hw/xen/hvm: Get target page size at runtime
[qemu/ar7.git] / target / arm / cpu.c
blobf3ed79cef27bfce368b86c7a4fbc85ee9db876d8
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "cpu-features.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #ifdef CONFIG_TCG
41 #include "hw/intc/armv7m_nvic.h"
42 #endif /* CONFIG_TCG */
43 #endif /* !CONFIG_USER_ONLY */
44 #include "sysemu/tcg.h"
45 #include "sysemu/qtest.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm_arm.h"
48 #include "disas/capstone.h"
49 #include "fpu/softfloat.h"
50 #include "cpregs.h"
51 #include "target/arm/cpu-qom.h"
52 #include "target/arm/gtimer.h"
54 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
56 ARMCPU *cpu = ARM_CPU(cs);
57 CPUARMState *env = &cpu->env;
59 if (is_a64(env)) {
60 env->pc = value;
61 env->thumb = false;
62 } else {
63 env->regs[15] = value & ~1;
64 env->thumb = value & 1;
68 static vaddr arm_cpu_get_pc(CPUState *cs)
70 ARMCPU *cpu = ARM_CPU(cs);
71 CPUARMState *env = &cpu->env;
73 if (is_a64(env)) {
74 return env->pc;
75 } else {
76 return env->regs[15];
80 #ifdef CONFIG_TCG
81 void arm_cpu_synchronize_from_tb(CPUState *cs,
82 const TranslationBlock *tb)
84 /* The program counter is always up to date with CF_PCREL. */
85 if (!(tb_cflags(tb) & CF_PCREL)) {
86 CPUARMState *env = cpu_env(cs);
88 * It's OK to look at env for the current mode here, because it's
89 * never possible for an AArch64 TB to chain to an AArch32 TB.
91 if (is_a64(env)) {
92 env->pc = tb->pc;
93 } else {
94 env->regs[15] = tb->pc;
99 void arm_restore_state_to_opc(CPUState *cs,
100 const TranslationBlock *tb,
101 const uint64_t *data)
103 CPUARMState *env = cpu_env(cs);
105 if (is_a64(env)) {
106 if (tb_cflags(tb) & CF_PCREL) {
107 env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
108 } else {
109 env->pc = data[0];
111 env->condexec_bits = 0;
112 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
113 } else {
114 if (tb_cflags(tb) & CF_PCREL) {
115 env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
116 } else {
117 env->regs[15] = data[0];
119 env->condexec_bits = data[1];
120 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
123 #endif /* CONFIG_TCG */
125 static bool arm_cpu_has_work(CPUState *cs)
127 ARMCPU *cpu = ARM_CPU(cs);
129 return (cpu->power_state != PSCI_OFF)
130 && cs->interrupt_request &
131 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
132 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
133 | CPU_INTERRUPT_EXITTB);
136 static int arm_cpu_mmu_index(CPUState *cs, bool ifetch)
138 return arm_env_mmu_index(cpu_env(cs));
141 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
142 void *opaque)
144 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
146 entry->hook = hook;
147 entry->opaque = opaque;
149 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
152 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
153 void *opaque)
155 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
157 entry->hook = hook;
158 entry->opaque = opaque;
160 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
163 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
165 /* Reset a single ARMCPRegInfo register */
166 ARMCPRegInfo *ri = value;
167 ARMCPU *cpu = opaque;
169 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
170 return;
173 if (ri->resetfn) {
174 ri->resetfn(&cpu->env, ri);
175 return;
178 /* A zero offset is never possible as it would be regs[0]
179 * so we use it to indicate that reset is being handled elsewhere.
180 * This is basically only used for fields in non-core coprocessors
181 * (like the pxa2xx ones).
183 if (!ri->fieldoffset) {
184 return;
187 if (cpreg_field_is_64bit(ri)) {
188 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
189 } else {
190 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
194 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
196 /* Purely an assertion check: we've already done reset once,
197 * so now check that running the reset for the cpreg doesn't
198 * change its value. This traps bugs where two different cpregs
199 * both try to reset the same state field but to different values.
201 ARMCPRegInfo *ri = value;
202 ARMCPU *cpu = opaque;
203 uint64_t oldvalue, newvalue;
205 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
206 return;
209 oldvalue = read_raw_cp_reg(&cpu->env, ri);
210 cp_reg_reset(key, value, opaque);
211 newvalue = read_raw_cp_reg(&cpu->env, ri);
212 assert(oldvalue == newvalue);
215 static void arm_cpu_reset_hold(Object *obj)
217 CPUState *s = CPU(obj);
218 ARMCPU *cpu = ARM_CPU(s);
219 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
220 CPUARMState *env = &cpu->env;
222 if (acc->parent_phases.hold) {
223 acc->parent_phases.hold(obj);
226 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
228 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
229 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
231 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
232 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
233 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
234 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
236 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
238 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
239 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
242 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
243 /* 64 bit CPUs always start in 64 bit mode */
244 env->aarch64 = true;
245 #if defined(CONFIG_USER_ONLY)
246 env->pstate = PSTATE_MODE_EL0t;
247 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
248 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
249 /* Enable all PAC keys. */
250 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
251 SCTLR_EnDA | SCTLR_EnDB);
252 /* Trap on btype=3 for PACIxSP. */
253 env->cp15.sctlr_el[1] |= SCTLR_BT0;
254 /* Trap on implementation defined registers. */
255 if (cpu_isar_feature(aa64_tidcp1, cpu)) {
256 env->cp15.sctlr_el[1] |= SCTLR_TIDCP;
258 /* and to the FP/Neon instructions */
259 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
260 CPACR_EL1, FPEN, 3);
261 /* and to the SVE instructions, with default vector length */
262 if (cpu_isar_feature(aa64_sve, cpu)) {
263 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
264 CPACR_EL1, ZEN, 3);
265 env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
267 /* and for SME instructions, with default vector length, and TPIDR2 */
268 if (cpu_isar_feature(aa64_sme, cpu)) {
269 env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
270 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
271 CPACR_EL1, SMEN, 3);
272 env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
273 if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
274 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
275 SMCR, FA64, 1);
279 * Enable 48-bit address space (TODO: take reserved_va into account).
280 * Enable TBI0 but not TBI1.
281 * Note that this must match useronly_clean_ptr.
283 env->cp15.tcr_el[1] = 5 | (1ULL << 37);
285 /* Enable MTE */
286 if (cpu_isar_feature(aa64_mte, cpu)) {
287 /* Enable tag access, but leave TCF0 as No Effect (0). */
288 env->cp15.sctlr_el[1] |= SCTLR_ATA0;
290 * Exclude all tags, so that tag 0 is always used.
291 * This corresponds to Linux current->thread.gcr_incl = 0.
293 * Set RRND, so that helper_irg() will generate a seed later.
294 * Here in cpu_reset(), the crypto subsystem has not yet been
295 * initialized.
297 env->cp15.gcr_el1 = 0x1ffff;
300 * Disable access to SCXTNUM_EL0 from CSV2_1p2.
301 * This is not yet exposed from the Linux kernel in any way.
303 env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
304 /* Disable access to Debug Communication Channel (DCC). */
305 env->cp15.mdscr_el1 |= 1 << 12;
306 /* Enable FEAT_MOPS */
307 env->cp15.sctlr_el[1] |= SCTLR_MSCEN;
308 #else
309 /* Reset into the highest available EL */
310 if (arm_feature(env, ARM_FEATURE_EL3)) {
311 env->pstate = PSTATE_MODE_EL3h;
312 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
313 env->pstate = PSTATE_MODE_EL2h;
314 } else {
315 env->pstate = PSTATE_MODE_EL1h;
318 /* Sample rvbar at reset. */
319 env->cp15.rvbar = cpu->rvbar_prop;
320 env->pc = env->cp15.rvbar;
321 #endif
322 } else {
323 #if defined(CONFIG_USER_ONLY)
324 /* Userspace expects access to cp10 and cp11 for FP/Neon */
325 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
326 CPACR, CP10, 3);
327 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
328 CPACR, CP11, 3);
329 #endif
330 if (arm_feature(env, ARM_FEATURE_V8)) {
331 env->cp15.rvbar = cpu->rvbar_prop;
332 env->regs[15] = cpu->rvbar_prop;
336 #if defined(CONFIG_USER_ONLY)
337 env->uncached_cpsr = ARM_CPU_MODE_USR;
338 /* For user mode we must enable access to coprocessors */
339 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
340 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
341 env->cp15.c15_cpar = 3;
342 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
343 env->cp15.c15_cpar = 1;
345 #else
348 * If the highest available EL is EL2, AArch32 will start in Hyp
349 * mode; otherwise it starts in SVC. Note that if we start in
350 * AArch64 then these values in the uncached_cpsr will be ignored.
352 if (arm_feature(env, ARM_FEATURE_EL2) &&
353 !arm_feature(env, ARM_FEATURE_EL3)) {
354 env->uncached_cpsr = ARM_CPU_MODE_HYP;
355 } else {
356 env->uncached_cpsr = ARM_CPU_MODE_SVC;
358 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
360 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
361 * executing as AArch32 then check if highvecs are enabled and
362 * adjust the PC accordingly.
364 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
365 env->regs[15] = 0xFFFF0000;
368 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
369 #endif
371 if (arm_feature(env, ARM_FEATURE_M)) {
372 #ifndef CONFIG_USER_ONLY
373 uint32_t initial_msp; /* Loaded from 0x0 */
374 uint32_t initial_pc; /* Loaded from 0x4 */
375 uint8_t *rom;
376 uint32_t vecbase;
377 #endif
379 if (cpu_isar_feature(aa32_lob, cpu)) {
381 * LTPSIZE is constant 4 if MVE not implemented, and resets
382 * to an UNKNOWN value if MVE is implemented. We choose to
383 * always reset to 4.
385 env->v7m.ltpsize = 4;
386 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
387 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
388 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
391 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
392 env->v7m.secure = true;
393 } else {
394 /* This bit resets to 0 if security is supported, but 1 if
395 * it is not. The bit is not present in v7M, but we set it
396 * here so we can avoid having to make checks on it conditional
397 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
399 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
401 * Set NSACR to indicate "NS access permitted to everything";
402 * this avoids having to have all the tests of it being
403 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
404 * v8.1M the guest-visible value of NSACR in a CPU without the
405 * Security Extension is 0xcff.
407 env->v7m.nsacr = 0xcff;
410 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
411 * that it resets to 1, so QEMU always does that rather than making
412 * it dependent on CPU model. In v8M it is RES1.
414 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
415 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
416 if (arm_feature(env, ARM_FEATURE_V8)) {
417 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
418 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
419 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
421 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
422 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
423 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
426 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
427 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
428 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
429 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
432 #ifndef CONFIG_USER_ONLY
433 /* Unlike A/R profile, M profile defines the reset LR value */
434 env->regs[14] = 0xffffffff;
436 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
437 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
439 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
440 vecbase = env->v7m.vecbase[env->v7m.secure];
441 rom = rom_ptr_for_as(s->as, vecbase, 8);
442 if (rom) {
443 /* Address zero is covered by ROM which hasn't yet been
444 * copied into physical memory.
446 initial_msp = ldl_p(rom);
447 initial_pc = ldl_p(rom + 4);
448 } else {
449 /* Address zero not covered by a ROM blob, or the ROM blob
450 * is in non-modifiable memory and this is a second reset after
451 * it got copied into memory. In the latter case, rom_ptr
452 * will return a NULL pointer and we should use ldl_phys instead.
454 initial_msp = ldl_phys(s->as, vecbase);
455 initial_pc = ldl_phys(s->as, vecbase + 4);
458 qemu_log_mask(CPU_LOG_INT,
459 "Loaded reset SP 0x%x PC 0x%x from vector table\n",
460 initial_msp, initial_pc);
462 env->regs[13] = initial_msp & 0xFFFFFFFC;
463 env->regs[15] = initial_pc & ~1;
464 env->thumb = initial_pc & 1;
465 #else
467 * For user mode we run non-secure and with access to the FPU.
468 * The FPU context is active (ie does not need further setup)
469 * and is owned by non-secure.
471 env->v7m.secure = false;
472 env->v7m.nsacr = 0xcff;
473 env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
474 env->v7m.fpccr[M_REG_S] &=
475 ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
476 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
477 #endif
480 /* M profile requires that reset clears the exclusive monitor;
481 * A profile does not, but clearing it makes more sense than having it
482 * set with an exclusive access on address zero.
484 arm_clear_exclusive(env);
486 if (arm_feature(env, ARM_FEATURE_PMSA)) {
487 if (cpu->pmsav7_dregion > 0) {
488 if (arm_feature(env, ARM_FEATURE_V8)) {
489 memset(env->pmsav8.rbar[M_REG_NS], 0,
490 sizeof(*env->pmsav8.rbar[M_REG_NS])
491 * cpu->pmsav7_dregion);
492 memset(env->pmsav8.rlar[M_REG_NS], 0,
493 sizeof(*env->pmsav8.rlar[M_REG_NS])
494 * cpu->pmsav7_dregion);
495 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
496 memset(env->pmsav8.rbar[M_REG_S], 0,
497 sizeof(*env->pmsav8.rbar[M_REG_S])
498 * cpu->pmsav7_dregion);
499 memset(env->pmsav8.rlar[M_REG_S], 0,
500 sizeof(*env->pmsav8.rlar[M_REG_S])
501 * cpu->pmsav7_dregion);
503 } else if (arm_feature(env, ARM_FEATURE_V7)) {
504 memset(env->pmsav7.drbar, 0,
505 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
506 memset(env->pmsav7.drsr, 0,
507 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
508 memset(env->pmsav7.dracr, 0,
509 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
513 if (cpu->pmsav8r_hdregion > 0) {
514 memset(env->pmsav8.hprbar, 0,
515 sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
516 memset(env->pmsav8.hprlar, 0,
517 sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
520 env->pmsav7.rnr[M_REG_NS] = 0;
521 env->pmsav7.rnr[M_REG_S] = 0;
522 env->pmsav8.mair0[M_REG_NS] = 0;
523 env->pmsav8.mair0[M_REG_S] = 0;
524 env->pmsav8.mair1[M_REG_NS] = 0;
525 env->pmsav8.mair1[M_REG_S] = 0;
528 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
529 if (cpu->sau_sregion > 0) {
530 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
531 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
533 env->sau.rnr = 0;
534 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
535 * the Cortex-M33 does.
537 env->sau.ctrl = 0;
540 set_flush_to_zero(1, &env->vfp.standard_fp_status);
541 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
542 set_default_nan_mode(1, &env->vfp.standard_fp_status);
543 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
544 set_float_detect_tininess(float_tininess_before_rounding,
545 &env->vfp.fp_status);
546 set_float_detect_tininess(float_tininess_before_rounding,
547 &env->vfp.standard_fp_status);
548 set_float_detect_tininess(float_tininess_before_rounding,
549 &env->vfp.fp_status_f16);
550 set_float_detect_tininess(float_tininess_before_rounding,
551 &env->vfp.standard_fp_status_f16);
552 #ifndef CONFIG_USER_ONLY
553 if (kvm_enabled()) {
554 kvm_arm_reset_vcpu(cpu);
556 #endif
558 if (tcg_enabled()) {
559 hw_breakpoint_update_all(cpu);
560 hw_watchpoint_update_all(cpu);
562 arm_rebuild_hflags(env);
566 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el)
568 ARMCPU *cpu = ARM_CPU(cpustate);
569 CPUARMState *env = &cpu->env;
570 bool have_el3 = arm_feature(env, ARM_FEATURE_EL3);
571 bool have_el2 = arm_feature(env, ARM_FEATURE_EL2);
574 * Check we have the EL we're aiming for. If that is the
575 * highest implemented EL, then cpu_reset has already done
576 * all the work.
578 switch (target_el) {
579 case 3:
580 assert(have_el3);
581 return;
582 case 2:
583 assert(have_el2);
584 if (!have_el3) {
585 return;
587 break;
588 case 1:
589 if (!have_el3 && !have_el2) {
590 return;
592 break;
593 default:
594 g_assert_not_reached();
597 if (have_el3) {
599 * Set the EL3 state so code can run at EL2. This should match
600 * the requirements set by Linux in its booting spec.
602 if (env->aarch64) {
603 env->cp15.scr_el3 |= SCR_RW;
604 if (cpu_isar_feature(aa64_pauth, cpu)) {
605 env->cp15.scr_el3 |= SCR_API | SCR_APK;
607 if (cpu_isar_feature(aa64_mte, cpu)) {
608 env->cp15.scr_el3 |= SCR_ATA;
610 if (cpu_isar_feature(aa64_sve, cpu)) {
611 env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
612 env->vfp.zcr_el[3] = 0xf;
614 if (cpu_isar_feature(aa64_sme, cpu)) {
615 env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
616 env->cp15.scr_el3 |= SCR_ENTP2;
617 env->vfp.smcr_el[3] = 0xf;
619 if (cpu_isar_feature(aa64_hcx, cpu)) {
620 env->cp15.scr_el3 |= SCR_HXEN;
622 if (cpu_isar_feature(aa64_fgt, cpu)) {
623 env->cp15.scr_el3 |= SCR_FGTEN;
627 if (target_el == 2) {
628 /* If the guest is at EL2 then Linux expects the HVC insn to work */
629 env->cp15.scr_el3 |= SCR_HCE;
632 /* Put CPU into non-secure state */
633 env->cp15.scr_el3 |= SCR_NS;
634 /* Set NSACR.{CP11,CP10} so NS can access the FPU */
635 env->cp15.nsacr |= 3 << 10;
638 if (have_el2 && target_el < 2) {
639 /* Set EL2 state so code can run at EL1. */
640 if (env->aarch64) {
641 env->cp15.hcr_el2 |= HCR_RW;
645 /* Set the CPU to the desired state */
646 if (env->aarch64) {
647 env->pstate = aarch64_pstate_mode(target_el, true);
648 } else {
649 static const uint32_t mode_for_el[] = {
651 ARM_CPU_MODE_SVC,
652 ARM_CPU_MODE_HYP,
653 ARM_CPU_MODE_SVC,
656 cpsr_write(env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw);
661 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
663 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
664 unsigned int target_el,
665 unsigned int cur_el, bool secure,
666 uint64_t hcr_el2)
668 CPUARMState *env = cpu_env(cs);
669 bool pstate_unmasked;
670 bool unmasked = false;
673 * Don't take exceptions if they target a lower EL.
674 * This check should catch any exceptions that would not be taken
675 * but left pending.
677 if (cur_el > target_el) {
678 return false;
681 switch (excp_idx) {
682 case EXCP_FIQ:
683 pstate_unmasked = !(env->daif & PSTATE_F);
684 break;
686 case EXCP_IRQ:
687 pstate_unmasked = !(env->daif & PSTATE_I);
688 break;
690 case EXCP_VFIQ:
691 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
692 /* VFIQs are only taken when hypervized. */
693 return false;
695 return !(env->daif & PSTATE_F);
696 case EXCP_VIRQ:
697 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
698 /* VIRQs are only taken when hypervized. */
699 return false;
701 return !(env->daif & PSTATE_I);
702 case EXCP_VSERR:
703 if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
704 /* VIRQs are only taken when hypervized. */
705 return false;
707 return !(env->daif & PSTATE_A);
708 default:
709 g_assert_not_reached();
713 * Use the target EL, current execution state and SCR/HCR settings to
714 * determine whether the corresponding CPSR bit is used to mask the
715 * interrupt.
717 if ((target_el > cur_el) && (target_el != 1)) {
718 /* Exceptions targeting a higher EL may not be maskable */
719 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
720 switch (target_el) {
721 case 2:
723 * According to ARM DDI 0487H.a, an interrupt can be masked
724 * when HCR_E2H and HCR_TGE are both set regardless of the
725 * current Security state. Note that we need to revisit this
726 * part again once we need to support NMI.
728 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
729 unmasked = true;
731 break;
732 case 3:
733 /* Interrupt cannot be masked when the target EL is 3 */
734 unmasked = true;
735 break;
736 default:
737 g_assert_not_reached();
739 } else {
741 * The old 32-bit-only environment has a more complicated
742 * masking setup. HCR and SCR bits not only affect interrupt
743 * routing but also change the behaviour of masking.
745 bool hcr, scr;
747 switch (excp_idx) {
748 case EXCP_FIQ:
750 * If FIQs are routed to EL3 or EL2 then there are cases where
751 * we override the CPSR.F in determining if the exception is
752 * masked or not. If neither of these are set then we fall back
753 * to the CPSR.F setting otherwise we further assess the state
754 * below.
756 hcr = hcr_el2 & HCR_FMO;
757 scr = (env->cp15.scr_el3 & SCR_FIQ);
760 * When EL3 is 32-bit, the SCR.FW bit controls whether the
761 * CPSR.F bit masks FIQ interrupts when taken in non-secure
762 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
763 * when non-secure but only when FIQs are only routed to EL3.
765 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
766 break;
767 case EXCP_IRQ:
769 * When EL3 execution state is 32-bit, if HCR.IMO is set then
770 * we may override the CPSR.I masking when in non-secure state.
771 * The SCR.IRQ setting has already been taken into consideration
772 * when setting the target EL, so it does not have a further
773 * affect here.
775 hcr = hcr_el2 & HCR_IMO;
776 scr = false;
777 break;
778 default:
779 g_assert_not_reached();
782 if ((scr || hcr) && !secure) {
783 unmasked = true;
789 * The PSTATE bits only mask the interrupt if we have not overridden the
790 * ability above.
792 return unmasked || pstate_unmasked;
795 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
797 CPUClass *cc = CPU_GET_CLASS(cs);
798 CPUARMState *env = cpu_env(cs);
799 uint32_t cur_el = arm_current_el(env);
800 bool secure = arm_is_secure(env);
801 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
802 uint32_t target_el;
803 uint32_t excp_idx;
805 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
807 if (interrupt_request & CPU_INTERRUPT_FIQ) {
808 excp_idx = EXCP_FIQ;
809 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
810 if (arm_excp_unmasked(cs, excp_idx, target_el,
811 cur_el, secure, hcr_el2)) {
812 goto found;
815 if (interrupt_request & CPU_INTERRUPT_HARD) {
816 excp_idx = EXCP_IRQ;
817 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
818 if (arm_excp_unmasked(cs, excp_idx, target_el,
819 cur_el, secure, hcr_el2)) {
820 goto found;
823 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
824 excp_idx = EXCP_VIRQ;
825 target_el = 1;
826 if (arm_excp_unmasked(cs, excp_idx, target_el,
827 cur_el, secure, hcr_el2)) {
828 goto found;
831 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
832 excp_idx = EXCP_VFIQ;
833 target_el = 1;
834 if (arm_excp_unmasked(cs, excp_idx, target_el,
835 cur_el, secure, hcr_el2)) {
836 goto found;
839 if (interrupt_request & CPU_INTERRUPT_VSERR) {
840 excp_idx = EXCP_VSERR;
841 target_el = 1;
842 if (arm_excp_unmasked(cs, excp_idx, target_el,
843 cur_el, secure, hcr_el2)) {
844 /* Taking a virtual abort clears HCR_EL2.VSE */
845 env->cp15.hcr_el2 &= ~HCR_VSE;
846 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
847 goto found;
850 return false;
852 found:
853 cs->exception_index = excp_idx;
854 env->exception.target_el = target_el;
855 cc->tcg_ops->do_interrupt(cs);
856 return true;
859 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
861 void arm_cpu_update_virq(ARMCPU *cpu)
864 * Update the interrupt level for VIRQ, which is the logical OR of
865 * the HCR_EL2.VI bit and the input line level from the GIC.
867 CPUARMState *env = &cpu->env;
868 CPUState *cs = CPU(cpu);
870 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
871 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
873 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
874 if (new_state) {
875 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
876 } else {
877 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
882 void arm_cpu_update_vfiq(ARMCPU *cpu)
885 * Update the interrupt level for VFIQ, which is the logical OR of
886 * the HCR_EL2.VF bit and the input line level from the GIC.
888 CPUARMState *env = &cpu->env;
889 CPUState *cs = CPU(cpu);
891 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
892 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
894 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
895 if (new_state) {
896 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
897 } else {
898 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
903 void arm_cpu_update_vserr(ARMCPU *cpu)
906 * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
908 CPUARMState *env = &cpu->env;
909 CPUState *cs = CPU(cpu);
911 bool new_state = env->cp15.hcr_el2 & HCR_VSE;
913 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
914 if (new_state) {
915 cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
916 } else {
917 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
922 #ifndef CONFIG_USER_ONLY
923 static void arm_cpu_set_irq(void *opaque, int irq, int level)
925 ARMCPU *cpu = opaque;
926 CPUARMState *env = &cpu->env;
927 CPUState *cs = CPU(cpu);
928 static const int mask[] = {
929 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
930 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
931 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
932 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
935 if (!arm_feature(env, ARM_FEATURE_EL2) &&
936 (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
938 * The GIC might tell us about VIRQ and VFIQ state, but if we don't
939 * have EL2 support we don't care. (Unless the guest is doing something
940 * silly this will only be calls saying "level is still 0".)
942 return;
945 if (level) {
946 env->irq_line_state |= mask[irq];
947 } else {
948 env->irq_line_state &= ~mask[irq];
951 switch (irq) {
952 case ARM_CPU_VIRQ:
953 arm_cpu_update_virq(cpu);
954 break;
955 case ARM_CPU_VFIQ:
956 arm_cpu_update_vfiq(cpu);
957 break;
958 case ARM_CPU_IRQ:
959 case ARM_CPU_FIQ:
960 if (level) {
961 cpu_interrupt(cs, mask[irq]);
962 } else {
963 cpu_reset_interrupt(cs, mask[irq]);
965 break;
966 default:
967 g_assert_not_reached();
971 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
973 #ifdef CONFIG_KVM
974 ARMCPU *cpu = opaque;
975 CPUARMState *env = &cpu->env;
976 CPUState *cs = CPU(cpu);
977 uint32_t linestate_bit;
978 int irq_id;
980 switch (irq) {
981 case ARM_CPU_IRQ:
982 irq_id = KVM_ARM_IRQ_CPU_IRQ;
983 linestate_bit = CPU_INTERRUPT_HARD;
984 break;
985 case ARM_CPU_FIQ:
986 irq_id = KVM_ARM_IRQ_CPU_FIQ;
987 linestate_bit = CPU_INTERRUPT_FIQ;
988 break;
989 default:
990 g_assert_not_reached();
993 if (level) {
994 env->irq_line_state |= linestate_bit;
995 } else {
996 env->irq_line_state &= ~linestate_bit;
998 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
999 #endif
1002 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
1004 ARMCPU *cpu = ARM_CPU(cs);
1005 CPUARMState *env = &cpu->env;
1007 cpu_synchronize_state(cs);
1008 return arm_cpu_data_is_big_endian(env);
1011 #endif
1013 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
1015 ARMCPU *ac = ARM_CPU(cpu);
1016 CPUARMState *env = &ac->env;
1017 bool sctlr_b;
1019 if (is_a64(env)) {
1020 info->cap_arch = CS_ARCH_ARM64;
1021 info->cap_insn_unit = 4;
1022 info->cap_insn_split = 4;
1023 } else {
1024 int cap_mode;
1025 if (env->thumb) {
1026 info->cap_insn_unit = 2;
1027 info->cap_insn_split = 4;
1028 cap_mode = CS_MODE_THUMB;
1029 } else {
1030 info->cap_insn_unit = 4;
1031 info->cap_insn_split = 4;
1032 cap_mode = CS_MODE_ARM;
1034 if (arm_feature(env, ARM_FEATURE_V8)) {
1035 cap_mode |= CS_MODE_V8;
1037 if (arm_feature(env, ARM_FEATURE_M)) {
1038 cap_mode |= CS_MODE_MCLASS;
1040 info->cap_arch = CS_ARCH_ARM;
1041 info->cap_mode = cap_mode;
1044 sctlr_b = arm_sctlr_b(env);
1045 if (bswap_code(sctlr_b)) {
1046 #if TARGET_BIG_ENDIAN
1047 info->endian = BFD_ENDIAN_LITTLE;
1048 #else
1049 info->endian = BFD_ENDIAN_BIG;
1050 #endif
1052 info->flags &= ~INSN_ARM_BE32;
1053 #ifndef CONFIG_USER_ONLY
1054 if (sctlr_b) {
1055 info->flags |= INSN_ARM_BE32;
1057 #endif
1060 #ifdef TARGET_AARCH64
1062 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1064 ARMCPU *cpu = ARM_CPU(cs);
1065 CPUARMState *env = &cpu->env;
1066 uint32_t psr = pstate_read(env);
1067 int i, j;
1068 int el = arm_current_el(env);
1069 uint64_t hcr = arm_hcr_el2_eff(env);
1070 const char *ns_status;
1071 bool sve;
1073 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
1074 for (i = 0; i < 32; i++) {
1075 if (i == 31) {
1076 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
1077 } else {
1078 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
1079 (i + 2) % 3 ? " " : "\n");
1083 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
1084 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1085 } else {
1086 ns_status = "";
1088 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
1089 psr,
1090 psr & PSTATE_N ? 'N' : '-',
1091 psr & PSTATE_Z ? 'Z' : '-',
1092 psr & PSTATE_C ? 'C' : '-',
1093 psr & PSTATE_V ? 'V' : '-',
1094 ns_status,
1096 psr & PSTATE_SP ? 'h' : 't');
1098 if (cpu_isar_feature(aa64_sme, cpu)) {
1099 qemu_fprintf(f, " SVCR=%08" PRIx64 " %c%c",
1100 env->svcr,
1101 (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
1102 (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
1104 if (cpu_isar_feature(aa64_bti, cpu)) {
1105 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
1107 qemu_fprintf(f, "%s%s%s",
1108 (hcr & HCR_NV) ? " NV" : "",
1109 (hcr & HCR_NV1) ? " NV1" : "",
1110 (hcr & HCR_NV2) ? " NV2" : "");
1111 if (!(flags & CPU_DUMP_FPU)) {
1112 qemu_fprintf(f, "\n");
1113 return;
1115 if (fp_exception_el(env, el) != 0) {
1116 qemu_fprintf(f, " FPU disabled\n");
1117 return;
1119 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
1120 vfp_get_fpcr(env), vfp_get_fpsr(env));
1122 if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1123 sve = sme_exception_el(env, el) == 0;
1124 } else if (cpu_isar_feature(aa64_sve, cpu)) {
1125 sve = sve_exception_el(env, el) == 0;
1126 } else {
1127 sve = false;
1130 if (sve) {
1131 int zcr_len = sve_vqm1_for_el(env, el);
1133 for (i = 0; i <= FFR_PRED_NUM; i++) {
1134 bool eol;
1135 if (i == FFR_PRED_NUM) {
1136 qemu_fprintf(f, "FFR=");
1137 /* It's last, so end the line. */
1138 eol = true;
1139 } else {
1140 qemu_fprintf(f, "P%02d=", i);
1141 switch (zcr_len) {
1142 case 0:
1143 eol = i % 8 == 7;
1144 break;
1145 case 1:
1146 eol = i % 6 == 5;
1147 break;
1148 case 2:
1149 case 3:
1150 eol = i % 3 == 2;
1151 break;
1152 default:
1153 /* More than one quadword per predicate. */
1154 eol = true;
1155 break;
1158 for (j = zcr_len / 4; j >= 0; j--) {
1159 int digits;
1160 if (j * 4 + 4 <= zcr_len + 1) {
1161 digits = 16;
1162 } else {
1163 digits = (zcr_len % 4 + 1) * 4;
1165 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1166 env->vfp.pregs[i].p[j],
1167 j ? ":" : eol ? "\n" : " ");
1171 if (zcr_len == 0) {
1173 * With vl=16, there are only 37 columns per register,
1174 * so output two registers per line.
1176 for (i = 0; i < 32; i++) {
1177 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1178 i, env->vfp.zregs[i].d[1],
1179 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1181 } else {
1182 for (i = 0; i < 32; i++) {
1183 qemu_fprintf(f, "Z%02d=", i);
1184 for (j = zcr_len; j >= 0; j--) {
1185 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1186 env->vfp.zregs[i].d[j * 2 + 1],
1187 env->vfp.zregs[i].d[j * 2 + 0],
1188 j ? ":" : "\n");
1192 } else {
1193 for (i = 0; i < 32; i++) {
1194 uint64_t *q = aa64_vfp_qreg(env, i);
1195 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1196 i, q[1], q[0], (i & 1 ? "\n" : " "));
1200 if (cpu_isar_feature(aa64_sme, cpu) &&
1201 FIELD_EX64(env->svcr, SVCR, ZA) &&
1202 sme_exception_el(env, el) == 0) {
1203 int zcr_len = sve_vqm1_for_el_sm(env, el, true);
1204 int svl = (zcr_len + 1) * 16;
1205 int svl_lg10 = svl < 100 ? 2 : 3;
1207 for (i = 0; i < svl; i++) {
1208 qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
1209 for (j = zcr_len; j >= 0; --j) {
1210 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
1211 env->zarray[i].d[2 * j + 1],
1212 env->zarray[i].d[2 * j],
1213 j ? ':' : '\n');
1219 #else
1221 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1223 g_assert_not_reached();
1226 #endif
1228 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1230 ARMCPU *cpu = ARM_CPU(cs);
1231 CPUARMState *env = &cpu->env;
1232 int i;
1234 if (is_a64(env)) {
1235 aarch64_cpu_dump_state(cs, f, flags);
1236 return;
1239 for (i = 0; i < 16; i++) {
1240 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1241 if ((i % 4) == 3) {
1242 qemu_fprintf(f, "\n");
1243 } else {
1244 qemu_fprintf(f, " ");
1248 if (arm_feature(env, ARM_FEATURE_M)) {
1249 uint32_t xpsr = xpsr_read(env);
1250 const char *mode;
1251 const char *ns_status = "";
1253 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1254 ns_status = env->v7m.secure ? "S " : "NS ";
1257 if (xpsr & XPSR_EXCP) {
1258 mode = "handler";
1259 } else {
1260 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1261 mode = "unpriv-thread";
1262 } else {
1263 mode = "priv-thread";
1267 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1268 xpsr,
1269 xpsr & XPSR_N ? 'N' : '-',
1270 xpsr & XPSR_Z ? 'Z' : '-',
1271 xpsr & XPSR_C ? 'C' : '-',
1272 xpsr & XPSR_V ? 'V' : '-',
1273 xpsr & XPSR_T ? 'T' : 'A',
1274 ns_status,
1275 mode);
1276 } else {
1277 uint32_t psr = cpsr_read(env);
1278 const char *ns_status = "";
1280 if (arm_feature(env, ARM_FEATURE_EL3) &&
1281 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1282 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1285 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1286 psr,
1287 psr & CPSR_N ? 'N' : '-',
1288 psr & CPSR_Z ? 'Z' : '-',
1289 psr & CPSR_C ? 'C' : '-',
1290 psr & CPSR_V ? 'V' : '-',
1291 psr & CPSR_T ? 'T' : 'A',
1292 ns_status,
1293 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1296 if (flags & CPU_DUMP_FPU) {
1297 int numvfpregs = 0;
1298 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1299 numvfpregs = 32;
1300 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1301 numvfpregs = 16;
1303 for (i = 0; i < numvfpregs; i++) {
1304 uint64_t v = *aa32_vfp_dreg(env, i);
1305 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1306 i * 2, (uint32_t)v,
1307 i * 2 + 1, (uint32_t)(v >> 32),
1308 i, v);
1310 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1311 if (cpu_isar_feature(aa32_mve, cpu)) {
1312 qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1317 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz)
1319 uint32_t Aff1 = idx / clustersz;
1320 uint32_t Aff0 = idx % clustersz;
1321 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1324 uint64_t arm_cpu_mp_affinity(ARMCPU *cpu)
1326 return cpu->mp_affinity;
1329 static void arm_cpu_initfn(Object *obj)
1331 ARMCPU *cpu = ARM_CPU(obj);
1333 cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1334 NULL, g_free);
1336 QLIST_INIT(&cpu->pre_el_change_hooks);
1337 QLIST_INIT(&cpu->el_change_hooks);
1339 #ifdef CONFIG_USER_ONLY
1340 # ifdef TARGET_AARCH64
1342 * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1343 * These values were chosen to fit within the default signal frame.
1344 * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1345 * and our corresponding cpu property.
1347 cpu->sve_default_vq = 4;
1348 cpu->sme_default_vq = 2;
1349 # endif
1350 #else
1351 /* Our inbound IRQ and FIQ lines */
1352 if (kvm_enabled()) {
1353 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1354 * the same interface as non-KVM CPUs.
1356 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1357 } else {
1358 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1361 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1362 ARRAY_SIZE(cpu->gt_timer_outputs));
1364 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1365 "gicv3-maintenance-interrupt", 1);
1366 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1367 "pmu-interrupt", 1);
1368 #endif
1370 /* DTB consumers generally don't in fact care what the 'compatible'
1371 * string is, so always provide some string and trust that a hypothetical
1372 * picky DTB consumer will also provide a helpful error message.
1374 cpu->dtb_compatible = "qemu,unknown";
1375 cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1376 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1378 if (tcg_enabled() || hvf_enabled()) {
1379 /* TCG and HVF implement PSCI 1.1 */
1380 cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1384 static Property arm_cpu_gt_cntfrq_property =
1385 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1386 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1388 static Property arm_cpu_reset_cbar_property =
1389 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1391 static Property arm_cpu_reset_hivecs_property =
1392 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1394 #ifndef CONFIG_USER_ONLY
1395 static Property arm_cpu_has_el2_property =
1396 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1398 static Property arm_cpu_has_el3_property =
1399 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1400 #endif
1402 static Property arm_cpu_cfgend_property =
1403 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1405 static Property arm_cpu_has_vfp_property =
1406 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1408 static Property arm_cpu_has_vfp_d32_property =
1409 DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1411 static Property arm_cpu_has_neon_property =
1412 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1414 static Property arm_cpu_has_dsp_property =
1415 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1417 static Property arm_cpu_has_mpu_property =
1418 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1420 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1421 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1422 * the right value for that particular CPU type, and we don't want
1423 * to override that with an incorrect constant value.
1425 static Property arm_cpu_pmsav7_dregion_property =
1426 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1427 pmsav7_dregion,
1428 qdev_prop_uint32, uint32_t);
1430 static bool arm_get_pmu(Object *obj, Error **errp)
1432 ARMCPU *cpu = ARM_CPU(obj);
1434 return cpu->has_pmu;
1437 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1439 ARMCPU *cpu = ARM_CPU(obj);
1441 if (value) {
1442 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1443 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1444 return;
1446 set_feature(&cpu->env, ARM_FEATURE_PMU);
1447 } else {
1448 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1450 cpu->has_pmu = value;
1453 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1456 * The exact approach to calculating guest ticks is:
1458 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1459 * NANOSECONDS_PER_SECOND);
1461 * We don't do that. Rather we intentionally use integer division
1462 * truncation below and in the caller for the conversion of host monotonic
1463 * time to guest ticks to provide the exact inverse for the semantics of
1464 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1465 * it loses precision when representing frequencies where
1466 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1467 * provide an exact inverse leads to scheduling timers with negative
1468 * periods, which in turn leads to sticky behaviour in the guest.
1470 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1471 * cannot become zero.
1473 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1474 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1477 static void arm_cpu_propagate_feature_implications(ARMCPU *cpu)
1479 CPUARMState *env = &cpu->env;
1480 bool no_aa32 = false;
1483 * Some features automatically imply others: set the feature
1484 * bits explicitly for these cases.
1487 if (arm_feature(env, ARM_FEATURE_M)) {
1488 set_feature(env, ARM_FEATURE_PMSA);
1491 if (arm_feature(env, ARM_FEATURE_V8)) {
1492 if (arm_feature(env, ARM_FEATURE_M)) {
1493 set_feature(env, ARM_FEATURE_V7);
1494 } else {
1495 set_feature(env, ARM_FEATURE_V7VE);
1500 * There exist AArch64 cpus without AArch32 support. When KVM
1501 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1502 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1503 * As a general principle, we also do not make ID register
1504 * consistency checks anywhere unless using TCG, because only
1505 * for TCG would a consistency-check failure be a QEMU bug.
1507 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1508 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1511 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1513 * v7 Virtualization Extensions. In real hardware this implies
1514 * EL2 and also the presence of the Security Extensions.
1515 * For QEMU, for backwards-compatibility we implement some
1516 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1517 * include the various other features that V7VE implies.
1518 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1519 * Security Extensions is ARM_FEATURE_EL3.
1521 assert(!tcg_enabled() || no_aa32 ||
1522 cpu_isar_feature(aa32_arm_div, cpu));
1523 set_feature(env, ARM_FEATURE_LPAE);
1524 set_feature(env, ARM_FEATURE_V7);
1526 if (arm_feature(env, ARM_FEATURE_V7)) {
1527 set_feature(env, ARM_FEATURE_VAPA);
1528 set_feature(env, ARM_FEATURE_THUMB2);
1529 set_feature(env, ARM_FEATURE_MPIDR);
1530 if (!arm_feature(env, ARM_FEATURE_M)) {
1531 set_feature(env, ARM_FEATURE_V6K);
1532 } else {
1533 set_feature(env, ARM_FEATURE_V6);
1537 * Always define VBAR for V7 CPUs even if it doesn't exist in
1538 * non-EL3 configs. This is needed by some legacy boards.
1540 set_feature(env, ARM_FEATURE_VBAR);
1542 if (arm_feature(env, ARM_FEATURE_V6K)) {
1543 set_feature(env, ARM_FEATURE_V6);
1544 set_feature(env, ARM_FEATURE_MVFR);
1546 if (arm_feature(env, ARM_FEATURE_V6)) {
1547 set_feature(env, ARM_FEATURE_V5);
1548 if (!arm_feature(env, ARM_FEATURE_M)) {
1549 assert(!tcg_enabled() || no_aa32 ||
1550 cpu_isar_feature(aa32_jazelle, cpu));
1551 set_feature(env, ARM_FEATURE_AUXCR);
1554 if (arm_feature(env, ARM_FEATURE_V5)) {
1555 set_feature(env, ARM_FEATURE_V4T);
1557 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1558 set_feature(env, ARM_FEATURE_V7MP);
1560 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1561 set_feature(env, ARM_FEATURE_CBAR);
1563 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1564 !arm_feature(env, ARM_FEATURE_M)) {
1565 set_feature(env, ARM_FEATURE_THUMB_DSP);
1569 void arm_cpu_post_init(Object *obj)
1571 ARMCPU *cpu = ARM_CPU(obj);
1574 * Some features imply others. Figure this out now, because we
1575 * are going to look at the feature bits in deciding which
1576 * properties to add.
1578 arm_cpu_propagate_feature_implications(cpu);
1580 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1581 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1582 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1585 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1586 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1589 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1590 object_property_add_uint64_ptr(obj, "rvbar",
1591 &cpu->rvbar_prop,
1592 OBJ_PROP_FLAG_READWRITE);
1595 #ifndef CONFIG_USER_ONLY
1596 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1597 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1598 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1600 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1602 object_property_add_link(obj, "secure-memory",
1603 TYPE_MEMORY_REGION,
1604 (Object **)&cpu->secure_memory,
1605 qdev_prop_allow_set_link_before_realize,
1606 OBJ_PROP_LINK_STRONG);
1609 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1610 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1612 #endif
1614 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1615 cpu->has_pmu = true;
1616 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1620 * Allow user to turn off VFP and Neon support, but only for TCG --
1621 * KVM does not currently allow us to lie to the guest about its
1622 * ID/feature registers, so the guest always sees what the host has.
1624 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1625 if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1626 cpu->has_vfp = true;
1627 cpu->has_vfp_d32 = true;
1628 if (tcg_enabled() || qtest_enabled()) {
1629 qdev_property_add_static(DEVICE(obj),
1630 &arm_cpu_has_vfp_property);
1633 } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1634 cpu->has_vfp = true;
1635 if (tcg_enabled() || qtest_enabled()) {
1636 qdev_property_add_static(DEVICE(obj),
1637 &arm_cpu_has_vfp_property);
1639 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1640 cpu->has_vfp_d32 = true;
1642 * The permitted values of the SIMDReg bits [3:0] on
1643 * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1644 * make sure that has_vfp_d32 can not be set to false.
1646 if ((tcg_enabled() || qtest_enabled())
1647 && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1648 && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1649 qdev_property_add_static(DEVICE(obj),
1650 &arm_cpu_has_vfp_d32_property);
1655 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1656 cpu->has_neon = true;
1657 if (!kvm_enabled()) {
1658 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1662 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1663 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1664 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1667 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1668 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1669 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1670 qdev_property_add_static(DEVICE(obj),
1671 &arm_cpu_pmsav7_dregion_property);
1675 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1676 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1677 qdev_prop_allow_set_link_before_realize,
1678 OBJ_PROP_LINK_STRONG);
1680 * M profile: initial value of the Secure VTOR. We can't just use
1681 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1682 * the property to be set after realize.
1684 object_property_add_uint32_ptr(obj, "init-svtor",
1685 &cpu->init_svtor,
1686 OBJ_PROP_FLAG_READWRITE);
1688 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1690 * Initial value of the NS VTOR (for cores without the Security
1691 * extension, this is the only VTOR)
1693 object_property_add_uint32_ptr(obj, "init-nsvtor",
1694 &cpu->init_nsvtor,
1695 OBJ_PROP_FLAG_READWRITE);
1698 /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1699 object_property_add_uint32_ptr(obj, "psci-conduit",
1700 &cpu->psci_conduit,
1701 OBJ_PROP_FLAG_READWRITE);
1703 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1705 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1706 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1709 if (kvm_enabled()) {
1710 kvm_arm_add_vcpu_properties(cpu);
1713 #ifndef CONFIG_USER_ONLY
1714 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1715 cpu_isar_feature(aa64_mte, cpu)) {
1716 object_property_add_link(obj, "tag-memory",
1717 TYPE_MEMORY_REGION,
1718 (Object **)&cpu->tag_memory,
1719 qdev_prop_allow_set_link_before_realize,
1720 OBJ_PROP_LINK_STRONG);
1722 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1723 object_property_add_link(obj, "secure-tag-memory",
1724 TYPE_MEMORY_REGION,
1725 (Object **)&cpu->secure_tag_memory,
1726 qdev_prop_allow_set_link_before_realize,
1727 OBJ_PROP_LINK_STRONG);
1730 #endif
1733 static void arm_cpu_finalizefn(Object *obj)
1735 ARMCPU *cpu = ARM_CPU(obj);
1736 ARMELChangeHook *hook, *next;
1738 g_hash_table_destroy(cpu->cp_regs);
1740 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1741 QLIST_REMOVE(hook, node);
1742 g_free(hook);
1744 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1745 QLIST_REMOVE(hook, node);
1746 g_free(hook);
1748 #ifndef CONFIG_USER_ONLY
1749 if (cpu->pmu_timer) {
1750 timer_free(cpu->pmu_timer);
1752 #endif
1755 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1757 Error *local_err = NULL;
1759 #ifdef TARGET_AARCH64
1760 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1761 arm_cpu_sve_finalize(cpu, &local_err);
1762 if (local_err != NULL) {
1763 error_propagate(errp, local_err);
1764 return;
1768 * FEAT_SME is not architecturally dependent on FEAT_SVE (unless
1769 * FEAT_SME_FA64 is present). However our implementation currently
1770 * assumes it, so if the user asked for sve=off then turn off SME also.
1771 * (KVM doesn't currently support SME at all.)
1773 if (cpu_isar_feature(aa64_sme, cpu) && !cpu_isar_feature(aa64_sve, cpu)) {
1774 object_property_set_bool(OBJECT(cpu), "sme", false, &error_abort);
1777 arm_cpu_sme_finalize(cpu, &local_err);
1778 if (local_err != NULL) {
1779 error_propagate(errp, local_err);
1780 return;
1783 arm_cpu_pauth_finalize(cpu, &local_err);
1784 if (local_err != NULL) {
1785 error_propagate(errp, local_err);
1786 return;
1789 arm_cpu_lpa2_finalize(cpu, &local_err);
1790 if (local_err != NULL) {
1791 error_propagate(errp, local_err);
1792 return;
1795 #endif
1797 if (kvm_enabled()) {
1798 kvm_arm_steal_time_finalize(cpu, &local_err);
1799 if (local_err != NULL) {
1800 error_propagate(errp, local_err);
1801 return;
1806 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1808 CPUState *cs = CPU(dev);
1809 ARMCPU *cpu = ARM_CPU(dev);
1810 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1811 CPUARMState *env = &cpu->env;
1812 Error *local_err = NULL;
1814 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
1815 /* Use pc-relative instructions in system-mode */
1816 cs->tcg_cflags |= CF_PCREL;
1817 #endif
1819 /* If we needed to query the host kernel for the CPU features
1820 * then it's possible that might have failed in the initfn, but
1821 * this is the first point where we can report it.
1823 if (cpu->host_cpu_probe_failed) {
1824 if (!kvm_enabled() && !hvf_enabled()) {
1825 error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1826 } else {
1827 error_setg(errp, "Failed to retrieve host CPU features");
1829 return;
1832 #ifndef CONFIG_USER_ONLY
1833 /* The NVIC and M-profile CPU are two halves of a single piece of
1834 * hardware; trying to use one without the other is a command line
1835 * error and will result in segfaults if not caught here.
1837 if (arm_feature(env, ARM_FEATURE_M)) {
1838 if (!env->nvic) {
1839 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1840 return;
1842 } else {
1843 if (env->nvic) {
1844 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1845 return;
1849 if (!tcg_enabled() && !qtest_enabled()) {
1851 * We assume that no accelerator except TCG (and the "not really an
1852 * accelerator" qtest) can handle these features, because Arm hardware
1853 * virtualization can't virtualize them.
1855 * Catch all the cases which might cause us to create more than one
1856 * address space for the CPU (otherwise we will assert() later in
1857 * cpu_address_space_init()).
1859 if (arm_feature(env, ARM_FEATURE_M)) {
1860 error_setg(errp,
1861 "Cannot enable %s when using an M-profile guest CPU",
1862 current_accel_name());
1863 return;
1865 if (cpu->has_el3) {
1866 error_setg(errp,
1867 "Cannot enable %s when guest CPU has EL3 enabled",
1868 current_accel_name());
1869 return;
1871 if (cpu->tag_memory) {
1872 error_setg(errp,
1873 "Cannot enable %s when guest CPUs has MTE enabled",
1874 current_accel_name());
1875 return;
1880 uint64_t scale;
1882 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1883 if (!cpu->gt_cntfrq_hz) {
1884 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1885 cpu->gt_cntfrq_hz);
1886 return;
1888 scale = gt_cntfrq_period_ns(cpu);
1889 } else {
1890 scale = GTIMER_SCALE;
1893 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1894 arm_gt_ptimer_cb, cpu);
1895 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1896 arm_gt_vtimer_cb, cpu);
1897 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1898 arm_gt_htimer_cb, cpu);
1899 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1900 arm_gt_stimer_cb, cpu);
1901 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1902 arm_gt_hvtimer_cb, cpu);
1904 #endif
1906 cpu_exec_realizefn(cs, &local_err);
1907 if (local_err != NULL) {
1908 error_propagate(errp, local_err);
1909 return;
1912 arm_cpu_finalize_features(cpu, &local_err);
1913 if (local_err != NULL) {
1914 error_propagate(errp, local_err);
1915 return;
1918 #ifdef CONFIG_USER_ONLY
1920 * User mode relies on IC IVAU instructions to catch modification of
1921 * dual-mapped code.
1923 * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
1924 * IC IVAU even if the emulated processor does not normally require it.
1926 cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
1927 #endif
1929 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1930 cpu->has_vfp != cpu->has_neon) {
1932 * This is an architectural requirement for AArch64; AArch32 is
1933 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1935 error_setg(errp,
1936 "AArch64 CPUs must have both VFP and Neon or neither");
1937 return;
1940 if (cpu->has_vfp_d32 != cpu->has_neon) {
1941 error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
1942 return;
1945 if (!cpu->has_vfp_d32) {
1946 uint32_t u;
1948 u = cpu->isar.mvfr0;
1949 u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
1950 cpu->isar.mvfr0 = u;
1953 if (!cpu->has_vfp) {
1954 uint64_t t;
1955 uint32_t u;
1957 t = cpu->isar.id_aa64isar1;
1958 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1959 cpu->isar.id_aa64isar1 = t;
1961 t = cpu->isar.id_aa64pfr0;
1962 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1963 cpu->isar.id_aa64pfr0 = t;
1965 u = cpu->isar.id_isar6;
1966 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1967 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1968 cpu->isar.id_isar6 = u;
1970 u = cpu->isar.mvfr0;
1971 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1972 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1973 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1974 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1975 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1976 if (!arm_feature(env, ARM_FEATURE_M)) {
1977 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1978 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1980 cpu->isar.mvfr0 = u;
1982 u = cpu->isar.mvfr1;
1983 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1984 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1985 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1986 if (arm_feature(env, ARM_FEATURE_M)) {
1987 u = FIELD_DP32(u, MVFR1, FP16, 0);
1989 cpu->isar.mvfr1 = u;
1991 u = cpu->isar.mvfr2;
1992 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1993 cpu->isar.mvfr2 = u;
1996 if (!cpu->has_neon) {
1997 uint64_t t;
1998 uint32_t u;
2000 unset_feature(env, ARM_FEATURE_NEON);
2002 t = cpu->isar.id_aa64isar0;
2003 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
2004 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
2005 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
2006 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
2007 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
2008 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
2009 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
2010 cpu->isar.id_aa64isar0 = t;
2012 t = cpu->isar.id_aa64isar1;
2013 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
2014 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
2015 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
2016 cpu->isar.id_aa64isar1 = t;
2018 t = cpu->isar.id_aa64pfr0;
2019 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
2020 cpu->isar.id_aa64pfr0 = t;
2022 u = cpu->isar.id_isar5;
2023 u = FIELD_DP32(u, ID_ISAR5, AES, 0);
2024 u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
2025 u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
2026 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
2027 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
2028 cpu->isar.id_isar5 = u;
2030 u = cpu->isar.id_isar6;
2031 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
2032 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
2033 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2034 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
2035 cpu->isar.id_isar6 = u;
2037 if (!arm_feature(env, ARM_FEATURE_M)) {
2038 u = cpu->isar.mvfr1;
2039 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
2040 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
2041 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
2042 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
2043 cpu->isar.mvfr1 = u;
2045 u = cpu->isar.mvfr2;
2046 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
2047 cpu->isar.mvfr2 = u;
2051 if (!cpu->has_neon && !cpu->has_vfp) {
2052 uint64_t t;
2053 uint32_t u;
2055 t = cpu->isar.id_aa64isar0;
2056 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
2057 cpu->isar.id_aa64isar0 = t;
2059 t = cpu->isar.id_aa64isar1;
2060 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
2061 cpu->isar.id_aa64isar1 = t;
2063 u = cpu->isar.mvfr0;
2064 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
2065 cpu->isar.mvfr0 = u;
2067 /* Despite the name, this field covers both VFP and Neon */
2068 u = cpu->isar.mvfr1;
2069 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
2070 cpu->isar.mvfr1 = u;
2073 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
2074 uint32_t u;
2076 unset_feature(env, ARM_FEATURE_THUMB_DSP);
2078 u = cpu->isar.id_isar1;
2079 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
2080 cpu->isar.id_isar1 = u;
2082 u = cpu->isar.id_isar2;
2083 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
2084 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
2085 cpu->isar.id_isar2 = u;
2087 u = cpu->isar.id_isar3;
2088 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
2089 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
2090 cpu->isar.id_isar3 = u;
2095 * We rely on no XScale CPU having VFP so we can use the same bits in the
2096 * TB flags field for VECSTRIDE and XSCALE_CPAR.
2098 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
2099 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
2100 !arm_feature(env, ARM_FEATURE_XSCALE));
2102 #ifndef CONFIG_USER_ONLY
2104 int pagebits;
2105 if (arm_feature(env, ARM_FEATURE_V7) &&
2106 !arm_feature(env, ARM_FEATURE_M) &&
2107 !arm_feature(env, ARM_FEATURE_PMSA)) {
2109 * v7VMSA drops support for the old ARMv5 tiny pages,
2110 * so we can use 4K pages.
2112 pagebits = 12;
2113 } else {
2115 * For CPUs which might have tiny 1K pages, or which have an
2116 * MPU and might have small region sizes, stick with 1K pages.
2118 pagebits = 10;
2120 if (!set_preferred_target_page_bits(pagebits)) {
2122 * This can only ever happen for hotplugging a CPU, or if
2123 * the board code incorrectly creates a CPU which it has
2124 * promised via minimum_page_size that it will not.
2126 error_setg(errp, "This CPU requires a smaller page size "
2127 "than the system is using");
2128 return;
2131 #endif
2133 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
2134 * We don't support setting cluster ID ([16..23]) (known as Aff2
2135 * in later ARM ARM versions), or any of the higher affinity level fields,
2136 * so these bits always RAZ.
2138 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
2139 cpu->mp_affinity = arm_build_mp_affinity(cs->cpu_index,
2140 ARM_DEFAULT_CPUS_PER_CLUSTER);
2143 if (cpu->reset_hivecs) {
2144 cpu->reset_sctlr |= (1 << 13);
2147 if (cpu->cfgend) {
2148 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
2149 cpu->reset_sctlr |= SCTLR_EE;
2150 } else {
2151 cpu->reset_sctlr |= SCTLR_B;
2155 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
2156 /* If the has_el3 CPU property is disabled then we need to disable the
2157 * feature.
2159 unset_feature(env, ARM_FEATURE_EL3);
2162 * Disable the security extension feature bits in the processor
2163 * feature registers as well.
2165 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
2166 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
2167 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2168 ID_AA64PFR0, EL3, 0);
2170 /* Disable the realm management extension, which requires EL3. */
2171 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2172 ID_AA64PFR0, RME, 0);
2175 if (!cpu->has_el2) {
2176 unset_feature(env, ARM_FEATURE_EL2);
2179 if (!cpu->has_pmu) {
2180 unset_feature(env, ARM_FEATURE_PMU);
2182 if (arm_feature(env, ARM_FEATURE_PMU)) {
2183 pmu_init(cpu);
2185 if (!kvm_enabled()) {
2186 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2187 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2190 #ifndef CONFIG_USER_ONLY
2191 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2192 cpu);
2193 #endif
2194 } else {
2195 cpu->isar.id_aa64dfr0 =
2196 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2197 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2198 cpu->pmceid0 = 0;
2199 cpu->pmceid1 = 0;
2202 if (!arm_feature(env, ARM_FEATURE_EL2)) {
2204 * Disable the hypervisor feature bits in the processor feature
2205 * registers if we don't have EL2.
2207 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2208 ID_AA64PFR0, EL2, 0);
2209 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2210 ID_PFR1, VIRTUALIZATION, 0);
2213 if (cpu_isar_feature(aa64_mte, cpu)) {
2215 * The architectural range of GM blocksize is 2-6, however qemu
2216 * doesn't support blocksize of 2 (see HELPER(ldgm)).
2218 if (tcg_enabled()) {
2219 assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6);
2222 #ifndef CONFIG_USER_ONLY
2224 * If we do not have tag-memory provided by the machine,
2225 * reduce MTE support to instructions enabled at EL0.
2226 * This matches Cortex-A710 BROADCASTMTE input being LOW.
2228 if (cpu->tag_memory == NULL) {
2229 cpu->isar.id_aa64pfr1 =
2230 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1);
2232 #endif
2235 if (tcg_enabled()) {
2237 * Don't report some architectural features in the ID registers
2238 * where TCG does not yet implement it (not even a minimal
2239 * stub version). This avoids guests falling over when they
2240 * try to access the non-existent system registers for them.
2242 /* FEAT_SPE (Statistical Profiling Extension) */
2243 cpu->isar.id_aa64dfr0 =
2244 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2245 /* FEAT_TRBE (Trace Buffer Extension) */
2246 cpu->isar.id_aa64dfr0 =
2247 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0);
2248 /* FEAT_TRF (Self-hosted Trace Extension) */
2249 cpu->isar.id_aa64dfr0 =
2250 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0);
2251 cpu->isar.id_dfr0 =
2252 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0);
2253 /* Trace Macrocell system register access */
2254 cpu->isar.id_aa64dfr0 =
2255 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0);
2256 cpu->isar.id_dfr0 =
2257 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0);
2258 /* Memory mapped trace */
2259 cpu->isar.id_dfr0 =
2260 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0);
2261 /* FEAT_AMU (Activity Monitors Extension) */
2262 cpu->isar.id_aa64pfr0 =
2263 FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0);
2264 cpu->isar.id_pfr0 =
2265 FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0);
2266 /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2267 cpu->isar.id_aa64pfr0 =
2268 FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
2271 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2272 * to false or by setting pmsav7-dregion to 0.
2274 if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2275 cpu->has_mpu = false;
2276 cpu->pmsav7_dregion = 0;
2277 cpu->pmsav8r_hdregion = 0;
2280 if (arm_feature(env, ARM_FEATURE_PMSA) &&
2281 arm_feature(env, ARM_FEATURE_V7)) {
2282 uint32_t nr = cpu->pmsav7_dregion;
2284 if (nr > 0xff) {
2285 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2286 return;
2289 if (nr) {
2290 if (arm_feature(env, ARM_FEATURE_V8)) {
2291 /* PMSAv8 */
2292 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2293 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2294 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2295 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2296 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2298 } else {
2299 env->pmsav7.drbar = g_new0(uint32_t, nr);
2300 env->pmsav7.drsr = g_new0(uint32_t, nr);
2301 env->pmsav7.dracr = g_new0(uint32_t, nr);
2305 if (cpu->pmsav8r_hdregion > 0xff) {
2306 error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2307 cpu->pmsav8r_hdregion);
2308 return;
2311 if (cpu->pmsav8r_hdregion) {
2312 env->pmsav8.hprbar = g_new0(uint32_t,
2313 cpu->pmsav8r_hdregion);
2314 env->pmsav8.hprlar = g_new0(uint32_t,
2315 cpu->pmsav8r_hdregion);
2319 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2320 uint32_t nr = cpu->sau_sregion;
2322 if (nr > 0xff) {
2323 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2324 return;
2327 if (nr) {
2328 env->sau.rbar = g_new0(uint32_t, nr);
2329 env->sau.rlar = g_new0(uint32_t, nr);
2333 if (arm_feature(env, ARM_FEATURE_EL3)) {
2334 set_feature(env, ARM_FEATURE_VBAR);
2337 #ifndef CONFIG_USER_ONLY
2338 if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) {
2339 arm_register_el_change_hook(cpu, &gt_rme_post_el_change, 0);
2341 #endif
2343 register_cp_regs_for_features(cpu);
2344 arm_cpu_register_gdb_regs_for_features(cpu);
2346 init_cpreg_list(cpu);
2348 #ifndef CONFIG_USER_ONLY
2349 MachineState *ms = MACHINE(qdev_get_machine());
2350 unsigned int smp_cpus = ms->smp.cpus;
2351 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2354 * We must set cs->num_ases to the final value before
2355 * the first call to cpu_address_space_init.
2357 if (cpu->tag_memory != NULL) {
2358 cs->num_ases = 3 + has_secure;
2359 } else {
2360 cs->num_ases = 1 + has_secure;
2363 if (has_secure) {
2364 if (!cpu->secure_memory) {
2365 cpu->secure_memory = cs->memory;
2367 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2368 cpu->secure_memory);
2371 if (cpu->tag_memory != NULL) {
2372 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2373 cpu->tag_memory);
2374 if (has_secure) {
2375 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2376 cpu->secure_tag_memory);
2380 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2382 /* No core_count specified, default to smp_cpus. */
2383 if (cpu->core_count == -1) {
2384 cpu->core_count = smp_cpus;
2386 #endif
2388 if (tcg_enabled()) {
2389 int dcz_blocklen = 4 << cpu->dcz_blocksize;
2392 * We only support DCZ blocklen that fits on one page.
2394 * Architectually this is always true. However TARGET_PAGE_SIZE
2395 * is variable and, for compatibility with -machine virt-2.7,
2396 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2397 * But even then, while the largest architectural DCZ blocklen
2398 * is 2KiB, no cpu actually uses such a large blocklen.
2400 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2403 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2404 * both nibbles of each byte storing tag data may be written at once.
2405 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2407 if (cpu_isar_feature(aa64_mte, cpu)) {
2408 assert(dcz_blocklen >= 2 * TAG_GRANULE);
2412 qemu_init_vcpu(cs);
2413 cpu_reset(cs);
2415 acc->parent_realize(dev, errp);
2418 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2420 ObjectClass *oc;
2421 char *typename;
2422 char **cpuname;
2423 const char *cpunamestr;
2425 cpuname = g_strsplit(cpu_model, ",", 1);
2426 cpunamestr = cpuname[0];
2427 #ifdef CONFIG_USER_ONLY
2428 /* For backwards compatibility usermode emulation allows "-cpu any",
2429 * which has the same semantics as "-cpu max".
2431 if (!strcmp(cpunamestr, "any")) {
2432 cpunamestr = "max";
2434 #endif
2435 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2436 oc = object_class_by_name(typename);
2437 g_strfreev(cpuname);
2438 g_free(typename);
2440 return oc;
2443 static Property arm_cpu_properties[] = {
2444 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2445 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2446 mp_affinity, ARM64_AFFINITY_INVALID),
2447 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2448 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2449 DEFINE_PROP_END_OF_LIST()
2452 static const gchar *arm_gdb_arch_name(CPUState *cs)
2454 ARMCPU *cpu = ARM_CPU(cs);
2455 CPUARMState *env = &cpu->env;
2457 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2458 return "iwmmxt";
2460 return "arm";
2463 #ifndef CONFIG_USER_ONLY
2464 #include "hw/core/sysemu-cpu-ops.h"
2466 static const struct SysemuCPUOps arm_sysemu_ops = {
2467 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2468 .asidx_from_attrs = arm_asidx_from_attrs,
2469 .write_elf32_note = arm_cpu_write_elf32_note,
2470 .write_elf64_note = arm_cpu_write_elf64_note,
2471 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2472 .legacy_vmsd = &vmstate_arm_cpu,
2474 #endif
2476 #ifdef CONFIG_TCG
2477 static const TCGCPUOps arm_tcg_ops = {
2478 .initialize = arm_translate_init,
2479 .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2480 .debug_excp_handler = arm_debug_excp_handler,
2481 .restore_state_to_opc = arm_restore_state_to_opc,
2483 #ifdef CONFIG_USER_ONLY
2484 .record_sigsegv = arm_cpu_record_sigsegv,
2485 .record_sigbus = arm_cpu_record_sigbus,
2486 #else
2487 .tlb_fill = arm_cpu_tlb_fill,
2488 .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2489 .do_interrupt = arm_cpu_do_interrupt,
2490 .do_transaction_failed = arm_cpu_do_transaction_failed,
2491 .do_unaligned_access = arm_cpu_do_unaligned_access,
2492 .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2493 .debug_check_watchpoint = arm_debug_check_watchpoint,
2494 .debug_check_breakpoint = arm_debug_check_breakpoint,
2495 #endif /* !CONFIG_USER_ONLY */
2497 #endif /* CONFIG_TCG */
2499 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2501 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2502 CPUClass *cc = CPU_CLASS(acc);
2503 DeviceClass *dc = DEVICE_CLASS(oc);
2504 ResettableClass *rc = RESETTABLE_CLASS(oc);
2506 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2507 &acc->parent_realize);
2509 device_class_set_props(dc, arm_cpu_properties);
2511 resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2512 &acc->parent_phases);
2514 cc->class_by_name = arm_cpu_class_by_name;
2515 cc->has_work = arm_cpu_has_work;
2516 cc->mmu_index = arm_cpu_mmu_index;
2517 cc->dump_state = arm_cpu_dump_state;
2518 cc->set_pc = arm_cpu_set_pc;
2519 cc->get_pc = arm_cpu_get_pc;
2520 cc->gdb_read_register = arm_cpu_gdb_read_register;
2521 cc->gdb_write_register = arm_cpu_gdb_write_register;
2522 #ifndef CONFIG_USER_ONLY
2523 cc->sysemu_ops = &arm_sysemu_ops;
2524 #endif
2525 cc->gdb_arch_name = arm_gdb_arch_name;
2526 cc->gdb_stop_before_watchpoint = true;
2527 cc->disas_set_info = arm_disas_set_info;
2529 #ifdef CONFIG_TCG
2530 cc->tcg_ops = &arm_tcg_ops;
2531 #endif /* CONFIG_TCG */
2534 static void arm_cpu_instance_init(Object *obj)
2536 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2538 acc->info->initfn(obj);
2539 arm_cpu_post_init(obj);
2542 static void cpu_register_class_init(ObjectClass *oc, void *data)
2544 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2545 CPUClass *cc = CPU_CLASS(acc);
2547 acc->info = data;
2548 cc->gdb_core_xml_file = "arm-core.xml";
2551 void arm_cpu_register(const ARMCPUInfo *info)
2553 TypeInfo type_info = {
2554 .parent = TYPE_ARM_CPU,
2555 .instance_init = arm_cpu_instance_init,
2556 .class_init = info->class_init ?: cpu_register_class_init,
2557 .class_data = (void *)info,
2560 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2561 type_register(&type_info);
2562 g_free((void *)type_info.name);
2565 static const TypeInfo arm_cpu_type_info = {
2566 .name = TYPE_ARM_CPU,
2567 .parent = TYPE_CPU,
2568 .instance_size = sizeof(ARMCPU),
2569 .instance_align = __alignof__(ARMCPU),
2570 .instance_init = arm_cpu_initfn,
2571 .instance_finalize = arm_cpu_finalizefn,
2572 .abstract = true,
2573 .class_size = sizeof(ARMCPUClass),
2574 .class_init = arm_cpu_class_init,
2577 static void arm_cpu_register_types(void)
2579 type_register_static(&arm_cpu_type_info);
2582 type_init(arm_cpu_register_types)