ppc/xive: Make the PIPR register readonly
[qemu/ar7.git] / hw / intc / xive.c
blob534f56f86bd5df32c91aabfb24058179128fd65d
1 /*
2 * QEMU PowerPC XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "hw/qdev-properties.h"
18 #include "monitor/monitor.h"
19 #include "hw/ppc/xive.h"
20 #include "hw/ppc/xive_regs.h"
23 * XIVE Thread Interrupt Management context
27 * Convert a priority number to an Interrupt Pending Buffer (IPB)
28 * register, which indicates a pending interrupt at the priority
29 * corresponding to the bit number
31 static uint8_t priority_to_ipb(uint8_t priority)
33 return priority > XIVE_PRIORITY_MAX ?
34 0 : 1 << (XIVE_PRIORITY_MAX - priority);
38 * Convert an Interrupt Pending Buffer (IPB) register to a Pending
39 * Interrupt Priority Register (PIPR), which contains the priority of
40 * the most favored pending notification.
42 static uint8_t ipb_to_pipr(uint8_t ibp)
44 return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
47 static void ipb_update(uint8_t *regs, uint8_t priority)
49 regs[TM_IPB] |= priority_to_ipb(priority);
50 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
53 static uint8_t exception_mask(uint8_t ring)
55 switch (ring) {
56 case TM_QW1_OS:
57 return TM_QW1_NSR_EO;
58 case TM_QW3_HV_PHYS:
59 return TM_QW3_NSR_HE;
60 default:
61 g_assert_not_reached();
65 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
67 switch (ring) {
68 case TM_QW0_USER:
69 return 0; /* Not supported */
70 case TM_QW1_OS:
71 return tctx->os_output;
72 case TM_QW2_HV_POOL:
73 case TM_QW3_HV_PHYS:
74 return tctx->hv_output;
75 default:
76 return 0;
80 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
82 uint8_t *regs = &tctx->regs[ring];
83 uint8_t nsr = regs[TM_NSR];
84 uint8_t mask = exception_mask(ring);
86 qemu_irq_lower(xive_tctx_output(tctx, ring));
88 if (regs[TM_NSR] & mask) {
89 uint8_t cppr = regs[TM_PIPR];
91 regs[TM_CPPR] = cppr;
93 /* Reset the pending buffer bit */
94 regs[TM_IPB] &= ~priority_to_ipb(cppr);
95 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
97 /* Drop Exception bit */
98 regs[TM_NSR] &= ~mask;
101 return (nsr << 8) | regs[TM_CPPR];
104 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
106 uint8_t *regs = &tctx->regs[ring];
108 if (regs[TM_PIPR] < regs[TM_CPPR]) {
109 switch (ring) {
110 case TM_QW1_OS:
111 regs[TM_NSR] |= TM_QW1_NSR_EO;
112 break;
113 case TM_QW3_HV_PHYS:
114 regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
115 break;
116 default:
117 g_assert_not_reached();
119 qemu_irq_raise(xive_tctx_output(tctx, ring));
123 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
125 if (cppr > XIVE_PRIORITY_MAX) {
126 cppr = 0xff;
129 tctx->regs[ring + TM_CPPR] = cppr;
131 /* CPPR has changed, check if we need to raise a pending exception */
132 xive_tctx_notify(tctx, ring);
136 * XIVE Thread Interrupt Management Area (TIMA)
139 static void xive_tm_set_hv_cppr(XiveTCTX *tctx, hwaddr offset,
140 uint64_t value, unsigned size)
142 xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
145 static uint64_t xive_tm_ack_hv_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
147 return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
150 static uint64_t xive_tm_pull_pool_ctx(XiveTCTX *tctx, hwaddr offset,
151 unsigned size)
153 uint64_t ret;
155 ret = tctx->regs[TM_QW2_HV_POOL + TM_WORD2] & TM_QW2W2_POOL_CAM;
156 tctx->regs[TM_QW2_HV_POOL + TM_WORD2] &= ~TM_QW2W2_POOL_CAM;
157 return ret;
160 static void xive_tm_vt_push(XiveTCTX *tctx, hwaddr offset,
161 uint64_t value, unsigned size)
163 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
166 static uint64_t xive_tm_vt_poll(XiveTCTX *tctx, hwaddr offset, unsigned size)
168 return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
172 * Define an access map for each page of the TIMA that we will use in
173 * the memory region ops to filter values when doing loads and stores
174 * of raw registers values
176 * Registers accessibility bits :
178 * 0x0 - no access
179 * 0x1 - write only
180 * 0x2 - read only
181 * 0x3 - read/write
184 static const uint8_t xive_tm_hw_view[] = {
185 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
186 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
187 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
188 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 3, 3, 3, 0, /* QW-3 PHYS */
191 static const uint8_t xive_tm_hv_view[] = {
192 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
193 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
194 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
195 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 0, 0, 0, 0, /* QW-3 PHYS */
198 static const uint8_t xive_tm_os_view[] = {
199 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
200 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
201 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
202 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
205 static const uint8_t xive_tm_user_view[] = {
206 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-0 User */
207 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
208 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
209 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
213 * Overall TIMA access map for the thread interrupt management context
214 * registers
216 static const uint8_t *xive_tm_views[] = {
217 [XIVE_TM_HW_PAGE] = xive_tm_hw_view,
218 [XIVE_TM_HV_PAGE] = xive_tm_hv_view,
219 [XIVE_TM_OS_PAGE] = xive_tm_os_view,
220 [XIVE_TM_USER_PAGE] = xive_tm_user_view,
224 * Computes a register access mask for a given offset in the TIMA
226 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
228 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
229 uint8_t reg_offset = offset & 0x3F;
230 uint8_t reg_mask = write ? 0x1 : 0x2;
231 uint64_t mask = 0x0;
232 int i;
234 for (i = 0; i < size; i++) {
235 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
236 mask |= (uint64_t) 0xff << (8 * (size - i - 1));
240 return mask;
243 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
244 unsigned size)
246 uint8_t ring_offset = offset & 0x30;
247 uint8_t reg_offset = offset & 0x3F;
248 uint64_t mask = xive_tm_mask(offset, size, true);
249 int i;
252 * Only 4 or 8 bytes stores are allowed and the User ring is
253 * excluded
255 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
256 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
257 HWADDR_PRIx"\n", offset);
258 return;
262 * Use the register offset for the raw values and filter out
263 * reserved values
265 for (i = 0; i < size; i++) {
266 uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
267 if (byte_mask) {
268 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
269 byte_mask;
274 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
276 uint8_t ring_offset = offset & 0x30;
277 uint8_t reg_offset = offset & 0x3F;
278 uint64_t mask = xive_tm_mask(offset, size, false);
279 uint64_t ret;
280 int i;
283 * Only 4 or 8 bytes loads are allowed and the User ring is
284 * excluded
286 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
287 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
288 HWADDR_PRIx"\n", offset);
289 return -1;
292 /* Use the register offset for the raw values */
293 ret = 0;
294 for (i = 0; i < size; i++) {
295 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
298 /* filter out reserved values */
299 return ret & mask;
303 * The TM context is mapped twice within each page. Stores and loads
304 * to the first mapping below 2K write and read the specified values
305 * without modification. The second mapping above 2K performs specific
306 * state changes (side effects) in addition to setting/returning the
307 * interrupt management area context of the processor thread.
309 static uint64_t xive_tm_ack_os_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
311 return xive_tctx_accept(tctx, TM_QW1_OS);
314 static void xive_tm_set_os_cppr(XiveTCTX *tctx, hwaddr offset,
315 uint64_t value, unsigned size)
317 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
321 * Adjust the IPB to allow a CPU to process event queues of other
322 * priorities during one physical interrupt cycle.
324 static void xive_tm_set_os_pending(XiveTCTX *tctx, hwaddr offset,
325 uint64_t value, unsigned size)
327 ipb_update(&tctx->regs[TM_QW1_OS], value & 0xff);
328 xive_tctx_notify(tctx, TM_QW1_OS);
332 * Define a mapping of "special" operations depending on the TIMA page
333 * offset and the size of the operation.
335 typedef struct XiveTmOp {
336 uint8_t page_offset;
337 uint32_t op_offset;
338 unsigned size;
339 void (*write_handler)(XiveTCTX *tctx, hwaddr offset, uint64_t value,
340 unsigned size);
341 uint64_t (*read_handler)(XiveTCTX *tctx, hwaddr offset, unsigned size);
342 } XiveTmOp;
344 static const XiveTmOp xive_tm_operations[] = {
346 * MMIOs below 2K : raw values and special operations without side
347 * effects
349 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL },
350 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
351 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
352 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
354 /* MMIOs above 2K : special operations with side effects */
355 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg },
356 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
357 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg },
358 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx },
359 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx },
362 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
364 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
365 uint32_t op_offset = offset & 0xFFF;
366 int i;
368 for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
369 const XiveTmOp *xto = &xive_tm_operations[i];
371 /* Accesses done from a more privileged TIMA page is allowed */
372 if (xto->page_offset >= page_offset &&
373 xto->op_offset == op_offset &&
374 xto->size == size &&
375 ((write && xto->write_handler) || (!write && xto->read_handler))) {
376 return xto;
379 return NULL;
383 * TIMA MMIO handlers
385 void xive_tctx_tm_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
386 unsigned size)
388 const XiveTmOp *xto;
391 * TODO: check V bit in Q[0-3]W2
395 * First, check for special operations in the 2K region
397 if (offset & 0x800) {
398 xto = xive_tm_find_op(offset, size, true);
399 if (!xto) {
400 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA"
401 "@%"HWADDR_PRIx"\n", offset);
402 } else {
403 xto->write_handler(tctx, offset, value, size);
405 return;
409 * Then, for special operations in the region below 2K.
411 xto = xive_tm_find_op(offset, size, true);
412 if (xto) {
413 xto->write_handler(tctx, offset, value, size);
414 return;
418 * Finish with raw access to the register values
420 xive_tm_raw_write(tctx, offset, value, size);
423 uint64_t xive_tctx_tm_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
425 const XiveTmOp *xto;
428 * TODO: check V bit in Q[0-3]W2
432 * First, check for special operations in the 2K region
434 if (offset & 0x800) {
435 xto = xive_tm_find_op(offset, size, false);
436 if (!xto) {
437 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
438 "@%"HWADDR_PRIx"\n", offset);
439 return -1;
441 return xto->read_handler(tctx, offset, size);
445 * Then, for special operations in the region below 2K.
447 xto = xive_tm_find_op(offset, size, false);
448 if (xto) {
449 return xto->read_handler(tctx, offset, size);
453 * Finish with raw access to the register values
455 return xive_tm_raw_read(tctx, offset, size);
458 static void xive_tm_write(void *opaque, hwaddr offset,
459 uint64_t value, unsigned size)
461 XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
463 xive_tctx_tm_write(tctx, offset, value, size);
466 static uint64_t xive_tm_read(void *opaque, hwaddr offset, unsigned size)
468 XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
470 return xive_tctx_tm_read(tctx, offset, size);
473 const MemoryRegionOps xive_tm_ops = {
474 .read = xive_tm_read,
475 .write = xive_tm_write,
476 .endianness = DEVICE_BIG_ENDIAN,
477 .valid = {
478 .min_access_size = 1,
479 .max_access_size = 8,
481 .impl = {
482 .min_access_size = 1,
483 .max_access_size = 8,
487 static inline uint32_t xive_tctx_word2(uint8_t *ring)
489 return *((uint32_t *) &ring[TM_WORD2]);
492 static char *xive_tctx_ring_print(uint8_t *ring)
494 uint32_t w2 = xive_tctx_word2(ring);
496 return g_strdup_printf("%02x %02x %02x %02x %02x "
497 "%02x %02x %02x %08x",
498 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
499 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
500 be32_to_cpu(w2));
503 static const char * const xive_tctx_ring_names[] = {
504 "USER", "OS", "POOL", "PHYS",
507 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
509 int cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
510 int i;
512 if (kvm_irqchip_in_kernel()) {
513 Error *local_err = NULL;
515 kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
516 if (local_err) {
517 error_report_err(local_err);
518 return;
522 monitor_printf(mon, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
523 " W2\n", cpu_index);
525 for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
526 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
527 monitor_printf(mon, "CPU[%04x]: %4s %s\n", cpu_index,
528 xive_tctx_ring_names[i], s);
529 g_free(s);
533 static void xive_tctx_reset(void *dev)
535 XiveTCTX *tctx = XIVE_TCTX(dev);
537 memset(tctx->regs, 0, sizeof(tctx->regs));
539 /* Set some defaults */
540 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
541 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
542 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
545 * Initialize PIPR to 0xFF to avoid phantom interrupts when the
546 * CPPR is first set.
548 tctx->regs[TM_QW1_OS + TM_PIPR] =
549 ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
550 tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
551 ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
554 static void xive_tctx_realize(DeviceState *dev, Error **errp)
556 XiveTCTX *tctx = XIVE_TCTX(dev);
557 PowerPCCPU *cpu;
558 CPUPPCState *env;
559 Object *obj;
560 Error *local_err = NULL;
562 obj = object_property_get_link(OBJECT(dev), "cpu", &local_err);
563 if (!obj) {
564 error_propagate(errp, local_err);
565 error_prepend(errp, "required link 'cpu' not found: ");
566 return;
569 cpu = POWERPC_CPU(obj);
570 tctx->cs = CPU(obj);
572 env = &cpu->env;
573 switch (PPC_INPUT(env)) {
574 case PPC_FLAGS_INPUT_POWER9:
575 tctx->hv_output = env->irq_inputs[POWER9_INPUT_HINT];
576 tctx->os_output = env->irq_inputs[POWER9_INPUT_INT];
577 break;
579 default:
580 error_setg(errp, "XIVE interrupt controller does not support "
581 "this CPU bus model");
582 return;
585 /* Connect the presenter to the VCPU (required for CPU hotplug) */
586 if (kvm_irqchip_in_kernel()) {
587 kvmppc_xive_cpu_connect(tctx, &local_err);
588 if (local_err) {
589 error_propagate(errp, local_err);
590 return;
594 qemu_register_reset(xive_tctx_reset, dev);
597 static void xive_tctx_unrealize(DeviceState *dev, Error **errp)
599 qemu_unregister_reset(xive_tctx_reset, dev);
602 static int vmstate_xive_tctx_pre_save(void *opaque)
604 Error *local_err = NULL;
606 if (kvm_irqchip_in_kernel()) {
607 kvmppc_xive_cpu_get_state(XIVE_TCTX(opaque), &local_err);
608 if (local_err) {
609 error_report_err(local_err);
610 return -1;
614 return 0;
617 static const VMStateDescription vmstate_xive_tctx = {
618 .name = TYPE_XIVE_TCTX,
619 .version_id = 1,
620 .minimum_version_id = 1,
621 .pre_save = vmstate_xive_tctx_pre_save,
622 .post_load = NULL, /* handled by the sPAPRxive model */
623 .fields = (VMStateField[]) {
624 VMSTATE_BUFFER(regs, XiveTCTX),
625 VMSTATE_END_OF_LIST()
629 static void xive_tctx_class_init(ObjectClass *klass, void *data)
631 DeviceClass *dc = DEVICE_CLASS(klass);
633 dc->desc = "XIVE Interrupt Thread Context";
634 dc->realize = xive_tctx_realize;
635 dc->unrealize = xive_tctx_unrealize;
636 dc->vmsd = &vmstate_xive_tctx;
639 static const TypeInfo xive_tctx_info = {
640 .name = TYPE_XIVE_TCTX,
641 .parent = TYPE_DEVICE,
642 .instance_size = sizeof(XiveTCTX),
643 .class_init = xive_tctx_class_init,
646 Object *xive_tctx_create(Object *cpu, XiveRouter *xrtr, Error **errp)
648 Error *local_err = NULL;
649 Object *obj;
651 obj = object_new(TYPE_XIVE_TCTX);
652 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj, &error_abort);
653 object_unref(obj);
654 object_property_add_const_link(obj, "cpu", cpu, &error_abort);
655 object_property_set_bool(obj, true, "realized", &local_err);
656 if (local_err) {
657 goto error;
660 return obj;
662 error:
663 object_unparent(obj);
664 error_propagate(errp, local_err);
665 return NULL;
669 * XIVE ESB helpers
672 static uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
674 uint8_t old_pq = *pq & 0x3;
676 *pq &= ~0x3;
677 *pq |= value & 0x3;
679 return old_pq;
682 static bool xive_esb_trigger(uint8_t *pq)
684 uint8_t old_pq = *pq & 0x3;
686 switch (old_pq) {
687 case XIVE_ESB_RESET:
688 xive_esb_set(pq, XIVE_ESB_PENDING);
689 return true;
690 case XIVE_ESB_PENDING:
691 case XIVE_ESB_QUEUED:
692 xive_esb_set(pq, XIVE_ESB_QUEUED);
693 return false;
694 case XIVE_ESB_OFF:
695 xive_esb_set(pq, XIVE_ESB_OFF);
696 return false;
697 default:
698 g_assert_not_reached();
702 static bool xive_esb_eoi(uint8_t *pq)
704 uint8_t old_pq = *pq & 0x3;
706 switch (old_pq) {
707 case XIVE_ESB_RESET:
708 case XIVE_ESB_PENDING:
709 xive_esb_set(pq, XIVE_ESB_RESET);
710 return false;
711 case XIVE_ESB_QUEUED:
712 xive_esb_set(pq, XIVE_ESB_PENDING);
713 return true;
714 case XIVE_ESB_OFF:
715 xive_esb_set(pq, XIVE_ESB_OFF);
716 return false;
717 default:
718 g_assert_not_reached();
723 * XIVE Interrupt Source (or IVSE)
726 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
728 assert(srcno < xsrc->nr_irqs);
730 return xsrc->status[srcno] & 0x3;
733 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
735 assert(srcno < xsrc->nr_irqs);
737 return xive_esb_set(&xsrc->status[srcno], pq);
741 * Returns whether the event notification should be forwarded.
743 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
745 uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
747 xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
749 switch (old_pq) {
750 case XIVE_ESB_RESET:
751 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
752 return true;
753 default:
754 return false;
759 * Returns whether the event notification should be forwarded.
761 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
763 bool ret;
765 assert(srcno < xsrc->nr_irqs);
767 ret = xive_esb_trigger(&xsrc->status[srcno]);
769 if (xive_source_irq_is_lsi(xsrc, srcno) &&
770 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
771 qemu_log_mask(LOG_GUEST_ERROR,
772 "XIVE: queued an event on LSI IRQ %d\n", srcno);
775 return ret;
779 * Returns whether the event notification should be forwarded.
781 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
783 bool ret;
785 assert(srcno < xsrc->nr_irqs);
787 ret = xive_esb_eoi(&xsrc->status[srcno]);
790 * LSI sources do not set the Q bit but they can still be
791 * asserted, in which case we should forward a new event
792 * notification
794 if (xive_source_irq_is_lsi(xsrc, srcno) &&
795 xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
796 ret = xive_source_lsi_trigger(xsrc, srcno);
799 return ret;
803 * Forward the source event notification to the Router
805 static void xive_source_notify(XiveSource *xsrc, int srcno)
807 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
809 if (xnc->notify) {
810 xnc->notify(xsrc->xive, srcno);
815 * In a two pages ESB MMIO setting, even page is the trigger page, odd
816 * page is for management
818 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
820 return !((addr >> shift) & 1);
823 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
825 return xive_source_esb_has_2page(xsrc) &&
826 addr_is_even(addr, xsrc->esb_shift - 1);
830 * ESB MMIO loads
831 * Trigger page Management/EOI page
833 * ESB MMIO setting 2 pages 1 or 2 pages
835 * 0x000 .. 0x3FF -1 EOI and return 0|1
836 * 0x400 .. 0x7FF -1 EOI and return 0|1
837 * 0x800 .. 0xBFF -1 return PQ
838 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00
839 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01
840 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10
841 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11
843 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
845 XiveSource *xsrc = XIVE_SOURCE(opaque);
846 uint32_t offset = addr & 0xFFF;
847 uint32_t srcno = addr >> xsrc->esb_shift;
848 uint64_t ret = -1;
850 /* In a two pages ESB MMIO setting, trigger page should not be read */
851 if (xive_source_is_trigger_page(xsrc, addr)) {
852 qemu_log_mask(LOG_GUEST_ERROR,
853 "XIVE: invalid load on IRQ %d trigger page at "
854 "0x%"HWADDR_PRIx"\n", srcno, addr);
855 return -1;
858 switch (offset) {
859 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
860 ret = xive_source_esb_eoi(xsrc, srcno);
862 /* Forward the source event notification for routing */
863 if (ret) {
864 xive_source_notify(xsrc, srcno);
866 break;
868 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
869 ret = xive_source_esb_get(xsrc, srcno);
870 break;
872 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
873 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
874 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
875 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
876 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
877 break;
878 default:
879 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
880 offset);
883 return ret;
887 * ESB MMIO stores
888 * Trigger page Management/EOI page
890 * ESB MMIO setting 2 pages 1 or 2 pages
892 * 0x000 .. 0x3FF Trigger Trigger
893 * 0x400 .. 0x7FF Trigger EOI
894 * 0x800 .. 0xBFF Trigger undefined
895 * 0xC00 .. 0xCFF Trigger PQ=00
896 * 0xD00 .. 0xDFF Trigger PQ=01
897 * 0xE00 .. 0xDFF Trigger PQ=10
898 * 0xF00 .. 0xDFF Trigger PQ=11
900 static void xive_source_esb_write(void *opaque, hwaddr addr,
901 uint64_t value, unsigned size)
903 XiveSource *xsrc = XIVE_SOURCE(opaque);
904 uint32_t offset = addr & 0xFFF;
905 uint32_t srcno = addr >> xsrc->esb_shift;
906 bool notify = false;
908 /* In a two pages ESB MMIO setting, trigger page only triggers */
909 if (xive_source_is_trigger_page(xsrc, addr)) {
910 notify = xive_source_esb_trigger(xsrc, srcno);
911 goto out;
914 switch (offset) {
915 case 0 ... 0x3FF:
916 notify = xive_source_esb_trigger(xsrc, srcno);
917 break;
919 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
920 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
921 qemu_log_mask(LOG_GUEST_ERROR,
922 "XIVE: invalid Store EOI for IRQ %d\n", srcno);
923 return;
926 notify = xive_source_esb_eoi(xsrc, srcno);
927 break;
929 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
930 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
931 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
932 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
933 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
934 break;
936 default:
937 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
938 offset);
939 return;
942 out:
943 /* Forward the source event notification for routing */
944 if (notify) {
945 xive_source_notify(xsrc, srcno);
949 static const MemoryRegionOps xive_source_esb_ops = {
950 .read = xive_source_esb_read,
951 .write = xive_source_esb_write,
952 .endianness = DEVICE_BIG_ENDIAN,
953 .valid = {
954 .min_access_size = 8,
955 .max_access_size = 8,
957 .impl = {
958 .min_access_size = 8,
959 .max_access_size = 8,
963 void xive_source_set_irq(void *opaque, int srcno, int val)
965 XiveSource *xsrc = XIVE_SOURCE(opaque);
966 bool notify = false;
968 if (xive_source_irq_is_lsi(xsrc, srcno)) {
969 if (val) {
970 notify = xive_source_lsi_trigger(xsrc, srcno);
971 } else {
972 xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
974 } else {
975 if (val) {
976 notify = xive_source_esb_trigger(xsrc, srcno);
980 /* Forward the source event notification for routing */
981 if (notify) {
982 xive_source_notify(xsrc, srcno);
986 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
988 int i;
990 for (i = 0; i < xsrc->nr_irqs; i++) {
991 uint8_t pq = xive_source_esb_get(xsrc, i);
993 if (pq == XIVE_ESB_OFF) {
994 continue;
997 monitor_printf(mon, " %08x %s %c%c%c\n", i + offset,
998 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
999 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1000 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1001 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ');
1005 static void xive_source_reset(void *dev)
1007 XiveSource *xsrc = XIVE_SOURCE(dev);
1009 /* Do not clear the LSI bitmap */
1011 /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
1012 memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
1015 static void xive_source_realize(DeviceState *dev, Error **errp)
1017 XiveSource *xsrc = XIVE_SOURCE(dev);
1018 Object *obj;
1019 Error *local_err = NULL;
1021 obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
1022 if (!obj) {
1023 error_propagate(errp, local_err);
1024 error_prepend(errp, "required link 'xive' not found: ");
1025 return;
1028 xsrc->xive = XIVE_NOTIFIER(obj);
1030 if (!xsrc->nr_irqs) {
1031 error_setg(errp, "Number of interrupt needs to be greater than 0");
1032 return;
1035 if (xsrc->esb_shift != XIVE_ESB_4K &&
1036 xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
1037 xsrc->esb_shift != XIVE_ESB_64K &&
1038 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
1039 error_setg(errp, "Invalid ESB shift setting");
1040 return;
1043 xsrc->status = g_malloc0(xsrc->nr_irqs);
1044 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
1046 if (!kvm_irqchip_in_kernel()) {
1047 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1048 &xive_source_esb_ops, xsrc, "xive.esb",
1049 (1ull << xsrc->esb_shift) * xsrc->nr_irqs);
1052 qemu_register_reset(xive_source_reset, dev);
1055 static const VMStateDescription vmstate_xive_source = {
1056 .name = TYPE_XIVE_SOURCE,
1057 .version_id = 1,
1058 .minimum_version_id = 1,
1059 .fields = (VMStateField[]) {
1060 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1061 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1062 VMSTATE_END_OF_LIST()
1067 * The default XIVE interrupt source setting for the ESB MMIOs is two
1068 * 64k pages without Store EOI, to be in sync with KVM.
1070 static Property xive_source_properties[] = {
1071 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1072 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1073 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1074 DEFINE_PROP_END_OF_LIST(),
1077 static void xive_source_class_init(ObjectClass *klass, void *data)
1079 DeviceClass *dc = DEVICE_CLASS(klass);
1081 dc->desc = "XIVE Interrupt Source";
1082 dc->props = xive_source_properties;
1083 dc->realize = xive_source_realize;
1084 dc->vmsd = &vmstate_xive_source;
1087 static const TypeInfo xive_source_info = {
1088 .name = TYPE_XIVE_SOURCE,
1089 .parent = TYPE_DEVICE,
1090 .instance_size = sizeof(XiveSource),
1091 .class_init = xive_source_class_init,
1095 * XiveEND helpers
1098 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
1100 uint64_t qaddr_base = xive_end_qaddr(end);
1101 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1102 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1103 uint32_t qentries = 1 << (qsize + 10);
1104 int i;
1107 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1109 monitor_printf(mon, " [ ");
1110 qindex = (qindex - (width - 1)) & (qentries - 1);
1111 for (i = 0; i < width; i++) {
1112 uint64_t qaddr = qaddr_base + (qindex << 2);
1113 uint32_t qdata = -1;
1115 if (dma_memory_read(&address_space_memory, qaddr, &qdata,
1116 sizeof(qdata))) {
1117 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1118 HWADDR_PRIx "\n", qaddr);
1119 return;
1121 monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1122 be32_to_cpu(qdata));
1123 qindex = (qindex + 1) & (qentries - 1);
1127 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1129 uint64_t qaddr_base = xive_end_qaddr(end);
1130 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1131 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1132 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1133 uint32_t qentries = 1 << (qsize + 10);
1135 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1136 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1138 if (!xive_end_is_valid(end)) {
1139 return;
1142 monitor_printf(mon, " %08x %c%c%c%c%c prio:%d nvt:%04x eq:@%08"PRIx64
1143 "% 6d/%5d ^%d", end_idx,
1144 xive_end_is_valid(end) ? 'v' : '-',
1145 xive_end_is_enqueue(end) ? 'q' : '-',
1146 xive_end_is_notify(end) ? 'n' : '-',
1147 xive_end_is_backlog(end) ? 'b' : '-',
1148 xive_end_is_escalate(end) ? 'e' : '-',
1149 priority, nvt, qaddr_base, qindex, qentries, qgen);
1151 xive_end_queue_pic_print_info(end, 6, mon);
1152 monitor_printf(mon, "]\n");
1155 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1157 uint64_t qaddr_base = xive_end_qaddr(end);
1158 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1159 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1160 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1162 uint64_t qaddr = qaddr_base + (qindex << 2);
1163 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1164 uint32_t qentries = 1 << (qsize + 10);
1166 if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) {
1167 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1168 HWADDR_PRIx "\n", qaddr);
1169 return;
1172 qindex = (qindex + 1) & (qentries - 1);
1173 if (qindex == 0) {
1174 qgen ^= 1;
1175 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1177 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1181 * XIVE Router (aka. Virtualization Controller or IVRE)
1184 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1185 XiveEAS *eas)
1187 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1189 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1192 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1193 XiveEND *end)
1195 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1197 return xrc->get_end(xrtr, end_blk, end_idx, end);
1200 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1201 XiveEND *end, uint8_t word_number)
1203 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1205 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1208 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1209 XiveNVT *nvt)
1211 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1213 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1216 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1217 XiveNVT *nvt, uint8_t word_number)
1219 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1221 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1224 XiveTCTX *xive_router_get_tctx(XiveRouter *xrtr, CPUState *cs)
1226 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1228 return xrc->get_tctx(xrtr, cs);
1232 * Encode the HW CAM line in the block group mode format :
1234 * chip << 19 | 0000000 0 0001 thread (7Bit)
1236 static uint32_t xive_tctx_hw_cam_line(XiveTCTX *tctx)
1238 CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1239 uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1241 return xive_nvt_cam_line((pir >> 8) & 0xf, 1 << 7 | (pir & 0x7f));
1245 * The thread context register words are in big-endian format.
1247 static int xive_presenter_tctx_match(XiveTCTX *tctx, uint8_t format,
1248 uint8_t nvt_blk, uint32_t nvt_idx,
1249 bool cam_ignore, uint32_t logic_serv)
1251 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1252 uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1253 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1254 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1255 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1258 * TODO (PowerNV): ignore mode. The low order bits of the NVT
1259 * identifier are ignored in the "CAM" match.
1262 if (format == 0) {
1263 if (cam_ignore == true) {
1265 * F=0 & i=1: Logical server notification (bits ignored at
1266 * the end of the NVT identifier)
1268 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1269 nvt_blk, nvt_idx);
1270 return -1;
1273 /* F=0 & i=0: Specific NVT notification */
1275 /* PHYS ring */
1276 if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1277 cam == xive_tctx_hw_cam_line(tctx)) {
1278 return TM_QW3_HV_PHYS;
1281 /* HV POOL ring */
1282 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1283 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1284 return TM_QW2_HV_POOL;
1287 /* OS ring */
1288 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1289 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1290 return TM_QW1_OS;
1292 } else {
1293 /* F=1 : User level Event-Based Branch (EBB) notification */
1295 /* USER ring */
1296 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1297 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1298 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1299 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1300 return TM_QW0_USER;
1303 return -1;
1306 typedef struct XiveTCTXMatch {
1307 XiveTCTX *tctx;
1308 uint8_t ring;
1309 } XiveTCTXMatch;
1311 static bool xive_presenter_match(XiveRouter *xrtr, uint8_t format,
1312 uint8_t nvt_blk, uint32_t nvt_idx,
1313 bool cam_ignore, uint8_t priority,
1314 uint32_t logic_serv, XiveTCTXMatch *match)
1316 CPUState *cs;
1319 * TODO (PowerNV): handle chip_id overwrite of block field for
1320 * hardwired CAM compares
1323 CPU_FOREACH(cs) {
1324 XiveTCTX *tctx = xive_router_get_tctx(xrtr, cs);
1325 int ring;
1328 * HW checks that the CPU is enabled in the Physical Thread
1329 * Enable Register (PTER).
1333 * Check the thread context CAM lines and record matches. We
1334 * will handle CPU exception delivery later
1336 ring = xive_presenter_tctx_match(tctx, format, nvt_blk, nvt_idx,
1337 cam_ignore, logic_serv);
1339 * Save the context and follow on to catch duplicates, that we
1340 * don't support yet.
1342 if (ring != -1) {
1343 if (match->tctx) {
1344 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
1345 "context NVT %x/%x\n", nvt_blk, nvt_idx);
1346 return false;
1349 match->ring = ring;
1350 match->tctx = tctx;
1354 if (!match->tctx) {
1355 qemu_log_mask(LOG_UNIMP, "XIVE: NVT %x/%x is not dispatched\n",
1356 nvt_blk, nvt_idx);
1357 return false;
1360 return true;
1364 * This is our simple Xive Presenter Engine model. It is merged in the
1365 * Router as it does not require an extra object.
1367 * It receives notification requests sent by the IVRE to find one
1368 * matching NVT (or more) dispatched on the processor threads. In case
1369 * of a single NVT notification, the process is abreviated and the
1370 * thread is signaled if a match is found. In case of a logical server
1371 * notification (bits ignored at the end of the NVT identifier), the
1372 * IVPE and IVRE select a winning thread using different filters. This
1373 * involves 2 or 3 exchanges on the PowerBus that the model does not
1374 * support.
1376 * The parameters represent what is sent on the PowerBus
1378 static void xive_presenter_notify(XiveRouter *xrtr, uint8_t format,
1379 uint8_t nvt_blk, uint32_t nvt_idx,
1380 bool cam_ignore, uint8_t priority,
1381 uint32_t logic_serv)
1383 XiveNVT nvt;
1384 XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1385 bool found;
1387 /* NVT cache lookup */
1388 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1389 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1390 nvt_blk, nvt_idx);
1391 return;
1394 if (!xive_nvt_is_valid(&nvt)) {
1395 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1396 nvt_blk, nvt_idx);
1397 return;
1400 found = xive_presenter_match(xrtr, format, nvt_blk, nvt_idx, cam_ignore,
1401 priority, logic_serv, &match);
1402 if (found) {
1403 ipb_update(&match.tctx->regs[match.ring], priority);
1404 xive_tctx_notify(match.tctx, match.ring);
1405 return;
1408 /* Record the IPB in the associated NVT structure */
1409 ipb_update((uint8_t *) &nvt.w4, priority);
1410 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1413 * If no matching NVT is dispatched on a HW thread :
1414 * - update the NVT structure if backlog is activated
1415 * - escalate (ESe PQ bits and EAS in w4-5) if escalation is
1416 * activated
1421 * An END trigger can come from an event trigger (IPI or HW) or from
1422 * another chip. We don't model the PowerBus but the END trigger
1423 * message has the same parameters than in the function below.
1425 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1426 uint32_t end_idx, uint32_t end_data)
1428 XiveEND end;
1429 uint8_t priority;
1430 uint8_t format;
1432 /* END cache lookup */
1433 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1434 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1435 end_idx);
1436 return;
1439 if (!xive_end_is_valid(&end)) {
1440 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1441 end_blk, end_idx);
1442 return;
1445 if (xive_end_is_enqueue(&end)) {
1446 xive_end_enqueue(&end, end_data);
1447 /* Enqueuing event data modifies the EQ toggle and index */
1448 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1452 * The W7 format depends on the F bit in W6. It defines the type
1453 * of the notification :
1455 * F=0 : single or multiple NVT notification
1456 * F=1 : User level Event-Based Branch (EBB) notification, no
1457 * priority
1459 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1460 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1462 /* The END is masked */
1463 if (format == 0 && priority == 0xff) {
1464 return;
1468 * Check the END ESn (Event State Buffer for notification) for
1469 * even futher coalescing in the Router
1471 if (!xive_end_is_notify(&end)) {
1472 uint8_t pq = xive_get_field32(END_W1_ESn, end.w1);
1473 bool notify = xive_esb_trigger(&pq);
1475 if (pq != xive_get_field32(END_W1_ESn, end.w1)) {
1476 end.w1 = xive_set_field32(END_W1_ESn, end.w1, pq);
1477 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1480 /* ESn[Q]=1 : end of notification */
1481 if (!notify) {
1482 return;
1487 * Follows IVPE notification
1489 xive_presenter_notify(xrtr, format,
1490 xive_get_field32(END_W6_NVT_BLOCK, end.w6),
1491 xive_get_field32(END_W6_NVT_INDEX, end.w6),
1492 xive_get_field32(END_W7_F0_IGNORE, end.w7),
1493 priority,
1494 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1496 /* TODO: Auto EOI. */
1499 void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
1501 XiveRouter *xrtr = XIVE_ROUTER(xn);
1502 uint8_t eas_blk = XIVE_SRCNO_BLOCK(lisn);
1503 uint32_t eas_idx = XIVE_SRCNO_INDEX(lisn);
1504 XiveEAS eas;
1506 /* EAS cache lookup */
1507 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1508 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1509 return;
1513 * The IVRE checks the State Bit Cache at this point. We skip the
1514 * SBC lookup because the state bits of the sources are modeled
1515 * internally in QEMU.
1518 if (!xive_eas_is_valid(&eas)) {
1519 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1520 return;
1523 if (xive_eas_is_masked(&eas)) {
1524 /* Notification completed */
1525 return;
1529 * The event trigger becomes an END trigger
1531 xive_router_end_notify(xrtr,
1532 xive_get_field64(EAS_END_BLOCK, eas.w),
1533 xive_get_field64(EAS_END_INDEX, eas.w),
1534 xive_get_field64(EAS_END_DATA, eas.w));
1537 static void xive_router_class_init(ObjectClass *klass, void *data)
1539 DeviceClass *dc = DEVICE_CLASS(klass);
1540 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1542 dc->desc = "XIVE Router Engine";
1543 xnc->notify = xive_router_notify;
1546 static const TypeInfo xive_router_info = {
1547 .name = TYPE_XIVE_ROUTER,
1548 .parent = TYPE_SYS_BUS_DEVICE,
1549 .abstract = true,
1550 .class_size = sizeof(XiveRouterClass),
1551 .class_init = xive_router_class_init,
1552 .interfaces = (InterfaceInfo[]) {
1553 { TYPE_XIVE_NOTIFIER },
1558 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1560 if (!xive_eas_is_valid(eas)) {
1561 return;
1564 monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n",
1565 lisn, xive_eas_is_masked(eas) ? "M" : " ",
1566 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1567 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1568 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1572 * END ESB MMIO loads
1574 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1576 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1577 uint32_t offset = addr & 0xFFF;
1578 uint8_t end_blk;
1579 uint32_t end_idx;
1580 XiveEND end;
1581 uint32_t end_esmask;
1582 uint8_t pq;
1583 uint64_t ret = -1;
1585 end_blk = xsrc->block_id;
1586 end_idx = addr >> (xsrc->esb_shift + 1);
1588 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1589 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1590 end_idx);
1591 return -1;
1594 if (!xive_end_is_valid(&end)) {
1595 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1596 end_blk, end_idx);
1597 return -1;
1600 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1601 pq = xive_get_field32(end_esmask, end.w1);
1603 switch (offset) {
1604 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1605 ret = xive_esb_eoi(&pq);
1607 /* Forward the source event notification for routing ?? */
1608 break;
1610 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1611 ret = pq;
1612 break;
1614 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1615 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1616 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1617 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1618 ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1619 break;
1620 default:
1621 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1622 offset);
1623 return -1;
1626 if (pq != xive_get_field32(end_esmask, end.w1)) {
1627 end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1628 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1631 return ret;
1635 * END ESB MMIO stores are invalid
1637 static void xive_end_source_write(void *opaque, hwaddr addr,
1638 uint64_t value, unsigned size)
1640 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1641 HWADDR_PRIx"\n", addr);
1644 static const MemoryRegionOps xive_end_source_ops = {
1645 .read = xive_end_source_read,
1646 .write = xive_end_source_write,
1647 .endianness = DEVICE_BIG_ENDIAN,
1648 .valid = {
1649 .min_access_size = 8,
1650 .max_access_size = 8,
1652 .impl = {
1653 .min_access_size = 8,
1654 .max_access_size = 8,
1658 static void xive_end_source_realize(DeviceState *dev, Error **errp)
1660 XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1661 Object *obj;
1662 Error *local_err = NULL;
1664 obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
1665 if (!obj) {
1666 error_propagate(errp, local_err);
1667 error_prepend(errp, "required link 'xive' not found: ");
1668 return;
1671 xsrc->xrtr = XIVE_ROUTER(obj);
1673 if (!xsrc->nr_ends) {
1674 error_setg(errp, "Number of interrupt needs to be greater than 0");
1675 return;
1678 if (xsrc->esb_shift != XIVE_ESB_4K &&
1679 xsrc->esb_shift != XIVE_ESB_64K) {
1680 error_setg(errp, "Invalid ESB shift setting");
1681 return;
1685 * Each END is assigned an even/odd pair of MMIO pages, the even page
1686 * manages the ESn field while the odd page manages the ESe field.
1688 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1689 &xive_end_source_ops, xsrc, "xive.end",
1690 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1693 static Property xive_end_source_properties[] = {
1694 DEFINE_PROP_UINT8("block-id", XiveENDSource, block_id, 0),
1695 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1696 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1697 DEFINE_PROP_END_OF_LIST(),
1700 static void xive_end_source_class_init(ObjectClass *klass, void *data)
1702 DeviceClass *dc = DEVICE_CLASS(klass);
1704 dc->desc = "XIVE END Source";
1705 dc->props = xive_end_source_properties;
1706 dc->realize = xive_end_source_realize;
1709 static const TypeInfo xive_end_source_info = {
1710 .name = TYPE_XIVE_END_SOURCE,
1711 .parent = TYPE_DEVICE,
1712 .instance_size = sizeof(XiveENDSource),
1713 .class_init = xive_end_source_class_init,
1717 * XIVE Notifier
1719 static const TypeInfo xive_notifier_info = {
1720 .name = TYPE_XIVE_NOTIFIER,
1721 .parent = TYPE_INTERFACE,
1722 .class_size = sizeof(XiveNotifierClass),
1725 static void xive_register_types(void)
1727 type_register_static(&xive_source_info);
1728 type_register_static(&xive_notifier_info);
1729 type_register_static(&xive_router_info);
1730 type_register_static(&xive_end_source_info);
1731 type_register_static(&xive_tctx_info);
1734 type_init(xive_register_types)