4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qapi/error.h"
24 #include "qapi/visitor.h"
26 #include "internals.h"
27 #include "qemu-common.h"
28 #include "exec/exec-all.h"
29 #include "hw/qdev-properties.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/loader.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hw_accel.h"
36 #include "disas/capstone.h"
37 #include "fpu/softfloat.h"
39 static void arm_cpu_set_pc(CPUState
*cs
, vaddr value
)
41 ARMCPU
*cpu
= ARM_CPU(cs
);
42 CPUARMState
*env
= &cpu
->env
;
48 env
->regs
[15] = value
& ~1;
49 env
->thumb
= value
& 1;
53 static void arm_cpu_synchronize_from_tb(CPUState
*cs
, TranslationBlock
*tb
)
55 ARMCPU
*cpu
= ARM_CPU(cs
);
56 CPUARMState
*env
= &cpu
->env
;
59 * It's OK to look at env for the current mode here, because it's
60 * never possible for an AArch64 TB to chain to an AArch32 TB.
65 env
->regs
[15] = tb
->pc
;
69 static bool arm_cpu_has_work(CPUState
*cs
)
71 ARMCPU
*cpu
= ARM_CPU(cs
);
73 return (cpu
->power_state
!= PSCI_OFF
)
74 && cs
->interrupt_request
&
75 (CPU_INTERRUPT_FIQ
| CPU_INTERRUPT_HARD
76 | CPU_INTERRUPT_VFIQ
| CPU_INTERRUPT_VIRQ
77 | CPU_INTERRUPT_EXITTB
);
80 void arm_register_pre_el_change_hook(ARMCPU
*cpu
, ARMELChangeHookFn
*hook
,
83 ARMELChangeHook
*entry
= g_new0(ARMELChangeHook
, 1);
86 entry
->opaque
= opaque
;
88 QLIST_INSERT_HEAD(&cpu
->pre_el_change_hooks
, entry
, node
);
91 void arm_register_el_change_hook(ARMCPU
*cpu
, ARMELChangeHookFn
*hook
,
94 ARMELChangeHook
*entry
= g_new0(ARMELChangeHook
, 1);
97 entry
->opaque
= opaque
;
99 QLIST_INSERT_HEAD(&cpu
->el_change_hooks
, entry
, node
);
102 static void cp_reg_reset(gpointer key
, gpointer value
, gpointer opaque
)
104 /* Reset a single ARMCPRegInfo register */
105 ARMCPRegInfo
*ri
= value
;
106 ARMCPU
*cpu
= opaque
;
108 if (ri
->type
& (ARM_CP_SPECIAL
| ARM_CP_ALIAS
)) {
113 ri
->resetfn(&cpu
->env
, ri
);
117 /* A zero offset is never possible as it would be regs[0]
118 * so we use it to indicate that reset is being handled elsewhere.
119 * This is basically only used for fields in non-core coprocessors
120 * (like the pxa2xx ones).
122 if (!ri
->fieldoffset
) {
126 if (cpreg_field_is_64bit(ri
)) {
127 CPREG_FIELD64(&cpu
->env
, ri
) = ri
->resetvalue
;
129 CPREG_FIELD32(&cpu
->env
, ri
) = ri
->resetvalue
;
133 static void cp_reg_check_reset(gpointer key
, gpointer value
, gpointer opaque
)
135 /* Purely an assertion check: we've already done reset once,
136 * so now check that running the reset for the cpreg doesn't
137 * change its value. This traps bugs where two different cpregs
138 * both try to reset the same state field but to different values.
140 ARMCPRegInfo
*ri
= value
;
141 ARMCPU
*cpu
= opaque
;
142 uint64_t oldvalue
, newvalue
;
144 if (ri
->type
& (ARM_CP_SPECIAL
| ARM_CP_ALIAS
| ARM_CP_NO_RAW
)) {
148 oldvalue
= read_raw_cp_reg(&cpu
->env
, ri
);
149 cp_reg_reset(key
, value
, opaque
);
150 newvalue
= read_raw_cp_reg(&cpu
->env
, ri
);
151 assert(oldvalue
== newvalue
);
154 /* CPUClass::reset() */
155 static void arm_cpu_reset(CPUState
*s
)
157 ARMCPU
*cpu
= ARM_CPU(s
);
158 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(cpu
);
159 CPUARMState
*env
= &cpu
->env
;
161 acc
->parent_reset(s
);
163 memset(env
, 0, offsetof(CPUARMState
, end_reset_fields
));
165 g_hash_table_foreach(cpu
->cp_regs
, cp_reg_reset
, cpu
);
166 g_hash_table_foreach(cpu
->cp_regs
, cp_reg_check_reset
, cpu
);
168 env
->vfp
.xregs
[ARM_VFP_FPSID
] = cpu
->reset_fpsid
;
169 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = cpu
->isar
.mvfr0
;
170 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = cpu
->isar
.mvfr1
;
171 env
->vfp
.xregs
[ARM_VFP_MVFR2
] = cpu
->isar
.mvfr2
;
173 cpu
->power_state
= cpu
->start_powered_off
? PSCI_OFF
: PSCI_ON
;
174 s
->halted
= cpu
->start_powered_off
;
176 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
177 env
->iwmmxt
.cregs
[ARM_IWMMXT_wCID
] = 0x69051000 | 'Q';
180 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
181 /* 64 bit CPUs always start in 64 bit mode */
183 #if defined(CONFIG_USER_ONLY)
184 env
->pstate
= PSTATE_MODE_EL0t
;
185 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
186 env
->cp15
.sctlr_el
[1] |= SCTLR_UCT
| SCTLR_UCI
| SCTLR_DZE
;
187 /* Enable all PAC keys. */
188 env
->cp15
.sctlr_el
[1] |= (SCTLR_EnIA
| SCTLR_EnIB
|
189 SCTLR_EnDA
| SCTLR_EnDB
);
190 /* Enable all PAC instructions */
191 env
->cp15
.hcr_el2
|= HCR_API
;
192 env
->cp15
.scr_el3
|= SCR_API
;
193 /* and to the FP/Neon instructions */
194 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 20, 2, 3);
195 /* and to the SVE instructions */
196 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 16, 2, 3);
197 env
->cp15
.cptr_el
[3] |= CPTR_EZ
;
198 /* with maximum vector length */
199 env
->vfp
.zcr_el
[1] = cpu
->sve_max_vq
- 1;
200 env
->vfp
.zcr_el
[2] = env
->vfp
.zcr_el
[1];
201 env
->vfp
.zcr_el
[3] = env
->vfp
.zcr_el
[1];
203 * Enable TBI0 and TBI1. While the real kernel only enables TBI0,
204 * turning on both here will produce smaller code and otherwise
205 * make no difference to the user-level emulation.
207 env
->cp15
.tcr_el
[1].raw_tcr
= (3ULL << 37);
209 /* Reset into the highest available EL */
210 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
211 env
->pstate
= PSTATE_MODE_EL3h
;
212 } else if (arm_feature(env
, ARM_FEATURE_EL2
)) {
213 env
->pstate
= PSTATE_MODE_EL2h
;
215 env
->pstate
= PSTATE_MODE_EL1h
;
217 env
->pc
= cpu
->rvbar
;
220 #if defined(CONFIG_USER_ONLY)
221 /* Userspace expects access to cp10 and cp11 for FP/Neon */
222 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 20, 4, 0xf);
226 #if defined(CONFIG_USER_ONLY)
227 env
->uncached_cpsr
= ARM_CPU_MODE_USR
;
228 /* For user mode we must enable access to coprocessors */
229 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 1 << 30;
230 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
231 env
->cp15
.c15_cpar
= 3;
232 } else if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
233 env
->cp15
.c15_cpar
= 1;
238 * If the highest available EL is EL2, AArch32 will start in Hyp
239 * mode; otherwise it starts in SVC. Note that if we start in
240 * AArch64 then these values in the uncached_cpsr will be ignored.
242 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
243 !arm_feature(env
, ARM_FEATURE_EL3
)) {
244 env
->uncached_cpsr
= ARM_CPU_MODE_HYP
;
246 env
->uncached_cpsr
= ARM_CPU_MODE_SVC
;
248 env
->daif
= PSTATE_D
| PSTATE_A
| PSTATE_I
| PSTATE_F
;
250 if (arm_feature(env
, ARM_FEATURE_M
)) {
251 uint32_t initial_msp
; /* Loaded from 0x0 */
252 uint32_t initial_pc
; /* Loaded from 0x4 */
256 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
257 env
->v7m
.secure
= true;
259 /* This bit resets to 0 if security is supported, but 1 if
260 * it is not. The bit is not present in v7M, but we set it
261 * here so we can avoid having to make checks on it conditional
262 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
264 env
->v7m
.aircr
= R_V7M_AIRCR_BFHFNMINS_MASK
;
267 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
268 * that it resets to 1, so QEMU always does that rather than making
269 * it dependent on CPU model. In v8M it is RES1.
271 env
->v7m
.ccr
[M_REG_NS
] = R_V7M_CCR_STKALIGN_MASK
;
272 env
->v7m
.ccr
[M_REG_S
] = R_V7M_CCR_STKALIGN_MASK
;
273 if (arm_feature(env
, ARM_FEATURE_V8
)) {
274 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
275 env
->v7m
.ccr
[M_REG_NS
] |= R_V7M_CCR_NONBASETHRDENA_MASK
;
276 env
->v7m
.ccr
[M_REG_S
] |= R_V7M_CCR_NONBASETHRDENA_MASK
;
278 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
279 env
->v7m
.ccr
[M_REG_NS
] |= R_V7M_CCR_UNALIGN_TRP_MASK
;
280 env
->v7m
.ccr
[M_REG_S
] |= R_V7M_CCR_UNALIGN_TRP_MASK
;
283 if (arm_feature(env
, ARM_FEATURE_VFP
)) {
284 env
->v7m
.fpccr
[M_REG_NS
] = R_V7M_FPCCR_ASPEN_MASK
;
285 env
->v7m
.fpccr
[M_REG_S
] = R_V7M_FPCCR_ASPEN_MASK
|
286 R_V7M_FPCCR_LSPEN_MASK
| R_V7M_FPCCR_S_MASK
;
288 /* Unlike A/R profile, M profile defines the reset LR value */
289 env
->regs
[14] = 0xffffffff;
291 env
->v7m
.vecbase
[M_REG_S
] = cpu
->init_svtor
& 0xffffff80;
293 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
294 vecbase
= env
->v7m
.vecbase
[env
->v7m
.secure
];
295 rom
= rom_ptr(vecbase
, 8);
297 /* Address zero is covered by ROM which hasn't yet been
298 * copied into physical memory.
300 initial_msp
= ldl_p(rom
);
301 initial_pc
= ldl_p(rom
+ 4);
303 /* Address zero not covered by a ROM blob, or the ROM blob
304 * is in non-modifiable memory and this is a second reset after
305 * it got copied into memory. In the latter case, rom_ptr
306 * will return a NULL pointer and we should use ldl_phys instead.
308 initial_msp
= ldl_phys(s
->as
, vecbase
);
309 initial_pc
= ldl_phys(s
->as
, vecbase
+ 4);
312 env
->regs
[13] = initial_msp
& 0xFFFFFFFC;
313 env
->regs
[15] = initial_pc
& ~1;
314 env
->thumb
= initial_pc
& 1;
317 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
318 * executing as AArch32 then check if highvecs are enabled and
319 * adjust the PC accordingly.
321 if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
322 env
->regs
[15] = 0xFFFF0000;
325 /* M profile requires that reset clears the exclusive monitor;
326 * A profile does not, but clearing it makes more sense than having it
327 * set with an exclusive access on address zero.
329 arm_clear_exclusive(env
);
331 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 0;
334 if (arm_feature(env
, ARM_FEATURE_PMSA
)) {
335 if (cpu
->pmsav7_dregion
> 0) {
336 if (arm_feature(env
, ARM_FEATURE_V8
)) {
337 memset(env
->pmsav8
.rbar
[M_REG_NS
], 0,
338 sizeof(*env
->pmsav8
.rbar
[M_REG_NS
])
339 * cpu
->pmsav7_dregion
);
340 memset(env
->pmsav8
.rlar
[M_REG_NS
], 0,
341 sizeof(*env
->pmsav8
.rlar
[M_REG_NS
])
342 * cpu
->pmsav7_dregion
);
343 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
344 memset(env
->pmsav8
.rbar
[M_REG_S
], 0,
345 sizeof(*env
->pmsav8
.rbar
[M_REG_S
])
346 * cpu
->pmsav7_dregion
);
347 memset(env
->pmsav8
.rlar
[M_REG_S
], 0,
348 sizeof(*env
->pmsav8
.rlar
[M_REG_S
])
349 * cpu
->pmsav7_dregion
);
351 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
352 memset(env
->pmsav7
.drbar
, 0,
353 sizeof(*env
->pmsav7
.drbar
) * cpu
->pmsav7_dregion
);
354 memset(env
->pmsav7
.drsr
, 0,
355 sizeof(*env
->pmsav7
.drsr
) * cpu
->pmsav7_dregion
);
356 memset(env
->pmsav7
.dracr
, 0,
357 sizeof(*env
->pmsav7
.dracr
) * cpu
->pmsav7_dregion
);
360 env
->pmsav7
.rnr
[M_REG_NS
] = 0;
361 env
->pmsav7
.rnr
[M_REG_S
] = 0;
362 env
->pmsav8
.mair0
[M_REG_NS
] = 0;
363 env
->pmsav8
.mair0
[M_REG_S
] = 0;
364 env
->pmsav8
.mair1
[M_REG_NS
] = 0;
365 env
->pmsav8
.mair1
[M_REG_S
] = 0;
368 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
369 if (cpu
->sau_sregion
> 0) {
370 memset(env
->sau
.rbar
, 0, sizeof(*env
->sau
.rbar
) * cpu
->sau_sregion
);
371 memset(env
->sau
.rlar
, 0, sizeof(*env
->sau
.rlar
) * cpu
->sau_sregion
);
374 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
375 * the Cortex-M33 does.
380 set_flush_to_zero(1, &env
->vfp
.standard_fp_status
);
381 set_flush_inputs_to_zero(1, &env
->vfp
.standard_fp_status
);
382 set_default_nan_mode(1, &env
->vfp
.standard_fp_status
);
383 set_float_detect_tininess(float_tininess_before_rounding
,
384 &env
->vfp
.fp_status
);
385 set_float_detect_tininess(float_tininess_before_rounding
,
386 &env
->vfp
.standard_fp_status
);
387 set_float_detect_tininess(float_tininess_before_rounding
,
388 &env
->vfp
.fp_status_f16
);
389 #ifndef CONFIG_USER_ONLY
391 kvm_arm_reset_vcpu(cpu
);
395 hw_breakpoint_update_all(cpu
);
396 hw_watchpoint_update_all(cpu
);
399 bool arm_cpu_exec_interrupt(CPUState
*cs
, int interrupt_request
)
401 CPUClass
*cc
= CPU_GET_CLASS(cs
);
402 CPUARMState
*env
= cs
->env_ptr
;
403 uint32_t cur_el
= arm_current_el(env
);
404 bool secure
= arm_is_secure(env
);
409 if (interrupt_request
& CPU_INTERRUPT_FIQ
) {
411 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
412 if (arm_excp_unmasked(cs
, excp_idx
, target_el
)) {
413 cs
->exception_index
= excp_idx
;
414 env
->exception
.target_el
= target_el
;
415 cc
->do_interrupt(cs
);
419 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
421 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
422 if (arm_excp_unmasked(cs
, excp_idx
, target_el
)) {
423 cs
->exception_index
= excp_idx
;
424 env
->exception
.target_el
= target_el
;
425 cc
->do_interrupt(cs
);
429 if (interrupt_request
& CPU_INTERRUPT_VIRQ
) {
430 excp_idx
= EXCP_VIRQ
;
432 if (arm_excp_unmasked(cs
, excp_idx
, target_el
)) {
433 cs
->exception_index
= excp_idx
;
434 env
->exception
.target_el
= target_el
;
435 cc
->do_interrupt(cs
);
439 if (interrupt_request
& CPU_INTERRUPT_VFIQ
) {
440 excp_idx
= EXCP_VFIQ
;
442 if (arm_excp_unmasked(cs
, excp_idx
, target_el
)) {
443 cs
->exception_index
= excp_idx
;
444 env
->exception
.target_el
= target_el
;
445 cc
->do_interrupt(cs
);
453 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
454 static bool arm_v7m_cpu_exec_interrupt(CPUState
*cs
, int interrupt_request
)
456 CPUClass
*cc
= CPU_GET_CLASS(cs
);
457 ARMCPU
*cpu
= ARM_CPU(cs
);
458 CPUARMState
*env
= &cpu
->env
;
461 /* ARMv7-M interrupt masking works differently than -A or -R.
462 * There is no FIQ/IRQ distinction. Instead of I and F bits
463 * masking FIQ and IRQ interrupts, an exception is taken only
464 * if it is higher priority than the current execution priority
465 * (which depends on state like BASEPRI, FAULTMASK and the
466 * currently active exception).
468 if (interrupt_request
& CPU_INTERRUPT_HARD
469 && (armv7m_nvic_can_take_pending_exception(env
->nvic
))) {
470 cs
->exception_index
= EXCP_IRQ
;
471 cc
->do_interrupt(cs
);
478 void arm_cpu_update_virq(ARMCPU
*cpu
)
481 * Update the interrupt level for VIRQ, which is the logical OR of
482 * the HCR_EL2.VI bit and the input line level from the GIC.
484 CPUARMState
*env
= &cpu
->env
;
485 CPUState
*cs
= CPU(cpu
);
487 bool new_state
= (env
->cp15
.hcr_el2
& HCR_VI
) ||
488 (env
->irq_line_state
& CPU_INTERRUPT_VIRQ
);
490 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VIRQ
) != 0)) {
492 cpu_interrupt(cs
, CPU_INTERRUPT_VIRQ
);
494 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VIRQ
);
499 void arm_cpu_update_vfiq(ARMCPU
*cpu
)
502 * Update the interrupt level for VFIQ, which is the logical OR of
503 * the HCR_EL2.VF bit and the input line level from the GIC.
505 CPUARMState
*env
= &cpu
->env
;
506 CPUState
*cs
= CPU(cpu
);
508 bool new_state
= (env
->cp15
.hcr_el2
& HCR_VF
) ||
509 (env
->irq_line_state
& CPU_INTERRUPT_VFIQ
);
511 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VFIQ
) != 0)) {
513 cpu_interrupt(cs
, CPU_INTERRUPT_VFIQ
);
515 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VFIQ
);
520 #ifndef CONFIG_USER_ONLY
521 static void arm_cpu_set_irq(void *opaque
, int irq
, int level
)
523 ARMCPU
*cpu
= opaque
;
524 CPUARMState
*env
= &cpu
->env
;
525 CPUState
*cs
= CPU(cpu
);
526 static const int mask
[] = {
527 [ARM_CPU_IRQ
] = CPU_INTERRUPT_HARD
,
528 [ARM_CPU_FIQ
] = CPU_INTERRUPT_FIQ
,
529 [ARM_CPU_VIRQ
] = CPU_INTERRUPT_VIRQ
,
530 [ARM_CPU_VFIQ
] = CPU_INTERRUPT_VFIQ
534 env
->irq_line_state
|= mask
[irq
];
536 env
->irq_line_state
&= ~mask
[irq
];
541 assert(arm_feature(env
, ARM_FEATURE_EL2
));
542 arm_cpu_update_virq(cpu
);
545 assert(arm_feature(env
, ARM_FEATURE_EL2
));
546 arm_cpu_update_vfiq(cpu
);
551 cpu_interrupt(cs
, mask
[irq
]);
553 cpu_reset_interrupt(cs
, mask
[irq
]);
557 g_assert_not_reached();
561 static void arm_cpu_kvm_set_irq(void *opaque
, int irq
, int level
)
564 ARMCPU
*cpu
= opaque
;
565 CPUARMState
*env
= &cpu
->env
;
566 CPUState
*cs
= CPU(cpu
);
567 int kvm_irq
= KVM_ARM_IRQ_TYPE_CPU
<< KVM_ARM_IRQ_TYPE_SHIFT
;
568 uint32_t linestate_bit
;
572 kvm_irq
|= KVM_ARM_IRQ_CPU_IRQ
;
573 linestate_bit
= CPU_INTERRUPT_HARD
;
576 kvm_irq
|= KVM_ARM_IRQ_CPU_FIQ
;
577 linestate_bit
= CPU_INTERRUPT_FIQ
;
580 g_assert_not_reached();
584 env
->irq_line_state
|= linestate_bit
;
586 env
->irq_line_state
&= ~linestate_bit
;
589 kvm_irq
|= cs
->cpu_index
<< KVM_ARM_IRQ_VCPU_SHIFT
;
590 kvm_set_irq(kvm_state
, kvm_irq
, level
? 1 : 0);
594 static bool arm_cpu_virtio_is_big_endian(CPUState
*cs
)
596 ARMCPU
*cpu
= ARM_CPU(cs
);
597 CPUARMState
*env
= &cpu
->env
;
599 cpu_synchronize_state(cs
);
600 return arm_cpu_data_is_big_endian(env
);
605 static inline void set_feature(CPUARMState
*env
, int feature
)
607 env
->features
|= 1ULL << feature
;
610 static inline void unset_feature(CPUARMState
*env
, int feature
)
612 env
->features
&= ~(1ULL << feature
);
616 print_insn_thumb1(bfd_vma pc
, disassemble_info
*info
)
618 return print_insn_arm(pc
| 1, info
);
621 static void arm_disas_set_info(CPUState
*cpu
, disassemble_info
*info
)
623 ARMCPU
*ac
= ARM_CPU(cpu
);
624 CPUARMState
*env
= &ac
->env
;
628 /* We might not be compiled with the A64 disassembler
629 * because it needs a C++ compiler. Leave print_insn
630 * unset in this case to use the caller default behaviour.
632 #if defined(CONFIG_ARM_A64_DIS)
633 info
->print_insn
= print_insn_arm_a64
;
635 info
->cap_arch
= CS_ARCH_ARM64
;
636 info
->cap_insn_unit
= 4;
637 info
->cap_insn_split
= 4;
641 info
->print_insn
= print_insn_thumb1
;
642 info
->cap_insn_unit
= 2;
643 info
->cap_insn_split
= 4;
644 cap_mode
= CS_MODE_THUMB
;
646 info
->print_insn
= print_insn_arm
;
647 info
->cap_insn_unit
= 4;
648 info
->cap_insn_split
= 4;
649 cap_mode
= CS_MODE_ARM
;
651 if (arm_feature(env
, ARM_FEATURE_V8
)) {
652 cap_mode
|= CS_MODE_V8
;
654 if (arm_feature(env
, ARM_FEATURE_M
)) {
655 cap_mode
|= CS_MODE_MCLASS
;
657 info
->cap_arch
= CS_ARCH_ARM
;
658 info
->cap_mode
= cap_mode
;
661 sctlr_b
= arm_sctlr_b(env
);
662 if (bswap_code(sctlr_b
)) {
663 #ifdef TARGET_WORDS_BIGENDIAN
664 info
->endian
= BFD_ENDIAN_LITTLE
;
666 info
->endian
= BFD_ENDIAN_BIG
;
669 info
->flags
&= ~INSN_ARM_BE32
;
670 #ifndef CONFIG_USER_ONLY
672 info
->flags
|= INSN_ARM_BE32
;
677 uint64_t arm_cpu_mp_affinity(int idx
, uint8_t clustersz
)
679 uint32_t Aff1
= idx
/ clustersz
;
680 uint32_t Aff0
= idx
% clustersz
;
681 return (Aff1
<< ARM_AFF1_SHIFT
) | Aff0
;
684 static void cpreg_hashtable_data_destroy(gpointer data
)
687 * Destroy function for cpu->cp_regs hashtable data entries.
688 * We must free the name string because it was g_strdup()ed in
689 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
690 * from r->name because we know we definitely allocated it.
692 ARMCPRegInfo
*r
= data
;
694 g_free((void *)r
->name
);
698 static void arm_cpu_initfn(Object
*obj
)
700 CPUState
*cs
= CPU(obj
);
701 ARMCPU
*cpu
= ARM_CPU(obj
);
703 cs
->env_ptr
= &cpu
->env
;
704 cpu
->cp_regs
= g_hash_table_new_full(g_int_hash
, g_int_equal
,
705 g_free
, cpreg_hashtable_data_destroy
);
707 QLIST_INIT(&cpu
->pre_el_change_hooks
);
708 QLIST_INIT(&cpu
->el_change_hooks
);
710 #ifndef CONFIG_USER_ONLY
711 /* Our inbound IRQ and FIQ lines */
713 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
714 * the same interface as non-KVM CPUs.
716 qdev_init_gpio_in(DEVICE(cpu
), arm_cpu_kvm_set_irq
, 4);
718 qdev_init_gpio_in(DEVICE(cpu
), arm_cpu_set_irq
, 4);
721 qdev_init_gpio_out(DEVICE(cpu
), cpu
->gt_timer_outputs
,
722 ARRAY_SIZE(cpu
->gt_timer_outputs
));
724 qdev_init_gpio_out_named(DEVICE(cpu
), &cpu
->gicv3_maintenance_interrupt
,
725 "gicv3-maintenance-interrupt", 1);
726 qdev_init_gpio_out_named(DEVICE(cpu
), &cpu
->pmu_interrupt
,
730 /* DTB consumers generally don't in fact care what the 'compatible'
731 * string is, so always provide some string and trust that a hypothetical
732 * picky DTB consumer will also provide a helpful error message.
734 cpu
->dtb_compatible
= "qemu,unknown";
735 cpu
->psci_version
= 1; /* By default assume PSCI v0.1 */
736 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_NONE
;
739 cpu
->psci_version
= 2; /* TCG implements PSCI 0.2 */
743 static Property arm_cpu_reset_cbar_property
=
744 DEFINE_PROP_UINT64("reset-cbar", ARMCPU
, reset_cbar
, 0);
746 static Property arm_cpu_reset_hivecs_property
=
747 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU
, reset_hivecs
, false);
749 static Property arm_cpu_rvbar_property
=
750 DEFINE_PROP_UINT64("rvbar", ARMCPU
, rvbar
, 0);
752 static Property arm_cpu_has_el2_property
=
753 DEFINE_PROP_BOOL("has_el2", ARMCPU
, has_el2
, true);
755 static Property arm_cpu_has_el3_property
=
756 DEFINE_PROP_BOOL("has_el3", ARMCPU
, has_el3
, true);
758 static Property arm_cpu_cfgend_property
=
759 DEFINE_PROP_BOOL("cfgend", ARMCPU
, cfgend
, false);
761 /* use property name "pmu" to match other archs and virt tools */
762 static Property arm_cpu_has_pmu_property
=
763 DEFINE_PROP_BOOL("pmu", ARMCPU
, has_pmu
, true);
765 static Property arm_cpu_has_mpu_property
=
766 DEFINE_PROP_BOOL("has-mpu", ARMCPU
, has_mpu
, true);
768 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
769 * because the CPU initfn will have already set cpu->pmsav7_dregion to
770 * the right value for that particular CPU type, and we don't want
771 * to override that with an incorrect constant value.
773 static Property arm_cpu_pmsav7_dregion_property
=
774 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU
,
776 qdev_prop_uint32
, uint32_t);
778 static void arm_get_init_svtor(Object
*obj
, Visitor
*v
, const char *name
,
779 void *opaque
, Error
**errp
)
781 ARMCPU
*cpu
= ARM_CPU(obj
);
783 visit_type_uint32(v
, name
, &cpu
->init_svtor
, errp
);
786 static void arm_set_init_svtor(Object
*obj
, Visitor
*v
, const char *name
,
787 void *opaque
, Error
**errp
)
789 ARMCPU
*cpu
= ARM_CPU(obj
);
791 visit_type_uint32(v
, name
, &cpu
->init_svtor
, errp
);
794 void arm_cpu_post_init(Object
*obj
)
796 ARMCPU
*cpu
= ARM_CPU(obj
);
798 /* M profile implies PMSA. We have to do this here rather than
799 * in realize with the other feature-implication checks because
800 * we look at the PMSA bit to see if we should add some properties.
802 if (arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
803 set_feature(&cpu
->env
, ARM_FEATURE_PMSA
);
806 if (arm_feature(&cpu
->env
, ARM_FEATURE_CBAR
) ||
807 arm_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
)) {
808 qdev_property_add_static(DEVICE(obj
), &arm_cpu_reset_cbar_property
,
812 if (!arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
813 qdev_property_add_static(DEVICE(obj
), &arm_cpu_reset_hivecs_property
,
817 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
818 qdev_property_add_static(DEVICE(obj
), &arm_cpu_rvbar_property
,
822 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL3
)) {
823 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
824 * prevent "has_el3" from existing on CPUs which cannot support EL3.
826 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_el3_property
,
829 #ifndef CONFIG_USER_ONLY
830 object_property_add_link(obj
, "secure-memory",
832 (Object
**)&cpu
->secure_memory
,
833 qdev_prop_allow_set_link_before_realize
,
834 OBJ_PROP_LINK_STRONG
,
839 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
)) {
840 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_el2_property
,
844 if (arm_feature(&cpu
->env
, ARM_FEATURE_PMU
)) {
845 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_pmu_property
,
849 if (arm_feature(&cpu
->env
, ARM_FEATURE_PMSA
)) {
850 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_mpu_property
,
852 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
853 qdev_property_add_static(DEVICE(obj
),
854 &arm_cpu_pmsav7_dregion_property
,
859 if (arm_feature(&cpu
->env
, ARM_FEATURE_M_SECURITY
)) {
860 object_property_add_link(obj
, "idau", TYPE_IDAU_INTERFACE
, &cpu
->idau
,
861 qdev_prop_allow_set_link_before_realize
,
862 OBJ_PROP_LINK_STRONG
,
865 * M profile: initial value of the Secure VTOR. We can't just use
866 * a simple DEFINE_PROP_UINT32 for this because we want to permit
867 * the property to be set after realize.
869 object_property_add(obj
, "init-svtor", "uint32",
870 arm_get_init_svtor
, arm_set_init_svtor
,
871 NULL
, NULL
, &error_abort
);
874 qdev_property_add_static(DEVICE(obj
), &arm_cpu_cfgend_property
,
878 static void arm_cpu_finalizefn(Object
*obj
)
880 ARMCPU
*cpu
= ARM_CPU(obj
);
881 ARMELChangeHook
*hook
, *next
;
883 g_hash_table_destroy(cpu
->cp_regs
);
885 QLIST_FOREACH_SAFE(hook
, &cpu
->pre_el_change_hooks
, node
, next
) {
886 QLIST_REMOVE(hook
, node
);
889 QLIST_FOREACH_SAFE(hook
, &cpu
->el_change_hooks
, node
, next
) {
890 QLIST_REMOVE(hook
, node
);
893 #ifndef CONFIG_USER_ONLY
894 if (cpu
->pmu_timer
) {
895 timer_del(cpu
->pmu_timer
);
896 timer_deinit(cpu
->pmu_timer
);
897 timer_free(cpu
->pmu_timer
);
902 static void arm_cpu_realizefn(DeviceState
*dev
, Error
**errp
)
904 CPUState
*cs
= CPU(dev
);
905 ARMCPU
*cpu
= ARM_CPU(dev
);
906 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(dev
);
907 CPUARMState
*env
= &cpu
->env
;
909 Error
*local_err
= NULL
;
910 bool no_aa32
= false;
912 /* If we needed to query the host kernel for the CPU features
913 * then it's possible that might have failed in the initfn, but
914 * this is the first point where we can report it.
916 if (cpu
->host_cpu_probe_failed
) {
917 if (!kvm_enabled()) {
918 error_setg(errp
, "The 'host' CPU type can only be used with KVM");
920 error_setg(errp
, "Failed to retrieve host CPU features");
925 #ifndef CONFIG_USER_ONLY
926 /* The NVIC and M-profile CPU are two halves of a single piece of
927 * hardware; trying to use one without the other is a command line
928 * error and will result in segfaults if not caught here.
930 if (arm_feature(env
, ARM_FEATURE_M
)) {
932 error_setg(errp
, "This board cannot be used with Cortex-M CPUs");
937 error_setg(errp
, "This board can only be used with Cortex-M CPUs");
942 cpu
->gt_timer
[GTIMER_PHYS
] = timer_new(QEMU_CLOCK_VIRTUAL
, GTIMER_SCALE
,
943 arm_gt_ptimer_cb
, cpu
);
944 cpu
->gt_timer
[GTIMER_VIRT
] = timer_new(QEMU_CLOCK_VIRTUAL
, GTIMER_SCALE
,
945 arm_gt_vtimer_cb
, cpu
);
946 cpu
->gt_timer
[GTIMER_HYP
] = timer_new(QEMU_CLOCK_VIRTUAL
, GTIMER_SCALE
,
947 arm_gt_htimer_cb
, cpu
);
948 cpu
->gt_timer
[GTIMER_SEC
] = timer_new(QEMU_CLOCK_VIRTUAL
, GTIMER_SCALE
,
949 arm_gt_stimer_cb
, cpu
);
952 cpu_exec_realizefn(cs
, &local_err
);
953 if (local_err
!= NULL
) {
954 error_propagate(errp
, local_err
);
958 /* Some features automatically imply others: */
959 if (arm_feature(env
, ARM_FEATURE_V8
)) {
960 if (arm_feature(env
, ARM_FEATURE_M
)) {
961 set_feature(env
, ARM_FEATURE_V7
);
963 set_feature(env
, ARM_FEATURE_V7VE
);
968 * There exist AArch64 cpus without AArch32 support. When KVM
969 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
970 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
972 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
973 no_aa32
= !cpu_isar_feature(aa64_aa32
, cpu
);
976 if (arm_feature(env
, ARM_FEATURE_V7VE
)) {
977 /* v7 Virtualization Extensions. In real hardware this implies
978 * EL2 and also the presence of the Security Extensions.
979 * For QEMU, for backwards-compatibility we implement some
980 * CPUs or CPU configs which have no actual EL2 or EL3 but do
981 * include the various other features that V7VE implies.
982 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
983 * Security Extensions is ARM_FEATURE_EL3.
985 assert(no_aa32
|| cpu_isar_feature(arm_div
, cpu
));
986 set_feature(env
, ARM_FEATURE_LPAE
);
987 set_feature(env
, ARM_FEATURE_V7
);
989 if (arm_feature(env
, ARM_FEATURE_V7
)) {
990 set_feature(env
, ARM_FEATURE_VAPA
);
991 set_feature(env
, ARM_FEATURE_THUMB2
);
992 set_feature(env
, ARM_FEATURE_MPIDR
);
993 if (!arm_feature(env
, ARM_FEATURE_M
)) {
994 set_feature(env
, ARM_FEATURE_V6K
);
996 set_feature(env
, ARM_FEATURE_V6
);
999 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1000 * non-EL3 configs. This is needed by some legacy boards.
1002 set_feature(env
, ARM_FEATURE_VBAR
);
1004 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
1005 set_feature(env
, ARM_FEATURE_V6
);
1006 set_feature(env
, ARM_FEATURE_MVFR
);
1008 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1009 set_feature(env
, ARM_FEATURE_V5
);
1010 if (!arm_feature(env
, ARM_FEATURE_M
)) {
1011 assert(no_aa32
|| cpu_isar_feature(jazelle
, cpu
));
1012 set_feature(env
, ARM_FEATURE_AUXCR
);
1015 if (arm_feature(env
, ARM_FEATURE_V5
)) {
1016 set_feature(env
, ARM_FEATURE_V4T
);
1018 if (arm_feature(env
, ARM_FEATURE_VFP4
)) {
1019 set_feature(env
, ARM_FEATURE_VFP3
);
1021 if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
1022 set_feature(env
, ARM_FEATURE_VFP
);
1024 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1025 set_feature(env
, ARM_FEATURE_V7MP
);
1026 set_feature(env
, ARM_FEATURE_PXN
);
1028 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
1029 set_feature(env
, ARM_FEATURE_CBAR
);
1031 if (arm_feature(env
, ARM_FEATURE_THUMB2
) &&
1032 !arm_feature(env
, ARM_FEATURE_M
)) {
1033 set_feature(env
, ARM_FEATURE_THUMB_DSP
);
1037 * We rely on no XScale CPU having VFP so we can use the same bits in the
1038 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1040 assert(!(arm_feature(env
, ARM_FEATURE_VFP
) &&
1041 arm_feature(env
, ARM_FEATURE_XSCALE
)));
1043 if (arm_feature(env
, ARM_FEATURE_V7
) &&
1044 !arm_feature(env
, ARM_FEATURE_M
) &&
1045 !arm_feature(env
, ARM_FEATURE_PMSA
)) {
1046 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1051 /* For CPUs which might have tiny 1K pages, or which have an
1052 * MPU and might have small region sizes, stick with 1K pages.
1056 if (!set_preferred_target_page_bits(pagebits
)) {
1057 /* This can only ever happen for hotplugging a CPU, or if
1058 * the board code incorrectly creates a CPU which it has
1059 * promised via minimum_page_size that it will not.
1061 error_setg(errp
, "This CPU requires a smaller page size than the "
1066 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1067 * We don't support setting cluster ID ([16..23]) (known as Aff2
1068 * in later ARM ARM versions), or any of the higher affinity level fields,
1069 * so these bits always RAZ.
1071 if (cpu
->mp_affinity
== ARM64_AFFINITY_INVALID
) {
1072 cpu
->mp_affinity
= arm_cpu_mp_affinity(cs
->cpu_index
,
1073 ARM_DEFAULT_CPUS_PER_CLUSTER
);
1076 if (cpu
->reset_hivecs
) {
1077 cpu
->reset_sctlr
|= (1 << 13);
1081 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
1082 cpu
->reset_sctlr
|= SCTLR_EE
;
1084 cpu
->reset_sctlr
|= SCTLR_B
;
1088 if (!cpu
->has_el3
) {
1089 /* If the has_el3 CPU property is disabled then we need to disable the
1092 unset_feature(env
, ARM_FEATURE_EL3
);
1094 /* Disable the security extension feature bits in the processor feature
1095 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1097 cpu
->id_pfr1
&= ~0xf0;
1098 cpu
->isar
.id_aa64pfr0
&= ~0xf000;
1101 if (!cpu
->has_el2
) {
1102 unset_feature(env
, ARM_FEATURE_EL2
);
1105 if (!cpu
->has_pmu
) {
1106 unset_feature(env
, ARM_FEATURE_PMU
);
1108 if (arm_feature(env
, ARM_FEATURE_PMU
)) {
1111 if (!kvm_enabled()) {
1112 arm_register_pre_el_change_hook(cpu
, &pmu_pre_el_change
, 0);
1113 arm_register_el_change_hook(cpu
, &pmu_post_el_change
, 0);
1116 #ifndef CONFIG_USER_ONLY
1117 cpu
->pmu_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, arm_pmu_timer_cb
,
1121 cpu
->id_aa64dfr0
&= ~0xf00;
1122 cpu
->id_dfr0
&= ~(0xf << 24);
1127 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
1128 /* Disable the hypervisor feature bits in the processor feature
1129 * registers if we don't have EL2. These are id_pfr1[15:12] and
1130 * id_aa64pfr0_el1[11:8].
1132 cpu
->isar
.id_aa64pfr0
&= ~0xf00;
1133 cpu
->id_pfr1
&= ~0xf000;
1136 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1137 * to false or by setting pmsav7-dregion to 0.
1139 if (!cpu
->has_mpu
) {
1140 cpu
->pmsav7_dregion
= 0;
1142 if (cpu
->pmsav7_dregion
== 0) {
1143 cpu
->has_mpu
= false;
1146 if (arm_feature(env
, ARM_FEATURE_PMSA
) &&
1147 arm_feature(env
, ARM_FEATURE_V7
)) {
1148 uint32_t nr
= cpu
->pmsav7_dregion
;
1151 error_setg(errp
, "PMSAv7 MPU #regions invalid %" PRIu32
, nr
);
1156 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1158 env
->pmsav8
.rbar
[M_REG_NS
] = g_new0(uint32_t, nr
);
1159 env
->pmsav8
.rlar
[M_REG_NS
] = g_new0(uint32_t, nr
);
1160 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1161 env
->pmsav8
.rbar
[M_REG_S
] = g_new0(uint32_t, nr
);
1162 env
->pmsav8
.rlar
[M_REG_S
] = g_new0(uint32_t, nr
);
1165 env
->pmsav7
.drbar
= g_new0(uint32_t, nr
);
1166 env
->pmsav7
.drsr
= g_new0(uint32_t, nr
);
1167 env
->pmsav7
.dracr
= g_new0(uint32_t, nr
);
1172 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1173 uint32_t nr
= cpu
->sau_sregion
;
1176 error_setg(errp
, "v8M SAU #regions invalid %" PRIu32
, nr
);
1181 env
->sau
.rbar
= g_new0(uint32_t, nr
);
1182 env
->sau
.rlar
= g_new0(uint32_t, nr
);
1186 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
1187 set_feature(env
, ARM_FEATURE_VBAR
);
1190 register_cp_regs_for_features(cpu
);
1191 arm_cpu_register_gdb_regs_for_features(cpu
);
1193 init_cpreg_list(cpu
);
1195 #ifndef CONFIG_USER_ONLY
1196 if (cpu
->has_el3
|| arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1199 if (!cpu
->secure_memory
) {
1200 cpu
->secure_memory
= cs
->memory
;
1202 cpu_address_space_init(cs
, ARMASIdx_S
, "cpu-secure-memory",
1203 cpu
->secure_memory
);
1207 cpu_address_space_init(cs
, ARMASIdx_NS
, "cpu-memory", cs
->memory
);
1209 /* No core_count specified, default to smp_cpus. */
1210 if (cpu
->core_count
== -1) {
1211 cpu
->core_count
= smp_cpus
;
1218 acc
->parent_realize(dev
, errp
);
1221 static ObjectClass
*arm_cpu_class_by_name(const char *cpu_model
)
1226 const char *cpunamestr
;
1228 cpuname
= g_strsplit(cpu_model
, ",", 1);
1229 cpunamestr
= cpuname
[0];
1230 #ifdef CONFIG_USER_ONLY
1231 /* For backwards compatibility usermode emulation allows "-cpu any",
1232 * which has the same semantics as "-cpu max".
1234 if (!strcmp(cpunamestr
, "any")) {
1238 typename
= g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr
);
1239 oc
= object_class_by_name(typename
);
1240 g_strfreev(cpuname
);
1242 if (!oc
|| !object_class_dynamic_cast(oc
, TYPE_ARM_CPU
) ||
1243 object_class_is_abstract(oc
)) {
1249 /* CPU models. These are not needed for the AArch64 linux-user build. */
1250 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1252 static void arm926_initfn(Object
*obj
)
1254 ARMCPU
*cpu
= ARM_CPU(obj
);
1256 cpu
->dtb_compatible
= "arm,arm926";
1257 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1258 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1259 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1260 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_TEST_CLEAN
);
1261 cpu
->midr
= 0x41069265;
1262 cpu
->reset_fpsid
= 0x41011090;
1263 cpu
->ctr
= 0x1dd20d2;
1264 cpu
->reset_sctlr
= 0x00090078;
1267 * ARMv5 does not have the ID_ISAR registers, but we can still
1268 * set the field to indicate Jazelle support within QEMU.
1270 cpu
->isar
.id_isar1
= FIELD_DP32(cpu
->isar
.id_isar1
, ID_ISAR1
, JAZELLE
, 1);
1273 static void arm946_initfn(Object
*obj
)
1275 ARMCPU
*cpu
= ARM_CPU(obj
);
1277 cpu
->dtb_compatible
= "arm,arm946";
1278 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1279 set_feature(&cpu
->env
, ARM_FEATURE_PMSA
);
1280 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1281 cpu
->midr
= 0x41059461;
1282 cpu
->ctr
= 0x0f004006;
1283 cpu
->reset_sctlr
= 0x00000078;
1286 static void arm1026_initfn(Object
*obj
)
1288 ARMCPU
*cpu
= ARM_CPU(obj
);
1290 cpu
->dtb_compatible
= "arm,arm1026";
1291 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1292 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1293 set_feature(&cpu
->env
, ARM_FEATURE_AUXCR
);
1294 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1295 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_TEST_CLEAN
);
1296 cpu
->midr
= 0x4106a262;
1297 cpu
->reset_fpsid
= 0x410110a0;
1298 cpu
->ctr
= 0x1dd20d2;
1299 cpu
->reset_sctlr
= 0x00090078;
1300 cpu
->reset_auxcr
= 1;
1303 * ARMv5 does not have the ID_ISAR registers, but we can still
1304 * set the field to indicate Jazelle support within QEMU.
1306 cpu
->isar
.id_isar1
= FIELD_DP32(cpu
->isar
.id_isar1
, ID_ISAR1
, JAZELLE
, 1);
1309 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1310 ARMCPRegInfo ifar
= {
1311 .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
1313 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifar_ns
),
1316 define_one_arm_cp_reg(cpu
, &ifar
);
1320 static void arm1136_r2_initfn(Object
*obj
)
1322 ARMCPU
*cpu
= ARM_CPU(obj
);
1323 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1324 * older core than plain "arm1136". In particular this does not
1325 * have the v6K features.
1326 * These ID register values are correct for 1136 but may be wrong
1327 * for 1136_r2 (in particular r0p2 does not actually implement most
1328 * of the ID registers).
1331 cpu
->dtb_compatible
= "arm,arm1136";
1332 set_feature(&cpu
->env
, ARM_FEATURE_V6
);
1333 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1334 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1335 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_DIRTY_REG
);
1336 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_BLOCK_OPS
);
1337 cpu
->midr
= 0x4107b362;
1338 cpu
->reset_fpsid
= 0x410120b4;
1339 cpu
->isar
.mvfr0
= 0x11111111;
1340 cpu
->isar
.mvfr1
= 0x00000000;
1341 cpu
->ctr
= 0x1dd20d2;
1342 cpu
->reset_sctlr
= 0x00050078;
1343 cpu
->id_pfr0
= 0x111;
1347 cpu
->id_mmfr0
= 0x01130003;
1348 cpu
->id_mmfr1
= 0x10030302;
1349 cpu
->id_mmfr2
= 0x01222110;
1350 cpu
->isar
.id_isar0
= 0x00140011;
1351 cpu
->isar
.id_isar1
= 0x12002111;
1352 cpu
->isar
.id_isar2
= 0x11231111;
1353 cpu
->isar
.id_isar3
= 0x01102131;
1354 cpu
->isar
.id_isar4
= 0x141;
1355 cpu
->reset_auxcr
= 7;
1358 static void arm1136_initfn(Object
*obj
)
1360 ARMCPU
*cpu
= ARM_CPU(obj
);
1362 cpu
->dtb_compatible
= "arm,arm1136";
1363 set_feature(&cpu
->env
, ARM_FEATURE_V6K
);
1364 set_feature(&cpu
->env
, ARM_FEATURE_V6
);
1365 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1366 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1367 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_DIRTY_REG
);
1368 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_BLOCK_OPS
);
1369 cpu
->midr
= 0x4117b363;
1370 cpu
->reset_fpsid
= 0x410120b4;
1371 cpu
->isar
.mvfr0
= 0x11111111;
1372 cpu
->isar
.mvfr1
= 0x00000000;
1373 cpu
->ctr
= 0x1dd20d2;
1374 cpu
->reset_sctlr
= 0x00050078;
1375 cpu
->id_pfr0
= 0x111;
1379 cpu
->id_mmfr0
= 0x01130003;
1380 cpu
->id_mmfr1
= 0x10030302;
1381 cpu
->id_mmfr2
= 0x01222110;
1382 cpu
->isar
.id_isar0
= 0x00140011;
1383 cpu
->isar
.id_isar1
= 0x12002111;
1384 cpu
->isar
.id_isar2
= 0x11231111;
1385 cpu
->isar
.id_isar3
= 0x01102131;
1386 cpu
->isar
.id_isar4
= 0x141;
1387 cpu
->reset_auxcr
= 7;
1390 static void arm1176_initfn(Object
*obj
)
1392 ARMCPU
*cpu
= ARM_CPU(obj
);
1394 cpu
->dtb_compatible
= "arm,arm1176";
1395 set_feature(&cpu
->env
, ARM_FEATURE_V6K
);
1396 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1397 set_feature(&cpu
->env
, ARM_FEATURE_VAPA
);
1398 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1399 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_DIRTY_REG
);
1400 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_BLOCK_OPS
);
1401 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1402 cpu
->midr
= 0x410fb767;
1403 cpu
->reset_fpsid
= 0x410120b5;
1404 cpu
->isar
.mvfr0
= 0x11111111;
1405 cpu
->isar
.mvfr1
= 0x00000000;
1406 cpu
->ctr
= 0x1dd20d2;
1407 cpu
->reset_sctlr
= 0x00050078;
1408 cpu
->id_pfr0
= 0x111;
1409 cpu
->id_pfr1
= 0x11;
1410 cpu
->id_dfr0
= 0x33;
1412 cpu
->id_mmfr0
= 0x01130003;
1413 cpu
->id_mmfr1
= 0x10030302;
1414 cpu
->id_mmfr2
= 0x01222100;
1415 cpu
->isar
.id_isar0
= 0x0140011;
1416 cpu
->isar
.id_isar1
= 0x12002111;
1417 cpu
->isar
.id_isar2
= 0x11231121;
1418 cpu
->isar
.id_isar3
= 0x01102131;
1419 cpu
->isar
.id_isar4
= 0x01141;
1420 cpu
->reset_auxcr
= 7;
1423 static void arm11mpcore_initfn(Object
*obj
)
1425 ARMCPU
*cpu
= ARM_CPU(obj
);
1427 cpu
->dtb_compatible
= "arm,arm11mpcore";
1428 set_feature(&cpu
->env
, ARM_FEATURE_V6K
);
1429 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1430 set_feature(&cpu
->env
, ARM_FEATURE_VAPA
);
1431 set_feature(&cpu
->env
, ARM_FEATURE_MPIDR
);
1432 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1433 cpu
->midr
= 0x410fb022;
1434 cpu
->reset_fpsid
= 0x410120b4;
1435 cpu
->isar
.mvfr0
= 0x11111111;
1436 cpu
->isar
.mvfr1
= 0x00000000;
1437 cpu
->ctr
= 0x1d192992; /* 32K icache 32K dcache */
1438 cpu
->id_pfr0
= 0x111;
1442 cpu
->id_mmfr0
= 0x01100103;
1443 cpu
->id_mmfr1
= 0x10020302;
1444 cpu
->id_mmfr2
= 0x01222000;
1445 cpu
->isar
.id_isar0
= 0x00100011;
1446 cpu
->isar
.id_isar1
= 0x12002111;
1447 cpu
->isar
.id_isar2
= 0x11221011;
1448 cpu
->isar
.id_isar3
= 0x01102131;
1449 cpu
->isar
.id_isar4
= 0x141;
1450 cpu
->reset_auxcr
= 1;
1453 static void cortex_m0_initfn(Object
*obj
)
1455 ARMCPU
*cpu
= ARM_CPU(obj
);
1456 set_feature(&cpu
->env
, ARM_FEATURE_V6
);
1457 set_feature(&cpu
->env
, ARM_FEATURE_M
);
1459 cpu
->midr
= 0x410cc200;
1462 static void cortex_m3_initfn(Object
*obj
)
1464 ARMCPU
*cpu
= ARM_CPU(obj
);
1465 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1466 set_feature(&cpu
->env
, ARM_FEATURE_M
);
1467 set_feature(&cpu
->env
, ARM_FEATURE_M_MAIN
);
1468 cpu
->midr
= 0x410fc231;
1469 cpu
->pmsav7_dregion
= 8;
1470 cpu
->id_pfr0
= 0x00000030;
1471 cpu
->id_pfr1
= 0x00000200;
1472 cpu
->id_dfr0
= 0x00100000;
1473 cpu
->id_afr0
= 0x00000000;
1474 cpu
->id_mmfr0
= 0x00000030;
1475 cpu
->id_mmfr1
= 0x00000000;
1476 cpu
->id_mmfr2
= 0x00000000;
1477 cpu
->id_mmfr3
= 0x00000000;
1478 cpu
->isar
.id_isar0
= 0x01141110;
1479 cpu
->isar
.id_isar1
= 0x02111000;
1480 cpu
->isar
.id_isar2
= 0x21112231;
1481 cpu
->isar
.id_isar3
= 0x01111110;
1482 cpu
->isar
.id_isar4
= 0x01310102;
1483 cpu
->isar
.id_isar5
= 0x00000000;
1484 cpu
->isar
.id_isar6
= 0x00000000;
1487 static void cortex_m4_initfn(Object
*obj
)
1489 ARMCPU
*cpu
= ARM_CPU(obj
);
1491 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1492 set_feature(&cpu
->env
, ARM_FEATURE_M
);
1493 set_feature(&cpu
->env
, ARM_FEATURE_M_MAIN
);
1494 set_feature(&cpu
->env
, ARM_FEATURE_THUMB_DSP
);
1495 set_feature(&cpu
->env
, ARM_FEATURE_VFP4
);
1496 cpu
->midr
= 0x410fc240; /* r0p0 */
1497 cpu
->pmsav7_dregion
= 8;
1498 cpu
->isar
.mvfr0
= 0x10110021;
1499 cpu
->isar
.mvfr1
= 0x11000011;
1500 cpu
->isar
.mvfr2
= 0x00000000;
1501 cpu
->id_pfr0
= 0x00000030;
1502 cpu
->id_pfr1
= 0x00000200;
1503 cpu
->id_dfr0
= 0x00100000;
1504 cpu
->id_afr0
= 0x00000000;
1505 cpu
->id_mmfr0
= 0x00000030;
1506 cpu
->id_mmfr1
= 0x00000000;
1507 cpu
->id_mmfr2
= 0x00000000;
1508 cpu
->id_mmfr3
= 0x00000000;
1509 cpu
->isar
.id_isar0
= 0x01141110;
1510 cpu
->isar
.id_isar1
= 0x02111000;
1511 cpu
->isar
.id_isar2
= 0x21112231;
1512 cpu
->isar
.id_isar3
= 0x01111110;
1513 cpu
->isar
.id_isar4
= 0x01310102;
1514 cpu
->isar
.id_isar5
= 0x00000000;
1515 cpu
->isar
.id_isar6
= 0x00000000;
1518 static void cortex_m33_initfn(Object
*obj
)
1520 ARMCPU
*cpu
= ARM_CPU(obj
);
1522 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
1523 set_feature(&cpu
->env
, ARM_FEATURE_M
);
1524 set_feature(&cpu
->env
, ARM_FEATURE_M_MAIN
);
1525 set_feature(&cpu
->env
, ARM_FEATURE_M_SECURITY
);
1526 set_feature(&cpu
->env
, ARM_FEATURE_THUMB_DSP
);
1527 set_feature(&cpu
->env
, ARM_FEATURE_VFP4
);
1528 cpu
->midr
= 0x410fd213; /* r0p3 */
1529 cpu
->pmsav7_dregion
= 16;
1530 cpu
->sau_sregion
= 8;
1531 cpu
->isar
.mvfr0
= 0x10110021;
1532 cpu
->isar
.mvfr1
= 0x11000011;
1533 cpu
->isar
.mvfr2
= 0x00000040;
1534 cpu
->id_pfr0
= 0x00000030;
1535 cpu
->id_pfr1
= 0x00000210;
1536 cpu
->id_dfr0
= 0x00200000;
1537 cpu
->id_afr0
= 0x00000000;
1538 cpu
->id_mmfr0
= 0x00101F40;
1539 cpu
->id_mmfr1
= 0x00000000;
1540 cpu
->id_mmfr2
= 0x01000000;
1541 cpu
->id_mmfr3
= 0x00000000;
1542 cpu
->isar
.id_isar0
= 0x01101110;
1543 cpu
->isar
.id_isar1
= 0x02212000;
1544 cpu
->isar
.id_isar2
= 0x20232232;
1545 cpu
->isar
.id_isar3
= 0x01111131;
1546 cpu
->isar
.id_isar4
= 0x01310132;
1547 cpu
->isar
.id_isar5
= 0x00000000;
1548 cpu
->isar
.id_isar6
= 0x00000000;
1549 cpu
->clidr
= 0x00000000;
1550 cpu
->ctr
= 0x8000c000;
1553 static void arm_v7m_class_init(ObjectClass
*oc
, void *data
)
1555 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
1556 CPUClass
*cc
= CPU_CLASS(oc
);
1559 #ifndef CONFIG_USER_ONLY
1560 cc
->do_interrupt
= arm_v7m_cpu_do_interrupt
;
1563 cc
->cpu_exec_interrupt
= arm_v7m_cpu_exec_interrupt
;
1566 static const ARMCPRegInfo cortexr5_cp_reginfo
[] = {
1567 /* Dummy the TCM region regs for the moment */
1568 { .name
= "ATCM", .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
1569 .access
= PL1_RW
, .type
= ARM_CP_CONST
},
1570 { .name
= "BTCM", .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
1571 .access
= PL1_RW
, .type
= ARM_CP_CONST
},
1572 { .name
= "DCACHE_INVAL", .cp
= 15, .opc1
= 0, .crn
= 15, .crm
= 5,
1573 .opc2
= 0, .access
= PL1_W
, .type
= ARM_CP_NOP
},
1577 static void cortex_r5_initfn(Object
*obj
)
1579 ARMCPU
*cpu
= ARM_CPU(obj
);
1581 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1582 set_feature(&cpu
->env
, ARM_FEATURE_V7MP
);
1583 set_feature(&cpu
->env
, ARM_FEATURE_PMSA
);
1584 cpu
->midr
= 0x411fc153; /* r1p3 */
1585 cpu
->id_pfr0
= 0x0131;
1586 cpu
->id_pfr1
= 0x001;
1587 cpu
->id_dfr0
= 0x010400;
1589 cpu
->id_mmfr0
= 0x0210030;
1590 cpu
->id_mmfr1
= 0x00000000;
1591 cpu
->id_mmfr2
= 0x01200000;
1592 cpu
->id_mmfr3
= 0x0211;
1593 cpu
->isar
.id_isar0
= 0x02101111;
1594 cpu
->isar
.id_isar1
= 0x13112111;
1595 cpu
->isar
.id_isar2
= 0x21232141;
1596 cpu
->isar
.id_isar3
= 0x01112131;
1597 cpu
->isar
.id_isar4
= 0x0010142;
1598 cpu
->isar
.id_isar5
= 0x0;
1599 cpu
->isar
.id_isar6
= 0x0;
1600 cpu
->mp_is_up
= true;
1601 cpu
->pmsav7_dregion
= 16;
1602 define_arm_cp_regs(cpu
, cortexr5_cp_reginfo
);
1605 static void cortex_r5f_initfn(Object
*obj
)
1607 ARMCPU
*cpu
= ARM_CPU(obj
);
1609 cortex_r5_initfn(obj
);
1610 set_feature(&cpu
->env
, ARM_FEATURE_VFP3
);
1613 static const ARMCPRegInfo cortexa8_cp_reginfo
[] = {
1614 { .name
= "L2LOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 0,
1615 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1616 { .name
= "L2AUXCR", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 2,
1617 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1621 static void cortex_a8_initfn(Object
*obj
)
1623 ARMCPU
*cpu
= ARM_CPU(obj
);
1625 cpu
->dtb_compatible
= "arm,cortex-a8";
1626 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1627 set_feature(&cpu
->env
, ARM_FEATURE_VFP3
);
1628 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1629 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1630 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1631 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1632 cpu
->midr
= 0x410fc080;
1633 cpu
->reset_fpsid
= 0x410330c0;
1634 cpu
->isar
.mvfr0
= 0x11110222;
1635 cpu
->isar
.mvfr1
= 0x00011111;
1636 cpu
->ctr
= 0x82048004;
1637 cpu
->reset_sctlr
= 0x00c50078;
1638 cpu
->id_pfr0
= 0x1031;
1639 cpu
->id_pfr1
= 0x11;
1640 cpu
->id_dfr0
= 0x400;
1642 cpu
->id_mmfr0
= 0x31100003;
1643 cpu
->id_mmfr1
= 0x20000000;
1644 cpu
->id_mmfr2
= 0x01202000;
1645 cpu
->id_mmfr3
= 0x11;
1646 cpu
->isar
.id_isar0
= 0x00101111;
1647 cpu
->isar
.id_isar1
= 0x12112111;
1648 cpu
->isar
.id_isar2
= 0x21232031;
1649 cpu
->isar
.id_isar3
= 0x11112131;
1650 cpu
->isar
.id_isar4
= 0x00111142;
1651 cpu
->dbgdidr
= 0x15141000;
1652 cpu
->clidr
= (1 << 27) | (2 << 24) | 3;
1653 cpu
->ccsidr
[0] = 0xe007e01a; /* 16k L1 dcache. */
1654 cpu
->ccsidr
[1] = 0x2007e01a; /* 16k L1 icache. */
1655 cpu
->ccsidr
[2] = 0xf0000000; /* No L2 icache. */
1656 cpu
->reset_auxcr
= 2;
1657 define_arm_cp_regs(cpu
, cortexa8_cp_reginfo
);
1660 static const ARMCPRegInfo cortexa9_cp_reginfo
[] = {
1661 /* power_control should be set to maximum latency. Again,
1662 * default to 0 and set by private hook
1664 { .name
= "A9_PWRCTL", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
1665 .access
= PL1_RW
, .resetvalue
= 0,
1666 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_power_control
) },
1667 { .name
= "A9_DIAG", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 1,
1668 .access
= PL1_RW
, .resetvalue
= 0,
1669 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_diagnostic
) },
1670 { .name
= "A9_PWRDIAG", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 2,
1671 .access
= PL1_RW
, .resetvalue
= 0,
1672 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_power_diagnostic
) },
1673 { .name
= "NEONBUSY", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
1674 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1675 /* TLB lockdown control */
1676 { .name
= "TLB_LOCKR", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 5, .opc2
= 2,
1677 .access
= PL1_W
, .resetvalue
= 0, .type
= ARM_CP_NOP
},
1678 { .name
= "TLB_LOCKW", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 5, .opc2
= 4,
1679 .access
= PL1_W
, .resetvalue
= 0, .type
= ARM_CP_NOP
},
1680 { .name
= "TLB_VA", .cp
= 15, .crn
= 15, .crm
= 5, .opc1
= 5, .opc2
= 2,
1681 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1682 { .name
= "TLB_PA", .cp
= 15, .crn
= 15, .crm
= 6, .opc1
= 5, .opc2
= 2,
1683 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1684 { .name
= "TLB_ATTR", .cp
= 15, .crn
= 15, .crm
= 7, .opc1
= 5, .opc2
= 2,
1685 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1689 static void cortex_a9_initfn(Object
*obj
)
1691 ARMCPU
*cpu
= ARM_CPU(obj
);
1693 cpu
->dtb_compatible
= "arm,cortex-a9";
1694 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1695 set_feature(&cpu
->env
, ARM_FEATURE_VFP3
);
1696 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1697 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1698 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1699 /* Note that A9 supports the MP extensions even for
1700 * A9UP and single-core A9MP (which are both different
1701 * and valid configurations; we don't model A9UP).
1703 set_feature(&cpu
->env
, ARM_FEATURE_V7MP
);
1704 set_feature(&cpu
->env
, ARM_FEATURE_CBAR
);
1705 cpu
->midr
= 0x410fc090;
1706 cpu
->reset_fpsid
= 0x41033090;
1707 cpu
->isar
.mvfr0
= 0x11110222;
1708 cpu
->isar
.mvfr1
= 0x01111111;
1709 cpu
->ctr
= 0x80038003;
1710 cpu
->reset_sctlr
= 0x00c50078;
1711 cpu
->id_pfr0
= 0x1031;
1712 cpu
->id_pfr1
= 0x11;
1713 cpu
->id_dfr0
= 0x000;
1715 cpu
->id_mmfr0
= 0x00100103;
1716 cpu
->id_mmfr1
= 0x20000000;
1717 cpu
->id_mmfr2
= 0x01230000;
1718 cpu
->id_mmfr3
= 0x00002111;
1719 cpu
->isar
.id_isar0
= 0x00101111;
1720 cpu
->isar
.id_isar1
= 0x13112111;
1721 cpu
->isar
.id_isar2
= 0x21232041;
1722 cpu
->isar
.id_isar3
= 0x11112131;
1723 cpu
->isar
.id_isar4
= 0x00111142;
1724 cpu
->dbgdidr
= 0x35141000;
1725 cpu
->clidr
= (1 << 27) | (1 << 24) | 3;
1726 cpu
->ccsidr
[0] = 0xe00fe019; /* 16k L1 dcache. */
1727 cpu
->ccsidr
[1] = 0x200fe019; /* 16k L1 icache. */
1728 define_arm_cp_regs(cpu
, cortexa9_cp_reginfo
);
1731 #ifndef CONFIG_USER_ONLY
1732 static uint64_t a15_l2ctlr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1734 /* Linux wants the number of processors from here.
1735 * Might as well set the interrupt-controller bit too.
1737 return ((smp_cpus
- 1) << 24) | (1 << 23);
1741 static const ARMCPRegInfo cortexa15_cp_reginfo
[] = {
1742 #ifndef CONFIG_USER_ONLY
1743 { .name
= "L2CTLR", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 2,
1744 .access
= PL1_RW
, .resetvalue
= 0, .readfn
= a15_l2ctlr_read
,
1745 .writefn
= arm_cp_write_ignore
, },
1747 { .name
= "L2ECTLR", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 3,
1748 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1752 static void cortex_a7_initfn(Object
*obj
)
1754 ARMCPU
*cpu
= ARM_CPU(obj
);
1756 cpu
->dtb_compatible
= "arm,cortex-a7";
1757 set_feature(&cpu
->env
, ARM_FEATURE_V7VE
);
1758 set_feature(&cpu
->env
, ARM_FEATURE_VFP4
);
1759 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1760 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1761 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
1762 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1763 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
1764 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
1765 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1766 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
1767 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A7
;
1768 cpu
->midr
= 0x410fc075;
1769 cpu
->reset_fpsid
= 0x41023075;
1770 cpu
->isar
.mvfr0
= 0x10110222;
1771 cpu
->isar
.mvfr1
= 0x11111111;
1772 cpu
->ctr
= 0x84448003;
1773 cpu
->reset_sctlr
= 0x00c50078;
1774 cpu
->id_pfr0
= 0x00001131;
1775 cpu
->id_pfr1
= 0x00011011;
1776 cpu
->id_dfr0
= 0x02010555;
1777 cpu
->id_afr0
= 0x00000000;
1778 cpu
->id_mmfr0
= 0x10101105;
1779 cpu
->id_mmfr1
= 0x40000000;
1780 cpu
->id_mmfr2
= 0x01240000;
1781 cpu
->id_mmfr3
= 0x02102211;
1782 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1783 * table 4-41 gives 0x02101110, which includes the arm div insns.
1785 cpu
->isar
.id_isar0
= 0x02101110;
1786 cpu
->isar
.id_isar1
= 0x13112111;
1787 cpu
->isar
.id_isar2
= 0x21232041;
1788 cpu
->isar
.id_isar3
= 0x11112131;
1789 cpu
->isar
.id_isar4
= 0x10011142;
1790 cpu
->dbgdidr
= 0x3515f005;
1791 cpu
->clidr
= 0x0a200023;
1792 cpu
->ccsidr
[0] = 0x701fe00a; /* 32K L1 dcache */
1793 cpu
->ccsidr
[1] = 0x201fe00a; /* 32K L1 icache */
1794 cpu
->ccsidr
[2] = 0x711fe07a; /* 4096K L2 unified cache */
1795 define_arm_cp_regs(cpu
, cortexa15_cp_reginfo
); /* Same as A15 */
1798 static void cortex_a15_initfn(Object
*obj
)
1800 ARMCPU
*cpu
= ARM_CPU(obj
);
1802 cpu
->dtb_compatible
= "arm,cortex-a15";
1803 set_feature(&cpu
->env
, ARM_FEATURE_V7VE
);
1804 set_feature(&cpu
->env
, ARM_FEATURE_VFP4
);
1805 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1806 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1807 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
1808 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1809 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
1810 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
1811 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1812 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
1813 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A15
;
1814 cpu
->midr
= 0x412fc0f1;
1815 cpu
->reset_fpsid
= 0x410430f0;
1816 cpu
->isar
.mvfr0
= 0x10110222;
1817 cpu
->isar
.mvfr1
= 0x11111111;
1818 cpu
->ctr
= 0x8444c004;
1819 cpu
->reset_sctlr
= 0x00c50078;
1820 cpu
->id_pfr0
= 0x00001131;
1821 cpu
->id_pfr1
= 0x00011011;
1822 cpu
->id_dfr0
= 0x02010555;
1823 cpu
->id_afr0
= 0x00000000;
1824 cpu
->id_mmfr0
= 0x10201105;
1825 cpu
->id_mmfr1
= 0x20000000;
1826 cpu
->id_mmfr2
= 0x01240000;
1827 cpu
->id_mmfr3
= 0x02102211;
1828 cpu
->isar
.id_isar0
= 0x02101110;
1829 cpu
->isar
.id_isar1
= 0x13112111;
1830 cpu
->isar
.id_isar2
= 0x21232041;
1831 cpu
->isar
.id_isar3
= 0x11112131;
1832 cpu
->isar
.id_isar4
= 0x10011142;
1833 cpu
->dbgdidr
= 0x3515f021;
1834 cpu
->clidr
= 0x0a200023;
1835 cpu
->ccsidr
[0] = 0x701fe00a; /* 32K L1 dcache */
1836 cpu
->ccsidr
[1] = 0x201fe00a; /* 32K L1 icache */
1837 cpu
->ccsidr
[2] = 0x711fe07a; /* 4096K L2 unified cache */
1838 define_arm_cp_regs(cpu
, cortexa15_cp_reginfo
);
1841 static void ti925t_initfn(Object
*obj
)
1843 ARMCPU
*cpu
= ARM_CPU(obj
);
1844 set_feature(&cpu
->env
, ARM_FEATURE_V4T
);
1845 set_feature(&cpu
->env
, ARM_FEATURE_OMAPCP
);
1846 cpu
->midr
= ARM_CPUID_TI925T
;
1847 cpu
->ctr
= 0x5109149;
1848 cpu
->reset_sctlr
= 0x00000070;
1851 static void sa1100_initfn(Object
*obj
)
1853 ARMCPU
*cpu
= ARM_CPU(obj
);
1855 cpu
->dtb_compatible
= "intel,sa1100";
1856 set_feature(&cpu
->env
, ARM_FEATURE_STRONGARM
);
1857 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1858 cpu
->midr
= 0x4401A11B;
1859 cpu
->reset_sctlr
= 0x00000070;
1862 static void sa1110_initfn(Object
*obj
)
1864 ARMCPU
*cpu
= ARM_CPU(obj
);
1865 set_feature(&cpu
->env
, ARM_FEATURE_STRONGARM
);
1866 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1867 cpu
->midr
= 0x6901B119;
1868 cpu
->reset_sctlr
= 0x00000070;
1871 static void pxa250_initfn(Object
*obj
)
1873 ARMCPU
*cpu
= ARM_CPU(obj
);
1875 cpu
->dtb_compatible
= "marvell,xscale";
1876 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1877 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1878 cpu
->midr
= 0x69052100;
1879 cpu
->ctr
= 0xd172172;
1880 cpu
->reset_sctlr
= 0x00000078;
1883 static void pxa255_initfn(Object
*obj
)
1885 ARMCPU
*cpu
= ARM_CPU(obj
);
1887 cpu
->dtb_compatible
= "marvell,xscale";
1888 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1889 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1890 cpu
->midr
= 0x69052d00;
1891 cpu
->ctr
= 0xd172172;
1892 cpu
->reset_sctlr
= 0x00000078;
1895 static void pxa260_initfn(Object
*obj
)
1897 ARMCPU
*cpu
= ARM_CPU(obj
);
1899 cpu
->dtb_compatible
= "marvell,xscale";
1900 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1901 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1902 cpu
->midr
= 0x69052903;
1903 cpu
->ctr
= 0xd172172;
1904 cpu
->reset_sctlr
= 0x00000078;
1907 static void pxa261_initfn(Object
*obj
)
1909 ARMCPU
*cpu
= ARM_CPU(obj
);
1911 cpu
->dtb_compatible
= "marvell,xscale";
1912 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1913 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1914 cpu
->midr
= 0x69052d05;
1915 cpu
->ctr
= 0xd172172;
1916 cpu
->reset_sctlr
= 0x00000078;
1919 static void pxa262_initfn(Object
*obj
)
1921 ARMCPU
*cpu
= ARM_CPU(obj
);
1923 cpu
->dtb_compatible
= "marvell,xscale";
1924 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1925 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1926 cpu
->midr
= 0x69052d06;
1927 cpu
->ctr
= 0xd172172;
1928 cpu
->reset_sctlr
= 0x00000078;
1931 static void pxa270a0_initfn(Object
*obj
)
1933 ARMCPU
*cpu
= ARM_CPU(obj
);
1935 cpu
->dtb_compatible
= "marvell,xscale";
1936 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1937 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1938 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1939 cpu
->midr
= 0x69054110;
1940 cpu
->ctr
= 0xd172172;
1941 cpu
->reset_sctlr
= 0x00000078;
1944 static void pxa270a1_initfn(Object
*obj
)
1946 ARMCPU
*cpu
= ARM_CPU(obj
);
1948 cpu
->dtb_compatible
= "marvell,xscale";
1949 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1950 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1951 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1952 cpu
->midr
= 0x69054111;
1953 cpu
->ctr
= 0xd172172;
1954 cpu
->reset_sctlr
= 0x00000078;
1957 static void pxa270b0_initfn(Object
*obj
)
1959 ARMCPU
*cpu
= ARM_CPU(obj
);
1961 cpu
->dtb_compatible
= "marvell,xscale";
1962 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1963 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1964 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1965 cpu
->midr
= 0x69054112;
1966 cpu
->ctr
= 0xd172172;
1967 cpu
->reset_sctlr
= 0x00000078;
1970 static void pxa270b1_initfn(Object
*obj
)
1972 ARMCPU
*cpu
= ARM_CPU(obj
);
1974 cpu
->dtb_compatible
= "marvell,xscale";
1975 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1976 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1977 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1978 cpu
->midr
= 0x69054113;
1979 cpu
->ctr
= 0xd172172;
1980 cpu
->reset_sctlr
= 0x00000078;
1983 static void pxa270c0_initfn(Object
*obj
)
1985 ARMCPU
*cpu
= ARM_CPU(obj
);
1987 cpu
->dtb_compatible
= "marvell,xscale";
1988 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1989 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1990 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1991 cpu
->midr
= 0x69054114;
1992 cpu
->ctr
= 0xd172172;
1993 cpu
->reset_sctlr
= 0x00000078;
1996 static void pxa270c5_initfn(Object
*obj
)
1998 ARMCPU
*cpu
= ARM_CPU(obj
);
2000 cpu
->dtb_compatible
= "marvell,xscale";
2001 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
2002 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
2003 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
2004 cpu
->midr
= 0x69054117;
2005 cpu
->ctr
= 0xd172172;
2006 cpu
->reset_sctlr
= 0x00000078;
2009 #ifndef TARGET_AARCH64
2010 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2011 * otherwise, a CPU with as many features enabled as our emulation supports.
2012 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2013 * this only needs to handle 32 bits.
2015 static void arm_max_initfn(Object
*obj
)
2017 ARMCPU
*cpu
= ARM_CPU(obj
);
2019 if (kvm_enabled()) {
2020 kvm_arm_set_cpu_features_from_host(cpu
);
2022 cortex_a15_initfn(obj
);
2023 #ifdef CONFIG_USER_ONLY
2024 /* We don't set these in system emulation mode for the moment,
2025 * since we don't correctly set (all of) the ID registers to
2028 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
2032 t
= cpu
->isar
.id_isar5
;
2033 t
= FIELD_DP32(t
, ID_ISAR5
, AES
, 2);
2034 t
= FIELD_DP32(t
, ID_ISAR5
, SHA1
, 1);
2035 t
= FIELD_DP32(t
, ID_ISAR5
, SHA2
, 1);
2036 t
= FIELD_DP32(t
, ID_ISAR5
, CRC32
, 1);
2037 t
= FIELD_DP32(t
, ID_ISAR5
, RDM
, 1);
2038 t
= FIELD_DP32(t
, ID_ISAR5
, VCMA
, 1);
2039 cpu
->isar
.id_isar5
= t
;
2041 t
= cpu
->isar
.id_isar6
;
2042 t
= FIELD_DP32(t
, ID_ISAR6
, JSCVT
, 1);
2043 t
= FIELD_DP32(t
, ID_ISAR6
, DP
, 1);
2044 t
= FIELD_DP32(t
, ID_ISAR6
, FHM
, 1);
2045 t
= FIELD_DP32(t
, ID_ISAR6
, SB
, 1);
2046 t
= FIELD_DP32(t
, ID_ISAR6
, SPECRES
, 1);
2047 cpu
->isar
.id_isar6
= t
;
2049 t
= cpu
->isar
.mvfr2
;
2050 t
= FIELD_DP32(t
, MVFR2
, SIMDMISC
, 3); /* SIMD MaxNum */
2051 t
= FIELD_DP32(t
, MVFR2
, FPMISC
, 4); /* FP MaxNum */
2052 cpu
->isar
.mvfr2
= t
;
2055 t
= FIELD_DP32(t
, ID_MMFR4
, HPDS
, 1); /* AA32HPD */
2063 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2067 void (*initfn
)(Object
*obj
);
2068 void (*class_init
)(ObjectClass
*oc
, void *data
);
2071 static const ARMCPUInfo arm_cpus
[] = {
2072 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2073 { .name
= "arm926", .initfn
= arm926_initfn
},
2074 { .name
= "arm946", .initfn
= arm946_initfn
},
2075 { .name
= "arm1026", .initfn
= arm1026_initfn
},
2076 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2077 * older core than plain "arm1136". In particular this does not
2078 * have the v6K features.
2080 { .name
= "arm1136-r2", .initfn
= arm1136_r2_initfn
},
2081 { .name
= "arm1136", .initfn
= arm1136_initfn
},
2082 { .name
= "arm1176", .initfn
= arm1176_initfn
},
2083 { .name
= "arm11mpcore", .initfn
= arm11mpcore_initfn
},
2084 { .name
= "cortex-m0", .initfn
= cortex_m0_initfn
,
2085 .class_init
= arm_v7m_class_init
},
2086 { .name
= "cortex-m3", .initfn
= cortex_m3_initfn
,
2087 .class_init
= arm_v7m_class_init
},
2088 { .name
= "cortex-m4", .initfn
= cortex_m4_initfn
,
2089 .class_init
= arm_v7m_class_init
},
2090 { .name
= "cortex-m33", .initfn
= cortex_m33_initfn
,
2091 .class_init
= arm_v7m_class_init
},
2092 { .name
= "cortex-r5", .initfn
= cortex_r5_initfn
},
2093 { .name
= "cortex-r5f", .initfn
= cortex_r5f_initfn
},
2094 { .name
= "cortex-a7", .initfn
= cortex_a7_initfn
},
2095 { .name
= "cortex-a8", .initfn
= cortex_a8_initfn
},
2096 { .name
= "cortex-a9", .initfn
= cortex_a9_initfn
},
2097 { .name
= "cortex-a15", .initfn
= cortex_a15_initfn
},
2098 { .name
= "ti925t", .initfn
= ti925t_initfn
},
2099 { .name
= "sa1100", .initfn
= sa1100_initfn
},
2100 { .name
= "sa1110", .initfn
= sa1110_initfn
},
2101 { .name
= "pxa250", .initfn
= pxa250_initfn
},
2102 { .name
= "pxa255", .initfn
= pxa255_initfn
},
2103 { .name
= "pxa260", .initfn
= pxa260_initfn
},
2104 { .name
= "pxa261", .initfn
= pxa261_initfn
},
2105 { .name
= "pxa262", .initfn
= pxa262_initfn
},
2106 /* "pxa270" is an alias for "pxa270-a0" */
2107 { .name
= "pxa270", .initfn
= pxa270a0_initfn
},
2108 { .name
= "pxa270-a0", .initfn
= pxa270a0_initfn
},
2109 { .name
= "pxa270-a1", .initfn
= pxa270a1_initfn
},
2110 { .name
= "pxa270-b0", .initfn
= pxa270b0_initfn
},
2111 { .name
= "pxa270-b1", .initfn
= pxa270b1_initfn
},
2112 { .name
= "pxa270-c0", .initfn
= pxa270c0_initfn
},
2113 { .name
= "pxa270-c5", .initfn
= pxa270c5_initfn
},
2114 #ifndef TARGET_AARCH64
2115 { .name
= "max", .initfn
= arm_max_initfn
},
2117 #ifdef CONFIG_USER_ONLY
2118 { .name
= "any", .initfn
= arm_max_initfn
},
2124 static Property arm_cpu_properties
[] = {
2125 DEFINE_PROP_BOOL("start-powered-off", ARMCPU
, start_powered_off
, false),
2126 DEFINE_PROP_UINT32("psci-conduit", ARMCPU
, psci_conduit
, 0),
2127 DEFINE_PROP_UINT32("midr", ARMCPU
, midr
, 0),
2128 DEFINE_PROP_UINT64("mp-affinity", ARMCPU
,
2129 mp_affinity
, ARM64_AFFINITY_INVALID
),
2130 DEFINE_PROP_INT32("node-id", ARMCPU
, node_id
, CPU_UNSET_NUMA_NODE_ID
),
2131 DEFINE_PROP_INT32("core-count", ARMCPU
, core_count
, -1),
2132 DEFINE_PROP_END_OF_LIST()
2135 static gchar
*arm_gdb_arch_name(CPUState
*cs
)
2137 ARMCPU
*cpu
= ARM_CPU(cs
);
2138 CPUARMState
*env
= &cpu
->env
;
2140 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
2141 return g_strdup("iwmmxt");
2143 return g_strdup("arm");
2146 static void arm_cpu_class_init(ObjectClass
*oc
, void *data
)
2148 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
2149 CPUClass
*cc
= CPU_CLASS(acc
);
2150 DeviceClass
*dc
= DEVICE_CLASS(oc
);
2152 device_class_set_parent_realize(dc
, arm_cpu_realizefn
,
2153 &acc
->parent_realize
);
2154 dc
->props
= arm_cpu_properties
;
2156 acc
->parent_reset
= cc
->reset
;
2157 cc
->reset
= arm_cpu_reset
;
2159 cc
->class_by_name
= arm_cpu_class_by_name
;
2160 cc
->has_work
= arm_cpu_has_work
;
2161 cc
->cpu_exec_interrupt
= arm_cpu_exec_interrupt
;
2162 cc
->dump_state
= arm_cpu_dump_state
;
2163 cc
->set_pc
= arm_cpu_set_pc
;
2164 cc
->synchronize_from_tb
= arm_cpu_synchronize_from_tb
;
2165 cc
->gdb_read_register
= arm_cpu_gdb_read_register
;
2166 cc
->gdb_write_register
= arm_cpu_gdb_write_register
;
2167 #ifndef CONFIG_USER_ONLY
2168 cc
->do_interrupt
= arm_cpu_do_interrupt
;
2169 cc
->do_unaligned_access
= arm_cpu_do_unaligned_access
;
2170 cc
->do_transaction_failed
= arm_cpu_do_transaction_failed
;
2171 cc
->get_phys_page_attrs_debug
= arm_cpu_get_phys_page_attrs_debug
;
2172 cc
->asidx_from_attrs
= arm_asidx_from_attrs
;
2173 cc
->vmsd
= &vmstate_arm_cpu
;
2174 cc
->virtio_is_big_endian
= arm_cpu_virtio_is_big_endian
;
2175 cc
->write_elf64_note
= arm_cpu_write_elf64_note
;
2176 cc
->write_elf32_note
= arm_cpu_write_elf32_note
;
2178 cc
->gdb_num_core_regs
= 26;
2179 cc
->gdb_core_xml_file
= "arm-core.xml";
2180 cc
->gdb_arch_name
= arm_gdb_arch_name
;
2181 cc
->gdb_get_dynamic_xml
= arm_gdb_get_dynamic_xml
;
2182 cc
->gdb_stop_before_watchpoint
= true;
2183 cc
->debug_excp_handler
= arm_debug_excp_handler
;
2184 cc
->debug_check_watchpoint
= arm_debug_check_watchpoint
;
2185 #if !defined(CONFIG_USER_ONLY)
2186 cc
->adjust_watchpoint_address
= arm_adjust_watchpoint_address
;
2189 cc
->disas_set_info
= arm_disas_set_info
;
2191 cc
->tcg_initialize
= arm_translate_init
;
2192 cc
->tlb_fill
= arm_cpu_tlb_fill
;
2197 static void arm_host_initfn(Object
*obj
)
2199 ARMCPU
*cpu
= ARM_CPU(obj
);
2201 kvm_arm_set_cpu_features_from_host(cpu
);
2202 arm_cpu_post_init(obj
);
2205 static const TypeInfo host_arm_cpu_type_info
= {
2206 .name
= TYPE_ARM_HOST_CPU
,
2207 #ifdef TARGET_AARCH64
2208 .parent
= TYPE_AARCH64_CPU
,
2210 .parent
= TYPE_ARM_CPU
,
2212 .instance_init
= arm_host_initfn
,
2217 static void arm_cpu_instance_init(Object
*obj
)
2219 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(obj
);
2221 acc
->info
->initfn(obj
);
2222 arm_cpu_post_init(obj
);
2225 static void cpu_register_class_init(ObjectClass
*oc
, void *data
)
2227 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
2232 static void cpu_register(const ARMCPUInfo
*info
)
2234 TypeInfo type_info
= {
2235 .parent
= TYPE_ARM_CPU
,
2236 .instance_size
= sizeof(ARMCPU
),
2237 .instance_init
= arm_cpu_instance_init
,
2238 .class_size
= sizeof(ARMCPUClass
),
2239 .class_init
= info
->class_init
?: cpu_register_class_init
,
2240 .class_data
= (void *)info
,
2243 type_info
.name
= g_strdup_printf("%s-" TYPE_ARM_CPU
, info
->name
);
2244 type_register(&type_info
);
2245 g_free((void *)type_info
.name
);
2248 static const TypeInfo arm_cpu_type_info
= {
2249 .name
= TYPE_ARM_CPU
,
2251 .instance_size
= sizeof(ARMCPU
),
2252 .instance_init
= arm_cpu_initfn
,
2253 .instance_finalize
= arm_cpu_finalizefn
,
2255 .class_size
= sizeof(ARMCPUClass
),
2256 .class_init
= arm_cpu_class_init
,
2259 static const TypeInfo idau_interface_type_info
= {
2260 .name
= TYPE_IDAU_INTERFACE
,
2261 .parent
= TYPE_INTERFACE
,
2262 .class_size
= sizeof(IDAUInterfaceClass
),
2265 static void arm_cpu_register_types(void)
2267 const ARMCPUInfo
*info
= arm_cpus
;
2269 type_register_static(&arm_cpu_type_info
);
2270 type_register_static(&idau_interface_type_info
);
2272 while (info
->name
) {
2278 type_register_static(&host_arm_cpu_type_info
);
2282 type_init(arm_cpu_register_types
)