);
2513 uint64_t hcr = arm_hcr_el2_eff(env);
2515 switch (cur_el) {
2516 case 0:
2517 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2518 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2519 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2520 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2523 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2524 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2525 return CP_ACCESS_TRAP;
2527 /* fall through */
2528 case 1:
2529 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2530 if (has_el2 && timeridx == GTIMER_PHYS &&
2531 (hcr & HCR_E2H
2532 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2533 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2534 return CP_ACCESS_TRAP_EL2;
2536 if (has_el2 && timeridx == GTIMER_VIRT) {
2537 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVCT)) {
2538 return CP_ACCESS_TRAP_EL2;
2541 break;
2543 return CP_ACCESS_OK;
2546 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2547 bool isread)
2549 unsigned int cur_el = arm_current_el(env);
2550 bool has_el2 = arm_is_el2_enabled(env);
2551 uint64_t hcr = arm_hcr_el2_eff(env);
2553 switch (cur_el) {
2554 case 0:
2555 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2556 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2557 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2558 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2562 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2563 * EL0 if EL0[PV]TEN is zero.
2565 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2566 return CP_ACCESS_TRAP;
2568 /* fall through */
2570 case 1:
2571 if (has_el2 && timeridx == GTIMER_PHYS) {
2572 if (hcr & HCR_E2H) {
2573 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2574 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2575 return CP_ACCESS_TRAP_EL2;
2577 } else {
2578 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2579 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2580 return CP_ACCESS_TRAP_EL2;
2584 if (has_el2 && timeridx == GTIMER_VIRT) {
2585 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVT)) {
2586 return CP_ACCESS_TRAP_EL2;
2589 break;
2591 return CP_ACCESS_OK;
2594 static CPAccessResult gt_pct_access(CPUARMState *env,
2595 const ARMCPRegInfo *ri,
2596 bool isread)
2598 return gt_counter_access(env, GTIMER_PHYS, isread);
2601 static CPAccessResult gt_vct_access(CPUARMState *env,
2602 const ARMCPRegInfo *ri,
2603 bool isread)
2605 return gt_counter_access(env, GTIMER_VIRT, isread);
2608 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2609 bool isread)
2611 return gt_timer_access(env, GTIMER_PHYS, isread);
2614 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2615 bool isread)
2617 return gt_timer_access(env, GTIMER_VIRT, isread);
2620 static CPAccessResult gt_stimer_access(CPUARMState *env,
2621 const ARMCPRegInfo *ri,
2622 bool isread)
2625 * The AArch64 register view of the secure physical timer is
2626 * always accessible from EL3, and configurably accessible from
2627 * Secure EL1.
2629 switch (arm_current_el(env)) {
2630 case 1:
2631 if (!arm_is_secure(env)) {
2632 return CP_ACCESS_TRAP;
2634 if (!(env->cp15.scr_el3 & SCR_ST)) {
2635 return CP_ACCESS_TRAP_EL3;
2637 return CP_ACCESS_OK;
2638 case 0:
2639 case 2:
2640 return CP_ACCESS_TRAP;
2641 case 3:
2642 return CP_ACCESS_OK;
2643 default:
2644 g_assert_not_reached();
2648 static uint64_t gt_get_countervalue(CPUARMState *env)
2650 ARMCPU *cpu = env_archcpu(env);
2652 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2655 static void gt_update_irq(ARMCPU *cpu, int timeridx)
2657 CPUARMState *env = &cpu->env;
2658 uint64_t cnthctl = env->cp15.cnthctl_el2;
2659 ARMSecuritySpace ss = arm_security_space(env);
2660 /* ISTATUS && !IMASK */
2661 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
2664 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
2665 * It is RES0 in Secure and NonSecure state.
2667 if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
2668 ((timeridx == GTIMER_VIRT && (cnthctl & R_CNTHCTL_CNTVMASK_MASK)) ||
2669 (timeridx == GTIMER_PHYS && (cnthctl & R_CNTHCTL_CNTPMASK_MASK)))) {
2670 irqstate = 0;
2673 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2674 trace_arm_gt_update_irq(timeridx, irqstate);
2677 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
2680 * Changing security state between Root and Secure/NonSecure, which may
2681 * happen when switching EL, can change the effective value of CNTHCTL_EL2
2682 * mask bits. Update the IRQ state accordingly.
2684 gt_update_irq(cpu, GTIMER_VIRT);
2685 gt_update_irq(cpu, GTIMER_PHYS);
2688 static uint64_t gt_phys_raw_cnt_offset(CPUARMState *env)
2690 if ((env->cp15.scr_el3 & SCR_ECVEN) &&
2691 FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, ECV) &&
2692 arm_is_el2_enabled(env) &&
2693 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
2694 return env->cp15.cntpoff_el2;
2696 return 0;
2699 static uint64_t gt_phys_cnt_offset(CPUARMState *env)
2701 if (arm_current_el(env) >= 2) {
2702 return 0;
2704 return gt_phys_raw_cnt_offset(env);
2707 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2709 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2711 if (gt->ctl & 1) {
2713 * Timer enabled: calculate and set current ISTATUS, irq, and
2714 * reset timer to when ISTATUS next has to change
2716 uint64_t offset = timeridx == GTIMER_VIRT ?
2717 cpu->env.cp15.cntvoff_el2 : gt_phys_raw_cnt_offset(&cpu->env);
2718 uint64_t count = gt_get_countervalue(&cpu->env);
2719 /* Note that this must be unsigned 64 bit arithmetic: */
2720 int istatus = count - offset >= gt->cval;
2721 uint64_t nexttick;
2723 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2725 if (istatus) {
2727 * Next transition is when (count - offset) rolls back over to 0.
2728 * If offset > count then this is when count == offset;
2729 * if offset <= count then this is when count == offset + 2^64
2730 * For the latter case we set nexttick to an "as far in future
2731 * as possible" value and let the code below handle it.
2733 if (offset > count) {
2734 nexttick = offset;
2735 } else {
2736 nexttick = UINT64_MAX;
2738 } else {
2740 * Next transition is when (count - offset) == cval, i.e.
2741 * when count == (cval + offset).
2742 * If that would overflow, then again we set up the next interrupt
2743 * for "as far in the future as possible" for the code below.
2745 if (uadd64_overflow(gt->cval, offset, &nexttick)) {
2746 nexttick = UINT64_MAX;
2750 * Note that the desired next expiry time might be beyond the
2751 * signed-64-bit range of a QEMUTimer -- in this case we just
2752 * set the timer for as far in the future as possible. When the
2753 * timer expires we will reset the timer for any remaining period.
2755 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2756 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2757 } else {
2758 timer_mod(cpu->gt_timer[timeridx], nexttick);
2760 trace_arm_gt_recalc(timeridx, nexttick);
2761 } else {
2762 /* Timer disabled: ISTATUS and timer output always clear */
2763 gt->ctl &= ~4;
2764 timer_del(cpu->gt_timer[timeridx]);
2765 trace_arm_gt_recalc_disabled(timeridx);
2767 gt_update_irq(cpu, timeridx);
2770 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2771 int timeridx)
2773 ARMCPU *cpu = env_archcpu(env);
2775 timer_del(cpu->gt_timer[timeridx]);
2778 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2780 return gt_get_countervalue(env) - gt_phys_cnt_offset(env);
2783 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2785 uint64_t hcr;
2787 switch (arm_current_el(env)) {
2788 case 2:
2789 hcr = arm_hcr_el2_eff(env);
2790 if (hcr & HCR_E2H) {
2791 return 0;
2793 break;
2794 case 0:
2795 hcr = arm_hcr_el2_eff(env);
2796 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2797 return 0;
2799 break;
2802 return env->cp15.cntvoff_el2;
2805 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2807 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2810 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2811 int timeridx,
2812 uint64_t value)
2814 trace_arm_gt_cval_write(timeridx, value);
2815 env->cp15.c14_timer[timeridx].cval = value;
2816 gt_recalc_timer(env_archcpu(env), timeridx);
2819 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2820 int timeridx)
2822 uint64_t offset = 0;
2824 switch (timeridx) {
2825 case GTIMER_VIRT:
2826 case GTIMER_HYPVIRT:
2827 offset = gt_virt_cnt_offset(env);
2828 break;
2829 case GTIMER_PHYS:
2830 offset = gt_phys_cnt_offset(env);
2831 break;
2834 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2835 (gt_get_countervalue(env) - offset));
2838 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2839 int timeridx,
2840 uint64_t value)
2842 uint64_t offset = 0;
2844 switch (timeridx) {
2845 case GTIMER_VIRT:
2846 case GTIMER_HYPVIRT:
2847 offset = gt_virt_cnt_offset(env);
2848 break;
2849 case GTIMER_PHYS:
2850 offset = gt_phys_cnt_offset(env);
2851 break;
2854 trace_arm_gt_tval_write(timeridx, value);
2855 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2856 sextract64(value, 0, 32);
2857 gt_recalc_timer(env_archcpu(env), timeridx);
2860 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2861 int timeridx,
2862 uint64_t value)
2864 ARMCPU *cpu = env_archcpu(env);
2865 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2867 trace_arm_gt_ctl_write(timeridx, value);
2868 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2869 if ((oldval ^ value) & 1) {
2870 /* Enable toggled */
2871 gt_recalc_timer(cpu, timeridx);
2872 } else if ((oldval ^ value) & 2) {
2874 * IMASK toggled: don't need to recalculate,
2875 * just set the interrupt line based on ISTATUS
2877 trace_arm_gt_imask_toggle(timeridx);
2878 gt_update_irq(cpu, timeridx);
2882 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2884 gt_timer_reset(env, ri, GTIMER_PHYS);
2887 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2888 uint64_t value)
2890 gt_cval_write(env, ri, GTIMER_PHYS, value);
2893 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2895 return gt_tval_read(env, ri, GTIMER_PHYS);
2898 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2899 uint64_t value)
2901 gt_tval_write(env, ri, GTIMER_PHYS, value);
2904 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2905 uint64_t value)
2907 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2910 static int gt_phys_redir_timeridx(CPUARMState *env)
2912 switch (arm_mmu_idx(env)) {
2913 case ARMMMUIdx_E20_0:
2914 case ARMMMUIdx_E20_2:
2915 case ARMMMUIdx_E20_2_PAN:
2916 return GTIMER_HYP;
2917 default:
2918 return GTIMER_PHYS;
2922 static int gt_virt_redir_timeridx(CPUARMState *env)
2924 switch (arm_mmu_idx(env)) {
2925 case ARMMMUIdx_E20_0:
2926 case ARMMMUIdx_E20_2:
2927 case ARMMMUIdx_E20_2_PAN:
2928 return GTIMER_HYPVIRT;
2929 default:
2930 return GTIMER_VIRT;
2934 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2935 const ARMCPRegInfo *ri)
2937 int timeridx = gt_phys_redir_timeridx(env);
2938 return env->cp15.c14_timer[timeridx].cval;
2941 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2942 uint64_t value)
2944 int timeridx = gt_phys_redir_timeridx(env);
2945 gt_cval_write(env, ri, timeridx, value);
2948 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2949 const ARMCPRegInfo *ri)
2951 int timeridx = gt_phys_redir_timeridx(env);
2952 return gt_tval_read(env, ri, timeridx);
2955 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2956 uint64_t value)
2958 int timeridx = gt_phys_redir_timeridx(env);
2959 gt_tval_write(env, ri, timeridx, value);
2962 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2963 const ARMCPRegInfo *ri)
2965 int timeridx = gt_phys_redir_timeridx(env);
2966 return env->cp15.c14_timer[timeridx].ctl;
2969 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2970 uint64_t value)
2972 int timeridx = gt_phys_redir_timeridx(env);
2973 gt_ctl_write(env, ri, timeridx, value);
2976 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2978 gt_timer_reset(env, ri, GTIMER_VIRT);
2981 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2982 uint64_t value)
2984 gt_cval_write(env, ri, GTIMER_VIRT, value);
2987 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2989 return gt_tval_read(env, ri, GTIMER_VIRT);
2992 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2993 uint64_t value)
2995 gt_tval_write(env, ri, GTIMER_VIRT, value);
2998 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2999 uint64_t value)
3001 gt_ctl_write(env, ri, GTIMER_VIRT, value);
3004 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3005 uint64_t value)
3007 ARMCPU *cpu = env_archcpu(env);
3008 uint32_t oldval = env->cp15.cnthctl_el2;
3009 uint32_t valid_mask =
3010 R_CNTHCTL_EL0PCTEN_E2H1_MASK |
3011 R_CNTHCTL_EL0VCTEN_E2H1_MASK |
3012 R_CNTHCTL_EVNTEN_MASK |
3013 R_CNTHCTL_EVNTDIR_MASK |
3014 R_CNTHCTL_EVNTI_MASK |
3015 R_CNTHCTL_EL0VTEN_MASK |
3016 R_CNTHCTL_EL0PTEN_MASK |
3017 R_CNTHCTL_EL1PCTEN_E2H1_MASK |
3018 R_CNTHCTL_EL1PTEN_MASK;
3020 if (cpu_isar_feature(aa64_rme, cpu)) {
3021 valid_mask |= R_CNTHCTL_CNTVMASK_MASK | R_CNTHCTL_CNTPMASK_MASK;
3023 if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
3024 valid_mask |=
3025 R_CNTHCTL_EL1TVT_MASK |
3026 R_CNTHCTL_EL1TVCT_MASK |
3027 R_CNTHCTL_EL1NVPCT_MASK |
3028 R_CNTHCTL_EL1NVVCT_MASK |
3029 R_CNTHCTL_EVNTIS_MASK;
3031 if (cpu_isar_feature(aa64_ecv, cpu)) {
3032 valid_mask |= R_CNTHCTL_ECV_MASK;
3035 /* Clear RES0 bits */
3036 value &= valid_mask;
3038 raw_write(env, ri, value);
3040 if ((oldval ^ value) & R_CNTHCTL_CNTVMASK_MASK) {
3041 gt_update_irq(cpu, GTIMER_VIRT);
3042 } else if ((oldval ^ value) & R_CNTHCTL_CNTPMASK_MASK) {
3043 gt_update_irq(cpu, GTIMER_PHYS);
3047 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
3048 uint64_t value)
3050 ARMCPU *cpu = env_archcpu(env);
3052 trace_arm_gt_cntvoff_write(value);
3053 raw_write(env, ri, value);
3054 gt_recalc_timer(cpu, GTIMER_VIRT);
3057 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
3058 const ARMCPRegInfo *ri)
3060 int timeridx = gt_virt_redir_timeridx(env);
3061 return env->cp15.c14_timer[timeridx].cval;
3064 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3065 uint64_t value)
3067 int timeridx = gt_virt_redir_timeridx(env);
3068 gt_cval_write(env, ri, timeridx, value);
3071 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
3072 const ARMCPRegInfo *ri)
3074 int timeridx = gt_virt_redir_timeridx(env);
3075 return gt_tval_read(env, ri, timeridx);
3078 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3079 uint64_t value)
3081 int timeridx = gt_virt_redir_timeridx(env);
3082 gt_tval_write(env, ri, timeridx, value);
3085 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3086 const ARMCPRegInfo *ri)
3088 int timeridx = gt_virt_redir_timeridx(env);
3089 return env->cp15.c14_timer[timeridx].ctl;
3092 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3093 uint64_t value)
3095 int timeridx = gt_virt_redir_timeridx(env);
3096 gt_ctl_write(env, ri, timeridx, value);
3099 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3101 gt_timer_reset(env, ri, GTIMER_HYP);
3104 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3105 uint64_t value)
3107 gt_cval_write(env, ri, GTIMER_HYP, value);
3110 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3112 return gt_tval_read(env, ri, GTIMER_HYP);
3115 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3116 uint64_t value)
3118 gt_tval_write(env, ri, GTIMER_HYP, value);
3121 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3122 uint64_t value)
3124 gt_ctl_write(env, ri, GTIMER_HYP, value);
3127 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3129 gt_timer_reset(env, ri, GTIMER_SEC);
3132 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3133 uint64_t value)
3135 gt_cval_write(env, ri, GTIMER_SEC, value);
3138 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3140 return gt_tval_read(env, ri, GTIMER_SEC);
3143 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3144 uint64_t value)
3146 gt_tval_write(env, ri, GTIMER_SEC, value);
3149 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3150 uint64_t value)
3152 gt_ctl_write(env, ri, GTIMER_SEC, value);
3155 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3157 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3160 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3161 uint64_t value)
3163 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3166 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3168 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3171 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3172 uint64_t value)
3174 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3177 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3178 uint64_t value)
3180 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3183 void arm_gt_ptimer_cb(void *opaque)
3185 ARMCPU *cpu = opaque;
3187 gt_recalc_timer(cpu, GTIMER_PHYS);
3190 void arm_gt_vtimer_cb(void *opaque)
3192 ARMCPU *cpu = opaque;
3194 gt_recalc_timer(cpu, GTIMER_VIRT);
3197 void arm_gt_htimer_cb(void *opaque)
3199 ARMCPU *cpu = opaque;
3201 gt_recalc_timer(cpu, GTIMER_HYP);
3204 void arm_gt_stimer_cb(void *opaque)
3206 ARMCPU *cpu = opaque;
3208 gt_recalc_timer(cpu, GTIMER_SEC);
3211 void arm_gt_hvtimer_cb(void *opaque)
3213 ARMCPU *cpu = opaque;
3215 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3218 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3220 ARMCPU *cpu = env_archcpu(env);
3222 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3225 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3227 * Note that CNTFRQ is purely reads-as-written for the benefit
3228 * of software; writing it doesn't actually change the timer frequency.
3229 * Our reset value matches the fixed frequency we implement the timer at.
3231 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3232 .type = ARM_CP_ALIAS,
3233 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3234 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3236 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3237 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3238 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3239 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3240 .resetfn = arm_gt_cntfrq_reset,
3242 /* overall control: mostly access permissions */
3243 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3244 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3245 .access = PL1_RW,
3246 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3247 .resetvalue = 0,
3249 /* per-timer control */
3250 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3251 .secure = ARM_CP_SECSTATE_NS,
3252 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3253 .accessfn = gt_ptimer_access,
3254 .fieldoffset = offsetoflow32(CPUARMState,
3255 cp15.c14_timer[GTIMER_PHYS].ctl),
3256 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3257 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3259 { .name = "CNTP_CTL_S",
3260 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3261 .secure = ARM_CP_SECSTATE_S,
3262 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3263 .accessfn = gt_ptimer_access,
3264 .fieldoffset = offsetoflow32(CPUARMState,
3265 cp15.c14_timer[GTIMER_SEC].ctl),
3266 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3268 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3269 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3270 .type = ARM_CP_IO, .access = PL0_RW,
3271 .accessfn = gt_ptimer_access,
3272 .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1,
3273 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3274 .resetvalue = 0,
3275 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3276 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3278 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3279 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3280 .accessfn = gt_vtimer_access,
3281 .fieldoffset = offsetoflow32(CPUARMState,
3282 cp15.c14_timer[GTIMER_VIRT].ctl),
3283 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3284 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3286 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3287 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3288 .type = ARM_CP_IO, .access = PL0_RW,
3289 .accessfn = gt_vtimer_access,
3290 .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1,
3291 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3292 .resetvalue = 0,
3293 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3294 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3296 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3297 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3298 .secure = ARM_CP_SECSTATE_NS,
3299 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3300 .accessfn = gt_ptimer_access,
3301 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3303 { .name = "CNTP_TVAL_S",
3304 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3305 .secure = ARM_CP_SECSTATE_S,
3306 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3307 .accessfn = gt_ptimer_access,
3308 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3310 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3311 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3312 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3313 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3314 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3316 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3317 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3318 .accessfn = gt_vtimer_access,
3319 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3321 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3322 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3323 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3324 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3325 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3327 /* The counter itself */
3328 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3329 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3330 .accessfn = gt_pct_access,
3331 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3333 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3334 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3335 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3336 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3338 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3339 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3340 .accessfn = gt_vct_access,
3341 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3343 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3344 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3345 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3346 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3348 /* Comparison value, indicating when the timer goes off */
3349 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3350 .secure = ARM_CP_SECSTATE_NS,
3351 .access = PL0_RW,
3352 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3353 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3354 .accessfn = gt_ptimer_access,
3355 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3356 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3358 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3359 .secure = ARM_CP_SECSTATE_S,
3360 .access = PL0_RW,
3361 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3362 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3363 .accessfn = gt_ptimer_access,
3364 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3366 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3367 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3368 .access = PL0_RW,
3369 .type = ARM_CP_IO,
3370 .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1,
3371 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3372 .resetvalue = 0, .accessfn = gt_ptimer_access,
3373 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3374 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3376 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3377 .access = PL0_RW,
3378 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3379 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3380 .accessfn = gt_vtimer_access,
3381 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3382 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3384 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3385 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3386 .access = PL0_RW,
3387 .type = ARM_CP_IO,
3388 .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1,
3389 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3390 .resetvalue = 0, .accessfn = gt_vtimer_access,
3391 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3392 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3395 * Secure timer -- this is actually restricted to only EL3
3396 * and configurably Secure-EL1 via the accessfn.
3398 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3399 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3400 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3401 .accessfn = gt_stimer_access,
3402 .readfn = gt_sec_tval_read,
3403 .writefn = gt_sec_tval_write,
3404 .resetfn = gt_sec_timer_reset,
3406 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3407 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3408 .type = ARM_CP_IO, .access = PL1_RW,
3409 .accessfn = gt_stimer_access,
3410 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3411 .resetvalue = 0,
3412 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3414 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3415 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3416 .type = ARM_CP_IO, .access = PL1_RW,
3417 .accessfn = gt_stimer_access,
3418 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3419 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3424 * FEAT_ECV adds extra views of CNTVCT_EL0 and CNTPCT_EL0 which
3425 * are "self-synchronizing". For QEMU all sysregs are self-synchronizing,
3426 * so our implementations here are identical to the normal registers.
3428 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
3429 { .name = "CNTVCTSS", .cp = 15, .crm = 14, .opc1 = 9,
3430 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3431 .accessfn = gt_vct_access,
3432 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3434 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
3435 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
3436 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3437 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3439 { .name = "CNTPCTSS", .cp = 15, .crm = 14, .opc1 = 8,
3440 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3441 .accessfn = gt_pct_access,
3442 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3444 { .name = "CNTPCTSS_EL0", .state = ARM_CP_STATE_AA64,
3445 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 5,
3446 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3447 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3451 static CPAccessResult gt_cntpoff_access(CPUARMState *env,
3452 const ARMCPRegInfo *ri,
3453 bool isread)
3455 if (arm_current_el(env) == 2 && !(env->cp15.scr_el3 & SCR_ECVEN)) {
3456 return CP_ACCESS_TRAP_EL3;
3458 return CP_ACCESS_OK;
3461 static void gt_cntpoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
3462 uint64_t value)
3464 ARMCPU *cpu = env_archcpu(env);
3466 trace_arm_gt_cntpoff_write(value);
3467 raw_write(env, ri, value);
3468 gt_recalc_timer(cpu, GTIMER_PHYS);
3471 static const ARMCPRegInfo gen_timer_cntpoff_reginfo = {
3472 .name = "CNTPOFF_EL2", .state = ARM_CP_STATE_AA64,
3473 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 6,
3474 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3475 .accessfn = gt_cntpoff_access, .writefn = gt_cntpoff_write,
3476 .nv2_redirect_offset = 0x1a8,
3477 .fieldoffset = offsetof(CPUARMState, cp15.cntpoff_el2),
3479 #else
3482 * In user-mode most of the generic timer registers are inaccessible
3483 * however modern kernels (4.12+) allow access to cntvct_el0
3486 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3488 ARMCPU *cpu = env_archcpu(env);
3491 * Currently we have no support for QEMUTimer in linux-user so we
3492 * can't call gt_get_countervalue(env), instead we directly
3493 * call the lower level functions.
3495 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3498 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3499 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3500 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3501 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3502 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3503 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3505 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3506 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3507 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3508 .readfn = gt_virt_cnt_read,
3513 * CNTVCTSS_EL0 has the same trap conditions as CNTVCT_EL0, so it also
3514 * is exposed to userspace by Linux.
3516 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
3517 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
3518 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
3519 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3520 .readfn = gt_virt_cnt_read,
3524 #endif
3526 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3528 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3529 raw_write(env, ri, value);
3530 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3531 raw_write(env, ri, value & 0xfffff6ff);
3532 } else {
3533 raw_write(env, ri, value & 0xfffff1ff);
3537 #ifndef CONFIG_USER_ONLY
3538 /* get_phys_addr() isn't present for user-mode-only targets */
3540 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3541 bool isread)
3543 if (ri->opc2 & 4) {
3545 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3546 * Secure EL1 (which can only happen if EL3 is AArch64).
3547 * They are simply UNDEF if executed from NS EL1.
3548 * They function normally from EL2 or EL3.
3550 if (arm_current_el(env) == 1) {
3551 if (arm_is_secure_below_el3(env)) {
3552 if (env->cp15.scr_el3 & SCR_EEL2) {
3553 return CP_ACCESS_TRAP_EL2;
3555 return CP_ACCESS_TRAP_EL3;
3557 return CP_ACCESS_TRAP_UNCATEGORIZED;
3560 return CP_ACCESS_OK;
3563 #ifdef CONFIG_TCG
3564 static int par_el1_shareability(GetPhysAddrResult *res)
3567 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3568 * memory -- see pseudocode PAREncodeShareability().
3570 if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3571 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3572 return 2;
3574 return res->cacheattrs.shareability;
3577 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3578 MMUAccessType access_type, ARMMMUIdx mmu_idx,
3579 ARMSecuritySpace ss)
3581 bool ret;
3582 uint64_t par64;
3583 bool format64 = false;
3584 ARMMMUFaultInfo fi = {};
3585 GetPhysAddrResult res = {};
3588 * I_MXTJT: Granule protection checks are not performed on the final address
3589 * of a successful translation.
3591 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss,
3592 &res, &fi);
3595 * ATS operations only do S1 or S1+S2 translations, so we never
3596 * have to deal with the ARMCacheAttrs format for S2 only.
3598 assert(!res.cacheattrs.is_s2_format);
3600 if (ret) {
3602 * Some kinds of translation fault must cause exceptions rather
3603 * than being reported in the PAR.
3605 int current_el = arm_current_el(env);
3606 int target_el;
3607 uint32_t syn, fsr, fsc;
3608 bool take_exc = false;
3610 if (fi.s1ptw && current_el == 1
3611 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3613 * Synchronous stage 2 fault on an access made as part of the
3614 * translation table walk for AT S1E0* or AT S1E1* insn
3615 * executed from NS EL1. If this is a synchronous external abort
3616 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3617 * to EL3. Otherwise the fault is taken as an exception to EL2,
3618 * and HPFAR_EL2 holds the faulting IPA.
3620 if (fi.type == ARMFault_SyncExternalOnWalk &&
3621 (env->cp15.scr_el3 & SCR_EA)) {
3622 target_el = 3;
3623 } else {
3624 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3625 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3626 env->cp15.hpfar_el2 |= HPFAR_NS;
3628 target_el = 2;
3630 take_exc = true;
3631 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3633 * Synchronous external aborts during a translation table walk
3634 * are taken as Data Abort exceptions.
3636 if (fi.stage2) {
3637 if (current_el == 3) {
3638 target_el = 3;
3639 } else {
3640 target_el = 2;
3642 } else {
3643 target_el = exception_target_el(env);
3645 take_exc = true;
3648 if (take_exc) {
3649 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3650 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3651 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3652 fsr = arm_fi_to_lfsc(&fi);
3653 fsc = extract32(fsr, 0, 6);
3654 } else {
3655 fsr = arm_fi_to_sfsc(&fi);
3656 fsc = 0x3f;
3659 * Report exception with ESR indicating a fault due to a
3660 * translation table walk for a cache maintenance instruction.
3662 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3663 fi.ea, 1, fi.s1ptw, 1, fsc);
3664 env->exception.vaddress = value;
3665 env->exception.fsr = fsr;
3666 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3670 if (is_a64(env)) {
3671 format64 = true;
3672 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3674 * ATS1Cxx:
3675 * * TTBCR.EAE determines whether the result is returned using the
3676 * 32-bit or the 64-bit PAR format
3677 * * Instructions executed in Hyp mode always use the 64bit format
3679 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3680 * * The Non-secure TTBCR.EAE bit is set to 1
3681 * * The implementation includes EL2, and the value of HCR.VM is 1
3683 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3685 * ATS1Hx always uses the 64bit format.
3687 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3689 if (arm_feature(env, ARM_FEATURE_EL2)) {
3690 if (mmu_idx == ARMMMUIdx_E10_0 ||
3691 mmu_idx == ARMMMUIdx_E10_1 ||
3692 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3693 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3694 } else {
3695 format64 |= arm_current_el(env) == 2;
3700 if (format64) {
3701 /* Create a 64-bit PAR */
3702 par64 = (1 << 11); /* LPAE bit always set */
3703 if (!ret) {
3704 par64 |= res.f.phys_addr & ~0xfffULL;
3705 if (!res.f.attrs.secure) {
3706 par64 |= (1 << 9); /* NS */
3708 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3709 par64 |= par_el1_shareability(&res) << 7; /* SH */
3710 } else {
3711 uint32_t fsr = arm_fi_to_lfsc(&fi);
3713 par64 |= 1; /* F */
3714 par64 |= (fsr & 0x3f) << 1; /* FS */
3715 if (fi.stage2) {
3716 par64 |= (1 << 9); /* S */
3718 if (fi.s1ptw) {
3719 par64 |= (1 << 8); /* PTW */
3722 } else {
3724 * fsr is a DFSR/IFSR value for the short descriptor
3725 * translation table format (with WnR always clear).
3726 * Convert it to a 32-bit PAR.
3728 if (!ret) {
3729 /* We do not set any attribute bits in the PAR */
3730 if (res.f.lg_page_size == 24
3731 && arm_feature(env, ARM_FEATURE_V7)) {
3732 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3733 } else {
3734 par64 = res.f.phys_addr & 0xfffff000;
3736 if (!res.f.attrs.secure) {
3737 par64 |= (1 << 9); /* NS */
3739 } else {
3740 uint32_t fsr = arm_fi_to_sfsc(&fi);
3742 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3743 ((fsr & 0xf) << 1) | 1;
3746 return par64;
3748 #endif /* CONFIG_TCG */
3750 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3752 #ifdef CONFIG_TCG
3753 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3754 uint64_t par64;
3755 ARMMMUIdx mmu_idx;
3756 int el = arm_current_el(env);
3757 ARMSecuritySpace ss = arm_security_space(env);
3759 switch (ri->opc2 & 6) {
3760 case 0:
3761 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3762 switch (el) {
3763 case 3:
3764 mmu_idx = ARMMMUIdx_E3;
3765 break;
3766 case 2:
3767 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3768 /* fall through */
3769 case 1:
3770 if (ri->crm == 9 && arm_pan_enabled(env)) {
3771 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3772 } else {
3773 mmu_idx = ARMMMUIdx_Stage1_E1;
3775 break;
3776 default:
3777 g_assert_not_reached();
3779 break;
3780 case 2:
3781 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3782 switch (el) {
3783 case 3:
3784 mmu_idx = ARMMMUIdx_E10_0;
3785 break;
3786 case 2:
3787 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3788 mmu_idx = ARMMMUIdx_Stage1_E0;
3789 break;
3790 case 1:
3791 mmu_idx = ARMMMUIdx_Stage1_E0;
3792 break;
3793 default:
3794 g_assert_not_reached();
3796 break;
3797 case 4:
3798 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3799 mmu_idx = ARMMMUIdx_E10_1;
3800 ss = ARMSS_NonSecure;
3801 break;
3802 case 6:
3803 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3804 mmu_idx = ARMMMUIdx_E10_0;
3805 ss = ARMSS_NonSecure;
3806 break;
3807 default:
3808 g_assert_not_reached();
3811 par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
3813 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3814 #else
3815 /* Handled by hardware accelerator. */
3816 g_assert_not_reached();
3817 #endif /* CONFIG_TCG */
3820 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3821 uint64_t value)
3823 #ifdef CONFIG_TCG
3824 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3825 uint64_t par64;
3827 /* There is no SecureEL2 for AArch32. */
3828 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
3829 ARMSS_NonSecure);
3831 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3832 #else
3833 /* Handled by hardware accelerator. */
3834 g_assert_not_reached();
3835 #endif /* CONFIG_TCG */
3838 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
3839 bool isread)
3842 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
3843 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
3844 * only happen when executing at EL3 because that combination also causes an
3845 * illegal exception return. We don't need to check FEAT_RME either, because
3846 * scr_write() ensures that the NSE bit is not set otherwise.
3848 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
3849 return CP_ACCESS_TRAP;
3851 return CP_ACCESS_OK;
3854 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3855 bool isread)
3857 if (arm_current_el(env) == 3 &&
3858 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3859 return CP_ACCESS_TRAP;
3861 return at_e012_access(env, ri, isread);
3864 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri,
3865 bool isread)
3867 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) {
3868 return CP_ACCESS_TRAP_EL2;
3870 return at_e012_access(env, ri, isread);
3873 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3874 uint64_t value)
3876 #ifdef CONFIG_TCG
3877 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3878 ARMMMUIdx mmu_idx;
3879 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3880 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3882 switch (ri->opc2 & 6) {
3883 case 0:
3884 switch (ri->opc1) {
3885 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3886 if (ri->crm == 9 && arm_pan_enabled(env)) {
3887 mmu_idx = regime_e20 ?
3888 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3889 } else {
3890 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3892 break;
3893 case 4: /* AT S1E2R, AT S1E2W */
3894 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3895 break;
3896 case 6: /* AT S1E3R, AT S1E3W */
3897 mmu_idx = ARMMMUIdx_E3;
3898 break;
3899 default:
3900 g_assert_not_reached();
3902 break;
3903 case 2: /* AT S1E0R, AT S1E0W */
3904 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3905 break;
3906 case 4: /* AT S12E1R, AT S12E1W */
3907 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3908 break;
3909 case 6: /* AT S12E0R, AT S12E0W */
3910 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3911 break;
3912 default:
3913 g_assert_not_reached();
3916 env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3917 mmu_idx, arm_security_space(env));
3918 #else
3919 /* Handled by hardware accelerator. */
3920 g_assert_not_reached();
3921 #endif /* CONFIG_TCG */
3923 #endif
3925 /* Return basic MPU access permission bits. */
3926 static uint32_t simple_mpu_ap_bits(uint32_t val)
3928 uint32_t ret;
3929 uint32_t mask;
3930 int i;
3931 ret = 0;
3932 mask = 3;
3933 for (i = 0; i < 16; i += 2) {
3934 ret |= (val >> i) & mask;
3935 mask <<= 2;
3937 return ret;
3940 /* Pad basic MPU access permission bits to extended format. */
3941 static uint32_t extended_mpu_ap_bits(uint32_t val)
3943 uint32_t ret;
3944 uint32_t mask;
3945 int i;
3946 ret = 0;
3947 mask = 3;
3948 for (i = 0; i < 16; i += 2) {
3949 ret |= (val & mask) << i;
3950 mask <<= 2;
3952 return ret;
3955 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3956 uint64_t value)
3958 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3961 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3963 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3966 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3967 uint64_t value)
3969 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3972 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3974 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3977 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3979 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3981 if (!u32p) {
3982 return 0;
3985 u32p += env->pmsav7.rnr[M_REG_NS];
3986 return *u32p;
3989 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3990 uint64_t value)
3992 ARMCPU *cpu = env_archcpu(env);
3993 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3995 if (!u32p) {
3996 return;
3999 u32p += env->pmsav7.rnr[M_REG_NS];
4000 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4001 *u32p = value;
4004 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4005 uint64_t value)
4007 ARMCPU *cpu = env_archcpu(env);
4008 uint32_t nrgs = cpu->pmsav7_dregion;
4010 if (value >= nrgs) {
4011 qemu_log_mask(LOG_GUEST_ERROR,
4012 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
4013 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
4014 return;
4017 raw_write(env, ri, value);
4020 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4021 uint64_t value)
4023 ARMCPU *cpu = env_archcpu(env);
4025 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4026 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
4029 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4031 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
4034 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4035 uint64_t value)
4037 ARMCPU *cpu = env_archcpu(env);
4039 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4040 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
4043 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4045 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
4048 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4049 uint64_t value)
4051 ARMCPU *cpu = env_archcpu(env);
4054 * Ignore writes that would select not implemented region.
4055 * This is architecturally UNPREDICTABLE.
4057 if (value >= cpu->pmsav7_dregion) {
4058 return;
4061 env->pmsav7.rnr[M_REG_NS] = value;
4064 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4065 uint64_t value)
4067 ARMCPU *cpu = env_archcpu(env);
4069 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4070 env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
4073 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4075 return env->pmsav8.hprbar[env->pmsav8.hprselr];
4078 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4079 uint64_t value)
4081 ARMCPU *cpu = env_archcpu(env);
4083 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4084 env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
4087 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4089 return env->pmsav8.hprlar[env->pmsav8.hprselr];
4092 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4093 uint64_t value)
4095 uint32_t n;
4096 uint32_t bit;
4097 ARMCPU *cpu = env_archcpu(env);
4099 /* Ignore writes to unimplemented regions */
4100 int rmax = MIN(cpu->pmsav8r_hdregion, 32);
4101 value &= MAKE_64BIT_MASK(0, rmax);
4103 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4105 /* Register alias is only valid for first 32 indexes */
4106 for (n = 0; n < rmax; ++n) {
4107 bit = extract32(value, n, 1);
4108 env->pmsav8.hprlar[n] = deposit32(
4109 env->pmsav8.hprlar[n], 0, 1, bit);
4113 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4115 uint32_t n;
4116 uint32_t result = 0x0;
4117 ARMCPU *cpu = env_archcpu(env);
4119 /* Register alias is only valid for first 32 indexes */
4120 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
4121 if (env->pmsav8.hprlar[n] & 0x1) {
4122 result |= (0x1 << n);
4125 return result;
4128 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4129 uint64_t value)
4131 ARMCPU *cpu = env_archcpu(env);
4134 * Ignore writes that would select not implemented region.
4135 * This is architecturally UNPREDICTABLE.
4137 if (value >= cpu->pmsav8r_hdregion) {
4138 return;
4141 env->pmsav8.hprselr = value;
4144 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
4145 uint64_t value)
4147 ARMCPU *cpu = env_archcpu(env);
4148 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4149 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4151 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4153 if (ri->opc1 & 4) {
4154 if (index >= cpu->pmsav8r_hdregion) {
4155 return;
4157 if (ri->opc2 & 0x1) {
4158 env->pmsav8.hprlar[index] = value;
4159 } else {
4160 env->pmsav8.hprbar[index] = value;
4162 } else {
4163 if (index >= cpu->pmsav7_dregion) {
4164 return;
4166 if (ri->opc2 & 0x1) {
4167 env->pmsav8.rlar[M_REG_NS][index] = value;
4168 } else {
4169 env->pmsav8.rbar[M_REG_NS][index] = value;
4174 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
4176 ARMCPU *cpu = env_archcpu(env);
4177 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4178 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4180 if (ri->opc1 & 4) {
4181 if (index >= cpu->pmsav8r_hdregion) {
4182 return 0x0;
4184 if (ri->opc2 & 0x1) {
4185 return env->pmsav8.hprlar[index];
4186 } else {
4187 return env->pmsav8.hprbar[index];
4189 } else {
4190 if (index >= cpu->pmsav7_dregion) {
4191 return 0x0;
4193 if (ri->opc2 & 0x1) {
4194 return env->pmsav8.rlar[M_REG_NS][index];
4195 } else {
4196 return env->pmsav8.rbar[M_REG_NS][index];
4201 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
4202 { .name = "PRBAR",
4203 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
4204 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4205 .accessfn = access_tvm_trvm,
4206 .readfn = prbar_read, .writefn = prbar_write },
4207 { .name = "PRLAR",
4208 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
4209 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4210 .accessfn = access_tvm_trvm,
4211 .readfn = prlar_read, .writefn = prlar_write },
4212 { .name = "PRSELR", .resetvalue = 0,
4213 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
4214 .access = PL1_RW, .accessfn = access_tvm_trvm,
4215 .writefn = prselr_write,
4216 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
4217 { .name = "HPRBAR", .resetvalue = 0,
4218 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
4219 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4220 .readfn = hprbar_read, .writefn = hprbar_write },
4221 { .name = "HPRLAR",
4222 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
4223 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4224 .readfn = hprlar_read, .writefn = hprlar_write },
4225 { .name = "HPRSELR", .resetvalue = 0,
4226 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4227 .access = PL2_RW,
4228 .writefn = hprselr_write,
4229 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4230 { .name = "HPRENR",
4231 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4232 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4233 .readfn = hprenr_read, .writefn = hprenr_write },
4236 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
4238 * Reset for all these registers is handled in arm_cpu_reset(),
4239 * because the PMSAv7 is also used by M-profile CPUs, which do
4240 * not register cpregs but still need the state to be reset.
4242 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4243 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4244 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4245 .readfn = pmsav7_read, .writefn = pmsav7_write,
4246 .resetfn = arm_cp_reset_ignore },
4247 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4248 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4249 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4250 .readfn = pmsav7_read, .writefn = pmsav7_write,
4251 .resetfn = arm_cp_reset_ignore },
4252 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4253 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4254 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4255 .readfn = pmsav7_read, .writefn = pmsav7_write,
4256 .resetfn = arm_cp_reset_ignore },
4257 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4258 .access = PL1_RW,
4259 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4260 .writefn = pmsav7_rgnr_write,
4261 .resetfn = arm_cp_reset_ignore },
4264 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4265 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4266 .access = PL1_RW, .type = ARM_CP_ALIAS,
4267 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4268 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4269 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4270 .access = PL1_RW, .type = ARM_CP_ALIAS,
4271 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4272 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4273 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4274 .access = PL1_RW,
4275 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4276 .resetvalue = 0, },
4277 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4278 .access = PL1_RW,
4279 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4280 .resetvalue = 0, },
4281 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4282 .access = PL1_RW,
4283 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4284 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4285 .access = PL1_RW,
4286 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4287 /* Protection region base and size registers */
4288 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4289 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4290 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4291 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4292 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4293 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4294 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4295 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4296 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4297 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4298 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4299 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4300 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4301 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4302 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4303 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4304 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4305 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4306 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4307 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4308 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4309 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4310 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4311 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4314 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4315 uint64_t value)
4317 ARMCPU *cpu = env_archcpu(env);
4319 if (!arm_feature(env, ARM_FEATURE_V8)) {
4320 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4322 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4323 * using Long-descriptor translation table format
4325 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4326 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4328 * In an implementation that includes the Security Extensions
4329 * TTBCR has additional fields PD0 [4] and PD1 [5] for
4330 * Short-descriptor translation table format.
4332 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4333 } else {
4334 value &= TTBCR_N;
4338 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4340 * With LPAE the TTBCR could result in a change of ASID
4341 * via the TTBCR.A1 bit, so do a TLB flush.
4343 tlb_flush(CPU(cpu));
4345 raw_write(env, ri, value);
4348 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4349 uint64_t value)
4351 ARMCPU *cpu = env_archcpu(env);
4353 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4354 tlb_flush(CPU(cpu));
4355 raw_write(env, ri, value);
4358 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4359 uint64_t value)
4361 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4362 if (cpreg_field_is_64bit(ri) &&
4363 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4364 ARMCPU *cpu = env_archcpu(env);
4365 tlb_flush(CPU(cpu));
4367 raw_write(env, ri, value);
4370 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4371 uint64_t value)
4374 * If we are running with E2&0 regime, then an ASID is active.
4375 * Flush if that might be changing. Note we're not checking
4376 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4377 * holds the active ASID, only checking the field that might.
4379 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4380 (arm_hcr_el2_eff(env) & HCR_E2H)) {
4381 uint16_t mask = ARMMMUIdxBit_E20_2 |
4382 ARMMMUIdxBit_E20_2_PAN |
4383 ARMMMUIdxBit_E20_0;
4384 tlb_flush_by_mmuidx(env_cpu(env), mask);
4386 raw_write(env, ri, value);
4389 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4390 uint64_t value)
4392 ARMCPU *cpu = env_archcpu(env);
4393 CPUState *cs = CPU(cpu);
4396 * A change in VMID to the stage2 page table (Stage2) invalidates
4397 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4399 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4400 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4402 raw_write(env, ri, value);
4405 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4406 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4407 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4408 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4409 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4410 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4411 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4412 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4413 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4414 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4415 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4416 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4417 offsetof(CPUARMState, cp15.dfar_ns) } },
4418 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4419 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4420 .access = PL1_RW, .accessfn = access_tvm_trvm,
4421 .fgt = FGT_FAR_EL1,
4422 .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1,
4423 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4424 .resetvalue = 0, },
4427 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4428 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4429 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4430 .access = PL1_RW, .accessfn = access_tvm_trvm,
4431 .fgt = FGT_ESR_EL1,
4432 .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1,
4433 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4434 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4435 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4436 .access = PL1_RW, .accessfn = access_tvm_trvm,
4437 .fgt = FGT_TTBR0_EL1,
4438 .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1,
4439 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4440 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4441 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4442 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4443 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4444 .access = PL1_RW, .accessfn = access_tvm_trvm,
4445 .fgt = FGT_TTBR1_EL1,
4446 .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1,
4447 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4448 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4449 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4450 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4451 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4452 .access = PL1_RW, .accessfn = access_tvm_trvm,
4453 .fgt = FGT_TCR_EL1,
4454 .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1,
4455 .writefn = vmsa_tcr_el12_write,
4456 .raw_writefn = raw_write,
4457 .resetvalue = 0,
4458 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4459 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4460 .access = PL1_RW, .accessfn = access_tvm_trvm,
4461 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4462 .raw_writefn = raw_write,
4463 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4464 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4468 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4469 * qemu tlbs nor adjusting cached masks.
4471 static const ARMCPRegInfo ttbcr2_reginfo = {
4472 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4473 .access = PL1_RW, .accessfn = access_tvm_trvm,
4474 .type = ARM_CP_ALIAS,
4475 .bank_fieldoffsets = {
4476 offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4477 offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4481 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4482 uint64_t value)
4484 env->cp15.c15_ticonfig = value & 0xe7;
4485 /* The OS_TYPE bit in this register changes the reported CPUID! */
4486 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4487 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4490 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4491 uint64_t value)
4493 env->cp15.c15_threadid = value & 0xffff;
4496 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4497 uint64_t value)
4499 /* Wait-for-interrupt (deprecated) */
4500 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4503 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4504 uint64_t value)
4507 * On OMAP there are registers indicating the max/min index of dcache lines
4508 * containing a dirty line; cache flush operations have to reset these.
4510 env->cp15.c15_i_max = 0x000;
4511 env->cp15.c15_i_min = 0xff0;
4514 static const ARMCPRegInfo omap_cp_reginfo[] = {
4515 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4516 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4517 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4518 .resetvalue = 0, },
4519 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4520 .access = PL1_RW, .type = ARM_CP_NOP },
4521 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4522 .access = PL1_RW,
4523 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4524 .writefn = omap_ticonfig_write },
4525 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4526 .access = PL1_RW,
4527 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4528 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4529 .access = PL1_RW, .resetvalue = 0xff0,
4530 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4531 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4532 .access = PL1_RW,
4533 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4534 .writefn = omap_threadid_write },
4535 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4536 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4537 .type = ARM_CP_NO_RAW,
4538 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4540 * TODO: Peripheral port remap register:
4541 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4542 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4543 * when MMU is off.
4545 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4546 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4547 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4548 .writefn = omap_cachemaint_write },
4549 { .name = "C9", .cp = 15, .crn = 9,
4550 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4551 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4554 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4555 uint64_t value)
4557 env->cp15.c15_cpar = value & 0x3fff;
4560 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4561 { .name = "XSCALE_CPAR",
4562 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4563 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4564 .writefn = xscale_cpar_write, },
4565 { .name = "XSCALE_AUXCR",
4566 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4567 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4568 .resetvalue = 0, },
4570 * XScale specific cache-lockdown: since we have no cache we NOP these
4571 * and hope the guest does not really rely on cache behaviour.
4573 { .name = "XSCALE_LOCK_ICACHE_LINE",
4574 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4575 .access = PL1_W, .type = ARM_CP_NOP },
4576 { .name = "XSCALE_UNLOCK_ICACHE",
4577 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4578 .access = PL1_W, .type = ARM_CP_NOP },
4579 { .name = "XSCALE_DCACHE_LOCK",
4580 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4581 .access = PL1_RW, .type = ARM_CP_NOP },
4582 { .name = "XSCALE_UNLOCK_DCACHE",
4583 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4584 .access = PL1_W, .type = ARM_CP_NOP },
4587 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4589 * RAZ/WI the whole crn=15 space, when we don't have a more specific
4590 * implementation of this implementation-defined space.
4591 * Ideally this should eventually disappear in favour of actually
4592 * implementing the correct behaviour for all cores.
4594 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4595 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4596 .access = PL1_RW,
4597 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4598 .resetvalue = 0 },
4601 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4602 /* Cache status: RAZ because we have no cache so it's always clean */
4603 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4604 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4605 .resetvalue = 0 },
4608 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4609 /* We never have a block transfer operation in progress */
4610 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4611 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4612 .resetvalue = 0 },
4613 /* The cache ops themselves: these all NOP for QEMU */
4614 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4615 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4616 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4617 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4618 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4619 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4620 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4621 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4622 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4623 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4624 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4625 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4628 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4630 * The cache test-and-clean instructions always return (1 << 30)
4631 * to indicate that there are no dirty cache lines.
4633 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4634 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4635 .resetvalue = (1 << 30) },
4636 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4637 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4638 .resetvalue = (1 << 30) },
4641 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4642 /* Ignore ReadBuffer accesses */
4643 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4644 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4645 .access = PL1_RW, .resetvalue = 0,
4646 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4649 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4651 unsigned int cur_el = arm_current_el(env);
4653 if (arm_is_el2_enabled(env) && cur_el == 1) {
4654 return env->cp15.vpidr_el2;
4656 return raw_read(env, ri);
4659 static uint64_t mpidr_read_val(CPUARMState *env)
4661 ARMCPU *cpu = env_archcpu(env);
4662 uint64_t mpidr = cpu->mp_affinity;
4664 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4665 mpidr |= (1U << 31);
4667 * Cores which are uniprocessor (non-coherent)
4668 * but still implement the MP extensions set
4669 * bit 30. (For instance, Cortex-R5).
4671 if (cpu->mp_is_up) {
4672 mpidr |= (1u << 30);
4675 return mpidr;
4678 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4680 unsigned int cur_el = arm_current_el(env);
4682 if (arm_is_el2_enabled(env) && cur_el == 1) {
4683 return env->cp15.vmpidr_el2;
4685 return mpidr_read_val(env);
4688 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4689 /* NOP AMAIR0/1 */
4690 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4691 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4692 .access = PL1_RW, .accessfn = access_tvm_trvm,
4693 .fgt = FGT_AMAIR_EL1,
4694 .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1,
4695 .type = ARM_CP_CONST, .resetvalue = 0 },
4696 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4697 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4698 .access = PL1_RW, .accessfn = access_tvm_trvm,
4699 .type = ARM_CP_CONST, .resetvalue = 0 },
4700 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4701 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4702 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4703 offsetof(CPUARMState, cp15.par_ns)} },
4704 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4705 .access = PL1_RW, .accessfn = access_tvm_trvm,
4706 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4707 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4708 offsetof(CPUARMState, cp15.ttbr0_ns) },
4709 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4710 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4711 .access = PL1_RW, .accessfn = access_tvm_trvm,
4712 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4713 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4714 offsetof(CPUARMState, cp15.ttbr1_ns) },
4715 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4718 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4720 return vfp_get_fpcr(env);
4723 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4724 uint64_t value)
4726 vfp_set_fpcr(env, value);
4729 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4731 return vfp_get_fpsr(env);
4734 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4735 uint64_t value)
4737 vfp_set_fpsr(env, value);
4740 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4741 bool isread)
4743 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4744 return CP_ACCESS_TRAP;
4746 return CP_ACCESS_OK;
4749 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4750 uint64_t value)
4752 env->daif = value & PSTATE_DAIF;
4755 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4757 return env->pstate & PSTATE_PAN;
4760 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4761 uint64_t value)
4763 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4766 static const ARMCPRegInfo pan_reginfo = {
4767 .name = "PAN", .state = ARM_CP_STATE_AA64,
4768 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4769 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4770 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4773 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4775 return env->pstate & PSTATE_UAO;
4778 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4779 uint64_t value)
4781 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4784 static const ARMCPRegInfo uao_reginfo = {
4785 .name = "UAO", .state = ARM_CP_STATE_AA64,
4786 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4787 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4788 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4791 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4793 return env->pstate & PSTATE_DIT;
4796 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4797 uint64_t value)
4799 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4802 static const ARMCPRegInfo dit_reginfo = {
4803 .name = "DIT", .state = ARM_CP_STATE_AA64,
4804 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4805 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4806 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4809 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4811 return env->pstate & PSTATE_SSBS;
4814 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4815 uint64_t value)
4817 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4820 static const ARMCPRegInfo ssbs_reginfo = {
4821 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4822 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4823 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4824 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4827 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4828 const ARMCPRegInfo *ri,
4829 bool isread)
4831 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4832 switch (arm_current_el(env)) {
4833 case 0:
4834 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4835 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4836 return CP_ACCESS_TRAP;
4838 /* fall through */
4839 case 1:
4840 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4841 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4842 return CP_ACCESS_TRAP_EL2;
4844 break;
4846 return CP_ACCESS_OK;
4849 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4851 /* Cache invalidate/clean to Point of Unification... */
4852 switch (arm_current_el(env)) {
4853 case 0:
4854 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4855 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4856 return CP_ACCESS_TRAP;
4858 /* fall through */
4859 case 1:
4860 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */
4861 if (arm_hcr_el2_eff(env) & hcrflags) {
4862 return CP_ACCESS_TRAP_EL2;
4864 break;
4866 return CP_ACCESS_OK;
4869 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4870 bool isread)
4872 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4875 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4876 bool isread)
4878 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4882 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4883 * Page D4-1736 (DDI0487A.b)
4886 static int vae1_tlbmask(CPUARMState *env)
4888 uint64_t hcr = arm_hcr_el2_eff(env);
4889 uint16_t mask;
4891 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4892 mask = ARMMMUIdxBit_E20_2 |
4893 ARMMMUIdxBit_E20_2_PAN |
4894 ARMMMUIdxBit_E20_0;
4895 } else {
4896 mask = ARMMMUIdxBit_E10_1 |
4897 ARMMMUIdxBit_E10_1_PAN |
4898 ARMMMUIdxBit_E10_0;
4900 return mask;
4903 static int vae2_tlbmask(CPUARMState *env)
4905 uint64_t hcr = arm_hcr_el2_eff(env);
4906 uint16_t mask;
4908 if (hcr & HCR_E2H) {
4909 mask = ARMMMUIdxBit_E20_2 |
4910 ARMMMUIdxBit_E20_2_PAN |
4911 ARMMMUIdxBit_E20_0;
4912 } else {
4913 mask = ARMMMUIdxBit_E2;
4915 return mask;
4918 /* Return 56 if TBI is enabled, 64 otherwise. */
4919 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4920 uint64_t addr)
4922 uint64_t tcr = regime_tcr(env, mmu_idx);
4923 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4924 int select = extract64(addr, 55, 1);
4926 return (tbi >> select) & 1 ? 56 : 64;
4929 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4931 uint64_t hcr = arm_hcr_el2_eff(env);
4932 ARMMMUIdx mmu_idx;
4934 /* Only the regime of the mmu_idx below is significant. */
4935 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4936 mmu_idx = ARMMMUIdx_E20_0;
4937 } else {
4938 mmu_idx = ARMMMUIdx_E10_0;
4941 return tlbbits_for_regime(env, mmu_idx, addr);
4944 static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
4946 uint64_t hcr = arm_hcr_el2_eff(env);
4947 ARMMMUIdx mmu_idx;
4950 * Only the regime of the mmu_idx below is significant.
4951 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2
4952 * only has one.
4954 if (hcr & HCR_E2H) {
4955 mmu_idx = ARMMMUIdx_E20_2;
4956 } else {
4957 mmu_idx = ARMMMUIdx_E2;
4960 return tlbbits_for_regime(env, mmu_idx, addr);
4963 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4964 uint64_t value)
4966 CPUState *cs = env_cpu(env);
4967 int mask = vae1_tlbmask(env);
4969 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4972 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4973 uint64_t value)
4975 CPUState *cs = env_cpu(env);
4976 int mask = vae1_tlbmask(env);
4978 if (tlb_force_broadcast(env)) {
4979 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4980 } else {
4981 tlb_flush_by_mmuidx(cs, mask);
4985 static int e2_tlbmask(CPUARMState *env)
4987 return (ARMMMUIdxBit_E20_0 |
4988 ARMMMUIdxBit_E20_2 |
4989 ARMMMUIdxBit_E20_2_PAN |
4990 ARMMMUIdxBit_E2);
4993 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4994 uint64_t value)
4996 CPUState *cs = env_cpu(env);
4997 int mask = alle1_tlbmask(env);
4999 tlb_flush_by_mmuidx(cs, mask);
5002 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5003 uint64_t value)
5005 CPUState *cs = env_cpu(env);
5006 int mask = e2_tlbmask(env);
5008 tlb_flush_by_mmuidx(cs, mask);
5011 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5012 uint64_t value)
5014 ARMCPU *cpu = env_archcpu(env);
5015 CPUState *cs = CPU(cpu);
5017 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
5020 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5021 uint64_t value)
5023 CPUState *cs = env_cpu(env);
5024 int mask = alle1_tlbmask(env);
5026 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
5029 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5030 uint64_t value)
5032 CPUState *cs = env_cpu(env);
5033 int mask = e2_tlbmask(env);
5035 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
5038 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5039 uint64_t value)
5041 CPUState *cs = env_cpu(env);
5043 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
5046 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5047 uint64_t value)
5050 * Invalidate by VA, EL2
5051 * Currently handles both VAE2 and VALE2, since we don't support
5052 * flush-last-level-only.
5054 CPUState *cs = env_cpu(env);
5055 int mask = vae2_tlbmask(env);
5056 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5057 int bits = vae2_tlbbits(env, pageaddr);
5059 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
5062 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5063 uint64_t value)
5066 * Invalidate by VA, EL3
5067 * Currently handles both VAE3 and VALE3, since we don't support
5068 * flush-last-level-only.
5070 ARMCPU *cpu = env_archcpu(env);
5071 CPUState *cs = CPU(cpu);
5072 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5074 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
5077 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5078 uint64_t value)
5080 CPUState *cs = env_cpu(env);
5081 int mask = vae1_tlbmask(env);
5082 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5083 int bits = vae1_tlbbits(env, pageaddr);
5085 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5088 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5089 uint64_t value)
5092 * Invalidate by VA, EL1&0 (AArch64 version).
5093 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
5094 * since we don't support flush-for-specific-ASID-only or
5095 * flush-last-level-only.
5097 CPUState *cs = env_cpu(env);
5098 int mask = vae1_tlbmask(env);
5099 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5100 int bits = vae1_tlbbits(env, pageaddr);
5102 if (tlb_force_broadcast(env)) {
5103 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5104 } else {
5105 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
5109 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5110 uint64_t value)
5112 CPUState *cs = env_cpu(env);
5113 int mask = vae2_tlbmask(env);
5114 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5115 int bits = vae2_tlbbits(env, pageaddr);
5117 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5120 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5121 uint64_t value)
5123 CPUState *cs = env_cpu(env);
5124 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5125 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
5127 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
5128 ARMMMUIdxBit_E3, bits);
5131 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
5134 * The MSB of value is the NS field, which only applies if SEL2
5135 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
5137 return (value >= 0
5138 && cpu_isar_feature(aa64_sel2, env_archcpu(env))
5139 && arm_is_secure_below_el3(env)
5140 ? ARMMMUIdxBit_Stage2_S
5141 : ARMMMUIdxBit_Stage2);
5144 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5145 uint64_t value)
5147 CPUState *cs = env_cpu(env);
5148 int mask = ipas2e1_tlbmask(env, value);
5149 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5151 if (tlb_force_broadcast(env)) {
5152 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5153 } else {
5154 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
5158 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5159 uint64_t value)
5161 CPUState *cs = env_cpu(env);
5162 int mask = ipas2e1_tlbmask(env, value);
5163 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5165 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5168 #ifdef TARGET_AARCH64
5169 typedef struct {
5170 uint64_t base;
5171 uint64_t length;
5172 } TLBIRange;
5174 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
5177 * Note that the TLBI range TG field encoding differs from both
5178 * TG0 and TG1 encodings.
5180 switch (tg) {
5181 case 1:
5182 return Gran4K;
5183 case 2:
5184 return Gran16K;
5185 case 3:
5186 return Gran64K;
5187 default:
5188 return GranInvalid;
5192 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
5193 uint64_t value)
5195 unsigned int page_size_granule, page_shift, num, scale, exponent;
5196 /* Extract one bit to represent the va selector in use. */
5197 uint64_t select = sextract64(value, 36, 1);
5198 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
5199 TLBIRange ret = { };
5200 ARMGranuleSize gran;
5202 page_size_granule = extract64(value, 46, 2);
5203 gran = tlbi_range_tg_to_gran_size(page_size_granule);
5205 /* The granule encoded in value must match the granule in use. */
5206 if (gran != param.gran) {
5207 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
5208 page_size_granule);
5209 return ret;
5212 page_shift = arm_granule_bits(gran);
5213 num = extract64(value, 39, 5);
5214 scale = extract64(value, 44, 2);
5215 exponent = (5 * scale) + 1;
5217 ret.length = (num + 1) << (exponent + page_shift);
5219 if (param.select) {
5220 ret.base = sextract64(value, 0, 37);
5221 } else {
5222 ret.base = extract64(value, 0, 37);
5224 if (param.ds) {
5226 * With DS=1, BaseADDR is always shifted 16 so that it is able
5227 * to address all 52 va bits. The input address is perforce
5228 * aligned on a 64k boundary regardless of translation granule.
5230 page_shift = 16;
5232 ret.base <<= page_shift;
5234 return ret;
5237 static void do_rvae_write(CPUARMState *env, uint64_t value,
5238 int idxmap, bool synced)
5240 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
5241 TLBIRange range;
5242 int bits;
5244 range = tlbi_aa64_get_range(env, one_idx, value);
5245 bits = tlbbits_for_regime(env, one_idx, range.base);
5247 if (synced) {
5248 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
5249 range.base,
5250 range.length,
5251 idxmap,
5252 bits);
5253 } else {
5254 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
5255 range.length, idxmap, bits);
5259 static void tlbi_aa64_rvae1_write(CPUARMState *env,
5260 const ARMCPRegInfo *ri,
5261 uint64_t value)
5264 * Invalidate by VA range, EL1&0.
5265 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
5266 * since we don't support flush-for-specific-ASID-only or
5267 * flush-last-level-only.
5270 do_rvae_write(env, value, vae1_tlbmask(env),
5271 tlb_force_broadcast(env));
5274 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
5275 const ARMCPRegInfo *ri,
5276 uint64_t value)
5279 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
5280 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
5281 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
5282 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
5283 * shareable specific flushes.
5286 do_rvae_write(env, value, vae1_tlbmask(env), true);
5289 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5290 const ARMCPRegInfo *ri,
5291 uint64_t value)
5294 * Invalidate by VA range, EL2.
5295 * Currently handles all of RVAE2 and RVALE2,
5296 * since we don't support flush-for-specific-ASID-only or
5297 * flush-last-level-only.
5300 do_rvae_write(env, value, vae2_tlbmask(env),
5301 tlb_force_broadcast(env));
5306 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5307 const ARMCPRegInfo *ri,
5308 uint64_t value)
5311 * Invalidate by VA range, Inner/Outer Shareable, EL2.
5312 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5313 * since we don't support flush-for-specific-ASID-only,
5314 * flush-last-level-only or inner/outer shareable specific flushes.
5317 do_rvae_write(env, value, vae2_tlbmask(env), true);
5321 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5322 const ARMCPRegInfo *ri,
5323 uint64_t value)
5326 * Invalidate by VA range, EL3.
5327 * Currently handles all of RVAE3 and RVALE3,
5328 * since we don't support flush-for-specific-ASID-only or
5329 * flush-last-level-only.
5332 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5335 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5336 const ARMCPRegInfo *ri,
5337 uint64_t value)
5340 * Invalidate by VA range, EL3, Inner/Outer Shareable.
5341 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5342 * since we don't support flush-for-specific-ASID-only,
5343 * flush-last-level-only or inner/outer specific flushes.
5346 do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5349 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5350 uint64_t value)
5352 do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5353 tlb_force_broadcast(env));
5356 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5357 const ARMCPRegInfo *ri,
5358 uint64_t value)
5360 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5362 #endif
5364 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5365 bool isread)
5367 int cur_el = arm_current_el(env);
5369 if (cur_el < 2) {
5370 uint64_t hcr = arm_hcr_el2_eff(env);
5372 if (cur_el == 0) {
5373 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5374 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5375 return CP_ACCESS_TRAP_EL2;
5377 } else {
5378 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5379 return CP_ACCESS_TRAP;
5381 if (hcr & HCR_TDZ) {
5382 return CP_ACCESS_TRAP_EL2;
5385 } else if (hcr & HCR_TDZ) {
5386 return CP_ACCESS_TRAP_EL2;
5389 return CP_ACCESS_OK;
5392 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5394 ARMCPU *cpu = env_archcpu(env);
5395 int dzp_bit = 1 << 4;
5397 /* DZP indicates whether DC ZVA access is allowed */
5398 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5399 dzp_bit = 0;
5401 return cpu->dcz_blocksize | dzp_bit;
5404 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5405 bool isread)
5407 if (!(env->pstate & PSTATE_SP)) {
5409 * Access to SP_EL0 is undefined if it's being used as
5410 * the stack pointer.
5412 return CP_ACCESS_TRAP_UNCATEGORIZED;
5414 return CP_ACCESS_OK;
5417 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5419 return env->pstate & PSTATE_SP;
5422 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5424 update_spsel(env, val);
5427 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5428 uint64_t value)
5430 ARMCPU *cpu = env_archcpu(env);
5432 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5433 /* M bit is RAZ/WI for PMSA with no MPU implemented */
5434 value &= ~SCTLR_M;
5437 /* ??? Lots of these bits are not implemented. */
5439 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5440 if (ri->opc1 == 6) { /* SCTLR_EL3 */
5441 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5442 } else {
5443 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5444 SCTLR_ATA0 | SCTLR_ATA);
5448 if (raw_read(env, ri) == value) {
5450 * Skip the TLB flush if nothing actually changed; Linux likes
5451 * to do a lot of pointless SCTLR writes.
5453 return;
5456 raw_write(env, ri, value);
5458 /* This may enable/disable the MMU, so do a TLB flush. */
5459 tlb_flush(CPU(cpu));
5461 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5463 * Normally we would always end the TB on an SCTLR write; see the
5464 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5465 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5466 * of hflags from the translator, so do it here.
5468 arm_rebuild_hflags(env);
5472 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5473 uint64_t value)
5476 * Some MDCR_EL3 bits affect whether PMU counters are running:
5477 * if we are trying to change any of those then we must
5478 * bracket this update with PMU start/finish calls.
5480 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5482 if (pmu_op) {
5483 pmu_op_start(env);
5485 env->cp15.mdcr_el3 = value;
5486 if (pmu_op) {
5487 pmu_op_finish(env);
5491 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5492 uint64_t value)
5494 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5495 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5498 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5499 uint64_t value)
5502 * Some MDCR_EL2 bits affect whether PMU counters are running:
5503 * if we are trying to change any of those then we must
5504 * bracket this update with PMU start/finish calls.
5506 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5508 if (pmu_op) {
5509 pmu_op_start(env);
5511 env->cp15.mdcr_el2 = value;
5512 if (pmu_op) {
5513 pmu_op_finish(env);
5517 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri,
5518 bool isread)
5520 if (arm_current_el(env) == 1) {
5521 uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2);
5523 if (hcr_nv == (HCR_NV | HCR_NV1)) {
5524 return CP_ACCESS_TRAP_EL2;
5527 return CP_ACCESS_OK;
5530 #ifdef CONFIG_USER_ONLY
5532 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5533 * code to get around W^X restrictions, where one region is writable and the
5534 * other is executable.
5536 * Since the executable region is never written to we cannot detect code
5537 * changes when running in user mode, and rely on the emulated JIT telling us
5538 * that the code has changed by executing this instruction.
5540 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5541 uint64_t value)
5543 uint64_t icache_line_mask, start_address, end_address;
5544 const ARMCPU *cpu;
5546 cpu = env_archcpu(env);
5548 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5549 start_address = value & ~icache_line_mask;
5550 end_address = value | icache_line_mask;
5552 mmap_lock();
5554 tb_invalidate_phys_range(start_address, end_address);
5556 mmap_unlock();
5558 #endif
5560 static const ARMCPRegInfo v8_cp_reginfo[] = {
5562 * Minimal set of EL0-visible registers. This will need to be expanded
5563 * significantly for system emulation of AArch64 CPUs.
5565 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5566 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5567 .access = PL0_RW, .type = ARM_CP_NZCV },
5568 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5569 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5570 .type = ARM_CP_NO_RAW,
5571 .access = PL0_RW, .accessfn = aa64_daif_access,
5572 .fieldoffset = offsetof(CPUARMState, daif),
5573 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5574 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5575 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5576 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5577 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5578 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5579 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5580 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5581 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5582 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5583 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5584 .access = PL0_R, .type = ARM_CP_NO_RAW,
5585 .fgt = FGT_DCZID_EL0,
5586 .readfn = aa64_dczid_read },
5587 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5588 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5589 .access = PL0_W, .type = ARM_CP_DC_ZVA,
5590 #ifndef CONFIG_USER_ONLY
5591 /* Avoid overhead of an access check that always passes in user-mode */
5592 .accessfn = aa64_zva_access,
5593 .fgt = FGT_DCZVA,
5594 #endif
5596 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5597 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5598 .access = PL1_R, .type = ARM_CP_CURRENTEL },
5600 * Instruction cache ops. All of these except `IC IVAU` NOP because we
5601 * don't emulate caches.
5603 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5604 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5605 .access = PL1_W, .type = ARM_CP_NOP,
5606 .fgt = FGT_ICIALLUIS,
5607 .accessfn = access_ticab },
5608 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5609 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5610 .access = PL1_W, .type = ARM_CP_NOP,
5611 .fgt = FGT_ICIALLU,
5612 .accessfn = access_tocu },
5613 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5614 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5615 .access = PL0_W,
5616 .fgt = FGT_ICIVAU,
5617 .accessfn = access_tocu,
5618 #ifdef CONFIG_USER_ONLY
5619 .type = ARM_CP_NO_RAW,
5620 .writefn = ic_ivau_write
5621 #else
5622 .type = ARM_CP_NOP
5623 #endif
5625 /* Cache ops: all NOPs since we don't emulate caches */
5626 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5627 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5628 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5629 .fgt = FGT_DCIVAC,
5630 .type = ARM_CP_NOP },
5631 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5632 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5633 .fgt = FGT_DCISW,
5634 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5635 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5636 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5637 .access = PL0_W, .type = ARM_CP_NOP,
5638 .fgt = FGT_DCCVAC,
5639 .accessfn = aa64_cacheop_poc_access },
5640 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5641 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5642 .fgt = FGT_DCCSW,
5643 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5644 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5645 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5646 .access = PL0_W, .type = ARM_CP_NOP,
5647 .fgt = FGT_DCCVAU,
5648 .accessfn = access_tocu },
5649 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5650 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5651 .access = PL0_W, .type = ARM_CP_NOP,
5652 .fgt = FGT_DCCIVAC,
5653 .accessfn = aa64_cacheop_poc_access },
5654 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5655 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5656 .fgt = FGT_DCCISW,
5657 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5658 /* TLBI operations */
5659 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5660 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5661 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5662 .fgt = FGT_TLBIVMALLE1IS,
5663 .writefn = tlbi_aa64_vmalle1is_write },
5664 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5665 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5666 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5667 .fgt = FGT_TLBIVAE1IS,
5668 .writefn = tlbi_aa64_vae1is_write },
5669 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5670 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5671 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5672 .fgt = FGT_TLBIASIDE1IS,
5673 .writefn = tlbi_aa64_vmalle1is_write },
5674 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5675 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5676 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5677 .fgt = FGT_TLBIVAAE1IS,
5678 .writefn = tlbi_aa64_vae1is_write },
5679 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5680 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5681 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5682 .fgt = FGT_TLBIVALE1IS,
5683 .writefn = tlbi_aa64_vae1is_write },
5684 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5685 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5686 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5687 .fgt = FGT_TLBIVAALE1IS,
5688 .writefn = tlbi_aa64_vae1is_write },
5689 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5690 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5691 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5692 .fgt = FGT_TLBIVMALLE1,
5693 .writefn = tlbi_aa64_vmalle1_write },
5694 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5695 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5696 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5697 .fgt = FGT_TLBIVAE1,
5698 .writefn = tlbi_aa64_vae1_write },
5699 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5700 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5701 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5702 .fgt = FGT_TLBIASIDE1,
5703 .writefn = tlbi_aa64_vmalle1_write },
5704 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5705 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5706 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5707 .fgt = FGT_TLBIVAAE1,
5708 .writefn = tlbi_aa64_vae1_write },
5709 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5710 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5711 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5712 .fgt = FGT_TLBIVALE1,
5713 .writefn = tlbi_aa64_vae1_write },
5714 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5715 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5716 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5717 .fgt = FGT_TLBIVAALE1,
5718 .writefn = tlbi_aa64_vae1_write },
5719 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5720 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5721 .access = PL2_W, .type = ARM_CP_NO_RAW,
5722 .writefn = tlbi_aa64_ipas2e1is_write },
5723 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5724 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5725 .access = PL2_W, .type = ARM_CP_NO_RAW,
5726 .writefn = tlbi_aa64_ipas2e1is_write },
5727 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5728 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5729 .access = PL2_W, .type = ARM_CP_NO_RAW,
5730 .writefn = tlbi_aa64_alle1is_write },
5731 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5732 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5733 .access = PL2_W, .type = ARM_CP_NO_RAW,
5734 .writefn = tlbi_aa64_alle1is_write },
5735 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5736 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5737 .access = PL2_W, .type = ARM_CP_NO_RAW,
5738 .writefn = tlbi_aa64_ipas2e1_write },
5739 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5740 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5741 .access = PL2_W, .type = ARM_CP_NO_RAW,
5742 .writefn = tlbi_aa64_ipas2e1_write },
5743 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5744 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5745 .access = PL2_W, .type = ARM_CP_NO_RAW,
5746 .writefn = tlbi_aa64_alle1_write },
5747 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5748 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5749 .access = PL2_W, .type = ARM_CP_NO_RAW,
5750 .writefn = tlbi_aa64_alle1is_write },
5751 #ifndef CONFIG_USER_ONLY
5752 /* 64 bit address translation operations */
5753 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5754 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5755 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5756 .fgt = FGT_ATS1E1R,
5757 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5758 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5759 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5760 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5761 .fgt = FGT_ATS1E1W,
5762 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5763 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5764 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5765 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5766 .fgt = FGT_ATS1E0R,
5767 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5768 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5769 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5770 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5771 .fgt = FGT_ATS1E0W,
5772 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5773 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5774 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5775 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5776 .accessfn = at_e012_access, .writefn = ats_write64 },
5777 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5778 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5779 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5780 .accessfn = at_e012_access, .writefn = ats_write64 },
5781 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5782 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5783 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5784 .accessfn = at_e012_access, .writefn = ats_write64 },
5785 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5786 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5787 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5788 .accessfn = at_e012_access, .writefn = ats_write64 },
5789 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5790 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5791 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5792 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5793 .writefn = ats_write64 },
5794 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5795 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5796 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5797 .writefn = ats_write64 },
5798 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5799 .type = ARM_CP_ALIAS,
5800 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5801 .access = PL1_RW, .resetvalue = 0,
5802 .fgt = FGT_PAR_EL1,
5803 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5804 .writefn = par_write },
5805 #endif
5806 /* TLB invalidate last level of translation table walk */
5807 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5808 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5809 .writefn = tlbimva_is_write },
5810 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5811 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5812 .writefn = tlbimvaa_is_write },
5813 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5814 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5815 .writefn = tlbimva_write },
5816 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5817 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5818 .writefn = tlbimvaa_write },
5819 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5820 .type = ARM_CP_NO_RAW, .access = PL2_W,
5821 .writefn = tlbimva_hyp_write },
5822 { .name = "TLBIMVALHIS",
5823 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5824 .type = ARM_CP_NO_RAW, .access = PL2_W,
5825 .writefn = tlbimva_hyp_is_write },
5826 { .name = "TLBIIPAS2",
5827 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5828 .type = ARM_CP_NO_RAW, .access = PL2_W,
5829 .writefn = tlbiipas2_hyp_write },
5830 { .name = "TLBIIPAS2IS",
5831 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5832 .type = ARM_CP_NO_RAW, .access = PL2_W,
5833 .writefn = tlbiipas2is_hyp_write },
5834 { .name = "TLBIIPAS2L",
5835 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5836 .type = ARM_CP_NO_RAW, .access = PL2_W,
5837 .writefn = tlbiipas2_hyp_write },
5838 { .name = "TLBIIPAS2LIS",
5839 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5840 .type = ARM_CP_NO_RAW, .access = PL2_W,
5841 .writefn = tlbiipas2is_hyp_write },
5842 /* 32 bit cache operations */
5843 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5844 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5845 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5846 .type = ARM_CP_NOP, .access = PL1_W },
5847 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5848 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5849 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5850 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5851 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5852 .type = ARM_CP_NOP, .access = PL1_W },
5853 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5854 .type = ARM_CP_NOP, .access = PL1_W },
5855 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5856 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5857 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5858 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5859 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5860 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5861 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5862 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5863 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5864 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5865 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5866 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5867 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5868 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5869 /* MMU Domain access control / MPU write buffer control */
5870 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5871 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5872 .writefn = dacr_write, .raw_writefn = raw_write,
5873 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5874 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5875 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5876 .type = ARM_CP_ALIAS,
5877 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5878 .access = PL1_RW, .accessfn = access_nv1,
5879 .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1,
5880 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5881 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5882 .type = ARM_CP_ALIAS,
5883 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5884 .access = PL1_RW, .accessfn = access_nv1,
5885 .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1,
5886 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5888 * We rely on the access checks not allowing the guest to write to the
5889 * state field when SPSel indicates that it's being used as the stack
5890 * pointer.
5892 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5893 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5894 .access = PL1_RW, .accessfn = sp_el0_access,
5895 .type = ARM_CP_ALIAS,
5896 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5897 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5898 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5899 .nv2_redirect_offset = 0x240,
5900 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5901 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5902 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5903 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5904 .type = ARM_CP_NO_RAW,
5905 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5906 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5907 .type = ARM_CP_ALIAS,
5908 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5909 .access = PL2_RW,
5910 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5911 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5912 .type = ARM_CP_ALIAS,
5913 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5914 .access = PL2_RW,
5915 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5916 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5917 .type = ARM_CP_ALIAS,
5918 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5919 .access = PL2_RW,
5920 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5921 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5922 .type = ARM_CP_ALIAS,
5923 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5924 .access = PL2_RW,
5925 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5926 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5927 .type = ARM_CP_IO,
5928 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5929 .resetvalue = 0,
5930 .access = PL3_RW,
5931 .writefn = mdcr_el3_write,
5932 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5933 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5934 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5935 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5936 .writefn = sdcr_write,
5937 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5940 /* These are present only when EL1 supports AArch32 */
5941 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = {
5942 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5943 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5944 .access = PL2_RW,
5945 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5946 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5947 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5948 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5949 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5950 .writefn = dacr_write, .raw_writefn = raw_write,
5951 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5952 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5953 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5954 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5955 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5958 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5960 ARMCPU *cpu = env_archcpu(env);
5962 if (arm_feature(env, ARM_FEATURE_V8)) {
5963 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5964 } else {
5965 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5968 if (arm_feature(env, ARM_FEATURE_EL3)) {
5969 valid_mask &= ~HCR_HCD;
5970 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5972 * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5973 * However, if we're using the SMC PSCI conduit then QEMU is
5974 * effectively acting like EL3 firmware and so the guest at
5975 * EL2 should retain the ability to prevent EL1 from being
5976 * able to make SMC calls into the ersatz firmware, so in
5977 * that case HCR.TSC should be read/write.
5979 valid_mask &= ~HCR_TSC;
5982 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5983 if (cpu_isar_feature(aa64_vh, cpu)) {
5984 valid_mask |= HCR_E2H;
5986 if (cpu_isar_feature(aa64_ras, cpu)) {
5987 valid_mask |= HCR_TERR | HCR_TEA;
5989 if (cpu_isar_feature(aa64_lor, cpu)) {
5990 valid_mask |= HCR_TLOR;
5992 if (cpu_isar_feature(aa64_pauth, cpu)) {
5993 valid_mask |= HCR_API | HCR_APK;
5995 if (cpu_isar_feature(aa64_mte, cpu)) {
5996 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5998 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5999 valid_mask |= HCR_ENSCXT;
6001 if (cpu_isar_feature(aa64_fwb, cpu)) {
6002 valid_mask |= HCR_FWB;
6004 if (cpu_isar_feature(aa64_rme, cpu)) {
6005 valid_mask |= HCR_GPF;
6007 if (cpu_isar_feature(aa64_nv, cpu)) {
6008 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT;
6010 if (cpu_isar_feature(aa64_nv2, cpu)) {
6011 valid_mask |= HCR_NV2;
6015 if (cpu_isar_feature(any_evt, cpu)) {
6016 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
6017 } else if (cpu_isar_feature(any_half_evt, cpu)) {
6018 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
6021 /* Clear RES0 bits. */
6022 value &= valid_mask;
6025 * These bits change the MMU setup:
6026 * HCR_VM enables stage 2 translation
6027 * HCR_PTW forbids certain page-table setups
6028 * HCR_DC disables stage1 and enables stage2 translation
6029 * HCR_DCT enables tagging on (disabled) stage1 translation
6030 * HCR_FWB changes the interpretation of stage2 descriptor bits
6031 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits
6033 if ((env->cp15.hcr_el2 ^ value) &
6034 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) {
6035 tlb_flush(CPU(cpu));
6037 env->cp15.hcr_el2 = value;
6040 * Updates to VI and VF require us to update the status of
6041 * virtual interrupts, which are the logical OR of these bits
6042 * and the state of the input lines from the GIC. (This requires
6043 * that we have the BQL, which is done by marking the
6044 * reginfo structs as ARM_CP_IO.)
6045 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
6046 * possible for it to be taken immediately, because VIRQ and
6047 * VFIQ are masked unless running at EL0 or EL1, and HCR
6048 * can only be written at EL2.
6050 g_assert(bql_locked());
6051 arm_cpu_update_virq(cpu);
6052 arm_cpu_update_vfiq(cpu);
6053 arm_cpu_update_vserr(cpu);
6056 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
6058 do_hcr_write(env, value, 0);
6061 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
6062 uint64_t value)
6064 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
6065 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
6066 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
6069 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
6070 uint64_t value)
6072 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
6073 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
6074 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
6078 * Return the effective value of HCR_EL2, at the given security state.
6079 * Bits that are not included here:
6080 * RW (read from SCR_EL3.RW as needed)
6082 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
6084 uint64_t ret = env->cp15.hcr_el2;
6086 assert(space != ARMSS_Root);
6088 if (!arm_is_el2_enabled_secstate(env, space)) {
6090 * "This register has no effect if EL2 is not enabled in the
6091 * current Security state". This is ARMv8.4-SecEL2 speak for
6092 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
6094 * Prior to that, the language was "In an implementation that
6095 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
6096 * as if this field is 0 for all purposes other than a direct
6097 * read or write access of HCR_EL2". With lots of enumeration
6098 * on a per-field basis. In current QEMU, this is condition
6099 * is arm_is_secure_below_el3.
6101 * Since the v8.4 language applies to the entire register, and
6102 * appears to be backward compatible, use that.
6104 return 0;
6108 * For a cpu that supports both aarch64 and aarch32, we can set bits
6109 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
6110 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
6112 if (!arm_el_is_aa64(env, 2)) {
6113 uint64_t aa32_valid;
6116 * These bits are up-to-date as of ARMv8.6.
6117 * For HCR, it's easiest to list just the 2 bits that are invalid.
6118 * For HCR2, list those that are valid.
6120 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
6121 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
6122 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
6123 ret &= aa32_valid;
6126 if (ret & HCR_TGE) {
6127 /* These bits are up-to-date as of ARMv8.6. */
6128 if (ret & HCR_E2H) {
6129 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
6130 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
6131 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
6132 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
6133 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
6134 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
6135 } else {
6136 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
6138 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
6139 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
6140 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
6141 HCR_TLOR);
6144 return ret;
6147 uint64_t arm_hcr_el2_eff(CPUARMState *env)
6149 if (arm_feature(env, ARM_FEATURE_M)) {
6150 return 0;
6152 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
6156 * Corresponds to ARM pseudocode function ELIsInHost().
6158 bool el_is_in_host(CPUARMState *env, int el)
6160 uint64_t mask;
6163 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
6164 * Perform the simplest bit tests first, and validate EL2 afterward.
6166 if (el & 1) {
6167 return false; /* EL1 or EL3 */
6171 * Note that hcr_write() checks isar_feature_aa64_vh(),
6172 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
6174 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
6175 if ((env->cp15.hcr_el2 & mask) != mask) {
6176 return false;
6179 /* TGE and/or E2H set: double check those bits are currently legal. */
6180 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
6183 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
6184 uint64_t value)
6186 uint64_t valid_mask = 0;
6188 /* FEAT_MOPS adds MSCEn and MCE2 */
6189 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6190 valid_mask |= HCRX_MSCEN | HCRX_MCE2;
6193 /* Clear RES0 bits. */
6194 env->cp15.hcrx_el2 = value & valid_mask;
6197 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
6198 bool isread)
6200 if (arm_current_el(env) == 2
6201 && arm_feature(env, ARM_FEATURE_EL3)
6202 && !(env->cp15.scr_el3 & SCR_HXEN)) {
6203 return CP_ACCESS_TRAP_EL3;
6205 return CP_ACCESS_OK;
6208 static const ARMCPRegInfo hcrx_el2_reginfo = {
6209 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
6210 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
6211 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
6212 .nv2_redirect_offset = 0xa0,
6213 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
6216 /* Return the effective value of HCRX_EL2. */
6217 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
6220 * The bits in this register behave as 0 for all purposes other than
6221 * direct reads of the register if SCR_EL3.HXEn is 0.
6222 * If EL2 is not enabled in the current security state, then the
6223 * bit may behave as if 0, or as if 1, depending on the bit.
6224 * For the moment, we treat the EL2-disabled case as taking
6225 * priority over the HXEn-disabled case. This is true for the only
6226 * bit for a feature which we implement where the answer is different
6227 * for the two cases (MSCEn for FEAT_MOPS).
6228 * This may need to be revisited for future bits.
6230 if (!arm_is_el2_enabled(env)) {
6231 uint64_t hcrx = 0;
6232 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6233 /* MSCEn behaves as 1 if EL2 is not enabled */
6234 hcrx |= HCRX_MSCEN;
6236 return hcrx;
6238 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
6239 return 0;
6241 return env->cp15.hcrx_el2;
6244 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
6245 uint64_t value)
6248 * For A-profile AArch32 EL3, if NSACR.CP10
6249 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6251 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6252 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6253 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6254 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
6256 env->cp15.cptr_el[2] = value;
6259 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6262 * For A-profile AArch32 EL3, if NSACR.CP10
6263 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6265 uint64_t value = env->cp15.cptr_el[2];
6267 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6268 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6269 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6271 return value;
6274 static const ARMCPRegInfo el2_cp_reginfo[] = {
6275 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
6276 .type = ARM_CP_IO,
6277 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6278 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6279 .nv2_redirect_offset = 0x78,
6280 .writefn = hcr_write, .raw_writefn = raw_write },
6281 { .name = "HCR", .state = ARM_CP_STATE_AA32,
6282 .type = ARM_CP_ALIAS | ARM_CP_IO,
6283 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6284 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6285 .writefn = hcr_writelow },
6286 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
6287 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
6288 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6289 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
6290 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6291 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
6292 .access = PL2_RW,
6293 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
6294 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
6295 .type = ARM_CP_NV2_REDIRECT,
6296 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
6297 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
6298 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
6299 .type = ARM_CP_NV2_REDIRECT,
6300 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
6301 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
6302 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
6303 .type = ARM_CP_ALIAS,
6304 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
6305 .access = PL2_RW,
6306 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
6307 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
6308 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6309 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
6310 .access = PL2_RW,
6311 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
6312 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
6313 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
6314 .access = PL2_RW, .writefn = vbar_write,
6315 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
6316 .resetvalue = 0 },
6317 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
6318 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
6319 .access = PL3_RW, .type = ARM_CP_ALIAS,
6320 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
6321 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
6322 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
6323 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
6324 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
6325 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
6326 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6327 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6328 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6329 .resetvalue = 0 },
6330 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
6331 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
6332 .access = PL2_RW, .type = ARM_CP_ALIAS,
6333 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
6334 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6335 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6336 .access = PL2_RW, .type = ARM_CP_CONST,
6337 .resetvalue = 0 },
6338 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
6339 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
6340 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
6341 .access = PL2_RW, .type = ARM_CP_CONST,
6342 .resetvalue = 0 },
6343 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6344 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6345 .access = PL2_RW, .type = ARM_CP_CONST,
6346 .resetvalue = 0 },
6347 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6348 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6349 .access = PL2_RW, .type = ARM_CP_CONST,
6350 .resetvalue = 0 },
6351 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6352 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6353 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
6354 .raw_writefn = raw_write,
6355 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
6356 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6357 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6358 .type = ARM_CP_ALIAS,
6359 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6360 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
6361 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6362 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6363 .access = PL2_RW,
6364 .nv2_redirect_offset = 0x40,
6365 /* no .writefn needed as this can't cause an ASID change */
6366 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
6367 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6368 .cp = 15, .opc1 = 6, .crm = 2,
6369 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6370 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6371 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6372 .writefn = vttbr_write, .raw_writefn = raw_write },
6373 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6374 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6375 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6376 .nv2_redirect_offset = 0x20,
6377 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6378 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6379 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6380 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6381 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6382 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6383 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6384 .access = PL2_RW, .resetvalue = 0,
6385 .nv2_redirect_offset = 0x90,
6386 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6387 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6388 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6389 .access = PL2_RW, .resetvalue = 0,
6390 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6391 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6392 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6393 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6394 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6395 { .name = "TLBIALLNSNH",
6396 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6397 .type = ARM_CP_NO_RAW, .access = PL2_W,
6398 .writefn = tlbiall_nsnh_write },
6399 { .name = "TLBIALLNSNHIS",
6400 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6401 .type = ARM_CP_NO_RAW, .access = PL2_W,
6402 .writefn = tlbiall_nsnh_is_write },
6403 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6404 .type = ARM_CP_NO_RAW, .access = PL2_W,
6405 .writefn = tlbiall_hyp_write },
6406 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6407 .type = ARM_CP_NO_RAW, .access = PL2_W,
6408 .writefn = tlbiall_hyp_is_write },
6409 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6410 .type = ARM_CP_NO_RAW, .access = PL2_W,
6411 .writefn = tlbimva_hyp_write },
6412 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6413 .type = ARM_CP_NO_RAW, .access = PL2_W,
6414 .writefn = tlbimva_hyp_is_write },
6415 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6416 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6417 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6418 .writefn = tlbi_aa64_alle2_write },
6419 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6420 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6421 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6422 .writefn = tlbi_aa64_vae2_write },
6423 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6424 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6425 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6426 .writefn = tlbi_aa64_vae2_write },
6427 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6428 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6429 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6430 .writefn = tlbi_aa64_alle2is_write },
6431 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6432 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6433 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6434 .writefn = tlbi_aa64_vae2is_write },
6435 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6436 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6437 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6438 .writefn = tlbi_aa64_vae2is_write },
6439 #ifndef CONFIG_USER_ONLY
6441 * Unlike the other EL2-related AT operations, these must
6442 * UNDEF from EL3 if EL2 is not implemented, which is why we
6443 * define them here rather than with the rest of the AT ops.
6445 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6446 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6447 .access = PL2_W, .accessfn = at_s1e2_access,
6448 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6449 .writefn = ats_write64 },
6450 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6451 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6452 .access = PL2_W, .accessfn = at_s1e2_access,
6453 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6454 .writefn = ats_write64 },
6456 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6457 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6458 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6459 * to behave as if SCR.NS was 1.
6461 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6462 .access = PL2_W,
6463 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6464 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6465 .access = PL2_W,
6466 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6467 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6468 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6470 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6471 * reset values as IMPDEF. We choose to reset to 3 to comply with
6472 * both ARMv7 and ARMv8.
6474 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
6475 .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
6476 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6477 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6478 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6479 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6480 .writefn = gt_cntvoff_write,
6481 .nv2_redirect_offset = 0x60,
6482 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6483 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6484 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6485 .writefn = gt_cntvoff_write,
6486 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6487 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6488 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6489 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6490 .type = ARM_CP_IO, .access = PL2_RW,
6491 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6492 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6493 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6494 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6495 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6496 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6497 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6498 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6499 .resetfn = gt_hyp_timer_reset,
6500 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6501 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6502 .type = ARM_CP_IO,
6503 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6504 .access = PL2_RW,
6505 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6506 .resetvalue = 0,
6507 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6508 #endif
6509 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6510 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6511 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6512 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6513 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6514 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6515 .access = PL2_RW,
6516 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6517 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6518 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6519 .access = PL2_RW,
6520 .nv2_redirect_offset = 0x80,
6521 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6524 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6525 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6526 .type = ARM_CP_ALIAS | ARM_CP_IO,
6527 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6528 .access = PL2_RW,
6529 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6530 .writefn = hcr_writehigh },
6533 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6534 bool isread)
6536 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6537 return CP_ACCESS_OK;
6539 return CP_ACCESS_TRAP_UNCATEGORIZED;
6542 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6543 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6544 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6545 .access = PL2_RW, .accessfn = sel2_access,
6546 .nv2_redirect_offset = 0x30,
6547 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6548 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6549 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6550 .access = PL2_RW, .accessfn = sel2_access,
6551 .nv2_redirect_offset = 0x48,
6552 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6555 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6556 bool isread)
6559 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6560 * At Secure EL1 it traps to EL3 or EL2.
6562 if (arm_current_el(env) == 3) {
6563 return CP_ACCESS_OK;
6565 if (arm_is_secure_below_el3(env)) {
6566 if (env->cp15.scr_el3 & SCR_EEL2) {
6567 return CP_ACCESS_TRAP_EL2;
6569 return CP_ACCESS_TRAP_EL3;
6571 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6572 if (isread) {
6573 return CP_ACCESS_OK;
6575 return CP_ACCESS_TRAP_UNCATEGORIZED;
6578 static const ARMCPRegInfo el3_cp_reginfo[] = {
6579 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6580 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6581 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6582 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6583 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6584 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6585 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6586 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6587 .writefn = scr_write, .raw_writefn = raw_write },
6588 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6589 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6590 .access = PL3_RW, .resetvalue = 0,
6591 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6592 { .name = "SDER",
6593 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6594 .access = PL3_RW, .resetvalue = 0,
6595 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6596 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6597 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6598 .writefn = vbar_write, .resetvalue = 0,
6599 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6600 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6601 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6602 .access = PL3_RW, .resetvalue = 0,
6603 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6604 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6605 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6606 .access = PL3_RW,
6607 /* no .writefn needed as this can't cause an ASID change */
6608 .resetvalue = 0,
6609 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6610 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6611 .type = ARM_CP_ALIAS,
6612 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6613 .access = PL3_RW,
6614 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6615 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6616 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6617 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6618 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6619 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6620 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6621 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6622 .type = ARM_CP_ALIAS,
6623 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6624 .access = PL3_RW,
6625 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6626 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6627 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6628 .access = PL3_RW, .writefn = vbar_write,
6629 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6630 .resetvalue = 0 },
6631 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6632 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6633 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6634 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6635 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6636 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6637 .access = PL3_RW, .resetvalue = 0,
6638 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6639 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6640 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6641 .access = PL3_RW, .type = ARM_CP_CONST,
6642 .resetvalue = 0 },
6643 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6644 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6645 .access = PL3_RW, .type = ARM_CP_CONST,
6646 .resetvalue = 0 },
6647 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6648 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6649 .access = PL3_RW, .type = ARM_CP_CONST,
6650 .resetvalue = 0 },
6651 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6652 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6653 .access = PL3_W, .type = ARM_CP_NO_RAW,
6654 .writefn = tlbi_aa64_alle3is_write },
6655 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6656 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6657 .access = PL3_W, .type = ARM_CP_NO_RAW,
6658 .writefn = tlbi_aa64_vae3is_write },
6659 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6660 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6661 .access = PL3_W, .type = ARM_CP_NO_RAW,
6662 .writefn = tlbi_aa64_vae3is_write },
6663 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6664 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6665 .access = PL3_W, .type = ARM_CP_NO_RAW,
6666 .writefn = tlbi_aa64_alle3_write },
6667 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6668 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6669 .access = PL3_W, .type = ARM_CP_NO_RAW,
6670 .writefn = tlbi_aa64_vae3_write },
6671 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6672 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6673 .access = PL3_W, .type = ARM_CP_NO_RAW,
6674 .writefn = tlbi_aa64_vae3_write },
6677 #ifndef CONFIG_USER_ONLY
6679 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
6680 bool isread)
6682 if (arm_current_el(env) == 1) {
6683 /* This must be a FEAT_NV access */
6684 return CP_ACCESS_OK;
6686 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6687 return CP_ACCESS_TRAP_UNCATEGORIZED;
6689 return CP_ACCESS_OK;
6692 static CPAccessResult access_el1nvpct(CPUARMState *env, const ARMCPRegInfo *ri,
6693 bool isread)
6695 if (arm_current_el(env) == 1) {
6696 /* This must be a FEAT_NV access with NVx == 101 */
6697 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVPCT)) {
6698 return CP_ACCESS_TRAP_EL2;
6701 return e2h_access(env, ri, isread);
6704 static CPAccessResult access_el1nvvct(CPUARMState *env, const ARMCPRegInfo *ri,
6705 bool isread)
6707 if (arm_current_el(env) == 1) {
6708 /* This must be a FEAT_NV access with NVx == 101 */
6709 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVVCT)) {
6710 return CP_ACCESS_TRAP_EL2;
6713 return e2h_access(env, ri, isread);
6716 /* Test if system register redirection is to occur in the current state. */
6717 static bool redirect_for_e2h(CPUARMState *env)
6719 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6722 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6724 CPReadFn *readfn;
6726 if (redirect_for_e2h(env)) {
6727 /* Switch to the saved EL2 version of the register. */
6728 ri = ri->opaque;
6729 readfn = ri->readfn;
6730 } else {
6731 readfn = ri->orig_readfn;
6733 if (readfn == NULL) {
6734 readfn = raw_read;
6736 return readfn(env, ri);
6739 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6740 uint64_t value)
6742 CPWriteFn *writefn;
6744 if (redirect_for_e2h(env)) {
6745 /* Switch to the saved EL2 version of the register. */
6746 ri = ri->opaque;
6747 writefn = ri->writefn;
6748 } else {
6749 writefn = ri->orig_writefn;
6751 if (writefn == NULL) {
6752 writefn = raw_write;
6754 writefn(env, ri, value);
6757 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri)
6759 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6760 return ri->orig_readfn(env, ri->opaque);
6763 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri,
6764 uint64_t value)
6766 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6767 return ri->orig_writefn(env, ri->opaque, value);
6770 static CPAccessResult el2_e2h_e12_access(CPUARMState *env,
6771 const ARMCPRegInfo *ri,
6772 bool isread)
6774 if (arm_current_el(env) == 1) {
6776 * This must be a FEAT_NV access (will either trap or redirect
6777 * to memory). None of the registers with _EL12 aliases want to
6778 * apply their trap controls for this kind of access, so don't
6779 * call the orig_accessfn or do the "UNDEF when E2H is 0" check.
6781 return CP_ACCESS_OK;
6783 /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */
6784 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6785 return CP_ACCESS_TRAP_UNCATEGORIZED;
6787 if (ri->orig_accessfn) {
6788 return ri->orig_accessfn(env, ri->opaque, isread);
6790 return CP_ACCESS_OK;
6793 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6795 struct E2HAlias {
6796 uint32_t src_key, dst_key, new_key;
6797 const char *src_name, *dst_name, *new_name;
6798 bool (*feature)(const ARMISARegisters *id);
6801 #define K(op0, op1, crn, crm, op2) \
6802 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6804 static const struct E2HAlias aliases[] = {
6805 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
6806 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6807 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
6808 "CPACR", "CPTR_EL2", "CPACR_EL12" },
6809 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
6810 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6811 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
6812 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6813 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
6814 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6815 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
6816 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6817 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
6818 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6819 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
6820 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6821 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
6822 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6823 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
6824 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6825 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
6826 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6827 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6828 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6829 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6830 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6831 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6832 "VBAR", "VBAR_EL2", "VBAR_EL12" },
6833 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6834 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6835 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6836 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6839 * Note that redirection of ZCR is mentioned in the description
6840 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6841 * not in the summary table.
6843 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
6844 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6845 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
6846 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6848 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
6849 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6851 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6852 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6853 isar_feature_aa64_scxtnum },
6855 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6856 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6858 #undef K
6860 size_t i;
6862 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6863 const struct E2HAlias *a = &aliases[i];
6864 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6865 bool ok;
6867 if (a->feature && !a->feature(&cpu->isar)) {
6868 continue;
6871 src_reg = g_hash_table_lookup(cpu->cp_regs,
6872 (gpointer)(uintptr_t)a->src_key);
6873 dst_reg = g_hash_table_lookup(cpu->cp_regs,
6874 (gpointer)(uintptr_t)a->dst_key);
6875 g_assert(src_reg != NULL);
6876 g_assert(dst_reg != NULL);
6878 /* Cross-compare names to detect typos in the keys. */
6879 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6880 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6882 /* None of the core system registers use opaque; we will. */
6883 g_assert(src_reg->opaque == NULL);
6885 /* Create alias before redirection so we dup the right data. */
6886 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6888 new_reg->name = a->new_name;
6889 new_reg->type |= ARM_CP_ALIAS;
6890 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6891 new_reg->access &= PL2_RW | PL3_RW;
6892 /* The new_reg op fields are as per new_key, not the target reg */
6893 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK)
6894 >> CP_REG_ARM64_SYSREG_CRN_SHIFT;
6895 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK)
6896 >> CP_REG_ARM64_SYSREG_CRM_SHIFT;
6897 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK)
6898 >> CP_REG_ARM64_SYSREG_OP0_SHIFT;
6899 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK)
6900 >> CP_REG_ARM64_SYSREG_OP1_SHIFT;
6901 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK)
6902 >> CP_REG_ARM64_SYSREG_OP2_SHIFT;
6903 new_reg->opaque = src_reg;
6904 new_reg->orig_readfn = src_reg->readfn ?: raw_read;
6905 new_reg->orig_writefn = src_reg->writefn ?: raw_write;
6906 new_reg->orig_accessfn = src_reg->accessfn;
6907 if (!new_reg->raw_readfn) {
6908 new_reg->raw_readfn = raw_read;
6910 if (!new_reg->raw_writefn) {
6911 new_reg->raw_writefn = raw_write;
6913 new_reg->readfn = el2_e2h_e12_read;
6914 new_reg->writefn = el2_e2h_e12_write;
6915 new_reg->accessfn = el2_e2h_e12_access;
6918 * If the _EL1 register is redirected to memory by FEAT_NV2,
6919 * then it shares the offset with the _EL12 register,
6920 * and which one is redirected depends on HCR_EL2.NV1.
6922 if (new_reg->nv2_redirect_offset) {
6923 assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1);
6924 new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1;
6925 new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1;
6928 ok = g_hash_table_insert(cpu->cp_regs,
6929 (gpointer)(uintptr_t)a->new_key, new_reg);
6930 g_assert(ok);
6932 src_reg->opaque = dst_reg;
6933 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6934 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6935 if (!src_reg->raw_readfn) {
6936 src_reg->raw_readfn = raw_read;
6938 if (!src_reg->raw_writefn) {
6939 src_reg->raw_writefn = raw_write;
6941 src_reg->readfn = el2_e2h_read;
6942 src_reg->writefn = el2_e2h_write;
6945 #endif
6947 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6948 bool isread)
6950 int cur_el = arm_current_el(env);
6952 if (cur_el < 2) {
6953 uint64_t hcr = arm_hcr_el2_eff(env);
6955 if (cur_el == 0) {
6956 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6957 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6958 return CP_ACCESS_TRAP_EL2;
6960 } else {
6961 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6962 return CP_ACCESS_TRAP;
6964 if (hcr & HCR_TID2) {
6965 return CP_ACCESS_TRAP_EL2;
6968 } else if (hcr & HCR_TID2) {
6969 return CP_ACCESS_TRAP_EL2;
6973 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6974 return CP_ACCESS_TRAP_EL2;
6977 return CP_ACCESS_OK;
6981 * Check for traps to RAS registers, which are controlled
6982 * by HCR_EL2.TERR and SCR_EL3.TERR.
6984 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6985 bool isread)
6987 int el = arm_current_el(env);
6989 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6990 return CP_ACCESS_TRAP_EL2;
6992 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6993 return CP_ACCESS_TRAP_EL3;
6995 return CP_ACCESS_OK;
6998 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
7000 int el = arm_current_el(env);
7002 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
7003 return env->cp15.vdisr_el2;
7005 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
7006 return 0; /* RAZ/WI */
7008 return env->cp15.disr_el1;
7011 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7013 int el = arm_current_el(env);
7015 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
7016 env->cp15.vdisr_el2 = val;
7017 return;
7019 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
7020 return; /* RAZ/WI */
7022 env->cp15.disr_el1 = val;
7026 * Minimal RAS implementation with no Error Records.
7027 * Which means that all of the Error Record registers:
7028 * ERXADDR_EL1
7029 * ERXCTLR_EL1
7030 * ERXFR_EL1
7031 * ERXMISC0_EL1
7032 * ERXMISC1_EL1
7033 * ERXMISC2_EL1
7034 * ERXMISC3_EL1
7035 * ERXPFGCDN_EL1 (RASv1p1)
7036 * ERXPFGCTL_EL1 (RASv1p1)
7037 * ERXPFGF_EL1 (RASv1p1)
7038 * ERXSTATUS_EL1
7039 * and
7040 * ERRSELR_EL1
7041 * may generate UNDEFINED, which is the effect we get by not
7042 * listing them at all.
7044 * These registers have fine-grained trap bits, but UNDEF-to-EL1
7045 * is higher priority than FGT-to-EL2 so we do not need to list them
7046 * in order to check for an FGT.
7048 static const ARMCPRegInfo minimal_ras_reginfo[] = {
7049 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
7050 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
7051 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
7052 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
7053 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
7054 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
7055 .access = PL1_R, .accessfn = access_terr,
7056 .fgt = FGT_ERRIDR_EL1,
7057 .type = ARM_CP_CONST, .resetvalue = 0 },
7058 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
7059 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
7060 .nv2_redirect_offset = 0x500,
7061 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
7062 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
7063 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
7064 .nv2_redirect_offset = 0x508,
7065 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
7069 * Return the exception level to which exceptions should be taken
7070 * via SVEAccessTrap. This excludes the check for whether the exception
7071 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
7072 * be found by testing 0 < fp_exception_el < sve_exception_el.
7074 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
7075 * pseudocode does *not* separate out the FP trap checks, but has them
7076 * all in one function.
7078 int sve_exception_el(CPUARMState *env, int el)
7080 #ifndef CONFIG_USER_ONLY
7081 if (el <= 1 && !el_is_in_host(env, el)) {
7082 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
7083 case 1:
7084 if (el != 0) {
7085 break;
7087 /* fall through */
7088 case 0:
7089 case 2:
7090 return 1;
7094 if (el <= 2 && arm_is_el2_enabled(env)) {
7095 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
7096 if (env->cp15.hcr_el2 & HCR_E2H) {
7097 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
7098 case 1:
7099 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
7100 break;
7102 /* fall through */
7103 case 0:
7104 case 2:
7105 return 2;
7107 } else {
7108 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
7109 return 2;
7114 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
7115 if (arm_feature(env, ARM_FEATURE_EL3)
7116 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
7117 return 3;
7119 #endif
7120 return 0;
7124 * Return the exception level to which exceptions should be taken for SME.
7125 * C.f. the ARM pseudocode function CheckSMEAccess.
7127 int sme_exception_el(CPUARMState *env, int el)
7129 #ifndef CONFIG_USER_ONLY
7130 if (el <= 1 && !el_is_in_host(env, el)) {
7131 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
7132 case 1:
7133 if (el != 0) {
7134 break;
7136 /* fall through */
7137 case 0:
7138 case 2:
7139 return 1;
7143 if (el <= 2 && arm_is_el2_enabled(env)) {
7144 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
7145 if (env->cp15.hcr_el2 & HCR_E2H) {
7146 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
7147 case 1:
7148 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
7149 break;
7151 /* fall through */
7152 case 0:
7153 case 2:
7154 return 2;
7156 } else {
7157 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
7158 return 2;
7163 /* CPTR_EL3. Since ESM is negative we must check for EL3. */
7164 if (arm_feature(env, ARM_FEATURE_EL3)
7165 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7166 return 3;
7168 #endif
7169 return 0;
7173 * Given that SVE is enabled, return the vector length for EL.
7175 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
7177 ARMCPU *cpu = env_archcpu(env);
7178 uint64_t *cr = env->vfp.zcr_el;
7179 uint32_t map = cpu->sve_vq.map;
7180 uint32_t len = ARM_MAX_VQ - 1;
7182 if (sm) {
7183 cr = env->vfp.smcr_el;
7184 map = cpu->sme_vq.map;
7187 if (el <= 1 && !el_is_in_host(env, el)) {
7188 len = MIN(len, 0xf & (uint32_t)cr[1]);
7190 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
7191 len = MIN(len, 0xf & (uint32_t)cr[2]);
7193 if (arm_feature(env, ARM_FEATURE_EL3)) {
7194 len = MIN(len, 0xf & (uint32_t)cr[3]);
7197 map &= MAKE_64BIT_MASK(0, len + 1);
7198 if (map != 0) {
7199 return 31 - clz32(map);
7202 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
7203 assert(sm);
7204 return ctz32(cpu->sme_vq.map);
7207 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
7209 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
7212 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7213 uint64_t value)
7215 int cur_el = arm_current_el(env);
7216 int old_len = sve_vqm1_for_el(env, cur_el);
7217 int new_len;
7219 /* Bits other than [3:0] are RAZ/WI. */
7220 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
7221 raw_write(env, ri, value & 0xf);
7224 * Because we arrived here, we know both FP and SVE are enabled;
7225 * otherwise we would have trapped access to the ZCR_ELn register.
7227 new_len = sve_vqm1_for_el(env, cur_el);
7228 if (new_len < old_len) {
7229 aarch64_sve_narrow_vq(env, new_len + 1);
7233 static const ARMCPRegInfo zcr_reginfo[] = {
7234 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
7235 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
7236 .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1,
7237 .access = PL1_RW, .type = ARM_CP_SVE,
7238 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
7239 .writefn = zcr_write, .raw_writefn = raw_write },
7240 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
7241 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
7242 .access = PL2_RW, .type = ARM_CP_SVE,
7243 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
7244 .writefn = zcr_write, .raw_writefn = raw_write },
7245 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
7246 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
7247 .access = PL3_RW, .type = ARM_CP_SVE,
7248 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
7249 .writefn = zcr_write, .raw_writefn = raw_write },
7252 #ifdef TARGET_AARCH64
7253 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
7254 bool isread)
7256 int el = arm_current_el(env);
7258 if (el == 0) {
7259 uint64_t sctlr = arm_sctlr(env, el);
7260 if (!(sctlr & SCTLR_EnTP2)) {
7261 return CP_ACCESS_TRAP;
7264 /* TODO: FEAT_FGT */
7265 if (el < 3
7266 && arm_feature(env, ARM_FEATURE_EL3)
7267 && !(env->cp15.scr_el3 & SCR_ENTP2)) {
7268 return CP_ACCESS_TRAP_EL3;
7270 return CP_ACCESS_OK;
7273 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri,
7274 bool isread)
7276 /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */
7277 if (arm_current_el(env) == 2
7278 && arm_feature(env, ARM_FEATURE_EL3)
7279 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7280 return CP_ACCESS_TRAP_EL3;
7282 return CP_ACCESS_OK;
7285 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri,
7286 bool isread)
7288 if (arm_current_el(env) < 3
7289 && arm_feature(env, ARM_FEATURE_EL3)
7290 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7291 return CP_ACCESS_TRAP_EL3;
7293 return CP_ACCESS_OK;
7296 /* ResetSVEState */
7297 static void arm_reset_sve_state(CPUARMState *env)
7299 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
7300 /* Recall that FFR is stored as pregs[16]. */
7301 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
7302 vfp_set_fpcr(env, 0x0800009f);
7305 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
7307 uint64_t change = (env->svcr ^ new) & mask;
7309 if (change == 0) {
7310 return;
7312 env->svcr ^= change;
7314 if (change & R_SVCR_SM_MASK) {
7315 arm_reset_sve_state(env);
7319 * ResetSMEState.
7321 * SetPSTATE_ZA zeros on enable and disable. We can zero this only
7322 * on enable: while disabled, the storage is inaccessible and the
7323 * value does not matter. We're not saving the storage in vmstate
7324 * when disabled either.
7326 if (change & new & R_SVCR_ZA_MASK) {
7327 memset(env->zarray, 0, sizeof(env->zarray));
7330 if (tcg_enabled()) {
7331 arm_rebuild_hflags(env);
7335 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7336 uint64_t value)
7338 aarch64_set_svcr(env, value, -1);
7341 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7342 uint64_t value)
7344 int cur_el = arm_current_el(env);
7345 int old_len = sve_vqm1_for_el(env, cur_el);
7346 int new_len;
7348 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
7349 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
7350 raw_write(env, ri, value);
7353 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
7354 * when SVL is widened (old values kept, or zeros). Choose to keep the
7355 * current values for simplicity. But for QEMU internals, we must still
7356 * apply the narrower SVL to the Zregs and Pregs -- see the comment
7357 * above aarch64_sve_narrow_vq.
7359 new_len = sve_vqm1_for_el(env, cur_el);
7360 if (new_len < old_len) {
7361 aarch64_sve_narrow_vq(env, new_len + 1);
7365 static const ARMCPRegInfo sme_reginfo[] = {
7366 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
7367 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
7368 .access = PL0_RW, .accessfn = access_tpidr2,
7369 .fgt = FGT_NTPIDR2_EL0,
7370 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
7371 { .name = "SVCR", .state = ARM_CP_STATE_AA64,
7372 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
7373 .access = PL0_RW, .type = ARM_CP_SME,
7374 .fieldoffset = offsetof(CPUARMState, svcr),
7375 .writefn = svcr_write, .raw_writefn = raw_write },
7376 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
7377 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
7378 .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1,
7379 .access = PL1_RW, .type = ARM_CP_SME,
7380 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
7381 .writefn = smcr_write, .raw_writefn = raw_write },
7382 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
7383 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
7384 .access = PL2_RW, .type = ARM_CP_SME,
7385 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
7386 .writefn = smcr_write, .raw_writefn = raw_write },
7387 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
7388 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
7389 .access = PL3_RW, .type = ARM_CP_SME,
7390 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
7391 .writefn = smcr_write, .raw_writefn = raw_write },
7392 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
7393 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
7394 .access = PL1_R, .accessfn = access_aa64_tid1,
7396 * IMPLEMENTOR = 0 (software)
7397 * REVISION = 0 (implementation defined)
7398 * SMPS = 0 (no streaming execution priority in QEMU)
7399 * AFFINITY = 0 (streaming sve mode not shared with other PEs)
7401 .type = ARM_CP_CONST, .resetvalue = 0, },
7403 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
7405 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
7406 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
7407 .access = PL1_RW, .accessfn = access_smpri,
7408 .fgt = FGT_NSMPRI_EL1,
7409 .type = ARM_CP_CONST, .resetvalue = 0 },
7410 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
7411 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
7412 .nv2_redirect_offset = 0x1f8,
7413 .access = PL2_RW, .accessfn = access_smprimap,
7414 .type = ARM_CP_CONST, .resetvalue = 0 },
7417 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
7418 uint64_t value)
7420 CPUState *cs = env_cpu(env);
7422 tlb_flush(cs);
7425 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7426 uint64_t value)
7428 /* L0GPTSZ is RO; other bits not mentioned are RES0. */
7429 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
7430 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
7431 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
7433 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
7436 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
7438 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
7439 env_archcpu(env)->reset_l0gptsz);
7442 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
7443 uint64_t value)
7445 CPUState *cs = env_cpu(env);
7447 tlb_flush_all_cpus_synced(cs);
7450 static const ARMCPRegInfo rme_reginfo[] = {
7451 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
7452 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
7453 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
7454 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
7455 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
7456 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
7457 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
7458 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
7459 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7460 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7461 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7462 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7463 .access = PL3_W, .type = ARM_CP_NO_RAW,
7464 .writefn = tlbi_aa64_paall_write },
7465 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7466 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7467 .access = PL3_W, .type = ARM_CP_NO_RAW,
7468 .writefn = tlbi_aa64_paallos_write },
7470 * QEMU does not have a way to invalidate by physical address, thus
7471 * invalidating a range of physical addresses is accomplished by
7472 * flushing all tlb entries in the outer shareable domain,
7473 * just like PAALLOS.
7475 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7476 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7477 .access = PL3_W, .type = ARM_CP_NO_RAW,
7478 .writefn = tlbi_aa64_paallos_write },
7479 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7480 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7481 .access = PL3_W, .type = ARM_CP_NO_RAW,
7482 .writefn = tlbi_aa64_paallos_write },
7483 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7484 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7485 .access = PL3_W, .type = ARM_CP_NOP },
7488 static const ARMCPRegInfo rme_mte_reginfo[] = {
7489 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7490 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7491 .access = PL3_W, .type = ARM_CP_NOP },
7493 #endif /* TARGET_AARCH64 */
7495 static void define_pmu_regs(ARMCPU *cpu)
7498 * v7 performance monitor control register: same implementor
7499 * field as main ID register, and we implement four counters in
7500 * addition to the cycle count register.
7502 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7503 ARMCPRegInfo pmcr = {
7504 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7505 .access = PL0_RW,
7506 .fgt = FGT_PMCR_EL0,
7507 .type = ARM_CP_IO | ARM_CP_ALIAS,
7508 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7509 .accessfn = pmreg_access,
7510 .readfn = pmcr_read, .raw_readfn = raw_read,
7511 .writefn = pmcr_write, .raw_writefn = raw_write,
7513 ARMCPRegInfo pmcr64 = {
7514 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7515 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7516 .access = PL0_RW, .accessfn = pmreg_access,
7517 .fgt = FGT_PMCR_EL0,
7518 .type = ARM_CP_IO,
7519 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7520 .resetvalue = cpu->isar.reset_pmcr_el0,
7521 .readfn = pmcr_read, .raw_readfn = raw_read,
7522 .writefn = pmcr_write, .raw_writefn = raw_write,
7525 define_one_arm_cp_reg(cpu, &pmcr);
7526 define_one_arm_cp_reg(cpu, &pmcr64);
7527 for (i = 0; i < pmcrn; i++) {
7528 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7529 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7530 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7531 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7532 ARMCPRegInfo pmev_regs[] = {
7533 { .name = pmevcntr_name, .cp = 15, .crn = 14,
7534 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7535 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7536 .fgt = FGT_PMEVCNTRN_EL0,
7537 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7538 .accessfn = pmreg_access_xevcntr },
7539 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7540 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7541 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7542 .type = ARM_CP_IO,
7543 .fgt = FGT_PMEVCNTRN_EL0,
7544 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7545 .raw_readfn = pmevcntr_rawread,
7546 .raw_writefn = pmevcntr_rawwrite },
7547 { .name = pmevtyper_name, .cp = 15, .crn = 14,
7548 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7549 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7550 .fgt = FGT_PMEVTYPERN_EL0,
7551 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7552 .accessfn = pmreg_access },
7553 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7554 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7555 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7556 .fgt = FGT_PMEVTYPERN_EL0,
7557 .type = ARM_CP_IO,
7558 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7559 .raw_writefn = pmevtyper_rawwrite },
7561 define_arm_cp_regs(cpu, pmev_regs);
7562 g_free(pmevcntr_name);
7563 g_free(pmevcntr_el0_name);
7564 g_free(pmevtyper_name);
7565 g_free(pmevtyper_el0_name);
7567 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7568 ARMCPRegInfo v81_pmu_regs[] = {
7569 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7570 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7571 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7572 .fgt = FGT_PMCEIDN_EL0,
7573 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7574 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7575 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7576 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7577 .fgt = FGT_PMCEIDN_EL0,
7578 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7580 define_arm_cp_regs(cpu, v81_pmu_regs);
7582 if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7583 static const ARMCPRegInfo v84_pmmir = {
7584 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7585 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7586 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7587 .fgt = FGT_PMMIR_EL1,
7588 .resetvalue = 0
7590 define_one_arm_cp_reg(cpu, &v84_pmmir);
7594 #ifndef CONFIG_USER_ONLY
7596 * We don't know until after realize whether there's a GICv3
7597 * attached, and that is what registers the gicv3 sysregs.
7598 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7599 * at runtime.
7601 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7603 ARMCPU *cpu = env_archcpu(env);
7604 uint64_t pfr1 = cpu->isar.id_pfr1;
7606 if (env->gicv3state) {
7607 pfr1 |= 1 << 28;
7609 return pfr1;
7612 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7614 ARMCPU *cpu = env_archcpu(env);
7615 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7617 if (env->gicv3state) {
7618 pfr0 |= 1 << 24;
7620 return pfr0;
7622 #endif
7625 * Shared logic between LORID and the rest of the LOR* registers.
7626 * Secure state exclusion has already been dealt with.
7628 static CPAccessResult access_lor_ns(CPUARMState *env,
7629 const ARMCPRegInfo *ri, bool isread)
7631 int el = arm_current_el(env);
7633 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7634 return CP_ACCESS_TRAP_EL2;
7636 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7637 return CP_ACCESS_TRAP_EL3;
7639 return CP_ACCESS_OK;
7642 static CPAccessResult access_lor_other(CPUARMState *env,
7643 const ARMCPRegInfo *ri, bool isread)
7645 if (arm_is_secure_below_el3(env)) {
7646 /* Access denied in secure mode. */
7647 return CP_ACCESS_TRAP;
7649 return access_lor_ns(env, ri, isread);
7653 * A trivial implementation of ARMv8.1-LOR leaves all of these
7654 * registers fixed at 0, which indicates that there are zero
7655 * supported Limited Ordering regions.
7657 static const ARMCPRegInfo lor_reginfo[] = {
7658 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7659 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7660 .access = PL1_RW, .accessfn = access_lor_other,
7661 .fgt = FGT_LORSA_EL1,
7662 .type = ARM_CP_CONST, .resetvalue = 0 },
7663 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7664 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7665 .access = PL1_RW, .accessfn = access_lor_other,
7666 .fgt = FGT_LOREA_EL1,
7667 .type = ARM_CP_CONST, .resetvalue = 0 },
7668 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7669 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7670 .access = PL1_RW, .accessfn = access_lor_other,
7671 .fgt = FGT_LORN_EL1,
7672 .type = ARM_CP_CONST, .resetvalue = 0 },
7673 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7674 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7675 .access = PL1_RW, .accessfn = access_lor_other,
7676 .fgt = FGT_LORC_EL1,
7677 .type = ARM_CP_CONST, .resetvalue = 0 },
7678 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7679 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7680 .access = PL1_R, .accessfn = access_lor_ns,
7681 .fgt = FGT_LORID_EL1,
7682 .type = ARM_CP_CONST, .resetvalue = 0 },
7685 #ifdef TARGET_AARCH64
7686 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7687 bool isread)
7689 int el = arm_current_el(env);
7691 if (el < 2 &&
7692 arm_is_el2_enabled(env) &&
7693 !(arm_hcr_el2_eff(env) & HCR_APK)) {
7694 return CP_ACCESS_TRAP_EL2;
7696 if (el < 3 &&
7697 arm_feature(env, ARM_FEATURE_EL3) &&
7698 !(env->cp15.scr_el3 & SCR_APK)) {
7699 return CP_ACCESS_TRAP_EL3;
7701 return CP_ACCESS_OK;
7704 static const ARMCPRegInfo pauth_reginfo[] = {
7705 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7706 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7707 .access = PL1_RW, .accessfn = access_pauth,
7708 .fgt = FGT_APDAKEY,
7709 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7710 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7711 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7712 .access = PL1_RW, .accessfn = access_pauth,
7713 .fgt = FGT_APDAKEY,
7714 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7715 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7716 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7717 .access = PL1_RW, .accessfn = access_pauth,
7718 .fgt = FGT_APDBKEY,
7719 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7720 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7721 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7722 .access = PL1_RW, .accessfn = access_pauth,
7723 .fgt = FGT_APDBKEY,
7724 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7725 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7726 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7727 .access = PL1_RW, .accessfn = access_pauth,
7728 .fgt = FGT_APGAKEY,
7729 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7730 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7731 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7732 .access = PL1_RW, .accessfn = access_pauth,
7733 .fgt = FGT_APGAKEY,
7734 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7735 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7736 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7737 .access = PL1_RW, .accessfn = access_pauth,
7738 .fgt = FGT_APIAKEY,
7739 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7740 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7741 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7742 .access = PL1_RW, .accessfn = access_pauth,
7743 .fgt = FGT_APIAKEY,
7744 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7745 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7746 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7747 .access = PL1_RW, .accessfn = access_pauth,
7748 .fgt = FGT_APIBKEY,
7749 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7750 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7751 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7752 .access = PL1_RW, .accessfn = access_pauth,
7753 .fgt = FGT_APIBKEY,
7754 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7757 static const ARMCPRegInfo tlbirange_reginfo[] = {
7758 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7759 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7760 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7761 .fgt = FGT_TLBIRVAE1IS,
7762 .writefn = tlbi_aa64_rvae1is_write },
7763 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7764 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7765 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7766 .fgt = FGT_TLBIRVAAE1IS,
7767 .writefn = tlbi_aa64_rvae1is_write },
7768 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7769 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7770 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7771 .fgt = FGT_TLBIRVALE1IS,
7772 .writefn = tlbi_aa64_rvae1is_write },
7773 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7774 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7775 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7776 .fgt = FGT_TLBIRVAALE1IS,
7777 .writefn = tlbi_aa64_rvae1is_write },
7778 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7779 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7780 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7781 .fgt = FGT_TLBIRVAE1OS,
7782 .writefn = tlbi_aa64_rvae1is_write },
7783 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7784 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7785 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7786 .fgt = FGT_TLBIRVAAE1OS,
7787 .writefn = tlbi_aa64_rvae1is_write },
7788 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7789 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7790 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7791 .fgt = FGT_TLBIRVALE1OS,
7792 .writefn = tlbi_aa64_rvae1is_write },
7793 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7794 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7795 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7796 .fgt = FGT_TLBIRVAALE1OS,
7797 .writefn = tlbi_aa64_rvae1is_write },
7798 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7799 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7800 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7801 .fgt = FGT_TLBIRVAE1,
7802 .writefn = tlbi_aa64_rvae1_write },
7803 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7804 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7805 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7806 .fgt = FGT_TLBIRVAAE1,
7807 .writefn = tlbi_aa64_rvae1_write },
7808 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7809 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7810 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7811 .fgt = FGT_TLBIRVALE1,
7812 .writefn = tlbi_aa64_rvae1_write },
7813 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7814 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7815 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7816 .fgt = FGT_TLBIRVAALE1,
7817 .writefn = tlbi_aa64_rvae1_write },
7818 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7819 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7820 .access = PL2_W, .type = ARM_CP_NO_RAW,
7821 .writefn = tlbi_aa64_ripas2e1is_write },
7822 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7823 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7824 .access = PL2_W, .type = ARM_CP_NO_RAW,
7825 .writefn = tlbi_aa64_ripas2e1is_write },
7826 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7827 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7828 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7829 .writefn = tlbi_aa64_rvae2is_write },
7830 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7831 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7832 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7833 .writefn = tlbi_aa64_rvae2is_write },
7834 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7835 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7836 .access = PL2_W, .type = ARM_CP_NO_RAW,
7837 .writefn = tlbi_aa64_ripas2e1_write },
7838 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7839 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7840 .access = PL2_W, .type = ARM_CP_NO_RAW,
7841 .writefn = tlbi_aa64_ripas2e1_write },
7842 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7843 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7844 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7845 .writefn = tlbi_aa64_rvae2is_write },
7846 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7847 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7848 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7849 .writefn = tlbi_aa64_rvae2is_write },
7850 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7851 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7852 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7853 .writefn = tlbi_aa64_rvae2_write },
7854 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7855 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7856 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7857 .writefn = tlbi_aa64_rvae2_write },
7858 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7859 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7860 .access = PL3_W, .type = ARM_CP_NO_RAW,
7861 .writefn = tlbi_aa64_rvae3is_write },
7862 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7863 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7864 .access = PL3_W, .type = ARM_CP_NO_RAW,
7865 .writefn = tlbi_aa64_rvae3is_write },
7866 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7867 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7868 .access = PL3_W, .type = ARM_CP_NO_RAW,
7869 .writefn = tlbi_aa64_rvae3is_write },
7870 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7871 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7872 .access = PL3_W, .type = ARM_CP_NO_RAW,
7873 .writefn = tlbi_aa64_rvae3is_write },
7874 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7875 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7876 .access = PL3_W, .type = ARM_CP_NO_RAW,
7877 .writefn = tlbi_aa64_rvae3_write },
7878 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7879 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7880 .access = PL3_W, .type = ARM_CP_NO_RAW,
7881 .writefn = tlbi_aa64_rvae3_write },
7884 static const ARMCPRegInfo tlbios_reginfo[] = {
7885 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7886 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7887 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7888 .fgt = FGT_TLBIVMALLE1OS,
7889 .writefn = tlbi_aa64_vmalle1is_write },
7890 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7891 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7892 .fgt = FGT_TLBIVAE1OS,
7893 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7894 .writefn = tlbi_aa64_vae1is_write },
7895 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7896 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7897 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7898 .fgt = FGT_TLBIASIDE1OS,
7899 .writefn = tlbi_aa64_vmalle1is_write },
7900 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7901 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7902 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7903 .fgt = FGT_TLBIVAAE1OS,
7904 .writefn = tlbi_aa64_vae1is_write },
7905 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7906 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7907 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7908 .fgt = FGT_TLBIVALE1OS,
7909 .writefn = tlbi_aa64_vae1is_write },
7910 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7911 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7912 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7913 .fgt = FGT_TLBIVAALE1OS,
7914 .writefn = tlbi_aa64_vae1is_write },
7915 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7916 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7917 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7918 .writefn = tlbi_aa64_alle2is_write },
7919 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7920 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7921 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7922 .writefn = tlbi_aa64_vae2is_write },
7923 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7924 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7925 .access = PL2_W, .type = ARM_CP_NO_RAW,
7926 .writefn = tlbi_aa64_alle1is_write },
7927 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7928 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7929 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7930 .writefn = tlbi_aa64_vae2is_write },
7931 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7932 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7933 .access = PL2_W, .type = ARM_CP_NO_RAW,
7934 .writefn = tlbi_aa64_alle1is_write },
7935 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7936 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7937 .access = PL2_W, .type = ARM_CP_NOP },
7938 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7939 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7940 .access = PL2_W, .type = ARM_CP_NOP },
7941 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7942 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7943 .access = PL2_W, .type = ARM_CP_NOP },
7944 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7945 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7946 .access = PL2_W, .type = ARM_CP_NOP },
7947 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7948 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7949 .access = PL3_W, .type = ARM_CP_NO_RAW,
7950 .writefn = tlbi_aa64_alle3is_write },
7951 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7952 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7953 .access = PL3_W, .type = ARM_CP_NO_RAW,
7954 .writefn = tlbi_aa64_vae3is_write },
7955 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7956 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7957 .access = PL3_W, .type = ARM_CP_NO_RAW,
7958 .writefn = tlbi_aa64_vae3is_write },
7961 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7963 Error *err = NULL;
7964 uint64_t ret;
7966 /* Success sets NZCV = 0000. */
7967 env->NF = env->CF = env->VF = 0, env->ZF = 1;
7969 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7971 * ??? Failed, for unknown reasons in the crypto subsystem.
7972 * The best we can do is log the reason and return the
7973 * timed-out indication to the guest. There is no reason
7974 * we know to expect this failure to be transitory, so the
7975 * guest may well hang retrying the operation.
7977 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7978 ri->name, error_get_pretty(err));
7979 error_free(err);
7981 env->ZF = 0; /* NZCF = 0100 */
7982 return 0;
7984 return ret;
7987 /* We do not support re-seeding, so the two registers operate the same. */
7988 static const ARMCPRegInfo rndr_reginfo[] = {
7989 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7990 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7991 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7992 .access = PL0_R, .readfn = rndr_readfn },
7993 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7994 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7995 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7996 .access = PL0_R, .readfn = rndr_readfn },
7999 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
8000 uint64_t value)
8002 #ifdef CONFIG_TCG
8003 ARMCPU *cpu = env_archcpu(env);
8004 /* CTR_EL0 System register -> DminLine, bits [19:16] */
8005 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
8006 uint64_t vaddr_in = (uint64_t) value;
8007 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
8008 void *haddr;
8009 int mem_idx = arm_env_mmu_index(env);
8011 /* This won't be crossing page boundaries */
8012 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
8013 if (haddr) {
8014 #ifndef CONFIG_USER_ONLY
8016 ram_addr_t offset;
8017 MemoryRegion *mr;
8019 /* RCU lock is already being held */
8020 mr = memory_region_from_host(haddr, &offset);
8022 if (mr) {
8023 memory_region_writeback(mr, offset, dline_size);
8025 #endif /*CONFIG_USER_ONLY*/
8027 #else
8028 /* Handled by hardware accelerator. */
8029 g_assert_not_reached();
8030 #endif /* CONFIG_TCG */
8033 static const ARMCPRegInfo dcpop_reg[] = {
8034 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
8035 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
8036 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
8037 .fgt = FGT_DCCVAP,
8038 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
8041 static const ARMCPRegInfo dcpodp_reg[] = {
8042 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
8043 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
8044 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
8045 .fgt = FGT_DCCVADP,
8046 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
8049 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
8050 bool isread)
8052 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
8053 return CP_ACCESS_TRAP_EL2;
8056 return CP_ACCESS_OK;
8059 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
8060 bool isread)
8062 int el = arm_current_el(env);
8063 if (el < 2 && arm_is_el2_enabled(env)) {
8064 uint64_t hcr = arm_hcr_el2_eff(env);
8065 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
8066 return CP_ACCESS_TRAP_EL2;
8069 if (el < 3 &&
8070 arm_feature(env, ARM_FEATURE_EL3) &&
8071 !(env->cp15.scr_el3 & SCR_ATA)) {
8072 return CP_ACCESS_TRAP_EL3;
8074 return CP_ACCESS_OK;
8077 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri,
8078 bool isread)
8080 CPAccessResult nv1 = access_nv1(env, ri, isread);
8082 if (nv1 != CP_ACCESS_OK) {
8083 return nv1;
8085 return access_mte(env, ri, isread);
8088 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri,
8089 bool isread)
8092 * TFSR_EL2: similar to generic access_mte(), but we need to
8093 * account for FEAT_NV. At EL1 this must be a FEAT_NV access;
8094 * if NV2 is enabled then we will redirect this to TFSR_EL1
8095 * after doing the HCR and SCR ATA traps; otherwise this will
8096 * be a trap to EL2 and the HCR/SCR traps do not apply.
8098 int el = arm_current_el(env);
8100 if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) {
8101 return CP_ACCESS_OK;
8103 if (el < 2 && arm_is_el2_enabled(env)) {
8104 uint64_t hcr = arm_hcr_el2_eff(env);
8105 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
8106 return CP_ACCESS_TRAP_EL2;
8109 if (el < 3 &&
8110 arm_feature(env, ARM_FEATURE_EL3) &&
8111 !(env->cp15.scr_el3 & SCR_ATA)) {
8112 return CP_ACCESS_TRAP_EL3;
8114 return CP_ACCESS_OK;
8117 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
8119 return env->pstate & PSTATE_TCO;
8122 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
8124 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
8127 static const ARMCPRegInfo mte_reginfo[] = {
8128 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
8129 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
8130 .access = PL1_RW, .accessfn = access_mte,
8131 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
8132 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
8133 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
8134 .access = PL1_RW, .accessfn = access_tfsr_el1,
8135 .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1,
8136 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
8137 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
8138 .type = ARM_CP_NV2_REDIRECT,
8139 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
8140 .access = PL2_RW, .accessfn = access_tfsr_el2,
8141 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
8142 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
8143 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
8144 .access = PL3_RW,
8145 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
8146 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
8147 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
8148 .access = PL1_RW, .accessfn = access_mte,
8149 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
8150 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
8151 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
8152 .access = PL1_RW, .accessfn = access_mte,
8153 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
8154 { .name = "TCO", .state = ARM_CP_STATE_AA64,
8155 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
8156 .type = ARM_CP_NO_RAW,
8157 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
8158 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
8159 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
8160 .type = ARM_CP_NOP, .access = PL1_W,
8161 .fgt = FGT_DCIVAC,
8162 .accessfn = aa64_cacheop_poc_access },
8163 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
8164 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
8165 .fgt = FGT_DCISW,
8166 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8167 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
8168 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
8169 .type = ARM_CP_NOP, .access = PL1_W,
8170 .fgt = FGT_DCIVAC,
8171 .accessfn = aa64_cacheop_poc_access },
8172 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
8173 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
8174 .fgt = FGT_DCISW,
8175 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8176 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
8177 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
8178 .fgt = FGT_DCCSW,
8179 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8180 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
8181 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
8182 .fgt = FGT_DCCSW,
8183 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8184 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
8185 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
8186 .fgt = FGT_DCCISW,
8187 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8188 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
8189 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
8190 .fgt = FGT_DCCISW,
8191 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8194 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
8195 { .name = "TCO", .state = ARM_CP_STATE_AA64,
8196 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
8197 .type = ARM_CP_CONST, .access = PL0_RW, },
8200 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
8201 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
8202 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
8203 .type = ARM_CP_NOP, .access = PL0_W,
8204 .fgt = FGT_DCCVAC,
8205 .accessfn = aa64_cacheop_poc_access },
8206 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
8207 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
8208 .type = ARM_CP_NOP, .access = PL0_W,
8209 .fgt = FGT_DCCVAC,
8210 .accessfn = aa64_cacheop_poc_access },
8211 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
8212 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
8213 .type = ARM_CP_NOP, .access = PL0_W,
8214 .fgt = FGT_DCCVAP,
8215 .accessfn = aa64_cacheop_poc_access },
8216 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
8217 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
8218 .type = ARM_CP_NOP, .access = PL0_W,
8219 .fgt = FGT_DCCVAP,
8220 .accessfn = aa64_cacheop_poc_access },
8221 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
8222 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
8223 .type = ARM_CP_NOP, .access = PL0_W,
8224 .fgt = FGT_DCCVADP,
8225 .accessfn = aa64_cacheop_poc_access },
8226 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
8227 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
8228 .type = ARM_CP_NOP, .access = PL0_W,
8229 .fgt = FGT_DCCVADP,
8230 .accessfn = aa64_cacheop_poc_access },
8231 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
8232 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
8233 .type = ARM_CP_NOP, .access = PL0_W,
8234 .fgt = FGT_DCCIVAC,
8235 .accessfn = aa64_cacheop_poc_access },
8236 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
8237 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
8238 .type = ARM_CP_NOP, .access = PL0_W,
8239 .fgt = FGT_DCCIVAC,
8240 .accessfn = aa64_cacheop_poc_access },
8241 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
8242 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
8243 .access = PL0_W, .type = ARM_CP_DC_GVA,
8244 #ifndef CONFIG_USER_ONLY
8245 /* Avoid overhead of an access check that always passes in user-mode */
8246 .accessfn = aa64_zva_access,
8247 .fgt = FGT_DCZVA,
8248 #endif
8250 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
8251 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
8252 .access = PL0_W, .type = ARM_CP_DC_GZVA,
8253 #ifndef CONFIG_USER_ONLY
8254 /* Avoid overhead of an access check that always passes in user-mode */
8255 .accessfn = aa64_zva_access,
8256 .fgt = FGT_DCZVA,
8257 #endif
8261 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
8262 bool isread)
8264 uint64_t hcr = arm_hcr_el2_eff(env);
8265 int el = arm_current_el(env);
8267 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
8268 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
8269 if (hcr & HCR_TGE) {
8270 return CP_ACCESS_TRAP_EL2;
8272 return CP_ACCESS_TRAP;
8274 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
8275 return CP_ACCESS_TRAP_EL2;
8277 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
8278 return CP_ACCESS_TRAP_EL2;
8280 if (el < 3
8281 && arm_feature(env, ARM_FEATURE_EL3)
8282 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
8283 return CP_ACCESS_TRAP_EL3;
8285 return CP_ACCESS_OK;
8288 static CPAccessResult access_scxtnum_el1(CPUARMState *env,
8289 const ARMCPRegInfo *ri,
8290 bool isread)
8292 CPAccessResult nv1 = access_nv1(env, ri, isread);
8294 if (nv1 != CP_ACCESS_OK) {
8295 return nv1;
8297 return access_scxtnum(env, ri, isread);
8300 static const ARMCPRegInfo scxtnum_reginfo[] = {
8301 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
8302 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
8303 .access = PL0_RW, .accessfn = access_scxtnum,
8304 .fgt = FGT_SCXTNUM_EL0,
8305 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
8306 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
8307 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
8308 .access = PL1_RW, .accessfn = access_scxtnum_el1,
8309 .fgt = FGT_SCXTNUM_EL1,
8310 .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1,
8311 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
8312 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
8313 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
8314 .access = PL2_RW, .accessfn = access_scxtnum,
8315 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
8316 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
8317 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
8318 .access = PL3_RW,
8319 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
8322 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
8323 bool isread)
8325 if (arm_current_el(env) == 2 &&
8326 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
8327 return CP_ACCESS_TRAP_EL3;
8329 return CP_ACCESS_OK;
8332 static const ARMCPRegInfo fgt_reginfo[] = {
8333 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8334 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
8335 .nv2_redirect_offset = 0x1b8,
8336 .access = PL2_RW, .accessfn = access_fgt,
8337 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
8338 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8339 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
8340 .nv2_redirect_offset = 0x1c0,
8341 .access = PL2_RW, .accessfn = access_fgt,
8342 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
8343 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8344 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
8345 .nv2_redirect_offset = 0x1d0,
8346 .access = PL2_RW, .accessfn = access_fgt,
8347 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
8348 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8349 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
8350 .nv2_redirect_offset = 0x1d8,
8351 .access = PL2_RW, .accessfn = access_fgt,
8352 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
8353 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
8354 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
8355 .nv2_redirect_offset = 0x1c8,
8356 .access = PL2_RW, .accessfn = access_fgt,
8357 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
8360 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri,
8361 uint64_t value)
8364 * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee
8365 * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything
8366 * about the RESS bits at the top -- we choose the "generate an EL2
8367 * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let
8368 * the ptw.c code detect the resulting invalid address).
8370 env->cp15.vncr_el2 = value & ~0xfffULL;
8373 static const ARMCPRegInfo nv2_reginfo[] = {
8374 { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64,
8375 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0,
8376 .access = PL2_RW,
8377 .writefn = vncr_write,
8378 .nv2_redirect_offset = 0xb0,
8379 .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) },
8382 #endif /* TARGET_AARCH64 */
8384 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
8385 bool isread)
8387 int el = arm_current_el(env);
8389 if (el == 0) {
8390 uint64_t sctlr = arm_sctlr(env, el);
8391 if (!(sctlr & SCTLR_EnRCTX)) {
8392 return CP_ACCESS_TRAP;
8394 } else if (el == 1) {
8395 uint64_t hcr = arm_hcr_el2_eff(env);
8396 if (hcr & HCR_NV) {
8397 return CP_ACCESS_TRAP_EL2;
8400 return CP_ACCESS_OK;
8403 static const ARMCPRegInfo predinv_reginfo[] = {
8404 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
8405 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
8406 .fgt = FGT_CFPRCTX,
8407 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8408 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
8409 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
8410 .fgt = FGT_DVPRCTX,
8411 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8412 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
8413 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
8414 .fgt = FGT_CPPRCTX,
8415 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8417 * Note the AArch32 opcodes have a different OPC1.
8419 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
8420 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
8421 .fgt = FGT_CFPRCTX,
8422 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8423 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
8424 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
8425 .fgt = FGT_DVPRCTX,
8426 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8427 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
8428 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
8429 .fgt = FGT_CPPRCTX,
8430 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8433 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
8435 /* Read the high 32 bits of the current CCSIDR */
8436 return extract64(ccsidr_read(env, ri), 32, 32);
8439 static const ARMCPRegInfo ccsidr2_reginfo[] = {
8440 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
8441 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
8442 .access = PL1_R,
8443 .accessfn = access_tid4,
8444 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
8447 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8448 bool isread)
8450 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
8451 return CP_ACCESS_TRAP_EL2;
8454 return CP_ACCESS_OK;
8457 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8458 bool isread)
8460 if (arm_feature(env, ARM_FEATURE_V8)) {
8461 return access_aa64_tid3(env, ri, isread);
8464 return CP_ACCESS_OK;
8467 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
8468 bool isread)
8470 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
8471 return CP_ACCESS_TRAP_EL2;
8474 return CP_ACCESS_OK;
8477 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
8478 const ARMCPRegInfo *ri, bool isread)
8481 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
8482 * in v7A, not in v8A.
8484 if (!arm_feature(env, ARM_FEATURE_V8) &&
8485 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
8486 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
8487 return CP_ACCESS_TRAP_EL2;
8489 return CP_ACCESS_OK;
8492 static const ARMCPRegInfo jazelle_regs[] = {
8493 { .name = "JIDR",
8494 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
8495 .access = PL1_R, .accessfn = access_jazelle,
8496 .type = ARM_CP_CONST, .resetvalue = 0 },
8497 { .name = "JOSCR",
8498 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8499 .accessfn = access_joscr_jmcr,
8500 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8501 { .name = "JMCR",
8502 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8503 .accessfn = access_joscr_jmcr,
8504 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8507 static const ARMCPRegInfo contextidr_el2 = {
8508 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
8509 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
8510 .access = PL2_RW,
8511 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
8514 static const ARMCPRegInfo vhe_reginfo[] = {
8515 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
8516 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
8517 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
8518 .raw_writefn = raw_write,
8519 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8520 #ifndef CONFIG_USER_ONLY
8521 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
8522 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
8523 .fieldoffset =
8524 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
8525 .type = ARM_CP_IO, .access = PL2_RW,
8526 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
8527 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
8528 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
8529 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
8530 .resetfn = gt_hv_timer_reset,
8531 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
8532 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
8533 .type = ARM_CP_IO,
8534 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
8535 .access = PL2_RW,
8536 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
8537 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
8538 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
8539 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
8540 .type = ARM_CP_IO | ARM_CP_ALIAS,
8541 .access = PL2_RW, .accessfn = access_el1nvpct,
8542 .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1,
8543 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
8544 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
8545 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8546 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8547 .type = ARM_CP_IO | ARM_CP_ALIAS,
8548 .access = PL2_RW, .accessfn = access_el1nvvct,
8549 .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1,
8550 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8551 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8552 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8553 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8554 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8555 .access = PL2_RW, .accessfn = e2h_access,
8556 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8557 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8558 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8559 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8560 .access = PL2_RW, .accessfn = e2h_access,
8561 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8562 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8563 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8564 .type = ARM_CP_IO | ARM_CP_ALIAS,
8565 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8566 .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1,
8567 .access = PL2_RW, .accessfn = access_el1nvpct,
8568 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8569 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8570 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8571 .type = ARM_CP_IO | ARM_CP_ALIAS,
8572 .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1,
8573 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8574 .access = PL2_RW, .accessfn = access_el1nvvct,
8575 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8576 #endif
8579 #ifndef CONFIG_USER_ONLY
8580 static const ARMCPRegInfo ats1e1_reginfo[] = {
8581 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
8582 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8583 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8584 .fgt = FGT_ATS1E1RP,
8585 .accessfn = at_s1e01_access, .writefn = ats_write64 },
8586 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
8587 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8588 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8589 .fgt = FGT_ATS1E1WP,
8590 .accessfn = at_s1e01_access, .writefn = ats_write64 },
8593 static const ARMCPRegInfo ats1cp_reginfo[] = {
8594 { .name = "ATS1CPRP",
8595 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8596 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8597 .writefn = ats_write },
8598 { .name = "ATS1CPWP",
8599 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8600 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8601 .writefn = ats_write },
8603 #endif
8606 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8607 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8608 * is non-zero, which is never for ARMv7, optionally in ARMv8
8609 * and mandatorily for ARMv8.2 and up.
8610 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8611 * implementation is RAZ/WI we can ignore this detail, as we
8612 * do for ACTLR.
8614 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8615 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8616 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8617 .access = PL1_RW, .accessfn = access_tacr,
8618 .type = ARM_CP_CONST, .resetvalue = 0 },
8619 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8620 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8621 .access = PL2_RW, .type = ARM_CP_CONST,
8622 .resetvalue = 0 },
8625 void register_cp_regs_for_features(ARMCPU *cpu)
8627 /* Register all the coprocessor registers based on feature bits */
8628 CPUARMState *env = &cpu->env;
8629 if (arm_feature(env, ARM_FEATURE_M)) {
8630 /* M profile has no coprocessor registers */
8631 return;
8634 define_arm_cp_regs(cpu, cp_reginfo);
8635 if (!arm_feature(env, ARM_FEATURE_V8)) {
8637 * Must go early as it is full of wildcards that may be
8638 * overridden by later definitions.
8640 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8643 if (arm_feature(env, ARM_FEATURE_V6)) {
8644 /* The ID registers all have impdef reset values */
8645 ARMCPRegInfo v6_idregs[] = {
8646 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8647 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8648 .access = PL1_R, .type = ARM_CP_CONST,
8649 .accessfn = access_aa32_tid3,
8650 .resetvalue = cpu->isar.id_pfr0 },
8652 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8653 * the value of the GIC field until after we define these regs.
8655 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8656 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8657 .access = PL1_R, .type = ARM_CP_NO_RAW,
8658 .accessfn = access_aa32_tid3,
8659 #ifdef CONFIG_USER_ONLY
8660 .type = ARM_CP_CONST,
8661 .resetvalue = cpu->isar.id_pfr1,
8662 #else
8663 .type = ARM_CP_NO_RAW,
8664 .accessfn = access_aa32_tid3,
8665 .readfn = id_pfr1_read,
8666 .writefn = arm_cp_write_ignore
8667 #endif
8669 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8670 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8671 .access = PL1_R, .type = ARM_CP_CONST,
8672 .accessfn = access_aa32_tid3,
8673 .resetvalue = cpu->isar.id_dfr0 },
8674 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8675 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8676 .access = PL1_R, .type = ARM_CP_CONST,
8677 .accessfn = access_aa32_tid3,
8678 .resetvalue = cpu->id_afr0 },
8679 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8680 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8681 .access = PL1_R, .type = ARM_CP_CONST,
8682 .accessfn = access_aa32_tid3,
8683 .resetvalue = cpu->isar.id_mmfr0 },
8684 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8685 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8686 .access = PL1_R, .type = ARM_CP_CONST,
8687 .accessfn = access_aa32_tid3,
8688 .resetvalue = cpu->isar.id_mmfr1 },
8689 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8690 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8691 .access = PL1_R, .type = ARM_CP_CONST,
8692 .accessfn = access_aa32_tid3,
8693 .resetvalue = cpu->isar.id_mmfr2 },
8694 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8695 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8696 .access = PL1_R, .type = ARM_CP_CONST,
8697 .accessfn = access_aa32_tid3,
8698 .resetvalue = cpu->isar.id_mmfr3 },
8699 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8700 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8701 .access = PL1_R, .type = ARM_CP_CONST,
8702 .accessfn = access_aa32_tid3,
8703 .resetvalue = cpu->isar.id_isar0 },
8704 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8705 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8706 .access = PL1_R, .type = ARM_CP_CONST,
8707 .accessfn = access_aa32_tid3,
8708 .resetvalue = cpu->isar.id_isar1 },
8709 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8710 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8711 .access = PL1_R, .type = ARM_CP_CONST,
8712 .accessfn = access_aa32_tid3,
8713 .resetvalue = cpu->isar.id_isar2 },
8714 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8715 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8716 .access = PL1_R, .type = ARM_CP_CONST,
8717 .accessfn = access_aa32_tid3,
8718 .resetvalue = cpu->isar.id_isar3 },
8719 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8720 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8721 .access = PL1_R, .type = ARM_CP_CONST,
8722 .accessfn = access_aa32_tid3,
8723 .resetvalue = cpu->isar.id_isar4 },
8724 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8725 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8726 .access = PL1_R, .type = ARM_CP_CONST,
8727 .accessfn = access_aa32_tid3,
8728 .resetvalue = cpu->isar.id_isar5 },
8729 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8730 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8731 .access = PL1_R, .type = ARM_CP_CONST,
8732 .accessfn = access_aa32_tid3,
8733 .resetvalue = cpu->isar.id_mmfr4 },
8734 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8735 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8736 .access = PL1_R, .type = ARM_CP_CONST,
8737 .accessfn = access_aa32_tid3,
8738 .resetvalue = cpu->isar.id_isar6 },
8740 define_arm_cp_regs(cpu, v6_idregs);
8741 define_arm_cp_regs(cpu, v6_cp_reginfo);
8742 } else {
8743 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8745 if (arm_feature(env, ARM_FEATURE_V6K)) {
8746 define_arm_cp_regs(cpu, v6k_cp_reginfo);
8748 if (arm_feature(env, ARM_FEATURE_V7MP) &&
8749 !arm_feature(env, ARM_FEATURE_PMSA)) {
8750 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8752 if (arm_feature(env, ARM_FEATURE_V7VE)) {
8753 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8755 if (arm_feature(env, ARM_FEATURE_V7)) {
8756 ARMCPRegInfo clidr = {
8757 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8758 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8759 .access = PL1_R, .type = ARM_CP_CONST,
8760 .accessfn = access_tid4,
8761 .fgt = FGT_CLIDR_EL1,
8762 .resetvalue = cpu->clidr
8764 define_one_arm_cp_reg(cpu, &clidr);
8765 define_arm_cp_regs(cpu, v7_cp_reginfo);
8766 define_debug_regs(cpu);
8767 define_pmu_regs(cpu);
8768 } else {
8769 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8771 if (arm_feature(env, ARM_FEATURE_V8)) {
8773 * v8 ID registers, which all have impdef reset values.
8774 * Note that within the ID register ranges the unused slots
8775 * must all RAZ, not UNDEF; future architecture versions may
8776 * define new registers here.
8777 * ID registers which are AArch64 views of the AArch32 ID registers
8778 * which already existed in v6 and v7 are handled elsewhere,
8779 * in v6_idregs[].
8781 int i;
8782 ARMCPRegInfo v8_idregs[] = {
8784 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8785 * emulation because we don't know the right value for the
8786 * GIC field until after we define these regs.
8788 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8789 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8790 .access = PL1_R,
8791 #ifdef CONFIG_USER_ONLY
8792 .type = ARM_CP_CONST,
8793 .resetvalue = cpu->isar.id_aa64pfr0
8794 #else
8795 .type = ARM_CP_NO_RAW,
8796 .accessfn = access_aa64_tid3,
8797 .readfn = id_aa64pfr0_read,
8798 .writefn = arm_cp_write_ignore
8799 #endif
8801 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8802 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8803 .access = PL1_R, .type = ARM_CP_CONST,
8804 .accessfn = access_aa64_tid3,
8805 .resetvalue = cpu->isar.id_aa64pfr1},
8806 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8807 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8808 .access = PL1_R, .type = ARM_CP_CONST,
8809 .accessfn = access_aa64_tid3,
8810 .resetvalue = 0 },
8811 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8812 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8813 .access = PL1_R, .type = ARM_CP_CONST,
8814 .accessfn = access_aa64_tid3,
8815 .resetvalue = 0 },
8816 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8817 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8818 .access = PL1_R, .type = ARM_CP_CONST,
8819 .accessfn = access_aa64_tid3,
8820 .resetvalue = cpu->isar.id_aa64zfr0 },
8821 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8822 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8823 .access = PL1_R, .type = ARM_CP_CONST,
8824 .accessfn = access_aa64_tid3,
8825 .resetvalue = cpu->isar.id_aa64smfr0 },
8826 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8827 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8828 .access = PL1_R, .type = ARM_CP_CONST,
8829 .accessfn = access_aa64_tid3,
8830 .resetvalue = 0 },
8831 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8832 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8833 .access = PL1_R, .type = ARM_CP_CONST,
8834 .accessfn = access_aa64_tid3,
8835 .resetvalue = 0 },
8836 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8837 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8838 .access = PL1_R, .type = ARM_CP_CONST,
8839 .accessfn = access_aa64_tid3,
8840 .resetvalue = cpu->isar.id_aa64dfr0 },
8841 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8842 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8843 .access = PL1_R, .type = ARM_CP_CONST,
8844 .accessfn = access_aa64_tid3,
8845 .resetvalue = cpu->isar.id_aa64dfr1 },
8846 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8847 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8848 .access = PL1_R, .type = ARM_CP_CONST,
8849 .accessfn = access_aa64_tid3,
8850 .resetvalue = 0 },
8851 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8852 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8853 .access = PL1_R, .type = ARM_CP_CONST,
8854 .accessfn = access_aa64_tid3,
8855 .resetvalue = 0 },
8856 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8857 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8858 .access = PL1_R, .type = ARM_CP_CONST,
8859 .accessfn = access_aa64_tid3,
8860 .resetvalue = cpu->id_aa64afr0 },
8861 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8862 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8863 .access = PL1_R, .type = ARM_CP_CONST,
8864 .accessfn = access_aa64_tid3,
8865 .resetvalue = cpu->id_aa64afr1 },
8866 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8867 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8868 .access = PL1_R, .type = ARM_CP_CONST,
8869 .accessfn = access_aa64_tid3,
8870 .resetvalue = 0 },
8871 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8872 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8873 .access = PL1_R, .type = ARM_CP_CONST,
8874 .accessfn = access_aa64_tid3,
8875 .resetvalue = 0 },
8876 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8877 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8878 .access = PL1_R, .type = ARM_CP_CONST,
8879 .accessfn = access_aa64_tid3,
8880 .resetvalue = cpu->isar.id_aa64isar0 },
8881 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8882 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8883 .access = PL1_R, .type = ARM_CP_CONST,
8884 .accessfn = access_aa64_tid3,
8885 .resetvalue = cpu->isar.id_aa64isar1 },
8886 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
8887 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8888 .access = PL1_R, .type = ARM_CP_CONST,
8889 .accessfn = access_aa64_tid3,
8890 .resetvalue = cpu->isar.id_aa64isar2 },
8891 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8892 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8893 .access = PL1_R, .type = ARM_CP_CONST,
8894 .accessfn = access_aa64_tid3,
8895 .resetvalue = 0 },
8896 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8897 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8898 .access = PL1_R, .type = ARM_CP_CONST,
8899 .accessfn = access_aa64_tid3,
8900 .resetvalue = 0 },
8901 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8902 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8903 .access = PL1_R, .type = ARM_CP_CONST,
8904 .accessfn = access_aa64_tid3,
8905 .resetvalue = 0 },
8906 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8907 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8908 .access = PL1_R, .type = ARM_CP_CONST,
8909 .accessfn = access_aa64_tid3,
8910 .resetvalue = 0 },
8911 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8912 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8913 .access = PL1_R, .type = ARM_CP_CONST,
8914 .accessfn = access_aa64_tid3,
8915 .resetvalue = 0 },
8916 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8917 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8918 .access = PL1_R, .type = ARM_CP_CONST,
8919 .accessfn = access_aa64_tid3,
8920 .resetvalue = cpu->isar.id_aa64mmfr0 },
8921 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8922 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8923 .access = PL1_R, .type = ARM_CP_CONST,
8924 .accessfn = access_aa64_tid3,
8925 .resetvalue = cpu->isar.id_aa64mmfr1 },
8926 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8927 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8928 .access = PL1_R, .type = ARM_CP_CONST,
8929 .accessfn = access_aa64_tid3,
8930 .resetvalue = cpu->isar.id_aa64mmfr2 },
8931 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8932 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8933 .access = PL1_R, .type = ARM_CP_CONST,
8934 .accessfn = access_aa64_tid3,
8935 .resetvalue = 0 },
8936 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8937 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8938 .access = PL1_R, .type = ARM_CP_CONST,
8939 .accessfn = access_aa64_tid3,
8940 .resetvalue = 0 },
8941 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8942 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8943 .access = PL1_R, .type = ARM_CP_CONST,
8944 .accessfn = access_aa64_tid3,
8945 .resetvalue = 0 },
8946 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8947 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8948 .access = PL1_R, .type = ARM_CP_CONST,
8949 .accessfn = access_aa64_tid3,
8950 .resetvalue = 0 },
8951 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8952 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8953 .access = PL1_R, .type = ARM_CP_CONST,
8954 .accessfn = access_aa64_tid3,
8955 .resetvalue = 0 },
8956 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8957 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8958 .access = PL1_R, .type = ARM_CP_CONST,
8959 .accessfn = access_aa64_tid3,
8960 .resetvalue = cpu->isar.mvfr0 },
8961 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8962 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8963 .access = PL1_R, .type = ARM_CP_CONST,
8964 .accessfn = access_aa64_tid3,
8965 .resetvalue = cpu->isar.mvfr1 },
8966 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8967 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8968 .access = PL1_R, .type = ARM_CP_CONST,
8969 .accessfn = access_aa64_tid3,
8970 .resetvalue = cpu->isar.mvfr2 },
8972 * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8973 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8974 * as RAZ, since it is in the "reserved for future ID
8975 * registers, RAZ" part of the AArch32 encoding space.
8977 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8978 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8979 .access = PL1_R, .type = ARM_CP_CONST,
8980 .accessfn = access_aa64_tid3,
8981 .resetvalue = 0 },
8982 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8983 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8984 .access = PL1_R, .type = ARM_CP_CONST,
8985 .accessfn = access_aa64_tid3,
8986 .resetvalue = 0 },
8987 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8988 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8989 .access = PL1_R, .type = ARM_CP_CONST,
8990 .accessfn = access_aa64_tid3,
8991 .resetvalue = 0 },
8993 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8994 * they're also RAZ for AArch64, and in v8 are gradually
8995 * being filled with AArch64-view-of-AArch32-ID-register
8996 * for new ID registers.
8998 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8999 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
9000 .access = PL1_R, .type = ARM_CP_CONST,
9001 .accessfn = access_aa64_tid3,
9002 .resetvalue = 0 },
9003 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
9004 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
9005 .access = PL1_R, .type = ARM_CP_CONST,
9006 .accessfn = access_aa64_tid3,
9007 .resetvalue = cpu->isar.id_pfr2 },
9008 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
9009 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
9010 .access = PL1_R, .type = ARM_CP_CONST,
9011 .accessfn = access_aa64_tid3,
9012 .resetvalue = cpu->isar.id_dfr1 },
9013 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
9014 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
9015 .access = PL1_R, .type = ARM_CP_CONST,
9016 .accessfn = access_aa64_tid3,
9017 .resetvalue = cpu->isar.id_mmfr5 },
9018 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
9019 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
9020 .access = PL1_R, .type = ARM_CP_CONST,
9021 .accessfn = access_aa64_tid3,
9022 .resetvalue = 0 },
9023 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
9024 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
9025 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9026 .fgt = FGT_PMCEIDN_EL0,
9027 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
9028 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
9029 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
9030 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9031 .fgt = FGT_PMCEIDN_EL0,
9032 .resetvalue = cpu->pmceid0 },
9033 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
9034 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
9035 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9036 .fgt = FGT_PMCEIDN_EL0,
9037 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
9038 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
9039 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
9040 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9041 .fgt = FGT_PMCEIDN_EL0,
9042 .resetvalue = cpu->pmceid1 },
9044 #ifdef CONFIG_USER_ONLY
9045 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
9046 { .name = "ID_AA64PFR0_EL1",
9047 .exported_bits = R_ID_AA64PFR0_FP_MASK |
9048 R_ID_AA64PFR0_ADVSIMD_MASK |
9049 R_ID_AA64PFR0_SVE_MASK |
9050 R_ID_AA64PFR0_DIT_MASK,
9051 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
9052 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
9053 { .name = "ID_AA64PFR1_EL1",
9054 .exported_bits = R_ID_AA64PFR1_BT_MASK |
9055 R_ID_AA64PFR1_SSBS_MASK |
9056 R_ID_AA64PFR1_MTE_MASK |
9057 R_ID_AA64PFR1_SME_MASK },
9058 { .name = "ID_AA64PFR*_EL1_RESERVED",
9059 .is_glob = true },
9060 { .name = "ID_AA64ZFR0_EL1",
9061 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
9062 R_ID_AA64ZFR0_AES_MASK |
9063 R_ID_AA64ZFR0_BITPERM_MASK |
9064 R_ID_AA64ZFR0_BFLOAT16_MASK |
9065 R_ID_AA64ZFR0_B16B16_MASK |
9066 R_ID_AA64ZFR0_SHA3_MASK |
9067 R_ID_AA64ZFR0_SM4_MASK |
9068 R_ID_AA64ZFR0_I8MM_MASK |
9069 R_ID_AA64ZFR0_F32MM_MASK |
9070 R_ID_AA64ZFR0_F64MM_MASK },
9071 { .name = "ID_AA64SMFR0_EL1",
9072 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
9073 R_ID_AA64SMFR0_BI32I32_MASK |
9074 R_ID_AA64SMFR0_B16F32_MASK |
9075 R_ID_AA64SMFR0_F16F32_MASK |
9076 R_ID_AA64SMFR0_I8I32_MASK |
9077 R_ID_AA64SMFR0_F16F16_MASK |
9078 R_ID_AA64SMFR0_B16B16_MASK |
9079 R_ID_AA64SMFR0_I16I32_MASK |
9080 R_ID_AA64SMFR0_F64F64_MASK |
9081 R_ID_AA64SMFR0_I16I64_MASK |
9082 R_ID_AA64SMFR0_SMEVER_MASK |
9083 R_ID_AA64SMFR0_FA64_MASK },
9084 { .name = "ID_AA64MMFR0_EL1",
9085 .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
9086 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
9087 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
9088 { .name = "ID_AA64MMFR1_EL1",
9089 .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
9090 { .name = "ID_AA64MMFR2_EL1",
9091 .exported_bits = R_ID_AA64MMFR2_AT_MASK },
9092 { .name = "ID_AA64MMFR*_EL1_RESERVED",
9093 .is_glob = true },
9094 { .name = "ID_AA64DFR0_EL1",
9095 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
9096 { .name = "ID_AA64DFR1_EL1" },
9097 { .name = "ID_AA64DFR*_EL1_RESERVED",
9098 .is_glob = true },
9099 { .name = "ID_AA64AFR*",
9100 .is_glob = true },
9101 { .name = "ID_AA64ISAR0_EL1",
9102 .exported_bits = R_ID_AA64ISAR0_AES_MASK |
9103 R_ID_AA64ISAR0_SHA1_MASK |
9104 R_ID_AA64ISAR0_SHA2_MASK |
9105 R_ID_AA64ISAR0_CRC32_MASK |
9106 R_ID_AA64ISAR0_ATOMIC_MASK |
9107 R_ID_AA64ISAR0_RDM_MASK |
9108 R_ID_AA64ISAR0_SHA3_MASK |
9109 R_ID_AA64ISAR0_SM3_MASK |
9110 R_ID_AA64ISAR0_SM4_MASK |
9111 R_ID_AA64ISAR0_DP_MASK |
9112 R_ID_AA64ISAR0_FHM_MASK |
9113 R_ID_AA64ISAR0_TS_MASK |
9114 R_ID_AA64ISAR0_RNDR_MASK },
9115 { .name = "ID_AA64ISAR1_EL1",
9116 .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
9117 R_ID_AA64ISAR1_APA_MASK |
9118 R_ID_AA64ISAR1_API_MASK |
9119 R_ID_AA64ISAR1_JSCVT_MASK |
9120 R_ID_AA64ISAR1_FCMA_MASK |
9121 R_ID_AA64ISAR1_LRCPC_MASK |
9122 R_ID_AA64ISAR1_GPA_MASK |
9123 R_ID_AA64ISAR1_GPI_MASK |
9124 R_ID_AA64ISAR1_FRINTTS_MASK |
9125 R_ID_AA64ISAR1_SB_MASK |
9126 R_ID_AA64ISAR1_BF16_MASK |
9127 R_ID_AA64ISAR1_DGH_MASK |
9128 R_ID_AA64ISAR1_I8MM_MASK },
9129 { .name = "ID_AA64ISAR2_EL1",
9130 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
9131 R_ID_AA64ISAR2_RPRES_MASK |
9132 R_ID_AA64ISAR2_GPA3_MASK |
9133 R_ID_AA64ISAR2_APA3_MASK |
9134 R_ID_AA64ISAR2_MOPS_MASK |
9135 R_ID_AA64ISAR2_BC_MASK |
9136 R_ID_AA64ISAR2_RPRFM_MASK |
9137 R_ID_AA64ISAR2_CSSC_MASK },
9138 { .name = "ID_AA64ISAR*_EL1_RESERVED",
9139 .is_glob = true },
9141 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
9142 #endif
9144 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
9145 * TODO: For RMR, a write with bit 1 set should do something with
9146 * cpu_reset(). In the meantime, "the bit is strictly a request",
9147 * so we are in spec just ignoring writes.
9149 if (!arm_feature(env, ARM_FEATURE_EL3) &&
9150 !arm_feature(env, ARM_FEATURE_EL2)) {
9151 ARMCPRegInfo el1_reset_regs[] = {
9152 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
9153 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
9154 .access = PL1_R,
9155 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9156 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
9157 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
9158 .access = PL1_RW, .type = ARM_CP_CONST,
9159 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
9161 define_arm_cp_regs(cpu, el1_reset_regs);
9163 define_arm_cp_regs(cpu, v8_idregs);
9164 define_arm_cp_regs(cpu, v8_cp_reginfo);
9165 if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
9166 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo);
9169 for (i = 4; i < 16; i++) {
9171 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
9172 * For pre-v8 cores there are RAZ patterns for these in
9173 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
9174 * v8 extends the "must RAZ" part of the ID register space
9175 * to also cover c0, 0, c{8-15}, {0-7}.
9176 * These are STATE_AA32 because in the AArch64 sysreg space
9177 * c4-c7 is where the AArch64 ID registers live (and we've
9178 * already defined those in v8_idregs[]), and c8-c15 are not
9179 * "must RAZ" for AArch64.
9181 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
9182 ARMCPRegInfo v8_aa32_raz_idregs = {
9183 .name = name,
9184 .state = ARM_CP_STATE_AA32,
9185 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
9186 .access = PL1_R, .type = ARM_CP_CONST,
9187 .accessfn = access_aa64_tid3,
9188 .resetvalue = 0 };
9189 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
9194 * Register the base EL2 cpregs.
9195 * Pre v8, these registers are implemented only as part of the
9196 * Virtualization Extensions (EL2 present). Beginning with v8,
9197 * if EL2 is missing but EL3 is enabled, mostly these become
9198 * RES0 from EL3, with some specific exceptions.
9200 if (arm_feature(env, ARM_FEATURE_EL2)
9201 || (arm_feature(env, ARM_FEATURE_EL3)
9202 && arm_feature(env, ARM_FEATURE_V8))) {
9203 uint64_t vmpidr_def = mpidr_read_val(env);
9204 ARMCPRegInfo vpidr_regs[] = {
9205 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
9206 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9207 .access = PL2_RW, .accessfn = access_el3_aa32ns,
9208 .resetvalue = cpu->midr,
9209 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9210 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
9211 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
9212 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9213 .access = PL2_RW, .resetvalue = cpu->midr,
9214 .type = ARM_CP_EL3_NO_EL2_C_NZ,
9215 .nv2_redirect_offset = 0x88,
9216 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
9217 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
9218 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9219 .access = PL2_RW, .accessfn = access_el3_aa32ns,
9220 .resetvalue = vmpidr_def,
9221 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9222 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
9223 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
9224 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9225 .access = PL2_RW, .resetvalue = vmpidr_def,
9226 .type = ARM_CP_EL3_NO_EL2_C_NZ,
9227 .nv2_redirect_offset = 0x50,
9228 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
9231 * The only field of MDCR_EL2 that has a defined architectural reset
9232 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
9234 ARMCPRegInfo mdcr_el2 = {
9235 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
9236 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
9237 .writefn = mdcr_el2_write,
9238 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
9239 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
9241 define_one_arm_cp_reg(cpu, &mdcr_el2);
9242 define_arm_cp_regs(cpu, vpidr_regs);
9243 define_arm_cp_regs(cpu, el2_cp_reginfo);
9244 if (arm_feature(env, ARM_FEATURE_V8)) {
9245 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
9247 if (cpu_isar_feature(aa64_sel2, cpu)) {
9248 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
9251 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
9252 * See commentary near RMR_EL1.
9254 if (!arm_feature(env, ARM_FEATURE_EL3)) {
9255 static const ARMCPRegInfo el2_reset_regs[] = {
9256 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
9257 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
9258 .access = PL2_R,
9259 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9260 { .name = "RVBAR", .type = ARM_CP_ALIAS,
9261 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
9262 .access = PL2_R,
9263 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9264 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
9265 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
9266 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9268 define_arm_cp_regs(cpu, el2_reset_regs);
9272 /* Register the base EL3 cpregs. */
9273 if (arm_feature(env, ARM_FEATURE_EL3)) {
9274 define_arm_cp_regs(cpu, el3_cp_reginfo);
9275 ARMCPRegInfo el3_regs[] = {
9276 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
9277 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
9278 .access = PL3_R,
9279 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
9280 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
9281 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
9282 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9283 { .name = "RMR", .state = ARM_CP_STATE_AA32,
9284 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
9285 .access = PL3_RW, .type = ARM_CP_CONST,
9286 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
9287 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
9288 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
9289 .access = PL3_RW,
9290 .raw_writefn = raw_write, .writefn = sctlr_write,
9291 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
9292 .resetvalue = cpu->reset_sctlr },
9295 define_arm_cp_regs(cpu, el3_regs);
9298 * The behaviour of NSACR is sufficiently various that we don't
9299 * try to describe it in a single reginfo:
9300 * if EL3 is 64 bit, then trap to EL3 from S EL1,
9301 * reads as constant 0xc00 from NS EL1 and NS EL2
9302 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
9303 * if v7 without EL3, register doesn't exist
9304 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
9306 if (arm_feature(env, ARM_FEATURE_EL3)) {
9307 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9308 static const ARMCPRegInfo nsacr = {
9309 .name = "NSACR", .type = ARM_CP_CONST,
9310 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9311 .access = PL1_RW, .accessfn = nsacr_access,
9312 .resetvalue = 0xc00
9314 define_one_arm_cp_reg(cpu, &nsacr);
9315 } else {
9316 static const ARMCPRegInfo nsacr = {
9317 .name = "NSACR",
9318 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9319 .access = PL3_RW | PL1_R,
9320 .resetvalue = 0,
9321 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
9323 define_one_arm_cp_reg(cpu, &nsacr);
9325 } else {
9326 if (arm_feature(env, ARM_FEATURE_V8)) {
9327 static const ARMCPRegInfo nsacr = {
9328 .name = "NSACR", .type = ARM_CP_CONST,
9329 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9330 .access = PL1_R,
9331 .resetvalue = 0xc00
9333 define_one_arm_cp_reg(cpu, &nsacr);
9337 if (arm_feature(env, ARM_FEATURE_PMSA)) {
9338 if (arm_feature(env, ARM_FEATURE_V6)) {
9339 /* PMSAv6 not implemented */
9340 assert(arm_feature(env, ARM_FEATURE_V7));
9341 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9342 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
9343 } else {
9344 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
9346 } else {
9347 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9348 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
9349 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
9350 if (cpu_isar_feature(aa32_hpd, cpu)) {
9351 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
9354 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
9355 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
9357 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
9358 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
9360 if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
9361 define_arm_cp_regs(cpu, gen_timer_ecv_cp_reginfo);
9363 #ifndef CONFIG_USER_ONLY
9364 if (cpu_isar_feature(aa64_ecv, cpu)) {
9365 define_one_arm_cp_reg(cpu, &gen_timer_cntpoff_reginfo);
9367 #endif
9368 if (arm_feature(env, ARM_FEATURE_VAPA)) {
9369 ARMCPRegInfo vapa_cp_reginfo[] = {
9370 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
9371 .access = PL1_RW, .resetvalue = 0,
9372 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
9373 offsetoflow32(CPUARMState, cp15.par_ns) },
9374 .writefn = par_write},
9375 #ifndef CONFIG_USER_ONLY
9376 /* This underdecoding is safe because the reginfo is NO_RAW. */
9377 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
9378 .access = PL1_W, .accessfn = ats_access,
9379 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
9380 #endif
9384 * When LPAE exists this 32-bit PAR register is an alias of the
9385 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[]
9387 if (arm_feature(env, ARM_FEATURE_LPAE)) {
9388 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB;
9390 define_arm_cp_regs(cpu, vapa_cp_reginfo);
9392 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
9393 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
9395 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
9396 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
9398 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
9399 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
9401 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
9402 define_arm_cp_regs(cpu, omap_cp_reginfo);
9404 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
9405 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
9407 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9408 define_arm_cp_regs(cpu, xscale_cp_reginfo);
9410 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
9411 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
9413 if (arm_feature(env, ARM_FEATURE_LPAE)) {
9414 define_arm_cp_regs(cpu, lpae_cp_reginfo);
9416 if (cpu_isar_feature(aa32_jazelle, cpu)) {
9417 define_arm_cp_regs(cpu, jazelle_regs);
9420 * Slightly awkwardly, the OMAP and StrongARM cores need all of
9421 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
9422 * be read-only (ie write causes UNDEF exception).
9425 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
9427 * Pre-v8 MIDR space.
9428 * Note that the MIDR isn't a simple constant register because
9429 * of the TI925 behaviour where writes to another register can
9430 * cause the MIDR value to change.
9432 * Unimplemented registers in the c15 0 0 0 space default to
9433 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
9434 * and friends override accordingly.
9436 { .name = "MIDR",
9437 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
9438 .access = PL1_R, .resetvalue = cpu->midr,
9439 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
9440 .readfn = midr_read,
9441 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9442 .type = ARM_CP_OVERRIDE },
9443 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
9444 { .name = "DUMMY",
9445 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
9446 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9447 { .name = "DUMMY",
9448 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
9449 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9450 { .name = "DUMMY",
9451 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
9452 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9453 { .name = "DUMMY",
9454 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
9455 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9456 { .name = "DUMMY",
9457 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
9458 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9460 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
9461 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
9462 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
9463 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
9464 .fgt = FGT_MIDR_EL1,
9465 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9466 .readfn = midr_read },
9467 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
9468 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
9469 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
9470 .access = PL1_R, .resetvalue = cpu->midr },
9471 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
9472 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
9473 .access = PL1_R,
9474 .accessfn = access_aa64_tid1,
9475 .fgt = FGT_REVIDR_EL1,
9476 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
9478 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
9479 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB,
9480 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9481 .access = PL1_R, .resetvalue = cpu->midr
9483 ARMCPRegInfo id_cp_reginfo[] = {
9484 /* These are common to v8 and pre-v8 */
9485 { .name = "CTR",
9486 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
9487 .access = PL1_R, .accessfn = ctr_el0_access,
9488 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9489 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
9490 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
9491 .access = PL0_R, .accessfn = ctr_el0_access,
9492 .fgt = FGT_CTR_EL0,
9493 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9494 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
9495 { .name = "TCMTR",
9496 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
9497 .access = PL1_R,
9498 .accessfn = access_aa32_tid1,
9499 .type = ARM_CP_CONST, .resetvalue = 0 },
9501 /* TLBTR is specific to VMSA */
9502 ARMCPRegInfo id_tlbtr_reginfo = {
9503 .name = "TLBTR",
9504 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
9505 .access = PL1_R,
9506 .accessfn = access_aa32_tid1,
9507 .type = ARM_CP_CONST, .resetvalue = 0,
9509 /* MPUIR is specific to PMSA V6+ */
9510 ARMCPRegInfo id_mpuir_reginfo = {
9511 .name = "MPUIR",
9512 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9513 .access = PL1_R, .type = ARM_CP_CONST,
9514 .resetvalue = cpu->pmsav7_dregion << 8
9516 /* HMPUIR is specific to PMSA V8 */
9517 ARMCPRegInfo id_hmpuir_reginfo = {
9518 .name = "HMPUIR",
9519 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
9520 .access = PL2_R, .type = ARM_CP_CONST,
9521 .resetvalue = cpu->pmsav8r_hdregion
9523 static const ARMCPRegInfo crn0_wi_reginfo = {
9524 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
9525 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
9526 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
9528 #ifdef CONFIG_USER_ONLY
9529 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
9530 { .name = "MIDR_EL1",
9531 .exported_bits = R_MIDR_EL1_REVISION_MASK |
9532 R_MIDR_EL1_PARTNUM_MASK |
9533 R_MIDR_EL1_ARCHITECTURE_MASK |
9534 R_MIDR_EL1_VARIANT_MASK |
9535 R_MIDR_EL1_IMPLEMENTER_MASK },
9536 { .name = "REVIDR_EL1" },
9538 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
9539 #endif
9540 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
9541 arm_feature(env, ARM_FEATURE_STRONGARM)) {
9542 size_t i;
9544 * Register the blanket "writes ignored" value first to cover the
9545 * whole space. Then update the specific ID registers to allow write
9546 * access, so that they ignore writes rather than causing them to
9547 * UNDEF.
9549 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
9550 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
9551 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
9553 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
9554 id_cp_reginfo[i].access = PL1_RW;
9556 id_mpuir_reginfo.access = PL1_RW;
9557 id_tlbtr_reginfo.access = PL1_RW;
9559 if (arm_feature(env, ARM_FEATURE_V8)) {
9560 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
9561 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9562 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
9564 } else {
9565 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
9567 define_arm_cp_regs(cpu, id_cp_reginfo);
9568 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9569 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
9570 } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
9571 arm_feature(env, ARM_FEATURE_V8)) {
9572 uint32_t i = 0;
9573 char *tmp_string;
9575 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9576 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
9577 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
9579 /* Register alias is only valid for first 32 indexes */
9580 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
9581 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9582 uint8_t opc1 = extract32(i, 4, 1);
9583 uint8_t opc2 = extract32(i, 0, 1) << 2;
9585 tmp_string = g_strdup_printf("PRBAR%u", i);
9586 ARMCPRegInfo tmp_prbarn_reginfo = {
9587 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9588 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9589 .access = PL1_RW, .resetvalue = 0,
9590 .accessfn = access_tvm_trvm,
9591 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9593 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
9594 g_free(tmp_string);
9596 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9597 tmp_string = g_strdup_printf("PRLAR%u", i);
9598 ARMCPRegInfo tmp_prlarn_reginfo = {
9599 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9600 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9601 .access = PL1_RW, .resetvalue = 0,
9602 .accessfn = access_tvm_trvm,
9603 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9605 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
9606 g_free(tmp_string);
9609 /* Register alias is only valid for first 32 indexes */
9610 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9611 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9612 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9613 uint8_t opc2 = extract32(i, 0, 1) << 2;
9615 tmp_string = g_strdup_printf("HPRBAR%u", i);
9616 ARMCPRegInfo tmp_hprbarn_reginfo = {
9617 .name = tmp_string,
9618 .type = ARM_CP_NO_RAW,
9619 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9620 .access = PL2_RW, .resetvalue = 0,
9621 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9623 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9624 g_free(tmp_string);
9626 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9627 tmp_string = g_strdup_printf("HPRLAR%u", i);
9628 ARMCPRegInfo tmp_hprlarn_reginfo = {
9629 .name = tmp_string,
9630 .type = ARM_CP_NO_RAW,
9631 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9632 .access = PL2_RW, .resetvalue = 0,
9633 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9635 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9636 g_free(tmp_string);
9638 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9639 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9643 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
9644 ARMCPRegInfo mpidr_cp_reginfo[] = {
9645 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9646 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
9647 .fgt = FGT_MPIDR_EL1,
9648 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
9650 #ifdef CONFIG_USER_ONLY
9651 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9652 { .name = "MPIDR_EL1",
9653 .fixed_bits = 0x0000000080000000 },
9655 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9656 #endif
9657 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9660 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9661 ARMCPRegInfo auxcr_reginfo[] = {
9662 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9663 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9664 .access = PL1_RW, .accessfn = access_tacr,
9665 .nv2_redirect_offset = 0x118,
9666 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9667 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9668 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9669 .access = PL2_RW, .type = ARM_CP_CONST,
9670 .resetvalue = 0 },
9671 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9672 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9673 .access = PL3_RW, .type = ARM_CP_CONST,
9674 .resetvalue = 0 },
9676 define_arm_cp_regs(cpu, auxcr_reginfo);
9677 if (cpu_isar_feature(aa32_ac2, cpu)) {
9678 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9682 if (arm_feature(env, ARM_FEATURE_CBAR)) {
9684 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9685 * There are two flavours:
9686 * (1) older 32-bit only cores have a simple 32-bit CBAR
9687 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9688 * 32-bit register visible to AArch32 at a different encoding
9689 * to the "flavour 1" register and with the bits rearranged to
9690 * be able to squash a 64-bit address into the 32-bit view.
9691 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9692 * in future if we support AArch32-only configs of some of the
9693 * AArch64 cores we might need to add a specific feature flag
9694 * to indicate cores with "flavour 2" CBAR.
9696 if (arm_feature(env, ARM_FEATURE_V8)) {
9697 /* 32 bit view is [31:18] 0...0 [43:32]. */
9698 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9699 | extract64(cpu->reset_cbar, 32, 12);
9700 ARMCPRegInfo cbar_reginfo[] = {
9701 { .name = "CBAR",
9702 .type = ARM_CP_CONST,
9703 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9704 .access = PL1_R, .resetvalue = cbar32 },
9705 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9706 .type = ARM_CP_CONST,
9707 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9708 .access = PL1_R, .resetvalue = cpu->reset_cbar },
9710 /* We don't implement a r/w 64 bit CBAR currently */
9711 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9712 define_arm_cp_regs(cpu, cbar_reginfo);
9713 } else {
9714 ARMCPRegInfo cbar = {
9715 .name = "CBAR",
9716 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9717 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9718 .fieldoffset = offsetof(CPUARMState,
9719 cp15.c15_config_base_address)
9721 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9722 cbar.access = PL1_R;
9723 cbar.fieldoffset = 0;
9724 cbar.type = ARM_CP_CONST;
9726 define_one_arm_cp_reg(cpu, &cbar);
9730 if (arm_feature(env, ARM_FEATURE_VBAR)) {
9731 static const ARMCPRegInfo vbar_cp_reginfo[] = {
9732 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9733 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9734 .access = PL1_RW, .writefn = vbar_write,
9735 .accessfn = access_nv1,
9736 .fgt = FGT_VBAR_EL1,
9737 .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1,
9738 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9739 offsetof(CPUARMState, cp15.vbar_ns) },
9740 .resetvalue = 0 },
9742 define_arm_cp_regs(cpu, vbar_cp_reginfo);
9745 /* Generic registers whose values depend on the implementation */
9747 ARMCPRegInfo sctlr = {
9748 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9749 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9750 .access = PL1_RW, .accessfn = access_tvm_trvm,
9751 .fgt = FGT_SCTLR_EL1,
9752 .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1,
9753 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9754 offsetof(CPUARMState, cp15.sctlr_ns) },
9755 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9756 .raw_writefn = raw_write,
9758 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9760 * Normally we would always end the TB on an SCTLR write, but Linux
9761 * arch/arm/mach-pxa/sleep.S expects two instructions following
9762 * an MMU enable to execute from cache. Imitate this behaviour.
9764 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9766 define_one_arm_cp_reg(cpu, &sctlr);
9768 if (arm_feature(env, ARM_FEATURE_PMSA) &&
9769 arm_feature(env, ARM_FEATURE_V8)) {
9770 ARMCPRegInfo vsctlr = {
9771 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9772 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9773 .access = PL2_RW, .resetvalue = 0x0,
9774 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9776 define_one_arm_cp_reg(cpu, &vsctlr);
9780 if (cpu_isar_feature(aa64_lor, cpu)) {
9781 define_arm_cp_regs(cpu, lor_reginfo);
9783 if (cpu_isar_feature(aa64_pan, cpu)) {
9784 define_one_arm_cp_reg(cpu, &pan_reginfo);
9786 #ifndef CONFIG_USER_ONLY
9787 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9788 define_arm_cp_regs(cpu, ats1e1_reginfo);
9790 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9791 define_arm_cp_regs(cpu, ats1cp_reginfo);
9793 #endif
9794 if (cpu_isar_feature(aa64_uao, cpu)) {
9795 define_one_arm_cp_reg(cpu, &uao_reginfo);
9798 if (cpu_isar_feature(aa64_dit, cpu)) {
9799 define_one_arm_cp_reg(cpu, &dit_reginfo);
9801 if (cpu_isar_feature(aa64_ssbs, cpu)) {
9802 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9804 if (cpu_isar_feature(any_ras, cpu)) {
9805 define_arm_cp_regs(cpu, minimal_ras_reginfo);
9808 if (cpu_isar_feature(aa64_vh, cpu) ||
9809 cpu_isar_feature(aa64_debugv8p2, cpu)) {
9810 define_one_arm_cp_reg(cpu, &contextidr_el2);
9812 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9813 define_arm_cp_regs(cpu, vhe_reginfo);
9816 if (cpu_isar_feature(aa64_sve, cpu)) {
9817 define_arm_cp_regs(cpu, zcr_reginfo);
9820 if (cpu_isar_feature(aa64_hcx, cpu)) {
9821 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9824 #ifdef TARGET_AARCH64
9825 if (cpu_isar_feature(aa64_sme, cpu)) {
9826 define_arm_cp_regs(cpu, sme_reginfo);
9828 if (cpu_isar_feature(aa64_pauth, cpu)) {
9829 define_arm_cp_regs(cpu, pauth_reginfo);
9831 if (cpu_isar_feature(aa64_rndr, cpu)) {
9832 define_arm_cp_regs(cpu, rndr_reginfo);
9834 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9835 define_arm_cp_regs(cpu, tlbirange_reginfo);
9837 if (cpu_isar_feature(aa64_tlbios, cpu)) {
9838 define_arm_cp_regs(cpu, tlbios_reginfo);
9840 /* Data Cache clean instructions up to PoP */
9841 if (cpu_isar_feature(aa64_dcpop, cpu)) {
9842 define_one_arm_cp_reg(cpu, dcpop_reg);
9844 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9845 define_one_arm_cp_reg(cpu, dcpodp_reg);
9850 * If full MTE is enabled, add all of the system registers.
9851 * If only "instructions available at EL0" are enabled,
9852 * then define only a RAZ/WI version of PSTATE.TCO.
9854 if (cpu_isar_feature(aa64_mte, cpu)) {
9855 ARMCPRegInfo gmid_reginfo = {
9856 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
9857 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
9858 .access = PL1_R, .accessfn = access_aa64_tid5,
9859 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
9861 define_one_arm_cp_reg(cpu, &gmid_reginfo);
9862 define_arm_cp_regs(cpu, mte_reginfo);
9863 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9864 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9865 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9866 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9869 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9870 define_arm_cp_regs(cpu, scxtnum_reginfo);
9873 if (cpu_isar_feature(aa64_fgt, cpu)) {
9874 define_arm_cp_regs(cpu, fgt_reginfo);
9877 if (cpu_isar_feature(aa64_rme, cpu)) {
9878 define_arm_cp_regs(cpu, rme_reginfo);
9879 if (cpu_isar_feature(aa64_mte, cpu)) {
9880 define_arm_cp_regs(cpu, rme_mte_reginfo);
9884 if (cpu_isar_feature(aa64_nv2, cpu)) {
9885 define_arm_cp_regs(cpu, nv2_reginfo);
9887 #endif
9889 if (cpu_isar_feature(any_predinv, cpu)) {
9890 define_arm_cp_regs(cpu, predinv_reginfo);
9893 if (cpu_isar_feature(any_ccidx, cpu)) {
9894 define_arm_cp_regs(cpu, ccsidr2_reginfo);
9897 #ifndef CONFIG_USER_ONLY
9899 * Register redirections and aliases must be done last,
9900 * after the registers from the other extensions have been defined.
9902 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9903 define_arm_vh_e2h_redirects_aliases(cpu);
9905 #endif
9909 * Private utility function for define_one_arm_cp_reg_with_opaque():
9910 * add a single reginfo struct to the hash table.
9912 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9913 void *opaque, CPState state,
9914 CPSecureState secstate,
9915 int crm, int opc1, int opc2,
9916 const char *name)
9918 CPUARMState *env = &cpu->env;
9919 uint32_t key;
9920 ARMCPRegInfo *r2;
9921 bool is64 = r->type & ARM_CP_64BIT;
9922 bool ns = secstate & ARM_CP_SECSTATE_NS;
9923 int cp = r->cp;
9924 size_t name_len;
9925 bool make_const;
9927 switch (state) {
9928 case ARM_CP_STATE_AA32:
9929 /* We assume it is a cp15 register if the .cp field is left unset. */
9930 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9931 cp = 15;
9933 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9934 break;
9935 case ARM_CP_STATE_AA64:
9937 * To allow abbreviation of ARMCPRegInfo definitions, we treat
9938 * cp == 0 as equivalent to the value for "standard guest-visible
9939 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
9940 * in their AArch64 view (the .cp value may be non-zero for the
9941 * benefit of the AArch32 view).
9943 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9944 cp = CP_REG_ARM64_SYSREG_CP;
9946 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9947 break;
9948 default:
9949 g_assert_not_reached();
9952 /* Overriding of an existing definition must be explicitly requested. */
9953 if (!(r->type & ARM_CP_OVERRIDE)) {
9954 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9955 if (oldreg) {
9956 assert(oldreg->type & ARM_CP_OVERRIDE);
9961 * Eliminate registers that are not present because the EL is missing.
9962 * Doing this here makes it easier to put all registers for a given
9963 * feature into the same ARMCPRegInfo array and define them all at once.
9965 make_const = false;
9966 if (arm_feature(env, ARM_FEATURE_EL3)) {
9968 * An EL2 register without EL2 but with EL3 is (usually) RES0.
9969 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9971 int min_el = ctz32(r->access) / 2;
9972 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9973 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9974 return;
9976 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9978 } else {
9979 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9980 ? PL2_RW : PL1_RW);
9981 if ((r->access & max_el) == 0) {
9982 return;
9986 /* Combine cpreg and name into one allocation. */
9987 name_len = strlen(name) + 1;
9988 r2 = g_malloc(sizeof(*r2) + name_len);
9989 *r2 = *r;
9990 r2->name = memcpy(r2 + 1, name, name_len);
9993 * Update fields to match the instantiation, overwiting wildcards
9994 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9996 r2->cp = cp;
9997 r2->crm = crm;
9998 r2->opc1 = opc1;
9999 r2->opc2 = opc2;
10000 r2->state = state;
10001 r2->secure = secstate;
10002 if (opaque) {
10003 r2->opaque = opaque;
10006 if (make_const) {
10007 /* This should not have been a very special register to begin. */
10008 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
10009 assert(old_special == 0 || old_special == ARM_CP_NOP);
10011 * Set the special function to CONST, retaining the other flags.
10012 * This is important for e.g. ARM_CP_SVE so that we still
10013 * take the SVE trap if CPTR_EL3.EZ == 0.
10015 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
10017 * Usually, these registers become RES0, but there are a few
10018 * special cases like VPIDR_EL2 which have a constant non-zero
10019 * value with writes ignored.
10021 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
10022 r2->resetvalue = 0;
10025 * ARM_CP_CONST has precedence, so removing the callbacks and
10026 * offsets are not strictly necessary, but it is potentially
10027 * less confusing to debug later.
10029 r2->readfn = NULL;
10030 r2->writefn = NULL;
10031 r2->raw_readfn = NULL;
10032 r2->raw_writefn = NULL;
10033 r2->resetfn = NULL;
10034 r2->fieldoffset = 0;
10035 r2->bank_fieldoffsets[0] = 0;
10036 r2->bank_fieldoffsets[1] = 0;
10037 } else {
10038 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
10040 if (isbanked) {
10042 * Register is banked (using both entries in array).
10043 * Overwriting fieldoffset as the array is only used to define
10044 * banked registers but later only fieldoffset is used.
10046 r2->fieldoffset = r->bank_fieldoffsets[ns];
10048 if (state == ARM_CP_STATE_AA32) {
10049 if (isbanked) {
10051 * If the register is banked then we don't need to migrate or
10052 * reset the 32-bit instance in certain cases:
10054 * 1) If the register has both 32-bit and 64-bit instances
10055 * then we can count on the 64-bit instance taking care
10056 * of the non-secure bank.
10057 * 2) If ARMv8 is enabled then we can count on a 64-bit
10058 * version taking care of the secure bank. This requires
10059 * that separate 32 and 64-bit definitions are provided.
10061 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
10062 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
10063 r2->type |= ARM_CP_ALIAS;
10065 } else if ((secstate != r->secure) && !ns) {
10067 * The register is not banked so we only want to allow
10068 * migration of the non-secure instance.
10070 r2->type |= ARM_CP_ALIAS;
10073 if (HOST_BIG_ENDIAN &&
10074 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
10075 r2->fieldoffset += sizeof(uint32_t);
10081 * By convention, for wildcarded registers only the first
10082 * entry is used for migration; the others are marked as
10083 * ALIAS so we don't try to transfer the register
10084 * multiple times. Special registers (ie NOP/WFI) are
10085 * never migratable and not even raw-accessible.
10087 if (r2->type & ARM_CP_SPECIAL_MASK) {
10088 r2->type |= ARM_CP_NO_RAW;
10090 if (((r->crm == CP_ANY) && crm != 0) ||
10091 ((r->opc1 == CP_ANY) && opc1 != 0) ||
10092 ((r->opc2 == CP_ANY) && opc2 != 0)) {
10093 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
10097 * Check that raw accesses are either forbidden or handled. Note that
10098 * we can't assert this earlier because the setup of fieldoffset for
10099 * banked registers has to be done first.
10101 if (!(r2->type & ARM_CP_NO_RAW)) {
10102 assert(!raw_accessors_invalid(r2));
10105 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
10109 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
10110 const ARMCPRegInfo *r, void *opaque)
10113 * Define implementations of coprocessor registers.
10114 * We store these in a hashtable because typically
10115 * there are less than 150 registers in a space which
10116 * is 16*16*16*8*8 = 262144 in size.
10117 * Wildcarding is supported for the crm, opc1 and opc2 fields.
10118 * If a register is defined twice then the second definition is
10119 * used, so this can be used to define some generic registers and
10120 * then override them with implementation specific variations.
10121 * At least one of the original and the second definition should
10122 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
10123 * against accidental use.
10125 * The state field defines whether the register is to be
10126 * visible in the AArch32 or AArch64 execution state. If the
10127 * state is set to ARM_CP_STATE_BOTH then we synthesise a
10128 * reginfo structure for the AArch32 view, which sees the lower
10129 * 32 bits of the 64 bit register.
10131 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
10132 * be wildcarded. AArch64 registers are always considered to be 64
10133 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
10134 * the register, if any.
10136 int crm, opc1, opc2;
10137 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
10138 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
10139 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
10140 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
10141 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
10142 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
10143 CPState state;
10145 /* 64 bit registers have only CRm and Opc1 fields */
10146 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
10147 /* op0 only exists in the AArch64 encodings */
10148 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
10149 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
10150 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
10152 * This API is only for Arm's system coprocessors (14 and 15) or
10153 * (M-profile or v7A-and-earlier only) for implementation defined
10154 * coprocessors in the range 0..7. Our decode assumes this, since
10155 * 8..13 can be used for other insns including VFP and Neon. See
10156 * valid_cp() in translate.c. Assert here that we haven't tried
10157 * to use an invalid coprocessor number.
10159 switch (r->state) {
10160 case ARM_CP_STATE_BOTH:
10161 /* 0 has a special meaning, but otherwise the same rules as AA32. */
10162 if (r->cp == 0) {
10163 break;
10165 /* fall through */
10166 case ARM_CP_STATE_AA32:
10167 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
10168 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
10169 assert(r->cp >= 14 && r->cp <= 15);
10170 } else {
10171 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
10173 break;
10174 case ARM_CP_STATE_AA64:
10175 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
10176 break;
10177 default:
10178 g_assert_not_reached();
10181 * The AArch64 pseudocode CheckSystemAccess() specifies that op1
10182 * encodes a minimum access level for the register. We roll this
10183 * runtime check into our general permission check code, so check
10184 * here that the reginfo's specified permissions are strict enough
10185 * to encompass the generic architectural permission check.
10187 if (r->state != ARM_CP_STATE_AA32) {
10188 CPAccessRights mask;
10189 switch (r->opc1) {
10190 case 0:
10191 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
10192 mask = PL0U_R | PL1_RW;
10193 break;
10194 case 1: case 2:
10195 /* min_EL EL1 */
10196 mask = PL1_RW;
10197 break;
10198 case 3:
10199 /* min_EL EL0 */
10200 mask = PL0_RW;
10201 break;
10202 case 4:
10203 case 5:
10204 /* min_EL EL2 */
10205 mask = PL2_RW;
10206 break;
10207 case 6:
10208 /* min_EL EL3 */
10209 mask = PL3_RW;
10210 break;
10211 case 7:
10212 /* min_EL EL1, secure mode only (we don't check the latter) */
10213 mask = PL1_RW;
10214 break;
10215 default:
10216 /* broken reginfo with out-of-range opc1 */
10217 g_assert_not_reached();
10219 /* assert our permissions are not too lax (stricter is fine) */
10220 assert((r->access & ~mask) == 0);
10224 * Check that the register definition has enough info to handle
10225 * reads and writes if they are permitted.
10227 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
10228 if (r->access & PL3_R) {
10229 assert((r->fieldoffset ||
10230 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10231 r->readfn);
10233 if (r->access & PL3_W) {
10234 assert((r->fieldoffset ||
10235 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10236 r->writefn);
10240 for (crm = crmmin; crm <= crmmax; crm++) {
10241 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
10242 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
10243 for (state = ARM_CP_STATE_AA32;
10244 state <= ARM_CP_STATE_AA64; state++) {
10245 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
10246 continue;
10248 if (state == ARM_CP_STATE_AA32) {
10250 * Under AArch32 CP registers can be common
10251 * (same for secure and non-secure world) or banked.
10253 char *name;
10255 switch (r->secure) {
10256 case ARM_CP_SECSTATE_S:
10257 case ARM_CP_SECSTATE_NS:
10258 add_cpreg_to_hashtable(cpu, r, opaque, state,
10259 r->secure, crm, opc1, opc2,
10260 r->name);
10261 break;
10262 case ARM_CP_SECSTATE_BOTH:
10263 name = g_strdup_printf("%s_S", r->name);
10264 add_cpreg_to_hashtable(cpu, r, opaque, state,
10265 ARM_CP_SECSTATE_S,
10266 crm, opc1, opc2, name);
10267 g_free(name);
10268 add_cpreg_to_hashtable(cpu, r, opaque, state,
10269 ARM_CP_SECSTATE_NS,
10270 crm, opc1, opc2, r->name);
10271 break;
10272 default:
10273 g_assert_not_reached();
10275 } else {
10277 * AArch64 registers get mapped to non-secure instance
10278 * of AArch32
10280 add_cpreg_to_hashtable(cpu, r, opaque, state,
10281 ARM_CP_SECSTATE_NS,
10282 crm, opc1, opc2, r->name);
10290 /* Define a whole list of registers */
10291 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
10292 void *opaque, size_t len)
10294 size_t i;
10295 for (i = 0; i < len; ++i) {
10296 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
10301 * Modify ARMCPRegInfo for access from userspace.
10303 * This is a data driven modification directed by
10304 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
10305 * user-space cannot alter any values and dynamic values pertaining to
10306 * execution state are hidden from user space view anyway.
10308 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
10309 const ARMCPRegUserSpaceInfo *mods,
10310 size_t mods_len)
10312 for (size_t mi = 0; mi < mods_len; ++mi) {
10313 const ARMCPRegUserSpaceInfo *m = mods + mi;
10314 GPatternSpec *pat = NULL;
10316 if (m->is_glob) {
10317 pat = g_pattern_spec_new(m->name);
10319 for (size_t ri = 0; ri < regs_len; ++ri) {
10320 ARMCPRegInfo *r = regs + ri;
10322 if (pat && g_pattern_match_string(pat, r->name)) {
10323 r->type = ARM_CP_CONST;
10324 r->access = PL0U_R;
10325 r->resetvalue = 0;
10326 /* continue */
10327 } else if (strcmp(r->name, m->name) == 0) {
10328 r->type = ARM_CP_CONST;
10329 r->access = PL0U_R;
10330 r->resetvalue &= m->exported_bits;
10331 r->resetvalue |= m->fixed_bits;
10332 break;
10335 if (pat) {
10336 g_pattern_spec_free(pat);
10341 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
10343 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
10346 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
10347 uint64_t value)
10349 /* Helper coprocessor write function for write-ignore registers */
10352 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
10354 /* Helper coprocessor write function for read-as-zero registers */
10355 return 0;
10358 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
10360 /* Helper coprocessor reset function for do-nothing-on-reset registers */
10363 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
10366 * Return true if it is not valid for us to switch to
10367 * this CPU mode (ie all the UNPREDICTABLE cases in
10368 * the ARM ARM CPSRWriteByInstr pseudocode).
10371 /* Changes to or from Hyp via MSR and CPS are illegal. */
10372 if (write_type == CPSRWriteByInstr &&
10373 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
10374 mode == ARM_CPU_MODE_HYP)) {
10375 return 1;
10378 switch (mode) {
10379 case ARM_CPU_MODE_USR:
10380 return 0;
10381 case ARM_CPU_MODE_SYS:
10382 case ARM_CPU_MODE_SVC:
10383 case ARM_CPU_MODE_ABT:
10384 case ARM_CPU_MODE_UND:
10385 case ARM_CPU_MODE_IRQ:
10386 case ARM_CPU_MODE_FIQ:
10388 * Note that we don't implement the IMPDEF NSACR.RFR which in v7
10389 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
10392 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
10393 * and CPS are treated as illegal mode changes.
10395 if (write_type == CPSRWriteByInstr &&
10396 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
10397 (arm_hcr_el2_eff(env) & HCR_TGE)) {
10398 return 1;
10400 return 0;
10401 case ARM_CPU_MODE_HYP:
10402 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
10403 case ARM_CPU_MODE_MON:
10404 return arm_current_el(env) < 3;
10405 default:
10406 return 1;
10410 uint32_t cpsr_read(CPUARMState *env)
10412 int ZF;
10413 ZF = (env->ZF == 0);
10414 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
10415 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
10416 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
10417 | ((env->condexec_bits & 0xfc) << 8)
10418 | (env->GE << 16) | (env->daif & CPSR_AIF);
10421 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
10422 CPSRWriteType write_type)
10424 uint32_t changed_daif;
10425 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
10426 (mask & (CPSR_M | CPSR_E | CPSR_IL));
10428 if (mask & CPSR_NZCV) {
10429 env->ZF = (~val) & CPSR_Z;
10430 env->NF = val;
10431 env->CF = (val >> 29) & 1;
10432 env->VF = (val << 3) & 0x80000000;
10434 if (mask & CPSR_Q) {
10435 env->QF = ((val & CPSR_Q) != 0);
10437 if (mask & CPSR_T) {
10438 env->thumb = ((val & CPSR_T) != 0);
10440 if (mask & CPSR_IT_0_1) {
10441 env->condexec_bits &= ~3;
10442 env->condexec_bits |= (val >> 25) & 3;
10444 if (mask & CPSR_IT_2_7) {
10445 env->condexec_bits &= 3;
10446 env->condexec_bits |= (val >> 8) & 0xfc;
10448 if (mask & CPSR_GE) {
10449 env->GE = (val >> 16) & 0xf;
10453 * In a V7 implementation that includes the security extensions but does
10454 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
10455 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
10456 * bits respectively.
10458 * In a V8 implementation, it is permitted for privileged software to
10459 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
10461 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
10462 arm_feature(env, ARM_FEATURE_EL3) &&
10463 !arm_feature(env, ARM_FEATURE_EL2) &&
10464 !arm_is_secure(env)) {
10466 changed_daif = (env->daif ^ val) & mask;
10468 if (changed_daif & CPSR_A) {
10470 * Check to see if we are allowed to change the masking of async
10471 * abort exceptions from a non-secure state.
10473 if (!(env->cp15.scr_el3 & SCR_AW)) {
10474 qemu_log_mask(LOG_GUEST_ERROR,
10475 "Ignoring attempt to switch CPSR_A flag from "
10476 "non-secure world with SCR.AW bit clear\n");
10477 mask &= ~CPSR_A;
10481 if (changed_daif & CPSR_F) {
10483 * Check to see if we are allowed to change the masking of FIQ
10484 * exceptions from a non-secure state.
10486 if (!(env->cp15.scr_el3 & SCR_FW)) {
10487 qemu_log_mask(LOG_GUEST_ERROR,
10488 "Ignoring attempt to switch CPSR_F flag from "
10489 "non-secure world with SCR.FW bit clear\n");
10490 mask &= ~CPSR_F;
10494 * Check whether non-maskable FIQ (NMFI) support is enabled.
10495 * If this bit is set software is not allowed to mask
10496 * FIQs, but is allowed to set CPSR_F to 0.
10498 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
10499 (val & CPSR_F)) {
10500 qemu_log_mask(LOG_GUEST_ERROR,
10501 "Ignoring attempt to enable CPSR_F flag "
10502 "(non-maskable FIQ [NMFI] support enabled)\n");
10503 mask &= ~CPSR_F;
10508 env->daif &= ~(CPSR_AIF & mask);
10509 env->daif |= val & CPSR_AIF & mask;
10511 if (write_type != CPSRWriteRaw &&
10512 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
10513 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
10515 * Note that we can only get here in USR mode if this is a
10516 * gdb stub write; for this case we follow the architectural
10517 * behaviour for guest writes in USR mode of ignoring an attempt
10518 * to switch mode. (Those are caught by translate.c for writes
10519 * triggered by guest instructions.)
10521 mask &= ~CPSR_M;
10522 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
10524 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
10525 * v7, and has defined behaviour in v8:
10526 * + leave CPSR.M untouched
10527 * + allow changes to the other CPSR fields
10528 * + set PSTATE.IL
10529 * For user changes via the GDB stub, we don't set PSTATE.IL,
10530 * as this would be unnecessarily harsh for a user error.
10532 mask &= ~CPSR_M;
10533 if (write_type != CPSRWriteByGDBStub &&
10534 arm_feature(env, ARM_FEATURE_V8)) {
10535 mask |= CPSR_IL;
10536 val |= CPSR_IL;
10538 qemu_log_mask(LOG_GUEST_ERROR,
10539 "Illegal AArch32 mode switch attempt from %s to %s\n",
10540 aarch32_mode_name(env->uncached_cpsr),
10541 aarch32_mode_name(val));
10542 } else {
10543 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
10544 write_type == CPSRWriteExceptionReturn ?
10545 "Exception return from AArch32" :
10546 "AArch32 mode switch from",
10547 aarch32_mode_name(env->uncached_cpsr),
10548 aarch32_mode_name(val), env->regs[15]);
10549 switch_mode(env, val & CPSR_M);
10552 mask &= ~CACHED_CPSR_BITS;
10553 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
10554 if (tcg_enabled() && rebuild_hflags) {
10555 arm_rebuild_hflags(env);
10559 #ifdef CONFIG_USER_ONLY
10561 static void switch_mode(CPUARMState *env, int mode)
10563 ARMCPU *cpu = env_archcpu(env);
10565 if (mode != ARM_CPU_MODE_USR) {
10566 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10570 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10571 uint32_t cur_el, bool secure)
10573 return 1;
10576 void aarch64_sync_64_to_32(CPUARMState *env)
10578 g_assert_not_reached();
10581 #else
10583 static void switch_mode(CPUARMState *env, int mode)
10585 int old_mode;
10586 int i;
10588 old_mode = env->uncached_cpsr & CPSR_M;
10589 if (mode == old_mode) {
10590 return;
10593 if (old_mode == ARM_CPU_MODE_FIQ) {
10594 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10595 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10596 } else if (mode == ARM_CPU_MODE_FIQ) {
10597 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10598 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10601 i = bank_number(old_mode);
10602 env->banked_r13[i] = env->regs[13];
10603 env->banked_spsr[i] = env->spsr;
10605 i = bank_number(mode);
10606 env->regs[13] = env->banked_r13[i];
10607 env->spsr = env->banked_spsr[i];
10609 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10610 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10614 * Physical Interrupt Target EL Lookup Table
10616 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10618 * The below multi-dimensional table is used for looking up the target
10619 * exception level given numerous condition criteria. Specifically, the
10620 * target EL is based on SCR and HCR routing controls as well as the
10621 * currently executing EL and secure state.
10623 * Dimensions:
10624 * target_el_table[2][2][2][2][2][4]
10625 * | | | | | +--- Current EL
10626 * | | | | +------ Non-secure(0)/Secure(1)
10627 * | | | +--------- HCR mask override
10628 * | | +------------ SCR exec state control
10629 * | +--------------- SCR mask override
10630 * +------------------ 32-bit(0)/64-bit(1) EL3
10632 * The table values are as such:
10633 * 0-3 = EL0-EL3
10634 * -1 = Cannot occur
10636 * The ARM ARM target EL table includes entries indicating that an "exception
10637 * is not taken". The two cases where this is applicable are:
10638 * 1) An exception is taken from EL3 but the SCR does not have the exception
10639 * routed to EL3.
10640 * 2) An exception is taken from EL2 but the HCR does not have the exception
10641 * routed to EL2.
10642 * In these two cases, the below table contain a target of EL1. This value is
10643 * returned as it is expected that the consumer of the table data will check
10644 * for "target EL >= current EL" to ensure the exception is not taken.
10646 * SCR HCR
10647 * 64 EA AMO From
10648 * BIT IRQ IMO Non-secure Secure
10649 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
10651 static const int8_t target_el_table[2][2][2][2][2][4] = {
10652 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10653 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
10654 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10655 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
10656 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10657 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
10658 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10659 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
10660 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
10661 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
10662 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
10663 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
10664 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
10665 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
10666 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
10667 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
10671 * Determine the target EL for physical exceptions
10673 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10674 uint32_t cur_el, bool secure)
10676 CPUARMState *env = cpu_env(cs);
10677 bool rw;
10678 bool scr;
10679 bool hcr;
10680 int target_el;
10681 /* Is the highest EL AArch64? */
10682 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10683 uint64_t hcr_el2;
10685 if (arm_feature(env, ARM_FEATURE_EL3)) {
10686 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10687 } else {
10689 * Either EL2 is the highest EL (and so the EL2 register width
10690 * is given by is64); or there is no EL2 or EL3, in which case
10691 * the value of 'rw' does not affect the table lookup anyway.
10693 rw = is64;
10696 hcr_el2 = arm_hcr_el2_eff(env);
10697 switch (excp_idx) {
10698 case EXCP_IRQ:
10699 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10700 hcr = hcr_el2 & HCR_IMO;
10701 break;
10702 case EXCP_FIQ:
10703 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10704 hcr = hcr_el2 & HCR_FMO;
10705 break;
10706 default:
10707 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10708 hcr = hcr_el2 & HCR_AMO;
10709 break;
10713 * For these purposes, TGE and AMO/IMO/FMO both force the
10714 * interrupt to EL2. Fold TGE into the bit extracted above.
10716 hcr |= (hcr_el2 & HCR_TGE) != 0;
10718 /* Perform a table-lookup for the target EL given the current state */
10719 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10721 assert(target_el > 0);
10723 return target_el;
10726 void arm_log_exception(CPUState *cs)
10728 int idx = cs->exception_index;
10730 if (qemu_loglevel_mask(CPU_LOG_INT)) {
10731 const char *exc = NULL;
10732 static const char * const excnames[] = {
10733 [EXCP_UDEF] = "Undefined Instruction",
10734 [EXCP_SWI] = "SVC",
10735 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10736 [EXCP_DATA_ABORT] = "Data Abort",
10737 [EXCP_IRQ] = "IRQ",
10738 [EXCP_FIQ] = "FIQ",
10739 [EXCP_BKPT] = "Breakpoint",
10740 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10741 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10742 [EXCP_HVC] = "Hypervisor Call",
10743 [EXCP_HYP_TRAP] = "Hypervisor Trap",
10744 [EXCP_SMC] = "Secure Monitor Call",
10745 [EXCP_VIRQ] = "Virtual IRQ",
10746 [EXCP_VFIQ] = "Virtual FIQ",
10747 [EXCP_SEMIHOST] = "Semihosting call",
10748 [EXCP_NOCP] = "v7M NOCP UsageFault",
10749 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10750 [EXCP_STKOF] = "v8M STKOF UsageFault",
10751 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10752 [EXCP_LSERR] = "v8M LSERR UsageFault",
10753 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10754 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10755 [EXCP_VSERR] = "Virtual SERR",
10756 [EXCP_GPC] = "Granule Protection Check",
10759 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10760 exc = excnames[idx];
10762 if (!exc) {
10763 exc = "unknown";
10765 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10766 idx, exc, cs->cpu_index);
10771 * Function used to synchronize QEMU's AArch64 register set with AArch32
10772 * register set. This is necessary when switching between AArch32 and AArch64
10773 * execution state.
10775 void aarch64_sync_32_to_64(CPUARMState *env)
10777 int i;
10778 uint32_t mode = env->uncached_cpsr & CPSR_M;
10780 /* We can blanket copy R[0:7] to X[0:7] */
10781 for (i = 0; i < 8; i++) {
10782 env->xregs[i] = env->regs[i];
10786 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10787 * Otherwise, they come from the banked user regs.
10789 if (mode == ARM_CPU_MODE_FIQ) {
10790 for (i = 8; i < 13; i++) {
10791 env->xregs[i] = env->usr_regs[i - 8];
10793 } else {
10794 for (i = 8; i < 13; i++) {
10795 env->xregs[i] = env->regs[i];
10800 * Registers x13-x23 are the various mode SP and FP registers. Registers
10801 * r13 and r14 are only copied if we are in that mode, otherwise we copy
10802 * from the mode banked register.
10804 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10805 env->xregs[13] = env->regs[13];
10806 env->xregs[14] = env->regs[14];
10807 } else {
10808 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10809 /* HYP is an exception in that it is copied from r14 */
10810 if (mode == ARM_CPU_MODE_HYP) {
10811 env->xregs[14] = env->regs[14];
10812 } else {
10813 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10817 if (mode == ARM_CPU_MODE_HYP) {
10818 env->xregs[15] = env->regs[13];
10819 } else {
10820 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10823 if (mode == ARM_CPU_MODE_IRQ) {
10824 env->xregs[16] = env->regs[14];
10825 env->xregs[17] = env->regs[13];
10826 } else {
10827 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10828 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10831 if (mode == ARM_CPU_MODE_SVC) {
10832 env->xregs[18] = env->regs[14];
10833 env->xregs[19] = env->regs[13];
10834 } else {
10835 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10836 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10839 if (mode == ARM_CPU_MODE_ABT) {
10840 env->xregs[20] = env->regs[14];
10841 env->xregs[21] = env->regs[13];
10842 } else {
10843 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10844 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10847 if (mode == ARM_CPU_MODE_UND) {
10848 env->xregs[22] = env->regs[14];
10849 env->xregs[23] = env->regs[13];
10850 } else {
10851 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10852 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10856 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10857 * mode, then we can copy from r8-r14. Otherwise, we copy from the
10858 * FIQ bank for r8-r14.
10860 if (mode == ARM_CPU_MODE_FIQ) {
10861 for (i = 24; i < 31; i++) {
10862 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
10864 } else {
10865 for (i = 24; i < 29; i++) {
10866 env->xregs[i] = env->fiq_regs[i - 24];
10868 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10869 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10872 env->pc = env->regs[15];
10876 * Function used to synchronize QEMU's AArch32 register set with AArch64
10877 * register set. This is necessary when switching between AArch32 and AArch64
10878 * execution state.
10880 void aarch64_sync_64_to_32(CPUARMState *env)
10882 int i;
10883 uint32_t mode = env->uncached_cpsr & CPSR_M;
10885 /* We can blanket copy X[0:7] to R[0:7] */
10886 for (i = 0; i < 8; i++) {
10887 env->regs[i] = env->xregs[i];
10891 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10892 * Otherwise, we copy x8-x12 into the banked user regs.
10894 if (mode == ARM_CPU_MODE_FIQ) {
10895 for (i = 8; i < 13; i++) {
10896 env->usr_regs[i - 8] = env->xregs[i];
10898 } else {
10899 for (i = 8; i < 13; i++) {
10900 env->regs[i] = env->xregs[i];
10905 * Registers r13 & r14 depend on the current mode.
10906 * If we are in a given mode, we copy the corresponding x registers to r13
10907 * and r14. Otherwise, we copy the x register to the banked r13 and r14
10908 * for the mode.
10910 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10911 env->regs[13] = env->xregs[13];
10912 env->regs[14] = env->xregs[14];
10913 } else {
10914 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10917 * HYP is an exception in that it does not have its own banked r14 but
10918 * shares the USR r14
10920 if (mode == ARM_CPU_MODE_HYP) {
10921 env->regs[14] = env->xregs[14];
10922 } else {
10923 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10927 if (mode == ARM_CPU_MODE_HYP) {
10928 env->regs[13] = env->xregs[15];
10929 } else {
10930 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10933 if (mode == ARM_CPU_MODE_IRQ) {
10934 env->regs[14] = env->xregs[16];
10935 env->regs[13] = env->xregs[17];
10936 } else {
10937 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10938 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10941 if (mode == ARM_CPU_MODE_SVC) {
10942 env->regs[14] = env->xregs[18];
10943 env->regs[13] = env->xregs[19];
10944 } else {
10945 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10946 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10949 if (mode == ARM_CPU_MODE_ABT) {
10950 env->regs[14] = env->xregs[20];
10951 env->regs[13] = env->xregs[21];
10952 } else {
10953 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10954 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10957 if (mode == ARM_CPU_MODE_UND) {
10958 env->regs[14] = env->xregs[22];
10959 env->regs[13] = env->xregs[23];
10960 } else {
10961 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10962 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10966 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10967 * mode, then we can copy to r8-r14. Otherwise, we copy to the
10968 * FIQ bank for r8-r14.
10970 if (mode == ARM_CPU_MODE_FIQ) {
10971 for (i = 24; i < 31; i++) {
10972 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
10974 } else {
10975 for (i = 24; i < 29; i++) {
10976 env->fiq_regs[i - 24] = env->xregs[i];
10978 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10979 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10982 env->regs[15] = env->pc;
10985 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10986 uint32_t mask, uint32_t offset,
10987 uint32_t newpc)
10989 int new_el;
10991 /* Change the CPU state so as to actually take the exception. */
10992 switch_mode(env, new_mode);
10995 * For exceptions taken to AArch32 we must clear the SS bit in both
10996 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10998 env->pstate &= ~PSTATE_SS;
10999 env->spsr = cpsr_read(env);
11000 /* Clear IT bits. */
11001 env->condexec_bits = 0;
11002 /* Switch to the new mode, and to the correct instruction set. */
11003 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
11005 /* This must be after mode switching. */
11006 new_el = arm_current_el(env);
11008 /* Set new mode endianness */
11009 env->uncached_cpsr &= ~CPSR_E;
11010 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
11011 env->uncached_cpsr |= CPSR_E;
11013 /* J and IL must always be cleared for exception entry */
11014 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
11015 env->daif |= mask;
11017 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
11018 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
11019 env->uncached_cpsr |= CPSR_SSBS;
11020 } else {
11021 env->uncached_cpsr &= ~CPSR_SSBS;
11025 if (new_mode == ARM_CPU_MODE_HYP) {
11026 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
11027 env->elr_el[2] = env->regs[15];
11028 } else {
11029 /* CPSR.PAN is normally preserved preserved unless... */
11030 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
11031 switch (new_el) {
11032 case 3:
11033 if (!arm_is_secure_below_el3(env)) {
11034 /* ... the target is EL3, from non-secure state. */
11035 env->uncached_cpsr &= ~CPSR_PAN;
11036 break;
11038 /* ... the target is EL3, from secure state ... */
11039 /* fall through */
11040 case 1:
11041 /* ... the target is EL1 and SCTLR.SPAN is 0. */
11042 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
11043 env->uncached_cpsr |= CPSR_PAN;
11045 break;
11049 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
11050 * and we should just guard the thumb mode on V4
11052 if (arm_feature(env, ARM_FEATURE_V4T)) {
11053 env->thumb =
11054 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
11056 env->regs[14] = env->regs[15] + offset;
11058 env->regs[15] = newpc;
11060 if (tcg_enabled()) {
11061 arm_rebuild_hflags(env);
11065 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
11068 * Handle exception entry to Hyp mode; this is sufficiently
11069 * different to entry to other AArch32 modes that we handle it
11070 * separately here.
11072 * The vector table entry used is always the 0x14 Hyp mode entry point,
11073 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
11074 * The offset applied to the preferred return address is always zero
11075 * (see DDI0487C.a section G1.12.3).
11076 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
11078 uint32_t addr, mask;
11079 ARMCPU *cpu = ARM_CPU(cs);
11080 CPUARMState *env = &cpu->env;
11082 switch (cs->exception_index) {
11083 case EXCP_UDEF:
11084 addr = 0x04;
11085 break;
11086 case EXCP_SWI:
11087 addr = 0x08;
11088 break;
11089 case EXCP_BKPT:
11090 /* Fall through to prefetch abort. */
11091 case EXCP_PREFETCH_ABORT:
11092 env->cp15.ifar_s = env->exception.vaddress;
11093 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
11094 (uint32_t)env->exception.vaddress);
11095 addr = 0x0c;
11096 break;
11097 case EXCP_DATA_ABORT:
11098 env->cp15.dfar_s = env->exception.vaddress;
11099 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
11100 (uint32_t)env->exception.vaddress);
11101 addr = 0x10;
11102 break;
11103 case EXCP_IRQ:
11104 addr = 0x18;
11105 break;
11106 case EXCP_FIQ:
11107 addr = 0x1c;
11108 break;
11109 case EXCP_HVC:
11110 addr = 0x08;
11111 break;
11112 case EXCP_HYP_TRAP:
11113 addr = 0x14;
11114 break;
11115 default:
11116 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11119 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
11120 if (!arm_feature(env, ARM_FEATURE_V8)) {
11122 * QEMU syndrome values are v8-style. v7 has the IL bit
11123 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
11124 * If this is a v7 CPU, squash the IL bit in those cases.
11126 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
11127 (cs->exception_index == EXCP_DATA_ABORT &&
11128 !(env->exception.syndrome & ARM_EL_ISV)) ||
11129 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
11130 env->exception.syndrome &= ~ARM_EL_IL;
11133 env->cp15.esr_el[2] = env->exception.syndrome;
11136 if (arm_current_el(env) != 2 && addr < 0x14) {
11137 addr = 0x14;
11140 mask = 0;
11141 if (!(env->cp15.scr_el3 & SCR_EA)) {
11142 mask |= CPSR_A;
11144 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
11145 mask |= CPSR_I;
11147 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
11148 mask |= CPSR_F;
11151 addr += env->cp15.hvbar;
11153 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
11156 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
11158 ARMCPU *cpu = ARM_CPU(cs);
11159 CPUARMState *env = &cpu->env;
11160 uint32_t addr;
11161 uint32_t mask;
11162 int new_mode;
11163 uint32_t offset;
11164 uint32_t moe;
11166 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
11167 switch (syn_get_ec(env->exception.syndrome)) {
11168 case EC_BREAKPOINT:
11169 case EC_BREAKPOINT_SAME_EL:
11170 moe = 1;
11171 break;
11172 case EC_WATCHPOINT:
11173 case EC_WATCHPOINT_SAME_EL:
11174 moe = 10;
11175 break;
11176 case EC_AA32_BKPT:
11177 moe = 3;
11178 break;
11179 case EC_VECTORCATCH:
11180 moe = 5;
11181 break;
11182 default:
11183 moe = 0;
11184 break;
11187 if (moe) {
11188 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
11191 if (env->exception.target_el == 2) {
11192 /* Debug exceptions are reported differently on AArch32 */
11193 switch (syn_get_ec(env->exception.syndrome)) {
11194 case EC_BREAKPOINT:
11195 case EC_BREAKPOINT_SAME_EL:
11196 case EC_AA32_BKPT:
11197 case EC_VECTORCATCH:
11198 env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2,
11199 0, 0, 0x22);
11200 break;
11201 case EC_WATCHPOINT:
11202 env->exception.syndrome = syn_set_ec(env->exception.syndrome,
11203 EC_DATAABORT);
11204 break;
11205 case EC_WATCHPOINT_SAME_EL:
11206 env->exception.syndrome = syn_set_ec(env->exception.syndrome,
11207 EC_DATAABORT_SAME_EL);
11208 break;
11210 arm_cpu_do_interrupt_aarch32_hyp(cs);
11211 return;
11214 switch (cs->exception_index) {
11215 case EXCP_UDEF:
11216 new_mode = ARM_CPU_MODE_UND;
11217 addr = 0x04;
11218 mask = CPSR_I;
11219 if (env->thumb) {
11220 offset = 2;
11221 } else {
11222 offset = 4;
11224 break;
11225 case EXCP_SWI:
11226 new_mode = ARM_CPU_MODE_SVC;
11227 addr = 0x08;
11228 mask = CPSR_I;
11229 /* The PC already points to the next instruction. */
11230 offset = 0;
11231 break;
11232 case EXCP_BKPT:
11233 /* Fall through to prefetch abort. */
11234 case EXCP_PREFETCH_ABORT:
11235 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
11236 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
11237 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
11238 env->exception.fsr, (uint32_t)env->exception.vaddress);
11239 new_mode = ARM_CPU_MODE_ABT;
11240 addr = 0x0c;
11241 mask = CPSR_A | CPSR_I;
11242 offset = 4;
11243 break;
11244 case EXCP_DATA_ABORT:
11245 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11246 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
11247 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
11248 env->exception.fsr,
11249 (uint32_t)env->exception.vaddress);
11250 new_mode = ARM_CPU_MODE_ABT;
11251 addr = 0x10;
11252 mask = CPSR_A | CPSR_I;
11253 offset = 8;
11254 break;
11255 case EXCP_IRQ:
11256 new_mode = ARM_CPU_MODE_IRQ;
11257 addr = 0x18;
11258 /* Disable IRQ and imprecise data aborts. */
11259 mask = CPSR_A | CPSR_I;
11260 offset = 4;
11261 if (env->cp15.scr_el3 & SCR_IRQ) {
11262 /* IRQ routed to monitor mode */
11263 new_mode = ARM_CPU_MODE_MON;
11264 mask |= CPSR_F;
11266 break;
11267 case EXCP_FIQ:
11268 new_mode = ARM_CPU_MODE_FIQ;
11269 addr = 0x1c;
11270 /* Disable FIQ, IRQ and imprecise data aborts. */
11271 mask = CPSR_A | CPSR_I | CPSR_F;
11272 if (env->cp15.scr_el3 & SCR_FIQ) {
11273 /* FIQ routed to monitor mode */
11274 new_mode = ARM_CPU_MODE_MON;
11276 offset = 4;
11277 break;
11278 case EXCP_VIRQ:
11279 new_mode = ARM_CPU_MODE_IRQ;
11280 addr = 0x18;
11281 /* Disable IRQ and imprecise data aborts. */
11282 mask = CPSR_A | CPSR_I;
11283 offset = 4;
11284 break;
11285 case EXCP_VFIQ:
11286 new_mode = ARM_CPU_MODE_FIQ;
11287 addr = 0x1c;
11288 /* Disable FIQ, IRQ and imprecise data aborts. */
11289 mask = CPSR_A | CPSR_I | CPSR_F;
11290 offset = 4;
11291 break;
11292 case EXCP_VSERR:
11295 * Note that this is reported as a data abort, but the DFAR
11296 * has an UNKNOWN value. Construct the SError syndrome from
11297 * AET and ExT fields.
11299 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
11301 if (extended_addresses_enabled(env)) {
11302 env->exception.fsr = arm_fi_to_lfsc(&fi);
11303 } else {
11304 env->exception.fsr = arm_fi_to_sfsc(&fi);
11306 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
11307 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11308 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
11309 env->exception.fsr);
11311 new_mode = ARM_CPU_MODE_ABT;
11312 addr = 0x10;
11313 mask = CPSR_A | CPSR_I;
11314 offset = 8;
11316 break;
11317 case EXCP_SMC:
11318 new_mode = ARM_CPU_MODE_MON;
11319 addr = 0x08;
11320 mask = CPSR_A | CPSR_I | CPSR_F;
11321 offset = 0;
11322 break;
11323 default:
11324 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11325 return; /* Never happens. Keep compiler happy. */
11328 if (new_mode == ARM_CPU_MODE_MON) {
11329 addr += env->cp15.mvbar;
11330 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
11331 /* High vectors. When enabled, base address cannot be remapped. */
11332 addr += 0xffff0000;
11333 } else {
11335 * ARM v7 architectures provide a vector base address register to remap
11336 * the interrupt vector table.
11337 * This register is only followed in non-monitor mode, and is banked.
11338 * Note: only bits 31:5 are valid.
11340 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
11343 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
11344 env->cp15.scr_el3 &= ~SCR_NS;
11347 take_aarch32_exception(env, new_mode, mask, offset, addr);
11350 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
11353 * Return the register number of the AArch64 view of the AArch32
11354 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
11355 * be that of the AArch32 mode the exception came from.
11357 int mode = env->uncached_cpsr & CPSR_M;
11359 switch (aarch32_reg) {
11360 case 0 ... 7:
11361 return aarch32_reg;
11362 case 8 ... 12:
11363 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
11364 case 13:
11365 switch (mode) {
11366 case ARM_CPU_MODE_USR:
11367 case ARM_CPU_MODE_SYS:
11368 return 13;
11369 case ARM_CPU_MODE_HYP:
11370 return 15;
11371 case ARM_CPU_MODE_IRQ:
11372 return 17;
11373 case ARM_CPU_MODE_SVC:
11374 return 19;
11375 case ARM_CPU_MODE_ABT:
11376 return 21;
11377 case ARM_CPU_MODE_UND:
11378 return 23;
11379 case ARM_CPU_MODE_FIQ:
11380 return 29;
11381 default:
11382 g_assert_not_reached();
11384 case 14:
11385 switch (mode) {
11386 case ARM_CPU_MODE_USR:
11387 case ARM_CPU_MODE_SYS:
11388 case ARM_CPU_MODE_HYP:
11389 return 14;
11390 case ARM_CPU_MODE_IRQ:
11391 return 16;
11392 case ARM_CPU_MODE_SVC:
11393 return 18;
11394 case ARM_CPU_MODE_ABT:
11395 return 20;
11396 case ARM_CPU_MODE_UND:
11397 return 22;
11398 case ARM_CPU_MODE_FIQ:
11399 return 30;
11400 default:
11401 g_assert_not_reached();
11403 case 15:
11404 return 31;
11405 default:
11406 g_assert_not_reached();
11410 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
11412 uint32_t ret = cpsr_read(env);
11414 /* Move DIT to the correct location for SPSR_ELx */
11415 if (ret & CPSR_DIT) {
11416 ret &= ~CPSR_DIT;
11417 ret |= PSTATE_DIT;
11419 /* Merge PSTATE.SS into SPSR_ELx */
11420 ret |= env->pstate & PSTATE_SS;
11422 return ret;
11425 static bool syndrome_is_sync_extabt(uint32_t syndrome)
11427 /* Return true if this syndrome value is a synchronous external abort */
11428 switch (syn_get_ec(syndrome)) {
11429 case EC_INSNABORT:
11430 case EC_INSNABORT_SAME_EL:
11431 case EC_DATAABORT:
11432 case EC_DATAABORT_SAME_EL:
11433 /* Look at fault status code for all the synchronous ext abort cases */
11434 switch (syndrome & 0x3f) {
11435 case 0x10:
11436 case 0x13:
11437 case 0x14:
11438 case 0x15:
11439 case 0x16:
11440 case 0x17:
11441 return true;
11442 default:
11443 return false;
11445 default:
11446 return false;
11450 /* Handle exception entry to a target EL which is using AArch64 */
11451 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
11453 ARMCPU *cpu = ARM_CPU(cs);
11454 CPUARMState *env = &cpu->env;
11455 unsigned int new_el = env->exception.target_el;
11456 target_ulong addr = env->cp15.vbar_el[new_el];
11457 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
11458 unsigned int old_mode;
11459 unsigned int cur_el = arm_current_el(env);
11460 int rt;
11462 if (tcg_enabled()) {
11464 * Note that new_el can never be 0. If cur_el is 0, then
11465 * el0_a64 is is_a64(), else el0_a64 is ignored.
11467 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
11470 if (cur_el < new_el) {
11472 * Entry vector offset depends on whether the implemented EL
11473 * immediately lower than the target level is using AArch32 or AArch64
11475 bool is_aa64;
11476 uint64_t hcr;
11478 switch (new_el) {
11479 case 3:
11480 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
11481 break;
11482 case 2:
11483 hcr = arm_hcr_el2_eff(env);
11484 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11485 is_aa64 = (hcr & HCR_RW) != 0;
11486 break;
11488 /* fall through */
11489 case 1:
11490 is_aa64 = is_a64(env);
11491 break;
11492 default:
11493 g_assert_not_reached();
11496 if (is_aa64) {
11497 addr += 0x400;
11498 } else {
11499 addr += 0x600;
11501 } else if (pstate_read(env) & PSTATE_SP) {
11502 addr += 0x200;
11505 switch (cs->exception_index) {
11506 case EXCP_GPC:
11507 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
11508 env->cp15.mfar_el3);
11509 /* fall through */
11510 case EXCP_PREFETCH_ABORT:
11511 case EXCP_DATA_ABORT:
11513 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
11514 * to be taken to the SError vector entrypoint.
11516 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
11517 syndrome_is_sync_extabt(env->exception.syndrome)) {
11518 addr += 0x180;
11520 env->cp15.far_el[new_el] = env->exception.vaddress;
11521 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
11522 env->cp15.far_el[new_el]);
11523 /* fall through */
11524 case EXCP_BKPT:
11525 case EXCP_UDEF:
11526 case EXCP_SWI:
11527 case EXCP_HVC:
11528 case EXCP_HYP_TRAP:
11529 case EXCP_SMC:
11530 switch (syn_get_ec(env->exception.syndrome)) {
11531 case EC_ADVSIMDFPACCESSTRAP:
11533 * QEMU internal FP/SIMD syndromes from AArch32 include the
11534 * TA and coproc fields which are only exposed if the exception
11535 * is taken to AArch32 Hyp mode. Mask them out to get a valid
11536 * AArch64 format syndrome.
11538 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
11539 break;
11540 case EC_CP14RTTRAP:
11541 case EC_CP15RTTRAP:
11542 case EC_CP14DTTRAP:
11544 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11545 * the raw register field from the insn; when taking this to
11546 * AArch64 we must convert it to the AArch64 view of the register
11547 * number. Notice that we read a 4-bit AArch32 register number and
11548 * write back a 5-bit AArch64 one.
11550 rt = extract32(env->exception.syndrome, 5, 4);
11551 rt = aarch64_regnum(env, rt);
11552 env->exception.syndrome = deposit32(env->exception.syndrome,
11553 5, 5, rt);
11554 break;
11555 case EC_CP15RRTTRAP:
11556 case EC_CP14RRTTRAP:
11557 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11558 rt = extract32(env->exception.syndrome, 5, 4);
11559 rt = aarch64_regnum(env, rt);
11560 env->exception.syndrome = deposit32(env->exception.syndrome,
11561 5, 5, rt);
11562 rt = extract32(env->exception.syndrome, 10, 4);
11563 rt = aarch64_regnum(env, rt);
11564 env->exception.syndrome = deposit32(env->exception.syndrome,
11565 10, 5, rt);
11566 break;
11568 env->cp15.esr_el[new_el] = env->exception.syndrome;
11569 break;
11570 case EXCP_IRQ:
11571 case EXCP_VIRQ:
11572 addr += 0x80;
11573 break;
11574 case EXCP_FIQ:
11575 case EXCP_VFIQ:
11576 addr += 0x100;
11577 break;
11578 case EXCP_VSERR:
11579 addr += 0x180;
11580 /* Construct the SError syndrome from IDS and ISS fields. */
11581 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11582 env->cp15.esr_el[new_el] = env->exception.syndrome;
11583 break;
11584 default:
11585 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11588 if (is_a64(env)) {
11589 old_mode = pstate_read(env);
11590 aarch64_save_sp(env, arm_current_el(env));
11591 env->elr_el[new_el] = env->pc;
11593 if (cur_el == 1 && new_el == 1) {
11594 uint64_t hcr = arm_hcr_el2_eff(env);
11595 if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV ||
11596 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) {
11598 * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR
11599 * by setting M[3:2] to 0b10.
11600 * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN)
11601 * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM)
11603 old_mode = deposit32(old_mode, 2, 2, 2);
11606 } else {
11607 old_mode = cpsr_read_for_spsr_elx(env);
11608 env->elr_el[new_el] = env->regs[15];
11610 aarch64_sync_32_to_64(env);
11612 env->condexec_bits = 0;
11614 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11616 qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode);
11617 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11618 env->elr_el[new_el]);
11620 if (cpu_isar_feature(aa64_pan, cpu)) {
11621 /* The value of PSTATE.PAN is normally preserved, except when ... */
11622 new_mode |= old_mode & PSTATE_PAN;
11623 switch (new_el) {
11624 case 2:
11625 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
11626 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11627 != (HCR_E2H | HCR_TGE)) {
11628 break;
11630 /* fall through */
11631 case 1:
11632 /* ... the target is EL1 ... */
11633 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
11634 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11635 new_mode |= PSTATE_PAN;
11637 break;
11640 if (cpu_isar_feature(aa64_mte, cpu)) {
11641 new_mode |= PSTATE_TCO;
11644 if (cpu_isar_feature(aa64_ssbs, cpu)) {
11645 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11646 new_mode |= PSTATE_SSBS;
11647 } else {
11648 new_mode &= ~PSTATE_SSBS;
11652 pstate_write(env, PSTATE_DAIF | new_mode);
11653 env->aarch64 = true;
11654 aarch64_restore_sp(env, new_el);
11656 if (tcg_enabled()) {
11657 helper_rebuild_hflags_a64(env, new_el);
11660 env->pc = addr;
11662 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11663 new_el, env->pc, pstate_read(env));
11667 * Do semihosting call and set the appropriate return value. All the
11668 * permission and validity checks have been done at translate time.
11670 * We only see semihosting exceptions in TCG only as they are not
11671 * trapped to the hypervisor in KVM.
11673 #ifdef CONFIG_TCG
11674 static void tcg_handle_semihosting(CPUState *cs)
11676 ARMCPU *cpu = ARM_CPU(cs);
11677 CPUARMState *env = &cpu->env;
11679 if (is_a64(env)) {
11680 qemu_log_mask(CPU_LOG_INT,
11681 "...handling as semihosting call 0x%" PRIx64 "\n",
11682 env->xregs[0]);
11683 do_common_semihosting(cs);
11684 env->pc += 4;
11685 } else {
11686 qemu_log_mask(CPU_LOG_INT,
11687 "...handling as semihosting call 0x%x\n",
11688 env->regs[0]);
11689 do_common_semihosting(cs);
11690 env->regs[15] += env->thumb ? 2 : 4;
11693 #endif
11696 * Handle a CPU exception for A and R profile CPUs.
11697 * Do any appropriate logging, handle PSCI calls, and then hand off
11698 * to the AArch64-entry or AArch32-entry function depending on the
11699 * target exception level's register width.
11701 * Note: this is used for both TCG (as the do_interrupt tcg op),
11702 * and KVM to re-inject guest debug exceptions, and to
11703 * inject a Synchronous-External-Abort.
11705 void arm_cpu_do_interrupt(CPUState *cs)
11707 ARMCPU *cpu = ARM_CPU(cs);
11708 CPUARMState *env = &cpu->env;
11709 unsigned int new_el = env->exception.target_el;
11711 assert(!arm_feature(env, ARM_FEATURE_M));
11713 arm_log_exception(cs);
11714 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11715 new_el);
11716 if (qemu_loglevel_mask(CPU_LOG_INT)
11717 && !excp_is_internal(cs->exception_index)) {
11718 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11719 syn_get_ec(env->exception.syndrome),
11720 env->exception.syndrome);
11723 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11724 arm_handle_psci_call(cpu);
11725 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11726 return;
11730 * Semihosting semantics depend on the register width of the code
11731 * that caused the exception, not the target exception level, so
11732 * must be handled here.
11734 #ifdef CONFIG_TCG
11735 if (cs->exception_index == EXCP_SEMIHOST) {
11736 tcg_handle_semihosting(cs);
11737 return;
11739 #endif
11742 * Hooks may change global state so BQL should be held, also the
11743 * BQL needs to be held for any modification of
11744 * cs->interrupt_request.
11746 g_assert(bql_locked());
11748 arm_call_pre_el_change_hook(cpu);
11750 assert(!excp_is_internal(cs->exception_index));
11751 if (arm_el_is_aa64(env, new_el)) {
11752 arm_cpu_do_interrupt_aarch64(cs);
11753 } else {
11754 arm_cpu_do_interrupt_aarch32(cs);
11757 arm_call_el_change_hook(cpu);
11759 if (!kvm_enabled()) {
11760 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11763 #endif /* !CONFIG_USER_ONLY */
11765 uint64_t arm_sctlr(CPUARMState *env, int el)
11767 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11768 if (el == 0) {
11769 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11770 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11772 return env->cp15.sctlr_el[el];
11775 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11777 if (regime_has_2_ranges(mmu_idx)) {
11778 return extract64(tcr, 37, 2);
11779 } else if (regime_is_stage2(mmu_idx)) {
11780 return 0; /* VTCR_EL2 */
11781 } else {
11782 /* Replicate the single TBI bit so we always have 2 bits. */
11783 return extract32(tcr, 20, 1) * 3;
11787 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11789 if (regime_has_2_ranges(mmu_idx)) {
11790 return extract64(tcr, 51, 2);
11791 } else if (regime_is_stage2(mmu_idx)) {
11792 return 0; /* VTCR_EL2 */
11793 } else {
11794 /* Replicate the single TBID bit so we always have 2 bits. */
11795 return extract32(tcr, 29, 1) * 3;
11799 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11801 if (regime_has_2_ranges(mmu_idx)) {
11802 return extract64(tcr, 57, 2);
11803 } else {
11804 /* Replicate the single TCMA bit so we always have 2 bits. */
11805 return extract32(tcr, 30, 1) * 3;
11809 static ARMGranuleSize tg0_to_gran_size(int tg)
11811 switch (tg) {
11812 case 0:
11813 return Gran4K;
11814 case 1:
11815 return Gran64K;
11816 case 2:
11817 return Gran16K;
11818 default:
11819 return GranInvalid;
11823 static ARMGranuleSize tg1_to_gran_size(int tg)
11825 switch (tg) {
11826 case 1:
11827 return Gran16K;
11828 case 2:
11829 return Gran4K;
11830 case 3:
11831 return Gran64K;
11832 default:
11833 return GranInvalid;
11837 static inline bool have4k(ARMCPU *cpu, bool stage2)
11839 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11840 : cpu_isar_feature(aa64_tgran4, cpu);
11843 static inline bool have16k(ARMCPU *cpu, bool stage2)
11845 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11846 : cpu_isar_feature(aa64_tgran16, cpu);
11849 static inline bool have64k(ARMCPU *cpu, bool stage2)
11851 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11852 : cpu_isar_feature(aa64_tgran64, cpu);
11855 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11856 bool stage2)
11858 switch (gran) {
11859 case Gran4K:
11860 if (have4k(cpu, stage2)) {
11861 return gran;
11863 break;
11864 case Gran16K:
11865 if (have16k(cpu, stage2)) {
11866 return gran;
11868 break;
11869 case Gran64K:
11870 if (have64k(cpu, stage2)) {
11871 return gran;
11873 break;
11874 case GranInvalid:
11875 break;
11878 * If the guest selects a granule size that isn't implemented,
11879 * the architecture requires that we behave as if it selected one
11880 * that is (with an IMPDEF choice of which one to pick). We choose
11881 * to implement the smallest supported granule size.
11883 if (have4k(cpu, stage2)) {
11884 return Gran4K;
11886 if (have16k(cpu, stage2)) {
11887 return Gran16K;
11889 assert(have64k(cpu, stage2));
11890 return Gran64K;
11893 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11894 ARMMMUIdx mmu_idx, bool data,
11895 bool el1_is_aa32)
11897 uint64_t tcr = regime_tcr(env, mmu_idx);
11898 bool epd, hpd, tsz_oob, ds, ha, hd;
11899 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11900 ARMGranuleSize gran;
11901 ARMCPU *cpu = env_archcpu(env);
11902 bool stage2 = regime_is_stage2(mmu_idx);
11904 if (!regime_has_2_ranges(mmu_idx)) {
11905 select = 0;
11906 tsz = extract32(tcr, 0, 6);
11907 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11908 if (stage2) {
11909 /* VTCR_EL2 */
11910 hpd = false;
11911 } else {
11912 hpd = extract32(tcr, 24, 1);
11914 epd = false;
11915 sh = extract32(tcr, 12, 2);
11916 ps = extract32(tcr, 16, 3);
11917 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11918 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11919 ds = extract64(tcr, 32, 1);
11920 } else {
11921 bool e0pd;
11924 * Bit 55 is always between the two regions, and is canonical for
11925 * determining if address tagging is enabled.
11927 select = extract64(va, 55, 1);
11928 if (!select) {
11929 tsz = extract32(tcr, 0, 6);
11930 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11931 epd = extract32(tcr, 7, 1);
11932 sh = extract32(tcr, 12, 2);
11933 hpd = extract64(tcr, 41, 1);
11934 e0pd = extract64(tcr, 55, 1);
11935 } else {
11936 tsz = extract32(tcr, 16, 6);
11937 gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11938 epd = extract32(tcr, 23, 1);
11939 sh = extract32(tcr, 28, 2);
11940 hpd = extract64(tcr, 42, 1);
11941 e0pd = extract64(tcr, 56, 1);
11943 ps = extract64(tcr, 32, 3);
11944 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11945 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11946 ds = extract64(tcr, 59, 1);
11948 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11949 regime_is_user(env, mmu_idx)) {
11950 epd = true;
11954 gran = sanitize_gran_size(cpu, gran, stage2);
11956 if (cpu_isar_feature(aa64_st, cpu)) {
11957 max_tsz = 48 - (gran == Gran64K);
11958 } else {
11959 max_tsz = 39;
11963 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11964 * adjust the effective value of DS, as documented.
11966 min_tsz = 16;
11967 if (gran == Gran64K) {
11968 if (cpu_isar_feature(aa64_lva, cpu)) {
11969 min_tsz = 12;
11971 ds = false;
11972 } else if (ds) {
11973 if (regime_is_stage2(mmu_idx)) {
11974 if (gran == Gran16K) {
11975 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11976 } else {
11977 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11979 } else {
11980 if (gran == Gran16K) {
11981 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11982 } else {
11983 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11986 if (ds) {
11987 min_tsz = 12;
11991 if (stage2 && el1_is_aa32) {
11993 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
11994 * are loosened: a configured IPA of 40 bits is permitted even if
11995 * the implemented PA is less than that (and so a 40 bit IPA would
11996 * fault for an AArch64 EL1). See R_DTLMN.
11998 min_tsz = MIN(min_tsz, 24);
12001 if (tsz > max_tsz) {
12002 tsz = max_tsz;
12003 tsz_oob = true;
12004 } else if (tsz < min_tsz) {
12005 tsz = min_tsz;
12006 tsz_oob = true;
12007 } else {
12008 tsz_oob = false;
12011 /* Present TBI as a composite with TBID. */
12012 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12013 if (!data) {
12014 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12016 tbi = (tbi >> select) & 1;
12018 return (ARMVAParameters) {
12019 .tsz = tsz,
12020 .ps = ps,
12021 .sh = sh,
12022 .select = select,
12023 .tbi = tbi,
12024 .epd = epd,
12025 .hpd = hpd,
12026 .tsz_oob = tsz_oob,
12027 .ds = ds,
12028 .ha = ha,
12029 .hd = ha && hd,
12030 .gran = gran,
12035 * Note that signed overflow is undefined in C. The following routines are
12036 * careful to use unsigned types where modulo arithmetic is required.
12037 * Failure to do so _will_ break on newer gcc.
12040 /* Signed saturating arithmetic. */
12042 /* Perform 16-bit signed saturating addition. */
12043 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12045 uint16_t res;
12047 res = a + b;
12048 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12049 if (a & 0x8000) {
12050 res = 0x8000;
12051 } else {
12052 res = 0x7fff;
12055 return res;
12058 /* Perform 8-bit signed saturating addition. */
12059 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12061 uint8_t res;
12063 res = a + b;
12064 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12065 if (a & 0x80) {
12066 res = 0x80;
12067 } else {
12068 res = 0x7f;
12071 return res;
12074 /* Perform 16-bit signed saturating subtraction. */
12075 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12077 uint16_t res;
12079 res = a - b;
12080 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12081 if (a & 0x8000) {
12082 res = 0x8000;
12083 } else {
12084 res = 0x7fff;
12087 return res;
12090 /* Perform 8-bit signed saturating subtraction. */
12091 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12093 uint8_t res;
12095 res = a - b;
12096 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12097 if (a & 0x80) {
12098 res = 0x80;
12099 } else {
12100 res = 0x7f;
12103 return res;
12106 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12107 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12108 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12109 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12110 #define PFX q
12112 #include "op_addsub.h"
12114 /* Unsigned saturating arithmetic. */
12115 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12117 uint16_t res;
12118 res = a + b;
12119 if (res < a) {
12120 res = 0xffff;
12122 return res;
12125 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12127 if (a > b) {
12128 return a - b;
12129 } else {
12130 return 0;
12134 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12136 uint8_t res;
12137 res = a + b;
12138 if (res < a) {
12139 res = 0xff;
12141 return res;
12144 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12146 if (a > b) {
12147 return a - b;
12148 } else {
12149 return 0;
12153 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12154 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12155 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
12156 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
12157 #define PFX uq
12159 #include "op_addsub.h"
12161 /* Signed modulo arithmetic. */
12162 #define SARITH16(a, b, n, op) do { \
12163 int32_t sum; \
12164 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12165 RESULT(sum, n, 16); \
12166 if (sum >= 0) \
12167 ge |= 3 << (n * 2); \
12168 } while (0)
12170 #define SARITH8(a, b, n, op) do { \
12171 int32_t sum; \
12172 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12173 RESULT(sum, n, 8); \
12174 if (sum >= 0) \
12175 ge |= 1 << n; \
12176 } while (0)
12179 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12180 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12181 #define ADD8(a, b, n) SARITH8(a, b, n, +)
12182 #define SUB8(a, b, n) SARITH8(a, b, n, -)
12183 #define PFX s
12184 #define ARITH_GE
12186 #include "op_addsub.h"
12188 /* Unsigned modulo arithmetic. */
12189 #define ADD16(a, b, n) do { \
12190 uint32_t sum; \
12191 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12192 RESULT(sum, n, 16); \
12193 if ((sum >> 16) == 1) \
12194 ge |= 3 << (n * 2); \
12195 } while (0)
12197 #define ADD8(a, b, n) do { \
12198 uint32_t sum; \
12199 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12200 RESULT(sum, n, 8); \
12201 if ((sum >> 8) == 1) \
12202 ge |= 1 << n; \
12203 } while (0)
12205 #define SUB16(a, b, n) do { \
12206 uint32_t sum; \
12207 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12208 RESULT(sum, n, 16); \
12209 if ((sum >> 16) == 0) \
12210 ge |= 3 << (n * 2); \
12211 } while (0)
12213 #define SUB8(a, b, n) do { \
12214 uint32_t sum; \
12215 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12216 RESULT(sum, n, 8); \
12217 if ((sum >> 8) == 0) \
12218 ge |= 1 << n; \
12219 } while (0)
12221 #define PFX u
12222 #define ARITH_GE
12224 #include "op_addsub.h"
12226 /* Halved signed arithmetic. */
12227 #define ADD16(a, b, n) \
12228 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12229 #define SUB16(a, b, n) \
12230 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12231 #define ADD8(a, b, n) \
12232 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12233 #define SUB8(a, b, n) \
12234 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12235 #define PFX sh
12237 #include "op_addsub.h"
12239 /* Halved unsigned arithmetic. */
12240 #define ADD16(a, b, n) \
12241 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12242 #define SUB16(a, b, n) \
12243 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12244 #define ADD8(a, b, n) \
12245 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12246 #define SUB8(a, b, n) \
12247 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12248 #define PFX uh
12250 #include "op_addsub.h"
12252 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12254 if (a > b) {
12255 return a - b;
12256 } else {
12257 return b - a;
12261 /* Unsigned sum of absolute byte differences. */
12262 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12264 uint32_t sum;
12265 sum = do_usad(a, b);
12266 sum += do_usad(a >> 8, b >> 8);
12267 sum += do_usad(a >> 16, b >> 16);
12268 sum += do_usad(a >> 24, b >> 24);
12269 return sum;
12272 /* For ARMv6 SEL instruction. */
12273 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12275 uint32_t mask;
12277 mask = 0;
12278 if (flags & 1) {
12279 mask |= 0xff;
12281 if (flags & 2) {
12282 mask |= 0xff00;
12284 if (flags & 4) {
12285 mask |= 0xff0000;
12287 if (flags & 8) {
12288 mask |= 0xff000000;
12290 return (a & mask) | (b & ~mask);
12294 * CRC helpers.
12295 * The upper bytes of val (above the number specified by 'bytes') must have
12296 * been zeroed out by the caller.
12298 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12300 uint8_t buf[4];
12302 stl_le_p(buf, val);
12304 /* zlib crc32 converts the accumulator and output to one's complement. */
12305 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12308 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12310 uint8_t buf[4];
12312 stl_le_p(buf, val);
12314 /* Linux crc32c converts the output to one's complement. */
12315 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12319 * Return the exception level to which FP-disabled exceptions should
12320 * be taken, or 0 if FP is enabled.
12322 int fp_exception_el(CPUARMState *env, int cur_el)
12324 #ifndef CONFIG_USER_ONLY
12325 uint64_t hcr_el2;
12328 * CPACR and the CPTR registers don't exist before v6, so FP is
12329 * always accessible
12331 if (!arm_feature(env, ARM_FEATURE_V6)) {
12332 return 0;
12335 if (arm_feature(env, ARM_FEATURE_M)) {
12336 /* CPACR can cause a NOCP UsageFault taken to current security state */
12337 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12338 return 1;
12341 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12342 if (!extract32(env->v7m.nsacr, 10, 1)) {
12343 /* FP insns cause a NOCP UsageFault taken to Secure */
12344 return 3;
12348 return 0;
12351 hcr_el2 = arm_hcr_el2_eff(env);
12354 * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12355 * 0, 2 : trap EL0 and EL1/PL1 accesses
12356 * 1 : trap only EL0 accesses
12357 * 3 : trap no accesses
12358 * This register is ignored if E2H+TGE are both set.
12360 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12361 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
12363 switch (fpen) {
12364 case 1:
12365 if (cur_el != 0) {
12366 break;
12368 /* fall through */
12369 case 0:
12370 case 2:
12371 /* Trap from Secure PL0 or PL1 to Secure PL1. */
12372 if (!arm_el_is_aa64(env, 3)
12373 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
12374 return 3;
12376 if (cur_el <= 1) {
12377 return 1;
12379 break;
12384 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12385 * to control non-secure access to the FPU. It doesn't have any
12386 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12388 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12389 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12390 if (!extract32(env->cp15.nsacr, 10, 1)) {
12391 /* FP insns act as UNDEF */
12392 return cur_el == 2 ? 2 : 1;
12397 * CPTR_EL2 is present in v7VE or v8, and changes format
12398 * with HCR_EL2.E2H (regardless of TGE).
12400 if (cur_el <= 2) {
12401 if (hcr_el2 & HCR_E2H) {
12402 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
12403 case 1:
12404 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
12405 break;
12407 /* fall through */
12408 case 0:
12409 case 2:
12410 return 2;
12412 } else if (arm_is_el2_enabled(env)) {
12413 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
12414 return 2;
12419 /* CPTR_EL3 : present in v8 */
12420 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
12421 /* Trap all FP ops to EL3 */
12422 return 3;
12424 #endif
12425 return 0;
12428 /* Return the exception level we're running at if this is our mmu_idx */
12429 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12431 if (mmu_idx & ARM_MMU_IDX_M) {
12432 return mmu_idx & ARM_MMU_IDX_M_PRIV;
12435 switch (mmu_idx) {
12436 case ARMMMUIdx_E10_0:
12437 case ARMMMUIdx_E20_0:
12438 return 0;
12439 case ARMMMUIdx_E10_1:
12440 case ARMMMUIdx_E10_1_PAN:
12441 return 1;
12442 case ARMMMUIdx_E2:
12443 case ARMMMUIdx_E20_2:
12444 case ARMMMUIdx_E20_2_PAN:
12445 return 2;
12446 case ARMMMUIdx_E3:
12447 return 3;
12448 default:
12449 g_assert_not_reached();
12453 #ifndef CONFIG_TCG
12454 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12456 g_assert_not_reached();
12458 #endif
12460 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12462 ARMMMUIdx idx;
12463 uint64_t hcr;
12465 if (arm_feature(env, ARM_FEATURE_M)) {
12466 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12469 /* See ARM pseudo-function ELIsInHost. */
12470 switch (el) {
12471 case 0:
12472 hcr = arm_hcr_el2_eff(env);
12473 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12474 idx = ARMMMUIdx_E20_0;
12475 } else {
12476 idx = ARMMMUIdx_E10_0;
12478 break;
12479 case 1:
12480 if (arm_pan_enabled(env)) {
12481 idx = ARMMMUIdx_E10_1_PAN;
12482 } else {
12483 idx = ARMMMUIdx_E10_1;
12485 break;
12486 case 2:
12487 /* Note that TGE does not apply at EL2. */
12488 if (arm_hcr_el2_eff(env) & HCR_E2H) {
12489 if (arm_pan_enabled(env)) {
12490 idx = ARMMMUIdx_E20_2_PAN;
12491 } else {
12492 idx = ARMMMUIdx_E20_2;
12494 } else {
12495 idx = ARMMMUIdx_E2;
12497 break;
12498 case 3:
12499 return ARMMMUIdx_E3;
12500 default:
12501 g_assert_not_reached();
12504 return idx;
12507 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12509 return arm_mmu_idx_el(env, arm_current_el(env));
12512 static bool mve_no_pred(CPUARMState *env)
12515 * Return true if there is definitely no predication of MVE
12516 * instructions by VPR or LTPSIZE. (Returning false even if there
12517 * isn't any predication is OK; generated code will just be
12518 * a little worse.)
12519 * If the CPU does not implement MVE then this TB flag is always 0.
12521 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12522 * logic in gen_update_fp_context() needs to be updated to match.
12524 * We do not include the effect of the ECI bits here -- they are
12525 * tracked in other TB flags. This simplifies the logic for
12526 * "when did we emit code that changes the MVE_NO_PRED TB flag
12527 * and thus need to end the TB?".
12529 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12530 return false;
12532 if (env->v7m.vpr) {
12533 return false;
12535 if (env->v7m.ltpsize < 4) {
12536 return false;
12538 return true;
12541 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
12542 uint64_t *cs_base, uint32_t *pflags)
12544 CPUARMTBFlags flags;
12546 assert_hflags_rebuild_correctly(env);
12547 flags = env->hflags;
12549 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12550 *pc = env->pc;
12551 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12552 DP_TBFLAG_A64(flags, BTYPE, env->btype);
12554 } else {
12555 *pc = env->regs[15];
12557 if (arm_feature(env, ARM_FEATURE_M)) {
12558 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12559 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12560 != env->v7m.secure) {
12561 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12564 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12565 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12566 (env->v7m.secure &&
12567 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12569 * ASPEN is set, but FPCA/SFPA indicate that there is no
12570 * active FP context; we must create a new FP context before
12571 * executing any FP insn.
12573 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12576 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12577 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12578 DP_TBFLAG_M32(flags, LSPACT, 1);
12581 if (mve_no_pred(env)) {
12582 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12584 } else {
12586 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12587 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12589 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12590 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12591 } else {
12592 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12593 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12595 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12596 DP_TBFLAG_A32(flags, VFPEN, 1);
12600 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12601 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12605 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12606 * states defined in the ARM ARM for software singlestep:
12607 * SS_ACTIVE PSTATE.SS State
12608 * 0 x Inactive (the TB flag for SS is always 0)
12609 * 1 0 Active-pending
12610 * 1 1 Active-not-pending
12611 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12613 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12614 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12617 *pflags = flags.flags;
12618 *cs_base = flags.flags2;
12621 #ifdef TARGET_AARCH64
12623 * The manual says that when SVE is enabled and VQ is widened the
12624 * implementation is allowed to zero the previously inaccessible
12625 * portion of the registers. The corollary to that is that when
12626 * SVE is enabled and VQ is narrowed we are also allowed to zero
12627 * the now inaccessible portion of the registers.
12629 * The intent of this is that no predicate bit beyond VQ is ever set.
12630 * Which means that some operations on predicate registers themselves
12631 * may operate on full uint64_t or even unrolled across the maximum
12632 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12633 * may well be cheaper than conditionals to restrict the operation
12634 * to the relevant portion of a uint16_t[16].
12636 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12638 int i, j;
12639 uint64_t pmask;
12641 assert(vq >= 1 && vq <= ARM_MAX_VQ);
12642 assert(vq <= env_archcpu(env)->sve_max_vq);
12644 /* Zap the high bits of the zregs. */
12645 for (i = 0; i < 32; i++) {
12646 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12649 /* Zap the high bits of the pregs and ffr. */
12650 pmask = 0;
12651 if (vq & 3) {
12652 pmask = ~(-1ULL << (16 * (vq & 3)));
12654 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12655 for (i = 0; i < 17; ++i) {
12656 env->vfp.pregs[i].p[j] &= pmask;
12658 pmask = 0;
12662 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12664 int exc_el;
12666 if (sm) {
12667 exc_el = sme_exception_el(env, el);
12668 } else {
12669 exc_el = sve_exception_el(env, el);
12671 if (exc_el) {
12672 return 0; /* disabled */
12674 return sve_vqm1_for_el_sm(env, el, sm);
12678 * Notice a change in SVE vector size when changing EL.
12680 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12681 int new_el, bool el0_a64)
12683 ARMCPU *cpu = env_archcpu(env);
12684 int old_len, new_len;
12685 bool old_a64, new_a64, sm;
12687 /* Nothing to do if no SVE. */
12688 if (!cpu_isar_feature(aa64_sve, cpu)) {
12689 return;
12692 /* Nothing to do if FP is disabled in either EL. */
12693 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12694 return;
12697 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12698 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12701 * Both AArch64.TakeException and AArch64.ExceptionReturn
12702 * invoke ResetSVEState when taking an exception from, or
12703 * returning to, AArch32 state when PSTATE.SM is enabled.
12705 sm = FIELD_EX64(env->svcr, SVCR, SM);
12706 if (old_a64 != new_a64 && sm) {
12707 arm_reset_sve_state(env);
12708 return;
12712 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12713 * at ELx, or not available because the EL is in AArch32 state, then
12714 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12715 * has an effective value of 0".
12717 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12718 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12719 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12720 * we already have the correct register contents when encountering the
12721 * vq0->vq0 transition between EL0->EL1.
12723 old_len = new_len = 0;
12724 if (old_a64) {
12725 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12727 if (new_a64) {
12728 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12731 /* When changing vector length, clear inaccessible state. */
12732 if (new_len < old_len) {
12733 aarch64_sve_narrow_vq(env, new_len + 1);
12736 #endif
12738 #ifndef CONFIG_USER_ONLY
12739 ARMSecuritySpace arm_security_space(CPUARMState *env)
12741 if (arm_feature(env, ARM_FEATURE_M)) {
12742 return arm_secure_to_space(env->v7m.secure);
12746 * If EL3 is not supported then the secure state is implementation
12747 * defined, in which case QEMU defaults to non-secure.
12749 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12750 return ARMSS_NonSecure;
12753 /* Check for AArch64 EL3 or AArch32 Mon. */
12754 if (is_a64(env)) {
12755 if (extract32(env->pstate, 2, 2) == 3) {
12756 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12757 return ARMSS_Root;
12758 } else {
12759 return ARMSS_Secure;
12762 } else {
12763 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12764 return ARMSS_Secure;
12768 return arm_security_space_below_el3(env);
12771 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12773 assert(!arm_feature(env, ARM_FEATURE_M));
12776 * If EL3 is not supported then the secure state is implementation
12777 * defined, in which case QEMU defaults to non-secure.
12779 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12780 return ARMSS_NonSecure;
12784 * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12785 * Ignoring NSE when !NS retains consistency without having to
12786 * modify other predicates.
12788 if (!(env->cp15.scr_el3 & SCR_NS)) {
12789 return ARMSS_Secure;
12790 } else if (env->cp15.scr_el3 & SCR_NSE) {
12791 return ARMSS_Realm;
12792 } else {
12793 return ARMSS_NonSecure;
12796 #endif /* !CONFIG_USER_ONLY */