target/cris: Reindent mmu.c
[qemu/ar7.git] / target / arm / kvm32.c
blob4e54e372a6688eb0312f9a999fe511191421e202
1 /*
2 * ARM implementation of KVM hooks, 32 bit specific code.
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
14 #include <linux/kvm.h>
16 #include "qemu-common.h"
17 #include "cpu.h"
18 #include "qemu/timer.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/kvm.h"
21 #include "kvm_arm.h"
22 #include "internals.h"
23 #include "qemu/log.h"
25 static inline void set_feature(uint64_t *features, int feature)
27 *features |= 1ULL << feature;
30 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
32 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
34 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32);
35 return ioctl(fd, KVM_GET_ONE_REG, &idreg);
38 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
40 /* Identify the feature bits corresponding to the host CPU, and
41 * fill out the ARMHostCPUClass fields accordingly. To do this
42 * we have to create a scratch VM, create a single CPU inside it,
43 * and then query that CPU for the relevant ID registers.
45 int err = 0, fdarray[3];
46 uint32_t midr, id_pfr0;
47 uint64_t features = 0;
49 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
50 * we know these will only support creating one kind of guest CPU,
51 * which is its preferred CPU type.
53 static const uint32_t cpus_to_try[] = {
54 QEMU_KVM_ARM_TARGET_CORTEX_A15,
55 QEMU_KVM_ARM_TARGET_NONE
57 struct kvm_vcpu_init init;
59 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
60 return false;
63 ahcf->target = init.target;
65 /* This is not strictly blessed by the device tree binding docs yet,
66 * but in practice the kernel does not care about this string so
67 * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
69 ahcf->dtb_compatible = "arm,arm-v7";
71 err |= read_sys_reg32(fdarray[2], &midr, ARM_CP15_REG32(0, 0, 0, 0));
72 err |= read_sys_reg32(fdarray[2], &id_pfr0, ARM_CP15_REG32(0, 0, 1, 0));
74 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
75 ARM_CP15_REG32(0, 0, 2, 0));
76 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
77 ARM_CP15_REG32(0, 0, 2, 1));
78 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
79 ARM_CP15_REG32(0, 0, 2, 2));
80 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
81 ARM_CP15_REG32(0, 0, 2, 3));
82 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
83 ARM_CP15_REG32(0, 0, 2, 4));
84 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
85 ARM_CP15_REG32(0, 0, 2, 5));
86 if (read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
87 ARM_CP15_REG32(0, 0, 2, 7))) {
89 * Older kernels don't support reading ID_ISAR6. This register was
90 * only introduced in ARMv8, so we can assume that it is zero on a
91 * CPU that a kernel this old is running on.
93 ahcf->isar.id_isar6 = 0;
96 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
97 KVM_REG_ARM | KVM_REG_SIZE_U32 |
98 KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR0);
99 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
100 KVM_REG_ARM | KVM_REG_SIZE_U32 |
101 KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1);
103 * FIXME: There is not yet a way to read MVFR2.
104 * Fortunately there is not yet anything in there that affects migration.
107 kvm_arm_destroy_scratch_host_vcpu(fdarray);
109 if (err < 0) {
110 return false;
113 /* Now we've retrieved all the register information we can
114 * set the feature bits based on the ID register fields.
115 * We can assume any KVM supporting CPU is at least a v7
116 * with VFPv3, virtualization extensions, and the generic
117 * timers; this in turn implies most of the other feature
118 * bits, but a few must be tested.
120 set_feature(&features, ARM_FEATURE_V7VE);
121 set_feature(&features, ARM_FEATURE_VFP3);
122 set_feature(&features, ARM_FEATURE_GENERIC_TIMER);
124 if (extract32(id_pfr0, 12, 4) == 1) {
125 set_feature(&features, ARM_FEATURE_THUMB2EE);
127 if (extract32(ahcf->isar.mvfr1, 12, 4) == 1) {
128 set_feature(&features, ARM_FEATURE_NEON);
130 if (extract32(ahcf->isar.mvfr1, 28, 4) == 1) {
131 /* FMAC support implies VFPv4 */
132 set_feature(&features, ARM_FEATURE_VFP4);
135 ahcf->features = features;
137 return true;
140 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
142 /* Return true if the regidx is a register we should synchronize
143 * via the cpreg_tuples array (ie is not a core reg we sync by
144 * hand in kvm_arch_get/put_registers())
146 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
147 case KVM_REG_ARM_CORE:
148 case KVM_REG_ARM_VFP:
149 return false;
150 default:
151 return true;
155 typedef struct CPRegStateLevel {
156 uint64_t regidx;
157 int level;
158 } CPRegStateLevel;
160 /* All coprocessor registers not listed in the following table are assumed to
161 * be of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
162 * often, you must add it to this table with a state of either
163 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
165 static const CPRegStateLevel non_runtime_cpregs[] = {
166 { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
169 int kvm_arm_cpreg_level(uint64_t regidx)
171 int i;
173 for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
174 const CPRegStateLevel *l = &non_runtime_cpregs[i];
175 if (l->regidx == regidx) {
176 return l->level;
180 return KVM_PUT_RUNTIME_STATE;
183 #define ARM_CPU_ID_MPIDR 0, 0, 0, 5
185 int kvm_arch_init_vcpu(CPUState *cs)
187 int ret;
188 uint64_t v;
189 uint32_t mpidr;
190 struct kvm_one_reg r;
191 ARMCPU *cpu = ARM_CPU(cs);
193 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) {
194 fprintf(stderr, "KVM is not supported for this guest CPU type\n");
195 return -EINVAL;
198 /* Determine init features for this CPU */
199 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
200 if (cpu->start_powered_off) {
201 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
203 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
204 cpu->psci_version = 2;
205 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
208 /* Do KVM_ARM_VCPU_INIT ioctl */
209 ret = kvm_arm_vcpu_init(cs);
210 if (ret) {
211 return ret;
214 /* Query the kernel to make sure it supports 32 VFP
215 * registers: QEMU's "cortex-a15" CPU is always a
216 * VFP-D32 core. The simplest way to do this is just
217 * to attempt to read register d31.
219 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
220 r.addr = (uintptr_t)(&v);
221 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
222 if (ret == -ENOENT) {
223 return -EINVAL;
227 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
228 * Currently KVM has its own idea about MPIDR assignment, so we
229 * override our defaults with what we get from KVM.
231 ret = kvm_get_one_reg(cs, ARM_CP15_REG32(ARM_CPU_ID_MPIDR), &mpidr);
232 if (ret) {
233 return ret;
235 cpu->mp_affinity = mpidr & ARM32_AFFINITY_MASK;
237 /* Check whether userspace can specify guest syndrome value */
238 kvm_arm_init_serror_injection(cs);
240 return kvm_arm_init_cpreg_list(cpu);
243 typedef struct Reg {
244 uint64_t id;
245 int offset;
246 } Reg;
248 #define COREREG(KERNELNAME, QEMUFIELD) \
250 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
251 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
252 offsetof(CPUARMState, QEMUFIELD) \
255 #define VFPSYSREG(R) \
257 KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
258 KVM_REG_ARM_VFP_##R, \
259 offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
262 /* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
263 #define COREREG64(KERNELNAME, QEMUFIELD) \
265 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
266 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
267 offsetoflow32(CPUARMState, QEMUFIELD) \
270 static const Reg regs[] = {
271 /* R0_usr .. R14_usr */
272 COREREG(usr_regs.uregs[0], regs[0]),
273 COREREG(usr_regs.uregs[1], regs[1]),
274 COREREG(usr_regs.uregs[2], regs[2]),
275 COREREG(usr_regs.uregs[3], regs[3]),
276 COREREG(usr_regs.uregs[4], regs[4]),
277 COREREG(usr_regs.uregs[5], regs[5]),
278 COREREG(usr_regs.uregs[6], regs[6]),
279 COREREG(usr_regs.uregs[7], regs[7]),
280 COREREG(usr_regs.uregs[8], usr_regs[0]),
281 COREREG(usr_regs.uregs[9], usr_regs[1]),
282 COREREG(usr_regs.uregs[10], usr_regs[2]),
283 COREREG(usr_regs.uregs[11], usr_regs[3]),
284 COREREG(usr_regs.uregs[12], usr_regs[4]),
285 COREREG(usr_regs.uregs[13], banked_r13[BANK_USRSYS]),
286 COREREG(usr_regs.uregs[14], banked_r14[BANK_USRSYS]),
287 /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
288 COREREG(svc_regs[0], banked_r13[BANK_SVC]),
289 COREREG(svc_regs[1], banked_r14[BANK_SVC]),
290 COREREG64(svc_regs[2], banked_spsr[BANK_SVC]),
291 COREREG(abt_regs[0], banked_r13[BANK_ABT]),
292 COREREG(abt_regs[1], banked_r14[BANK_ABT]),
293 COREREG64(abt_regs[2], banked_spsr[BANK_ABT]),
294 COREREG(und_regs[0], banked_r13[BANK_UND]),
295 COREREG(und_regs[1], banked_r14[BANK_UND]),
296 COREREG64(und_regs[2], banked_spsr[BANK_UND]),
297 COREREG(irq_regs[0], banked_r13[BANK_IRQ]),
298 COREREG(irq_regs[1], banked_r14[BANK_IRQ]),
299 COREREG64(irq_regs[2], banked_spsr[BANK_IRQ]),
300 /* R8_fiq .. R14_fiq and SPSR_fiq */
301 COREREG(fiq_regs[0], fiq_regs[0]),
302 COREREG(fiq_regs[1], fiq_regs[1]),
303 COREREG(fiq_regs[2], fiq_regs[2]),
304 COREREG(fiq_regs[3], fiq_regs[3]),
305 COREREG(fiq_regs[4], fiq_regs[4]),
306 COREREG(fiq_regs[5], banked_r13[BANK_FIQ]),
307 COREREG(fiq_regs[6], banked_r14[BANK_FIQ]),
308 COREREG64(fiq_regs[7], banked_spsr[BANK_FIQ]),
309 /* R15 */
310 COREREG(usr_regs.uregs[15], regs[15]),
311 /* VFP system registers */
312 VFPSYSREG(FPSID),
313 VFPSYSREG(MVFR1),
314 VFPSYSREG(MVFR0),
315 VFPSYSREG(FPEXC),
316 VFPSYSREG(FPINST),
317 VFPSYSREG(FPINST2),
320 int kvm_arch_put_registers(CPUState *cs, int level)
322 ARMCPU *cpu = ARM_CPU(cs);
323 CPUARMState *env = &cpu->env;
324 struct kvm_one_reg r;
325 int mode, bn;
326 int ret, i;
327 uint32_t cpsr, fpscr;
329 /* Make sure the banked regs are properly set */
330 mode = env->uncached_cpsr & CPSR_M;
331 bn = bank_number(mode);
332 if (mode == ARM_CPU_MODE_FIQ) {
333 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
334 } else {
335 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
337 env->banked_r13[bn] = env->regs[13];
338 env->banked_spsr[bn] = env->spsr;
339 env->banked_r14[r14_bank_number(mode)] = env->regs[14];
341 /* Now we can safely copy stuff down to the kernel */
342 for (i = 0; i < ARRAY_SIZE(regs); i++) {
343 r.id = regs[i].id;
344 r.addr = (uintptr_t)(env) + regs[i].offset;
345 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
346 if (ret) {
347 return ret;
351 /* Special cases which aren't a single CPUARMState field */
352 cpsr = cpsr_read(env);
353 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
354 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
355 r.addr = (uintptr_t)(&cpsr);
356 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
357 if (ret) {
358 return ret;
361 /* VFP registers */
362 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
363 for (i = 0; i < 32; i++) {
364 r.addr = (uintptr_t)aa32_vfp_dreg(env, i);
365 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
366 if (ret) {
367 return ret;
369 r.id++;
372 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
373 KVM_REG_ARM_VFP_FPSCR;
374 fpscr = vfp_get_fpscr(env);
375 r.addr = (uintptr_t)&fpscr;
376 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
377 if (ret) {
378 return ret;
381 ret = kvm_put_vcpu_events(cpu);
382 if (ret) {
383 return ret;
386 write_cpustate_to_list(cpu, true);
388 if (!write_list_to_kvmstate(cpu, level)) {
389 return EINVAL;
392 kvm_arm_sync_mpstate_to_kvm(cpu);
394 return ret;
397 int kvm_arch_get_registers(CPUState *cs)
399 ARMCPU *cpu = ARM_CPU(cs);
400 CPUARMState *env = &cpu->env;
401 struct kvm_one_reg r;
402 int mode, bn;
403 int ret, i;
404 uint32_t cpsr, fpscr;
406 for (i = 0; i < ARRAY_SIZE(regs); i++) {
407 r.id = regs[i].id;
408 r.addr = (uintptr_t)(env) + regs[i].offset;
409 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
410 if (ret) {
411 return ret;
415 /* Special cases which aren't a single CPUARMState field */
416 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
417 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
418 r.addr = (uintptr_t)(&cpsr);
419 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
420 if (ret) {
421 return ret;
423 cpsr_write(env, cpsr, 0xffffffff, CPSRWriteRaw);
425 /* Make sure the current mode regs are properly set */
426 mode = env->uncached_cpsr & CPSR_M;
427 bn = bank_number(mode);
428 if (mode == ARM_CPU_MODE_FIQ) {
429 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
430 } else {
431 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
433 env->regs[13] = env->banked_r13[bn];
434 env->spsr = env->banked_spsr[bn];
435 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
437 /* VFP registers */
438 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
439 for (i = 0; i < 32; i++) {
440 r.addr = (uintptr_t)aa32_vfp_dreg(env, i);
441 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
442 if (ret) {
443 return ret;
445 r.id++;
448 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
449 KVM_REG_ARM_VFP_FPSCR;
450 r.addr = (uintptr_t)&fpscr;
451 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
452 if (ret) {
453 return ret;
455 vfp_set_fpscr(env, fpscr);
457 ret = kvm_get_vcpu_events(cpu);
458 if (ret) {
459 return ret;
462 if (!write_kvmstate_to_list(cpu)) {
463 return EINVAL;
465 /* Note that it's OK to have registers which aren't in CPUState,
466 * so we can ignore a failure return here.
468 write_list_to_cpustate(cpu);
470 kvm_arm_sync_mpstate_to_qemu(cpu);
472 return 0;
475 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
477 qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
478 return -EINVAL;
481 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
483 qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
484 return -EINVAL;
487 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
489 qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
490 return false;
493 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
494 target_ulong len, int type)
496 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
497 return -EINVAL;
500 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
501 target_ulong len, int type)
503 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
504 return -EINVAL;
507 void kvm_arch_remove_all_hw_breakpoints(void)
509 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
512 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
514 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
517 bool kvm_arm_hw_debug_active(CPUState *cs)
519 return false;
522 void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
524 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
527 void kvm_arm_pmu_init(CPUState *cs)
529 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);