2 * RISC-V FPU Emulation Helpers for QEMU.
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "qemu/host-utils.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
25 target_ulong
riscv_cpu_get_fflags(CPURISCVState
*env
)
27 int soft
= get_float_exception_flags(&env
->fp_status
);
28 target_ulong hard
= 0;
30 hard
|= (soft
& float_flag_inexact
) ? FPEXC_NX
: 0;
31 hard
|= (soft
& float_flag_underflow
) ? FPEXC_UF
: 0;
32 hard
|= (soft
& float_flag_overflow
) ? FPEXC_OF
: 0;
33 hard
|= (soft
& float_flag_divbyzero
) ? FPEXC_DZ
: 0;
34 hard
|= (soft
& float_flag_invalid
) ? FPEXC_NV
: 0;
39 void riscv_cpu_set_fflags(CPURISCVState
*env
, target_ulong hard
)
43 soft
|= (hard
& FPEXC_NX
) ? float_flag_inexact
: 0;
44 soft
|= (hard
& FPEXC_UF
) ? float_flag_underflow
: 0;
45 soft
|= (hard
& FPEXC_OF
) ? float_flag_overflow
: 0;
46 soft
|= (hard
& FPEXC_DZ
) ? float_flag_divbyzero
: 0;
47 soft
|= (hard
& FPEXC_NV
) ? float_flag_invalid
: 0;
49 set_float_exception_flags(soft
, &env
->fp_status
);
52 void helper_set_rounding_mode(CPURISCVState
*env
, uint32_t rm
)
61 softrm
= float_round_nearest_even
;
64 softrm
= float_round_to_zero
;
67 softrm
= float_round_down
;
70 softrm
= float_round_up
;
73 softrm
= float_round_ties_away
;
76 riscv_raise_exception(env
, RISCV_EXCP_ILLEGAL_INST
, GETPC());
79 set_float_rounding_mode(softrm
, &env
->fp_status
);
82 uint64_t helper_fmadd_s(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
,
85 return float32_muladd(frs1
, frs2
, frs3
, 0, &env
->fp_status
);
88 uint64_t helper_fmadd_d(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
,
91 return float64_muladd(frs1
, frs2
, frs3
, 0, &env
->fp_status
);
94 uint64_t helper_fmsub_s(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
,
97 return float32_muladd(frs1
, frs2
, frs3
, float_muladd_negate_c
,
101 uint64_t helper_fmsub_d(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
,
104 return float64_muladd(frs1
, frs2
, frs3
, float_muladd_negate_c
,
108 uint64_t helper_fnmsub_s(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
,
111 return float32_muladd(frs1
, frs2
, frs3
, float_muladd_negate_product
,
115 uint64_t helper_fnmsub_d(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
,
118 return float64_muladd(frs1
, frs2
, frs3
, float_muladd_negate_product
,
122 uint64_t helper_fnmadd_s(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
,
125 return float32_muladd(frs1
, frs2
, frs3
, float_muladd_negate_c
|
126 float_muladd_negate_product
, &env
->fp_status
);
129 uint64_t helper_fnmadd_d(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
,
132 return float64_muladd(frs1
, frs2
, frs3
, float_muladd_negate_c
|
133 float_muladd_negate_product
, &env
->fp_status
);
136 uint64_t helper_fadd_s(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
)
138 return float32_add(frs1
, frs2
, &env
->fp_status
);
141 uint64_t helper_fsub_s(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
)
143 return float32_sub(frs1
, frs2
, &env
->fp_status
);
146 uint64_t helper_fmul_s(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
)
148 return float32_mul(frs1
, frs2
, &env
->fp_status
);
151 uint64_t helper_fdiv_s(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
)
153 return float32_div(frs1
, frs2
, &env
->fp_status
);
156 uint64_t helper_fmin_s(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
)
158 return float32_minnum(frs1
, frs2
, &env
->fp_status
);
161 uint64_t helper_fmax_s(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
)
163 return float32_maxnum(frs1
, frs2
, &env
->fp_status
);
166 uint64_t helper_fsqrt_s(CPURISCVState
*env
, uint64_t frs1
)
168 return float32_sqrt(frs1
, &env
->fp_status
);
171 target_ulong
helper_fle_s(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
)
173 return float32_le(frs1
, frs2
, &env
->fp_status
);
176 target_ulong
helper_flt_s(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
)
178 return float32_lt(frs1
, frs2
, &env
->fp_status
);
181 target_ulong
helper_feq_s(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
)
183 return float32_eq_quiet(frs1
, frs2
, &env
->fp_status
);
186 target_ulong
helper_fcvt_w_s(CPURISCVState
*env
, uint64_t frs1
)
188 return float32_to_int32(frs1
, &env
->fp_status
);
191 target_ulong
helper_fcvt_wu_s(CPURISCVState
*env
, uint64_t frs1
)
193 return (int32_t)float32_to_uint32(frs1
, &env
->fp_status
);
196 #if defined(TARGET_RISCV64)
197 uint64_t helper_fcvt_l_s(CPURISCVState
*env
, uint64_t frs1
)
199 return float32_to_int64(frs1
, &env
->fp_status
);
202 uint64_t helper_fcvt_lu_s(CPURISCVState
*env
, uint64_t frs1
)
204 return float32_to_uint64(frs1
, &env
->fp_status
);
208 uint64_t helper_fcvt_s_w(CPURISCVState
*env
, target_ulong rs1
)
210 return int32_to_float32((int32_t)rs1
, &env
->fp_status
);
213 uint64_t helper_fcvt_s_wu(CPURISCVState
*env
, target_ulong rs1
)
215 return uint32_to_float32((uint32_t)rs1
, &env
->fp_status
);
218 #if defined(TARGET_RISCV64)
219 uint64_t helper_fcvt_s_l(CPURISCVState
*env
, uint64_t rs1
)
221 return int64_to_float32(rs1
, &env
->fp_status
);
224 uint64_t helper_fcvt_s_lu(CPURISCVState
*env
, uint64_t rs1
)
226 return uint64_to_float32(rs1
, &env
->fp_status
);
230 target_ulong
helper_fclass_s(uint64_t frs1
)
233 bool sign
= float32_is_neg(f
);
235 if (float32_is_infinity(f
)) {
236 return sign
? 1 << 0 : 1 << 7;
237 } else if (float32_is_zero(f
)) {
238 return sign
? 1 << 3 : 1 << 4;
239 } else if (float32_is_zero_or_denormal(f
)) {
240 return sign
? 1 << 2 : 1 << 5;
241 } else if (float32_is_any_nan(f
)) {
242 float_status s
= { }; /* for snan_bit_is_one */
243 return float32_is_quiet_nan(f
, &s
) ? 1 << 9 : 1 << 8;
245 return sign
? 1 << 1 : 1 << 6;
249 uint64_t helper_fadd_d(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
)
251 return float64_add(frs1
, frs2
, &env
->fp_status
);
254 uint64_t helper_fsub_d(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
)
256 return float64_sub(frs1
, frs2
, &env
->fp_status
);
259 uint64_t helper_fmul_d(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
)
261 return float64_mul(frs1
, frs2
, &env
->fp_status
);
264 uint64_t helper_fdiv_d(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
)
266 return float64_div(frs1
, frs2
, &env
->fp_status
);
269 uint64_t helper_fmin_d(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
)
271 return float64_minnum(frs1
, frs2
, &env
->fp_status
);
274 uint64_t helper_fmax_d(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
)
276 return float64_maxnum(frs1
, frs2
, &env
->fp_status
);
279 uint64_t helper_fcvt_s_d(CPURISCVState
*env
, uint64_t rs1
)
281 return float64_to_float32(rs1
, &env
->fp_status
);
284 uint64_t helper_fcvt_d_s(CPURISCVState
*env
, uint64_t rs1
)
286 return float32_to_float64(rs1
, &env
->fp_status
);
289 uint64_t helper_fsqrt_d(CPURISCVState
*env
, uint64_t frs1
)
291 return float64_sqrt(frs1
, &env
->fp_status
);
294 target_ulong
helper_fle_d(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
)
296 return float64_le(frs1
, frs2
, &env
->fp_status
);
299 target_ulong
helper_flt_d(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
)
301 return float64_lt(frs1
, frs2
, &env
->fp_status
);
304 target_ulong
helper_feq_d(CPURISCVState
*env
, uint64_t frs1
, uint64_t frs2
)
306 return float64_eq_quiet(frs1
, frs2
, &env
->fp_status
);
309 target_ulong
helper_fcvt_w_d(CPURISCVState
*env
, uint64_t frs1
)
311 return float64_to_int32(frs1
, &env
->fp_status
);
314 target_ulong
helper_fcvt_wu_d(CPURISCVState
*env
, uint64_t frs1
)
316 return (int32_t)float64_to_uint32(frs1
, &env
->fp_status
);
319 #if defined(TARGET_RISCV64)
320 uint64_t helper_fcvt_l_d(CPURISCVState
*env
, uint64_t frs1
)
322 return float64_to_int64(frs1
, &env
->fp_status
);
325 uint64_t helper_fcvt_lu_d(CPURISCVState
*env
, uint64_t frs1
)
327 return float64_to_uint64(frs1
, &env
->fp_status
);
331 uint64_t helper_fcvt_d_w(CPURISCVState
*env
, target_ulong rs1
)
333 return int32_to_float64((int32_t)rs1
, &env
->fp_status
);
336 uint64_t helper_fcvt_d_wu(CPURISCVState
*env
, target_ulong rs1
)
338 return uint32_to_float64((uint32_t)rs1
, &env
->fp_status
);
341 #if defined(TARGET_RISCV64)
342 uint64_t helper_fcvt_d_l(CPURISCVState
*env
, uint64_t rs1
)
344 return int64_to_float64(rs1
, &env
->fp_status
);
347 uint64_t helper_fcvt_d_lu(CPURISCVState
*env
, uint64_t rs1
)
349 return uint64_to_float64(rs1
, &env
->fp_status
);
353 target_ulong
helper_fclass_d(uint64_t frs1
)
356 bool sign
= float64_is_neg(f
);
358 if (float64_is_infinity(f
)) {
359 return sign
? 1 << 0 : 1 << 7;
360 } else if (float64_is_zero(f
)) {
361 return sign
? 1 << 3 : 1 << 4;
362 } else if (float64_is_zero_or_denormal(f
)) {
363 return sign
? 1 << 2 : 1 << 5;
364 } else if (float64_is_any_nan(f
)) {
365 float_status s
= { }; /* for snan_bit_is_one */
366 return float64_is_quiet_nan(f
, &s
) ? 1 << 9 : 1 << 8;
368 return sign
? 1 << 1 : 1 << 6;