target/cris: Reindent mmu.c
[qemu/ar7.git] / target / arm / cpu.c
blob9b23ac2c935bbc3772a045bf1e235f1738dcd350
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qapi/error.h"
24 #include "qapi/visitor.h"
25 #include "cpu.h"
26 #include "internals.h"
27 #include "qemu-common.h"
28 #include "exec/exec-all.h"
29 #include "hw/qdev-properties.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/loader.h"
32 #endif
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hw_accel.h"
35 #include "kvm_arm.h"
36 #include "disas/capstone.h"
37 #include "fpu/softfloat.h"
39 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
41 ARMCPU *cpu = ARM_CPU(cs);
42 CPUARMState *env = &cpu->env;
44 if (is_a64(env)) {
45 env->pc = value;
46 env->thumb = 0;
47 } else {
48 env->regs[15] = value & ~1;
49 env->thumb = value & 1;
53 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
55 ARMCPU *cpu = ARM_CPU(cs);
56 CPUARMState *env = &cpu->env;
59 * It's OK to look at env for the current mode here, because it's
60 * never possible for an AArch64 TB to chain to an AArch32 TB.
62 if (is_a64(env)) {
63 env->pc = tb->pc;
64 } else {
65 env->regs[15] = tb->pc;
69 static bool arm_cpu_has_work(CPUState *cs)
71 ARMCPU *cpu = ARM_CPU(cs);
73 return (cpu->power_state != PSCI_OFF)
74 && cs->interrupt_request &
75 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
76 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
77 | CPU_INTERRUPT_EXITTB);
80 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
81 void *opaque)
83 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
85 entry->hook = hook;
86 entry->opaque = opaque;
88 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
91 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
92 void *opaque)
94 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
96 entry->hook = hook;
97 entry->opaque = opaque;
99 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
102 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
104 /* Reset a single ARMCPRegInfo register */
105 ARMCPRegInfo *ri = value;
106 ARMCPU *cpu = opaque;
108 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
109 return;
112 if (ri->resetfn) {
113 ri->resetfn(&cpu->env, ri);
114 return;
117 /* A zero offset is never possible as it would be regs[0]
118 * so we use it to indicate that reset is being handled elsewhere.
119 * This is basically only used for fields in non-core coprocessors
120 * (like the pxa2xx ones).
122 if (!ri->fieldoffset) {
123 return;
126 if (cpreg_field_is_64bit(ri)) {
127 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
128 } else {
129 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
133 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
135 /* Purely an assertion check: we've already done reset once,
136 * so now check that running the reset for the cpreg doesn't
137 * change its value. This traps bugs where two different cpregs
138 * both try to reset the same state field but to different values.
140 ARMCPRegInfo *ri = value;
141 ARMCPU *cpu = opaque;
142 uint64_t oldvalue, newvalue;
144 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
145 return;
148 oldvalue = read_raw_cp_reg(&cpu->env, ri);
149 cp_reg_reset(key, value, opaque);
150 newvalue = read_raw_cp_reg(&cpu->env, ri);
151 assert(oldvalue == newvalue);
154 /* CPUClass::reset() */
155 static void arm_cpu_reset(CPUState *s)
157 ARMCPU *cpu = ARM_CPU(s);
158 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
159 CPUARMState *env = &cpu->env;
161 acc->parent_reset(s);
163 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
165 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
166 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
168 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
169 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
170 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
171 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
173 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
174 s->halted = cpu->start_powered_off;
176 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
177 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
180 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
181 /* 64 bit CPUs always start in 64 bit mode */
182 env->aarch64 = 1;
183 #if defined(CONFIG_USER_ONLY)
184 env->pstate = PSTATE_MODE_EL0t;
185 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
186 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
187 /* Enable all PAC keys. */
188 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
189 SCTLR_EnDA | SCTLR_EnDB);
190 /* Enable all PAC instructions */
191 env->cp15.hcr_el2 |= HCR_API;
192 env->cp15.scr_el3 |= SCR_API;
193 /* and to the FP/Neon instructions */
194 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
195 /* and to the SVE instructions */
196 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
197 env->cp15.cptr_el[3] |= CPTR_EZ;
198 /* with maximum vector length */
199 env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
200 env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
201 env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
203 * Enable TBI0 and TBI1. While the real kernel only enables TBI0,
204 * turning on both here will produce smaller code and otherwise
205 * make no difference to the user-level emulation.
207 env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
208 #else
209 /* Reset into the highest available EL */
210 if (arm_feature(env, ARM_FEATURE_EL3)) {
211 env->pstate = PSTATE_MODE_EL3h;
212 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
213 env->pstate = PSTATE_MODE_EL2h;
214 } else {
215 env->pstate = PSTATE_MODE_EL1h;
217 env->pc = cpu->rvbar;
218 #endif
219 } else {
220 #if defined(CONFIG_USER_ONLY)
221 /* Userspace expects access to cp10 and cp11 for FP/Neon */
222 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
223 #endif
226 #if defined(CONFIG_USER_ONLY)
227 env->uncached_cpsr = ARM_CPU_MODE_USR;
228 /* For user mode we must enable access to coprocessors */
229 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
230 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
231 env->cp15.c15_cpar = 3;
232 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
233 env->cp15.c15_cpar = 1;
235 #else
238 * If the highest available EL is EL2, AArch32 will start in Hyp
239 * mode; otherwise it starts in SVC. Note that if we start in
240 * AArch64 then these values in the uncached_cpsr will be ignored.
242 if (arm_feature(env, ARM_FEATURE_EL2) &&
243 !arm_feature(env, ARM_FEATURE_EL3)) {
244 env->uncached_cpsr = ARM_CPU_MODE_HYP;
245 } else {
246 env->uncached_cpsr = ARM_CPU_MODE_SVC;
248 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
250 if (arm_feature(env, ARM_FEATURE_M)) {
251 uint32_t initial_msp; /* Loaded from 0x0 */
252 uint32_t initial_pc; /* Loaded from 0x4 */
253 uint8_t *rom;
254 uint32_t vecbase;
256 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
257 env->v7m.secure = true;
258 } else {
259 /* This bit resets to 0 if security is supported, but 1 if
260 * it is not. The bit is not present in v7M, but we set it
261 * here so we can avoid having to make checks on it conditional
262 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
264 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
267 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
268 * that it resets to 1, so QEMU always does that rather than making
269 * it dependent on CPU model. In v8M it is RES1.
271 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
272 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
273 if (arm_feature(env, ARM_FEATURE_V8)) {
274 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
275 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
276 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
278 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
279 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
280 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
283 if (arm_feature(env, ARM_FEATURE_VFP)) {
284 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
285 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
286 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
288 /* Unlike A/R profile, M profile defines the reset LR value */
289 env->regs[14] = 0xffffffff;
291 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
293 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
294 vecbase = env->v7m.vecbase[env->v7m.secure];
295 rom = rom_ptr(vecbase, 8);
296 if (rom) {
297 /* Address zero is covered by ROM which hasn't yet been
298 * copied into physical memory.
300 initial_msp = ldl_p(rom);
301 initial_pc = ldl_p(rom + 4);
302 } else {
303 /* Address zero not covered by a ROM blob, or the ROM blob
304 * is in non-modifiable memory and this is a second reset after
305 * it got copied into memory. In the latter case, rom_ptr
306 * will return a NULL pointer and we should use ldl_phys instead.
308 initial_msp = ldl_phys(s->as, vecbase);
309 initial_pc = ldl_phys(s->as, vecbase + 4);
312 env->regs[13] = initial_msp & 0xFFFFFFFC;
313 env->regs[15] = initial_pc & ~1;
314 env->thumb = initial_pc & 1;
317 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
318 * executing as AArch32 then check if highvecs are enabled and
319 * adjust the PC accordingly.
321 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
322 env->regs[15] = 0xFFFF0000;
325 /* M profile requires that reset clears the exclusive monitor;
326 * A profile does not, but clearing it makes more sense than having it
327 * set with an exclusive access on address zero.
329 arm_clear_exclusive(env);
331 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
332 #endif
334 if (arm_feature(env, ARM_FEATURE_PMSA)) {
335 if (cpu->pmsav7_dregion > 0) {
336 if (arm_feature(env, ARM_FEATURE_V8)) {
337 memset(env->pmsav8.rbar[M_REG_NS], 0,
338 sizeof(*env->pmsav8.rbar[M_REG_NS])
339 * cpu->pmsav7_dregion);
340 memset(env->pmsav8.rlar[M_REG_NS], 0,
341 sizeof(*env->pmsav8.rlar[M_REG_NS])
342 * cpu->pmsav7_dregion);
343 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
344 memset(env->pmsav8.rbar[M_REG_S], 0,
345 sizeof(*env->pmsav8.rbar[M_REG_S])
346 * cpu->pmsav7_dregion);
347 memset(env->pmsav8.rlar[M_REG_S], 0,
348 sizeof(*env->pmsav8.rlar[M_REG_S])
349 * cpu->pmsav7_dregion);
351 } else if (arm_feature(env, ARM_FEATURE_V7)) {
352 memset(env->pmsav7.drbar, 0,
353 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
354 memset(env->pmsav7.drsr, 0,
355 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
356 memset(env->pmsav7.dracr, 0,
357 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
360 env->pmsav7.rnr[M_REG_NS] = 0;
361 env->pmsav7.rnr[M_REG_S] = 0;
362 env->pmsav8.mair0[M_REG_NS] = 0;
363 env->pmsav8.mair0[M_REG_S] = 0;
364 env->pmsav8.mair1[M_REG_NS] = 0;
365 env->pmsav8.mair1[M_REG_S] = 0;
368 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
369 if (cpu->sau_sregion > 0) {
370 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
371 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
373 env->sau.rnr = 0;
374 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
375 * the Cortex-M33 does.
377 env->sau.ctrl = 0;
380 set_flush_to_zero(1, &env->vfp.standard_fp_status);
381 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
382 set_default_nan_mode(1, &env->vfp.standard_fp_status);
383 set_float_detect_tininess(float_tininess_before_rounding,
384 &env->vfp.fp_status);
385 set_float_detect_tininess(float_tininess_before_rounding,
386 &env->vfp.standard_fp_status);
387 set_float_detect_tininess(float_tininess_before_rounding,
388 &env->vfp.fp_status_f16);
389 #ifndef CONFIG_USER_ONLY
390 if (kvm_enabled()) {
391 kvm_arm_reset_vcpu(cpu);
393 #endif
395 hw_breakpoint_update_all(cpu);
396 hw_watchpoint_update_all(cpu);
399 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
401 CPUClass *cc = CPU_GET_CLASS(cs);
402 CPUARMState *env = cs->env_ptr;
403 uint32_t cur_el = arm_current_el(env);
404 bool secure = arm_is_secure(env);
405 uint32_t target_el;
406 uint32_t excp_idx;
407 bool ret = false;
409 if (interrupt_request & CPU_INTERRUPT_FIQ) {
410 excp_idx = EXCP_FIQ;
411 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
412 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
413 cs->exception_index = excp_idx;
414 env->exception.target_el = target_el;
415 cc->do_interrupt(cs);
416 ret = true;
419 if (interrupt_request & CPU_INTERRUPT_HARD) {
420 excp_idx = EXCP_IRQ;
421 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
422 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
423 cs->exception_index = excp_idx;
424 env->exception.target_el = target_el;
425 cc->do_interrupt(cs);
426 ret = true;
429 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
430 excp_idx = EXCP_VIRQ;
431 target_el = 1;
432 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
433 cs->exception_index = excp_idx;
434 env->exception.target_el = target_el;
435 cc->do_interrupt(cs);
436 ret = true;
439 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
440 excp_idx = EXCP_VFIQ;
441 target_el = 1;
442 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
443 cs->exception_index = excp_idx;
444 env->exception.target_el = target_el;
445 cc->do_interrupt(cs);
446 ret = true;
450 return ret;
453 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
454 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
456 CPUClass *cc = CPU_GET_CLASS(cs);
457 ARMCPU *cpu = ARM_CPU(cs);
458 CPUARMState *env = &cpu->env;
459 bool ret = false;
461 /* ARMv7-M interrupt masking works differently than -A or -R.
462 * There is no FIQ/IRQ distinction. Instead of I and F bits
463 * masking FIQ and IRQ interrupts, an exception is taken only
464 * if it is higher priority than the current execution priority
465 * (which depends on state like BASEPRI, FAULTMASK and the
466 * currently active exception).
468 if (interrupt_request & CPU_INTERRUPT_HARD
469 && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
470 cs->exception_index = EXCP_IRQ;
471 cc->do_interrupt(cs);
472 ret = true;
474 return ret;
476 #endif
478 void arm_cpu_update_virq(ARMCPU *cpu)
481 * Update the interrupt level for VIRQ, which is the logical OR of
482 * the HCR_EL2.VI bit and the input line level from the GIC.
484 CPUARMState *env = &cpu->env;
485 CPUState *cs = CPU(cpu);
487 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
488 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
490 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
491 if (new_state) {
492 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
493 } else {
494 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
499 void arm_cpu_update_vfiq(ARMCPU *cpu)
502 * Update the interrupt level for VFIQ, which is the logical OR of
503 * the HCR_EL2.VF bit and the input line level from the GIC.
505 CPUARMState *env = &cpu->env;
506 CPUState *cs = CPU(cpu);
508 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
509 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
511 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
512 if (new_state) {
513 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
514 } else {
515 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
520 #ifndef CONFIG_USER_ONLY
521 static void arm_cpu_set_irq(void *opaque, int irq, int level)
523 ARMCPU *cpu = opaque;
524 CPUARMState *env = &cpu->env;
525 CPUState *cs = CPU(cpu);
526 static const int mask[] = {
527 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
528 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
529 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
530 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
533 if (level) {
534 env->irq_line_state |= mask[irq];
535 } else {
536 env->irq_line_state &= ~mask[irq];
539 switch (irq) {
540 case ARM_CPU_VIRQ:
541 assert(arm_feature(env, ARM_FEATURE_EL2));
542 arm_cpu_update_virq(cpu);
543 break;
544 case ARM_CPU_VFIQ:
545 assert(arm_feature(env, ARM_FEATURE_EL2));
546 arm_cpu_update_vfiq(cpu);
547 break;
548 case ARM_CPU_IRQ:
549 case ARM_CPU_FIQ:
550 if (level) {
551 cpu_interrupt(cs, mask[irq]);
552 } else {
553 cpu_reset_interrupt(cs, mask[irq]);
555 break;
556 default:
557 g_assert_not_reached();
561 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
563 #ifdef CONFIG_KVM
564 ARMCPU *cpu = opaque;
565 CPUARMState *env = &cpu->env;
566 CPUState *cs = CPU(cpu);
567 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
568 uint32_t linestate_bit;
570 switch (irq) {
571 case ARM_CPU_IRQ:
572 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
573 linestate_bit = CPU_INTERRUPT_HARD;
574 break;
575 case ARM_CPU_FIQ:
576 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
577 linestate_bit = CPU_INTERRUPT_FIQ;
578 break;
579 default:
580 g_assert_not_reached();
583 if (level) {
584 env->irq_line_state |= linestate_bit;
585 } else {
586 env->irq_line_state &= ~linestate_bit;
589 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
590 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
591 #endif
594 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
596 ARMCPU *cpu = ARM_CPU(cs);
597 CPUARMState *env = &cpu->env;
599 cpu_synchronize_state(cs);
600 return arm_cpu_data_is_big_endian(env);
603 #endif
605 static inline void set_feature(CPUARMState *env, int feature)
607 env->features |= 1ULL << feature;
610 static inline void unset_feature(CPUARMState *env, int feature)
612 env->features &= ~(1ULL << feature);
615 static int
616 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
618 return print_insn_arm(pc | 1, info);
621 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
623 ARMCPU *ac = ARM_CPU(cpu);
624 CPUARMState *env = &ac->env;
625 bool sctlr_b;
627 if (is_a64(env)) {
628 /* We might not be compiled with the A64 disassembler
629 * because it needs a C++ compiler. Leave print_insn
630 * unset in this case to use the caller default behaviour.
632 #if defined(CONFIG_ARM_A64_DIS)
633 info->print_insn = print_insn_arm_a64;
634 #endif
635 info->cap_arch = CS_ARCH_ARM64;
636 info->cap_insn_unit = 4;
637 info->cap_insn_split = 4;
638 } else {
639 int cap_mode;
640 if (env->thumb) {
641 info->print_insn = print_insn_thumb1;
642 info->cap_insn_unit = 2;
643 info->cap_insn_split = 4;
644 cap_mode = CS_MODE_THUMB;
645 } else {
646 info->print_insn = print_insn_arm;
647 info->cap_insn_unit = 4;
648 info->cap_insn_split = 4;
649 cap_mode = CS_MODE_ARM;
651 if (arm_feature(env, ARM_FEATURE_V8)) {
652 cap_mode |= CS_MODE_V8;
654 if (arm_feature(env, ARM_FEATURE_M)) {
655 cap_mode |= CS_MODE_MCLASS;
657 info->cap_arch = CS_ARCH_ARM;
658 info->cap_mode = cap_mode;
661 sctlr_b = arm_sctlr_b(env);
662 if (bswap_code(sctlr_b)) {
663 #ifdef TARGET_WORDS_BIGENDIAN
664 info->endian = BFD_ENDIAN_LITTLE;
665 #else
666 info->endian = BFD_ENDIAN_BIG;
667 #endif
669 info->flags &= ~INSN_ARM_BE32;
670 #ifndef CONFIG_USER_ONLY
671 if (sctlr_b) {
672 info->flags |= INSN_ARM_BE32;
674 #endif
677 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
679 uint32_t Aff1 = idx / clustersz;
680 uint32_t Aff0 = idx % clustersz;
681 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
684 static void cpreg_hashtable_data_destroy(gpointer data)
687 * Destroy function for cpu->cp_regs hashtable data entries.
688 * We must free the name string because it was g_strdup()ed in
689 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
690 * from r->name because we know we definitely allocated it.
692 ARMCPRegInfo *r = data;
694 g_free((void *)r->name);
695 g_free(r);
698 static void arm_cpu_initfn(Object *obj)
700 CPUState *cs = CPU(obj);
701 ARMCPU *cpu = ARM_CPU(obj);
703 cs->env_ptr = &cpu->env;
704 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
705 g_free, cpreg_hashtable_data_destroy);
707 QLIST_INIT(&cpu->pre_el_change_hooks);
708 QLIST_INIT(&cpu->el_change_hooks);
710 #ifndef CONFIG_USER_ONLY
711 /* Our inbound IRQ and FIQ lines */
712 if (kvm_enabled()) {
713 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
714 * the same interface as non-KVM CPUs.
716 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
717 } else {
718 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
721 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
722 ARRAY_SIZE(cpu->gt_timer_outputs));
724 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
725 "gicv3-maintenance-interrupt", 1);
726 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
727 "pmu-interrupt", 1);
728 #endif
730 /* DTB consumers generally don't in fact care what the 'compatible'
731 * string is, so always provide some string and trust that a hypothetical
732 * picky DTB consumer will also provide a helpful error message.
734 cpu->dtb_compatible = "qemu,unknown";
735 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
736 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
738 if (tcg_enabled()) {
739 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
743 static Property arm_cpu_reset_cbar_property =
744 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
746 static Property arm_cpu_reset_hivecs_property =
747 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
749 static Property arm_cpu_rvbar_property =
750 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
752 static Property arm_cpu_has_el2_property =
753 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
755 static Property arm_cpu_has_el3_property =
756 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
758 static Property arm_cpu_cfgend_property =
759 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
761 /* use property name "pmu" to match other archs and virt tools */
762 static Property arm_cpu_has_pmu_property =
763 DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
765 static Property arm_cpu_has_mpu_property =
766 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
768 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
769 * because the CPU initfn will have already set cpu->pmsav7_dregion to
770 * the right value for that particular CPU type, and we don't want
771 * to override that with an incorrect constant value.
773 static Property arm_cpu_pmsav7_dregion_property =
774 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
775 pmsav7_dregion,
776 qdev_prop_uint32, uint32_t);
778 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
779 void *opaque, Error **errp)
781 ARMCPU *cpu = ARM_CPU(obj);
783 visit_type_uint32(v, name, &cpu->init_svtor, errp);
786 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
787 void *opaque, Error **errp)
789 ARMCPU *cpu = ARM_CPU(obj);
791 visit_type_uint32(v, name, &cpu->init_svtor, errp);
794 void arm_cpu_post_init(Object *obj)
796 ARMCPU *cpu = ARM_CPU(obj);
798 /* M profile implies PMSA. We have to do this here rather than
799 * in realize with the other feature-implication checks because
800 * we look at the PMSA bit to see if we should add some properties.
802 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
803 set_feature(&cpu->env, ARM_FEATURE_PMSA);
806 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
807 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
808 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
809 &error_abort);
812 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
813 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
814 &error_abort);
817 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
818 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
819 &error_abort);
822 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
823 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
824 * prevent "has_el3" from existing on CPUs which cannot support EL3.
826 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
827 &error_abort);
829 #ifndef CONFIG_USER_ONLY
830 object_property_add_link(obj, "secure-memory",
831 TYPE_MEMORY_REGION,
832 (Object **)&cpu->secure_memory,
833 qdev_prop_allow_set_link_before_realize,
834 OBJ_PROP_LINK_STRONG,
835 &error_abort);
836 #endif
839 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
840 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
841 &error_abort);
844 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
845 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
846 &error_abort);
849 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
850 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
851 &error_abort);
852 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
853 qdev_property_add_static(DEVICE(obj),
854 &arm_cpu_pmsav7_dregion_property,
855 &error_abort);
859 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
860 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
861 qdev_prop_allow_set_link_before_realize,
862 OBJ_PROP_LINK_STRONG,
863 &error_abort);
865 * M profile: initial value of the Secure VTOR. We can't just use
866 * a simple DEFINE_PROP_UINT32 for this because we want to permit
867 * the property to be set after realize.
869 object_property_add(obj, "init-svtor", "uint32",
870 arm_get_init_svtor, arm_set_init_svtor,
871 NULL, NULL, &error_abort);
874 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
875 &error_abort);
878 static void arm_cpu_finalizefn(Object *obj)
880 ARMCPU *cpu = ARM_CPU(obj);
881 ARMELChangeHook *hook, *next;
883 g_hash_table_destroy(cpu->cp_regs);
885 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
886 QLIST_REMOVE(hook, node);
887 g_free(hook);
889 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
890 QLIST_REMOVE(hook, node);
891 g_free(hook);
893 #ifndef CONFIG_USER_ONLY
894 if (cpu->pmu_timer) {
895 timer_del(cpu->pmu_timer);
896 timer_deinit(cpu->pmu_timer);
897 timer_free(cpu->pmu_timer);
899 #endif
902 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
904 CPUState *cs = CPU(dev);
905 ARMCPU *cpu = ARM_CPU(dev);
906 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
907 CPUARMState *env = &cpu->env;
908 int pagebits;
909 Error *local_err = NULL;
910 bool no_aa32 = false;
912 /* If we needed to query the host kernel for the CPU features
913 * then it's possible that might have failed in the initfn, but
914 * this is the first point where we can report it.
916 if (cpu->host_cpu_probe_failed) {
917 if (!kvm_enabled()) {
918 error_setg(errp, "The 'host' CPU type can only be used with KVM");
919 } else {
920 error_setg(errp, "Failed to retrieve host CPU features");
922 return;
925 #ifndef CONFIG_USER_ONLY
926 /* The NVIC and M-profile CPU are two halves of a single piece of
927 * hardware; trying to use one without the other is a command line
928 * error and will result in segfaults if not caught here.
930 if (arm_feature(env, ARM_FEATURE_M)) {
931 if (!env->nvic) {
932 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
933 return;
935 } else {
936 if (env->nvic) {
937 error_setg(errp, "This board can only be used with Cortex-M CPUs");
938 return;
942 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
943 arm_gt_ptimer_cb, cpu);
944 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
945 arm_gt_vtimer_cb, cpu);
946 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
947 arm_gt_htimer_cb, cpu);
948 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
949 arm_gt_stimer_cb, cpu);
950 #endif
952 cpu_exec_realizefn(cs, &local_err);
953 if (local_err != NULL) {
954 error_propagate(errp, local_err);
955 return;
958 /* Some features automatically imply others: */
959 if (arm_feature(env, ARM_FEATURE_V8)) {
960 if (arm_feature(env, ARM_FEATURE_M)) {
961 set_feature(env, ARM_FEATURE_V7);
962 } else {
963 set_feature(env, ARM_FEATURE_V7VE);
968 * There exist AArch64 cpus without AArch32 support. When KVM
969 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
970 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
972 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
973 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
976 if (arm_feature(env, ARM_FEATURE_V7VE)) {
977 /* v7 Virtualization Extensions. In real hardware this implies
978 * EL2 and also the presence of the Security Extensions.
979 * For QEMU, for backwards-compatibility we implement some
980 * CPUs or CPU configs which have no actual EL2 or EL3 but do
981 * include the various other features that V7VE implies.
982 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
983 * Security Extensions is ARM_FEATURE_EL3.
985 assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
986 set_feature(env, ARM_FEATURE_LPAE);
987 set_feature(env, ARM_FEATURE_V7);
989 if (arm_feature(env, ARM_FEATURE_V7)) {
990 set_feature(env, ARM_FEATURE_VAPA);
991 set_feature(env, ARM_FEATURE_THUMB2);
992 set_feature(env, ARM_FEATURE_MPIDR);
993 if (!arm_feature(env, ARM_FEATURE_M)) {
994 set_feature(env, ARM_FEATURE_V6K);
995 } else {
996 set_feature(env, ARM_FEATURE_V6);
999 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1000 * non-EL3 configs. This is needed by some legacy boards.
1002 set_feature(env, ARM_FEATURE_VBAR);
1004 if (arm_feature(env, ARM_FEATURE_V6K)) {
1005 set_feature(env, ARM_FEATURE_V6);
1006 set_feature(env, ARM_FEATURE_MVFR);
1008 if (arm_feature(env, ARM_FEATURE_V6)) {
1009 set_feature(env, ARM_FEATURE_V5);
1010 if (!arm_feature(env, ARM_FEATURE_M)) {
1011 assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
1012 set_feature(env, ARM_FEATURE_AUXCR);
1015 if (arm_feature(env, ARM_FEATURE_V5)) {
1016 set_feature(env, ARM_FEATURE_V4T);
1018 if (arm_feature(env, ARM_FEATURE_VFP4)) {
1019 set_feature(env, ARM_FEATURE_VFP3);
1021 if (arm_feature(env, ARM_FEATURE_VFP3)) {
1022 set_feature(env, ARM_FEATURE_VFP);
1024 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1025 set_feature(env, ARM_FEATURE_V7MP);
1026 set_feature(env, ARM_FEATURE_PXN);
1028 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1029 set_feature(env, ARM_FEATURE_CBAR);
1031 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1032 !arm_feature(env, ARM_FEATURE_M)) {
1033 set_feature(env, ARM_FEATURE_THUMB_DSP);
1037 * We rely on no XScale CPU having VFP so we can use the same bits in the
1038 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1040 assert(!(arm_feature(env, ARM_FEATURE_VFP) &&
1041 arm_feature(env, ARM_FEATURE_XSCALE)));
1043 if (arm_feature(env, ARM_FEATURE_V7) &&
1044 !arm_feature(env, ARM_FEATURE_M) &&
1045 !arm_feature(env, ARM_FEATURE_PMSA)) {
1046 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1047 * can use 4K pages.
1049 pagebits = 12;
1050 } else {
1051 /* For CPUs which might have tiny 1K pages, or which have an
1052 * MPU and might have small region sizes, stick with 1K pages.
1054 pagebits = 10;
1056 if (!set_preferred_target_page_bits(pagebits)) {
1057 /* This can only ever happen for hotplugging a CPU, or if
1058 * the board code incorrectly creates a CPU which it has
1059 * promised via minimum_page_size that it will not.
1061 error_setg(errp, "This CPU requires a smaller page size than the "
1062 "system is using");
1063 return;
1066 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1067 * We don't support setting cluster ID ([16..23]) (known as Aff2
1068 * in later ARM ARM versions), or any of the higher affinity level fields,
1069 * so these bits always RAZ.
1071 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1072 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1073 ARM_DEFAULT_CPUS_PER_CLUSTER);
1076 if (cpu->reset_hivecs) {
1077 cpu->reset_sctlr |= (1 << 13);
1080 if (cpu->cfgend) {
1081 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1082 cpu->reset_sctlr |= SCTLR_EE;
1083 } else {
1084 cpu->reset_sctlr |= SCTLR_B;
1088 if (!cpu->has_el3) {
1089 /* If the has_el3 CPU property is disabled then we need to disable the
1090 * feature.
1092 unset_feature(env, ARM_FEATURE_EL3);
1094 /* Disable the security extension feature bits in the processor feature
1095 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1097 cpu->id_pfr1 &= ~0xf0;
1098 cpu->isar.id_aa64pfr0 &= ~0xf000;
1101 if (!cpu->has_el2) {
1102 unset_feature(env, ARM_FEATURE_EL2);
1105 if (!cpu->has_pmu) {
1106 unset_feature(env, ARM_FEATURE_PMU);
1108 if (arm_feature(env, ARM_FEATURE_PMU)) {
1109 pmu_init(cpu);
1111 if (!kvm_enabled()) {
1112 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1113 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1116 #ifndef CONFIG_USER_ONLY
1117 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1118 cpu);
1119 #endif
1120 } else {
1121 cpu->id_aa64dfr0 &= ~0xf00;
1122 cpu->id_dfr0 &= ~(0xf << 24);
1123 cpu->pmceid0 = 0;
1124 cpu->pmceid1 = 0;
1127 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1128 /* Disable the hypervisor feature bits in the processor feature
1129 * registers if we don't have EL2. These are id_pfr1[15:12] and
1130 * id_aa64pfr0_el1[11:8].
1132 cpu->isar.id_aa64pfr0 &= ~0xf00;
1133 cpu->id_pfr1 &= ~0xf000;
1136 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1137 * to false or by setting pmsav7-dregion to 0.
1139 if (!cpu->has_mpu) {
1140 cpu->pmsav7_dregion = 0;
1142 if (cpu->pmsav7_dregion == 0) {
1143 cpu->has_mpu = false;
1146 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1147 arm_feature(env, ARM_FEATURE_V7)) {
1148 uint32_t nr = cpu->pmsav7_dregion;
1150 if (nr > 0xff) {
1151 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1152 return;
1155 if (nr) {
1156 if (arm_feature(env, ARM_FEATURE_V8)) {
1157 /* PMSAv8 */
1158 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1159 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1160 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1161 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1162 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1164 } else {
1165 env->pmsav7.drbar = g_new0(uint32_t, nr);
1166 env->pmsav7.drsr = g_new0(uint32_t, nr);
1167 env->pmsav7.dracr = g_new0(uint32_t, nr);
1172 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1173 uint32_t nr = cpu->sau_sregion;
1175 if (nr > 0xff) {
1176 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1177 return;
1180 if (nr) {
1181 env->sau.rbar = g_new0(uint32_t, nr);
1182 env->sau.rlar = g_new0(uint32_t, nr);
1186 if (arm_feature(env, ARM_FEATURE_EL3)) {
1187 set_feature(env, ARM_FEATURE_VBAR);
1190 register_cp_regs_for_features(cpu);
1191 arm_cpu_register_gdb_regs_for_features(cpu);
1193 init_cpreg_list(cpu);
1195 #ifndef CONFIG_USER_ONLY
1196 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1197 cs->num_ases = 2;
1199 if (!cpu->secure_memory) {
1200 cpu->secure_memory = cs->memory;
1202 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1203 cpu->secure_memory);
1204 } else {
1205 cs->num_ases = 1;
1207 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1209 /* No core_count specified, default to smp_cpus. */
1210 if (cpu->core_count == -1) {
1211 cpu->core_count = smp_cpus;
1213 #endif
1215 qemu_init_vcpu(cs);
1216 cpu_reset(cs);
1218 acc->parent_realize(dev, errp);
1221 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1223 ObjectClass *oc;
1224 char *typename;
1225 char **cpuname;
1226 const char *cpunamestr;
1228 cpuname = g_strsplit(cpu_model, ",", 1);
1229 cpunamestr = cpuname[0];
1230 #ifdef CONFIG_USER_ONLY
1231 /* For backwards compatibility usermode emulation allows "-cpu any",
1232 * which has the same semantics as "-cpu max".
1234 if (!strcmp(cpunamestr, "any")) {
1235 cpunamestr = "max";
1237 #endif
1238 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1239 oc = object_class_by_name(typename);
1240 g_strfreev(cpuname);
1241 g_free(typename);
1242 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1243 object_class_is_abstract(oc)) {
1244 return NULL;
1246 return oc;
1249 /* CPU models. These are not needed for the AArch64 linux-user build. */
1250 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1252 static void arm926_initfn(Object *obj)
1254 ARMCPU *cpu = ARM_CPU(obj);
1256 cpu->dtb_compatible = "arm,arm926";
1257 set_feature(&cpu->env, ARM_FEATURE_V5);
1258 set_feature(&cpu->env, ARM_FEATURE_VFP);
1259 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1260 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1261 cpu->midr = 0x41069265;
1262 cpu->reset_fpsid = 0x41011090;
1263 cpu->ctr = 0x1dd20d2;
1264 cpu->reset_sctlr = 0x00090078;
1267 * ARMv5 does not have the ID_ISAR registers, but we can still
1268 * set the field to indicate Jazelle support within QEMU.
1270 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1273 static void arm946_initfn(Object *obj)
1275 ARMCPU *cpu = ARM_CPU(obj);
1277 cpu->dtb_compatible = "arm,arm946";
1278 set_feature(&cpu->env, ARM_FEATURE_V5);
1279 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1280 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1281 cpu->midr = 0x41059461;
1282 cpu->ctr = 0x0f004006;
1283 cpu->reset_sctlr = 0x00000078;
1286 static void arm1026_initfn(Object *obj)
1288 ARMCPU *cpu = ARM_CPU(obj);
1290 cpu->dtb_compatible = "arm,arm1026";
1291 set_feature(&cpu->env, ARM_FEATURE_V5);
1292 set_feature(&cpu->env, ARM_FEATURE_VFP);
1293 set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1294 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1295 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1296 cpu->midr = 0x4106a262;
1297 cpu->reset_fpsid = 0x410110a0;
1298 cpu->ctr = 0x1dd20d2;
1299 cpu->reset_sctlr = 0x00090078;
1300 cpu->reset_auxcr = 1;
1303 * ARMv5 does not have the ID_ISAR registers, but we can still
1304 * set the field to indicate Jazelle support within QEMU.
1306 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1309 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1310 ARMCPRegInfo ifar = {
1311 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1312 .access = PL1_RW,
1313 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1314 .resetvalue = 0
1316 define_one_arm_cp_reg(cpu, &ifar);
1320 static void arm1136_r2_initfn(Object *obj)
1322 ARMCPU *cpu = ARM_CPU(obj);
1323 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1324 * older core than plain "arm1136". In particular this does not
1325 * have the v6K features.
1326 * These ID register values are correct for 1136 but may be wrong
1327 * for 1136_r2 (in particular r0p2 does not actually implement most
1328 * of the ID registers).
1331 cpu->dtb_compatible = "arm,arm1136";
1332 set_feature(&cpu->env, ARM_FEATURE_V6);
1333 set_feature(&cpu->env, ARM_FEATURE_VFP);
1334 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1335 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1336 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1337 cpu->midr = 0x4107b362;
1338 cpu->reset_fpsid = 0x410120b4;
1339 cpu->isar.mvfr0 = 0x11111111;
1340 cpu->isar.mvfr1 = 0x00000000;
1341 cpu->ctr = 0x1dd20d2;
1342 cpu->reset_sctlr = 0x00050078;
1343 cpu->id_pfr0 = 0x111;
1344 cpu->id_pfr1 = 0x1;
1345 cpu->id_dfr0 = 0x2;
1346 cpu->id_afr0 = 0x3;
1347 cpu->id_mmfr0 = 0x01130003;
1348 cpu->id_mmfr1 = 0x10030302;
1349 cpu->id_mmfr2 = 0x01222110;
1350 cpu->isar.id_isar0 = 0x00140011;
1351 cpu->isar.id_isar1 = 0x12002111;
1352 cpu->isar.id_isar2 = 0x11231111;
1353 cpu->isar.id_isar3 = 0x01102131;
1354 cpu->isar.id_isar4 = 0x141;
1355 cpu->reset_auxcr = 7;
1358 static void arm1136_initfn(Object *obj)
1360 ARMCPU *cpu = ARM_CPU(obj);
1362 cpu->dtb_compatible = "arm,arm1136";
1363 set_feature(&cpu->env, ARM_FEATURE_V6K);
1364 set_feature(&cpu->env, ARM_FEATURE_V6);
1365 set_feature(&cpu->env, ARM_FEATURE_VFP);
1366 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1367 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1368 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1369 cpu->midr = 0x4117b363;
1370 cpu->reset_fpsid = 0x410120b4;
1371 cpu->isar.mvfr0 = 0x11111111;
1372 cpu->isar.mvfr1 = 0x00000000;
1373 cpu->ctr = 0x1dd20d2;
1374 cpu->reset_sctlr = 0x00050078;
1375 cpu->id_pfr0 = 0x111;
1376 cpu->id_pfr1 = 0x1;
1377 cpu->id_dfr0 = 0x2;
1378 cpu->id_afr0 = 0x3;
1379 cpu->id_mmfr0 = 0x01130003;
1380 cpu->id_mmfr1 = 0x10030302;
1381 cpu->id_mmfr2 = 0x01222110;
1382 cpu->isar.id_isar0 = 0x00140011;
1383 cpu->isar.id_isar1 = 0x12002111;
1384 cpu->isar.id_isar2 = 0x11231111;
1385 cpu->isar.id_isar3 = 0x01102131;
1386 cpu->isar.id_isar4 = 0x141;
1387 cpu->reset_auxcr = 7;
1390 static void arm1176_initfn(Object *obj)
1392 ARMCPU *cpu = ARM_CPU(obj);
1394 cpu->dtb_compatible = "arm,arm1176";
1395 set_feature(&cpu->env, ARM_FEATURE_V6K);
1396 set_feature(&cpu->env, ARM_FEATURE_VFP);
1397 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1398 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1399 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1400 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1401 set_feature(&cpu->env, ARM_FEATURE_EL3);
1402 cpu->midr = 0x410fb767;
1403 cpu->reset_fpsid = 0x410120b5;
1404 cpu->isar.mvfr0 = 0x11111111;
1405 cpu->isar.mvfr1 = 0x00000000;
1406 cpu->ctr = 0x1dd20d2;
1407 cpu->reset_sctlr = 0x00050078;
1408 cpu->id_pfr0 = 0x111;
1409 cpu->id_pfr1 = 0x11;
1410 cpu->id_dfr0 = 0x33;
1411 cpu->id_afr0 = 0;
1412 cpu->id_mmfr0 = 0x01130003;
1413 cpu->id_mmfr1 = 0x10030302;
1414 cpu->id_mmfr2 = 0x01222100;
1415 cpu->isar.id_isar0 = 0x0140011;
1416 cpu->isar.id_isar1 = 0x12002111;
1417 cpu->isar.id_isar2 = 0x11231121;
1418 cpu->isar.id_isar3 = 0x01102131;
1419 cpu->isar.id_isar4 = 0x01141;
1420 cpu->reset_auxcr = 7;
1423 static void arm11mpcore_initfn(Object *obj)
1425 ARMCPU *cpu = ARM_CPU(obj);
1427 cpu->dtb_compatible = "arm,arm11mpcore";
1428 set_feature(&cpu->env, ARM_FEATURE_V6K);
1429 set_feature(&cpu->env, ARM_FEATURE_VFP);
1430 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1431 set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1432 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1433 cpu->midr = 0x410fb022;
1434 cpu->reset_fpsid = 0x410120b4;
1435 cpu->isar.mvfr0 = 0x11111111;
1436 cpu->isar.mvfr1 = 0x00000000;
1437 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1438 cpu->id_pfr0 = 0x111;
1439 cpu->id_pfr1 = 0x1;
1440 cpu->id_dfr0 = 0;
1441 cpu->id_afr0 = 0x2;
1442 cpu->id_mmfr0 = 0x01100103;
1443 cpu->id_mmfr1 = 0x10020302;
1444 cpu->id_mmfr2 = 0x01222000;
1445 cpu->isar.id_isar0 = 0x00100011;
1446 cpu->isar.id_isar1 = 0x12002111;
1447 cpu->isar.id_isar2 = 0x11221011;
1448 cpu->isar.id_isar3 = 0x01102131;
1449 cpu->isar.id_isar4 = 0x141;
1450 cpu->reset_auxcr = 1;
1453 static void cortex_m0_initfn(Object *obj)
1455 ARMCPU *cpu = ARM_CPU(obj);
1456 set_feature(&cpu->env, ARM_FEATURE_V6);
1457 set_feature(&cpu->env, ARM_FEATURE_M);
1459 cpu->midr = 0x410cc200;
1462 static void cortex_m3_initfn(Object *obj)
1464 ARMCPU *cpu = ARM_CPU(obj);
1465 set_feature(&cpu->env, ARM_FEATURE_V7);
1466 set_feature(&cpu->env, ARM_FEATURE_M);
1467 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1468 cpu->midr = 0x410fc231;
1469 cpu->pmsav7_dregion = 8;
1470 cpu->id_pfr0 = 0x00000030;
1471 cpu->id_pfr1 = 0x00000200;
1472 cpu->id_dfr0 = 0x00100000;
1473 cpu->id_afr0 = 0x00000000;
1474 cpu->id_mmfr0 = 0x00000030;
1475 cpu->id_mmfr1 = 0x00000000;
1476 cpu->id_mmfr2 = 0x00000000;
1477 cpu->id_mmfr3 = 0x00000000;
1478 cpu->isar.id_isar0 = 0x01141110;
1479 cpu->isar.id_isar1 = 0x02111000;
1480 cpu->isar.id_isar2 = 0x21112231;
1481 cpu->isar.id_isar3 = 0x01111110;
1482 cpu->isar.id_isar4 = 0x01310102;
1483 cpu->isar.id_isar5 = 0x00000000;
1484 cpu->isar.id_isar6 = 0x00000000;
1487 static void cortex_m4_initfn(Object *obj)
1489 ARMCPU *cpu = ARM_CPU(obj);
1491 set_feature(&cpu->env, ARM_FEATURE_V7);
1492 set_feature(&cpu->env, ARM_FEATURE_M);
1493 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1494 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1495 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1496 cpu->midr = 0x410fc240; /* r0p0 */
1497 cpu->pmsav7_dregion = 8;
1498 cpu->isar.mvfr0 = 0x10110021;
1499 cpu->isar.mvfr1 = 0x11000011;
1500 cpu->isar.mvfr2 = 0x00000000;
1501 cpu->id_pfr0 = 0x00000030;
1502 cpu->id_pfr1 = 0x00000200;
1503 cpu->id_dfr0 = 0x00100000;
1504 cpu->id_afr0 = 0x00000000;
1505 cpu->id_mmfr0 = 0x00000030;
1506 cpu->id_mmfr1 = 0x00000000;
1507 cpu->id_mmfr2 = 0x00000000;
1508 cpu->id_mmfr3 = 0x00000000;
1509 cpu->isar.id_isar0 = 0x01141110;
1510 cpu->isar.id_isar1 = 0x02111000;
1511 cpu->isar.id_isar2 = 0x21112231;
1512 cpu->isar.id_isar3 = 0x01111110;
1513 cpu->isar.id_isar4 = 0x01310102;
1514 cpu->isar.id_isar5 = 0x00000000;
1515 cpu->isar.id_isar6 = 0x00000000;
1518 static void cortex_m33_initfn(Object *obj)
1520 ARMCPU *cpu = ARM_CPU(obj);
1522 set_feature(&cpu->env, ARM_FEATURE_V8);
1523 set_feature(&cpu->env, ARM_FEATURE_M);
1524 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1525 set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1526 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1527 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1528 cpu->midr = 0x410fd213; /* r0p3 */
1529 cpu->pmsav7_dregion = 16;
1530 cpu->sau_sregion = 8;
1531 cpu->isar.mvfr0 = 0x10110021;
1532 cpu->isar.mvfr1 = 0x11000011;
1533 cpu->isar.mvfr2 = 0x00000040;
1534 cpu->id_pfr0 = 0x00000030;
1535 cpu->id_pfr1 = 0x00000210;
1536 cpu->id_dfr0 = 0x00200000;
1537 cpu->id_afr0 = 0x00000000;
1538 cpu->id_mmfr0 = 0x00101F40;
1539 cpu->id_mmfr1 = 0x00000000;
1540 cpu->id_mmfr2 = 0x01000000;
1541 cpu->id_mmfr3 = 0x00000000;
1542 cpu->isar.id_isar0 = 0x01101110;
1543 cpu->isar.id_isar1 = 0x02212000;
1544 cpu->isar.id_isar2 = 0x20232232;
1545 cpu->isar.id_isar3 = 0x01111131;
1546 cpu->isar.id_isar4 = 0x01310132;
1547 cpu->isar.id_isar5 = 0x00000000;
1548 cpu->isar.id_isar6 = 0x00000000;
1549 cpu->clidr = 0x00000000;
1550 cpu->ctr = 0x8000c000;
1553 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1555 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1556 CPUClass *cc = CPU_CLASS(oc);
1558 acc->info = data;
1559 #ifndef CONFIG_USER_ONLY
1560 cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1561 #endif
1563 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1566 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1567 /* Dummy the TCM region regs for the moment */
1568 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1569 .access = PL1_RW, .type = ARM_CP_CONST },
1570 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1571 .access = PL1_RW, .type = ARM_CP_CONST },
1572 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1573 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1574 REGINFO_SENTINEL
1577 static void cortex_r5_initfn(Object *obj)
1579 ARMCPU *cpu = ARM_CPU(obj);
1581 set_feature(&cpu->env, ARM_FEATURE_V7);
1582 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1583 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1584 cpu->midr = 0x411fc153; /* r1p3 */
1585 cpu->id_pfr0 = 0x0131;
1586 cpu->id_pfr1 = 0x001;
1587 cpu->id_dfr0 = 0x010400;
1588 cpu->id_afr0 = 0x0;
1589 cpu->id_mmfr0 = 0x0210030;
1590 cpu->id_mmfr1 = 0x00000000;
1591 cpu->id_mmfr2 = 0x01200000;
1592 cpu->id_mmfr3 = 0x0211;
1593 cpu->isar.id_isar0 = 0x02101111;
1594 cpu->isar.id_isar1 = 0x13112111;
1595 cpu->isar.id_isar2 = 0x21232141;
1596 cpu->isar.id_isar3 = 0x01112131;
1597 cpu->isar.id_isar4 = 0x0010142;
1598 cpu->isar.id_isar5 = 0x0;
1599 cpu->isar.id_isar6 = 0x0;
1600 cpu->mp_is_up = true;
1601 cpu->pmsav7_dregion = 16;
1602 define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1605 static void cortex_r5f_initfn(Object *obj)
1607 ARMCPU *cpu = ARM_CPU(obj);
1609 cortex_r5_initfn(obj);
1610 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1613 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1614 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1615 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1616 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1617 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1618 REGINFO_SENTINEL
1621 static void cortex_a8_initfn(Object *obj)
1623 ARMCPU *cpu = ARM_CPU(obj);
1625 cpu->dtb_compatible = "arm,cortex-a8";
1626 set_feature(&cpu->env, ARM_FEATURE_V7);
1627 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1628 set_feature(&cpu->env, ARM_FEATURE_NEON);
1629 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1630 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1631 set_feature(&cpu->env, ARM_FEATURE_EL3);
1632 cpu->midr = 0x410fc080;
1633 cpu->reset_fpsid = 0x410330c0;
1634 cpu->isar.mvfr0 = 0x11110222;
1635 cpu->isar.mvfr1 = 0x00011111;
1636 cpu->ctr = 0x82048004;
1637 cpu->reset_sctlr = 0x00c50078;
1638 cpu->id_pfr0 = 0x1031;
1639 cpu->id_pfr1 = 0x11;
1640 cpu->id_dfr0 = 0x400;
1641 cpu->id_afr0 = 0;
1642 cpu->id_mmfr0 = 0x31100003;
1643 cpu->id_mmfr1 = 0x20000000;
1644 cpu->id_mmfr2 = 0x01202000;
1645 cpu->id_mmfr3 = 0x11;
1646 cpu->isar.id_isar0 = 0x00101111;
1647 cpu->isar.id_isar1 = 0x12112111;
1648 cpu->isar.id_isar2 = 0x21232031;
1649 cpu->isar.id_isar3 = 0x11112131;
1650 cpu->isar.id_isar4 = 0x00111142;
1651 cpu->dbgdidr = 0x15141000;
1652 cpu->clidr = (1 << 27) | (2 << 24) | 3;
1653 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1654 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1655 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1656 cpu->reset_auxcr = 2;
1657 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1660 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1661 /* power_control should be set to maximum latency. Again,
1662 * default to 0 and set by private hook
1664 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1665 .access = PL1_RW, .resetvalue = 0,
1666 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1667 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1668 .access = PL1_RW, .resetvalue = 0,
1669 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1670 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1671 .access = PL1_RW, .resetvalue = 0,
1672 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1673 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1674 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1675 /* TLB lockdown control */
1676 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1677 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1678 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1679 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1680 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1681 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1682 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1683 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1684 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1685 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1686 REGINFO_SENTINEL
1689 static void cortex_a9_initfn(Object *obj)
1691 ARMCPU *cpu = ARM_CPU(obj);
1693 cpu->dtb_compatible = "arm,cortex-a9";
1694 set_feature(&cpu->env, ARM_FEATURE_V7);
1695 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1696 set_feature(&cpu->env, ARM_FEATURE_NEON);
1697 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1698 set_feature(&cpu->env, ARM_FEATURE_EL3);
1699 /* Note that A9 supports the MP extensions even for
1700 * A9UP and single-core A9MP (which are both different
1701 * and valid configurations; we don't model A9UP).
1703 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1704 set_feature(&cpu->env, ARM_FEATURE_CBAR);
1705 cpu->midr = 0x410fc090;
1706 cpu->reset_fpsid = 0x41033090;
1707 cpu->isar.mvfr0 = 0x11110222;
1708 cpu->isar.mvfr1 = 0x01111111;
1709 cpu->ctr = 0x80038003;
1710 cpu->reset_sctlr = 0x00c50078;
1711 cpu->id_pfr0 = 0x1031;
1712 cpu->id_pfr1 = 0x11;
1713 cpu->id_dfr0 = 0x000;
1714 cpu->id_afr0 = 0;
1715 cpu->id_mmfr0 = 0x00100103;
1716 cpu->id_mmfr1 = 0x20000000;
1717 cpu->id_mmfr2 = 0x01230000;
1718 cpu->id_mmfr3 = 0x00002111;
1719 cpu->isar.id_isar0 = 0x00101111;
1720 cpu->isar.id_isar1 = 0x13112111;
1721 cpu->isar.id_isar2 = 0x21232041;
1722 cpu->isar.id_isar3 = 0x11112131;
1723 cpu->isar.id_isar4 = 0x00111142;
1724 cpu->dbgdidr = 0x35141000;
1725 cpu->clidr = (1 << 27) | (1 << 24) | 3;
1726 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1727 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1728 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1731 #ifndef CONFIG_USER_ONLY
1732 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1734 /* Linux wants the number of processors from here.
1735 * Might as well set the interrupt-controller bit too.
1737 return ((smp_cpus - 1) << 24) | (1 << 23);
1739 #endif
1741 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1742 #ifndef CONFIG_USER_ONLY
1743 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1744 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1745 .writefn = arm_cp_write_ignore, },
1746 #endif
1747 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1748 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1749 REGINFO_SENTINEL
1752 static void cortex_a7_initfn(Object *obj)
1754 ARMCPU *cpu = ARM_CPU(obj);
1756 cpu->dtb_compatible = "arm,cortex-a7";
1757 set_feature(&cpu->env, ARM_FEATURE_V7VE);
1758 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1759 set_feature(&cpu->env, ARM_FEATURE_NEON);
1760 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1761 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1762 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1763 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1764 set_feature(&cpu->env, ARM_FEATURE_EL2);
1765 set_feature(&cpu->env, ARM_FEATURE_EL3);
1766 set_feature(&cpu->env, ARM_FEATURE_PMU);
1767 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1768 cpu->midr = 0x410fc075;
1769 cpu->reset_fpsid = 0x41023075;
1770 cpu->isar.mvfr0 = 0x10110222;
1771 cpu->isar.mvfr1 = 0x11111111;
1772 cpu->ctr = 0x84448003;
1773 cpu->reset_sctlr = 0x00c50078;
1774 cpu->id_pfr0 = 0x00001131;
1775 cpu->id_pfr1 = 0x00011011;
1776 cpu->id_dfr0 = 0x02010555;
1777 cpu->id_afr0 = 0x00000000;
1778 cpu->id_mmfr0 = 0x10101105;
1779 cpu->id_mmfr1 = 0x40000000;
1780 cpu->id_mmfr2 = 0x01240000;
1781 cpu->id_mmfr3 = 0x02102211;
1782 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1783 * table 4-41 gives 0x02101110, which includes the arm div insns.
1785 cpu->isar.id_isar0 = 0x02101110;
1786 cpu->isar.id_isar1 = 0x13112111;
1787 cpu->isar.id_isar2 = 0x21232041;
1788 cpu->isar.id_isar3 = 0x11112131;
1789 cpu->isar.id_isar4 = 0x10011142;
1790 cpu->dbgdidr = 0x3515f005;
1791 cpu->clidr = 0x0a200023;
1792 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1793 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1794 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1795 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1798 static void cortex_a15_initfn(Object *obj)
1800 ARMCPU *cpu = ARM_CPU(obj);
1802 cpu->dtb_compatible = "arm,cortex-a15";
1803 set_feature(&cpu->env, ARM_FEATURE_V7VE);
1804 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1805 set_feature(&cpu->env, ARM_FEATURE_NEON);
1806 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1807 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1808 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1809 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1810 set_feature(&cpu->env, ARM_FEATURE_EL2);
1811 set_feature(&cpu->env, ARM_FEATURE_EL3);
1812 set_feature(&cpu->env, ARM_FEATURE_PMU);
1813 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1814 cpu->midr = 0x412fc0f1;
1815 cpu->reset_fpsid = 0x410430f0;
1816 cpu->isar.mvfr0 = 0x10110222;
1817 cpu->isar.mvfr1 = 0x11111111;
1818 cpu->ctr = 0x8444c004;
1819 cpu->reset_sctlr = 0x00c50078;
1820 cpu->id_pfr0 = 0x00001131;
1821 cpu->id_pfr1 = 0x00011011;
1822 cpu->id_dfr0 = 0x02010555;
1823 cpu->id_afr0 = 0x00000000;
1824 cpu->id_mmfr0 = 0x10201105;
1825 cpu->id_mmfr1 = 0x20000000;
1826 cpu->id_mmfr2 = 0x01240000;
1827 cpu->id_mmfr3 = 0x02102211;
1828 cpu->isar.id_isar0 = 0x02101110;
1829 cpu->isar.id_isar1 = 0x13112111;
1830 cpu->isar.id_isar2 = 0x21232041;
1831 cpu->isar.id_isar3 = 0x11112131;
1832 cpu->isar.id_isar4 = 0x10011142;
1833 cpu->dbgdidr = 0x3515f021;
1834 cpu->clidr = 0x0a200023;
1835 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1836 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1837 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1838 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1841 static void ti925t_initfn(Object *obj)
1843 ARMCPU *cpu = ARM_CPU(obj);
1844 set_feature(&cpu->env, ARM_FEATURE_V4T);
1845 set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1846 cpu->midr = ARM_CPUID_TI925T;
1847 cpu->ctr = 0x5109149;
1848 cpu->reset_sctlr = 0x00000070;
1851 static void sa1100_initfn(Object *obj)
1853 ARMCPU *cpu = ARM_CPU(obj);
1855 cpu->dtb_compatible = "intel,sa1100";
1856 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1857 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1858 cpu->midr = 0x4401A11B;
1859 cpu->reset_sctlr = 0x00000070;
1862 static void sa1110_initfn(Object *obj)
1864 ARMCPU *cpu = ARM_CPU(obj);
1865 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1866 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1867 cpu->midr = 0x6901B119;
1868 cpu->reset_sctlr = 0x00000070;
1871 static void pxa250_initfn(Object *obj)
1873 ARMCPU *cpu = ARM_CPU(obj);
1875 cpu->dtb_compatible = "marvell,xscale";
1876 set_feature(&cpu->env, ARM_FEATURE_V5);
1877 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1878 cpu->midr = 0x69052100;
1879 cpu->ctr = 0xd172172;
1880 cpu->reset_sctlr = 0x00000078;
1883 static void pxa255_initfn(Object *obj)
1885 ARMCPU *cpu = ARM_CPU(obj);
1887 cpu->dtb_compatible = "marvell,xscale";
1888 set_feature(&cpu->env, ARM_FEATURE_V5);
1889 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1890 cpu->midr = 0x69052d00;
1891 cpu->ctr = 0xd172172;
1892 cpu->reset_sctlr = 0x00000078;
1895 static void pxa260_initfn(Object *obj)
1897 ARMCPU *cpu = ARM_CPU(obj);
1899 cpu->dtb_compatible = "marvell,xscale";
1900 set_feature(&cpu->env, ARM_FEATURE_V5);
1901 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1902 cpu->midr = 0x69052903;
1903 cpu->ctr = 0xd172172;
1904 cpu->reset_sctlr = 0x00000078;
1907 static void pxa261_initfn(Object *obj)
1909 ARMCPU *cpu = ARM_CPU(obj);
1911 cpu->dtb_compatible = "marvell,xscale";
1912 set_feature(&cpu->env, ARM_FEATURE_V5);
1913 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1914 cpu->midr = 0x69052d05;
1915 cpu->ctr = 0xd172172;
1916 cpu->reset_sctlr = 0x00000078;
1919 static void pxa262_initfn(Object *obj)
1921 ARMCPU *cpu = ARM_CPU(obj);
1923 cpu->dtb_compatible = "marvell,xscale";
1924 set_feature(&cpu->env, ARM_FEATURE_V5);
1925 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1926 cpu->midr = 0x69052d06;
1927 cpu->ctr = 0xd172172;
1928 cpu->reset_sctlr = 0x00000078;
1931 static void pxa270a0_initfn(Object *obj)
1933 ARMCPU *cpu = ARM_CPU(obj);
1935 cpu->dtb_compatible = "marvell,xscale";
1936 set_feature(&cpu->env, ARM_FEATURE_V5);
1937 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1938 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1939 cpu->midr = 0x69054110;
1940 cpu->ctr = 0xd172172;
1941 cpu->reset_sctlr = 0x00000078;
1944 static void pxa270a1_initfn(Object *obj)
1946 ARMCPU *cpu = ARM_CPU(obj);
1948 cpu->dtb_compatible = "marvell,xscale";
1949 set_feature(&cpu->env, ARM_FEATURE_V5);
1950 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1951 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1952 cpu->midr = 0x69054111;
1953 cpu->ctr = 0xd172172;
1954 cpu->reset_sctlr = 0x00000078;
1957 static void pxa270b0_initfn(Object *obj)
1959 ARMCPU *cpu = ARM_CPU(obj);
1961 cpu->dtb_compatible = "marvell,xscale";
1962 set_feature(&cpu->env, ARM_FEATURE_V5);
1963 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1964 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1965 cpu->midr = 0x69054112;
1966 cpu->ctr = 0xd172172;
1967 cpu->reset_sctlr = 0x00000078;
1970 static void pxa270b1_initfn(Object *obj)
1972 ARMCPU *cpu = ARM_CPU(obj);
1974 cpu->dtb_compatible = "marvell,xscale";
1975 set_feature(&cpu->env, ARM_FEATURE_V5);
1976 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1977 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1978 cpu->midr = 0x69054113;
1979 cpu->ctr = 0xd172172;
1980 cpu->reset_sctlr = 0x00000078;
1983 static void pxa270c0_initfn(Object *obj)
1985 ARMCPU *cpu = ARM_CPU(obj);
1987 cpu->dtb_compatible = "marvell,xscale";
1988 set_feature(&cpu->env, ARM_FEATURE_V5);
1989 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1990 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1991 cpu->midr = 0x69054114;
1992 cpu->ctr = 0xd172172;
1993 cpu->reset_sctlr = 0x00000078;
1996 static void pxa270c5_initfn(Object *obj)
1998 ARMCPU *cpu = ARM_CPU(obj);
2000 cpu->dtb_compatible = "marvell,xscale";
2001 set_feature(&cpu->env, ARM_FEATURE_V5);
2002 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2003 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2004 cpu->midr = 0x69054117;
2005 cpu->ctr = 0xd172172;
2006 cpu->reset_sctlr = 0x00000078;
2009 #ifndef TARGET_AARCH64
2010 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2011 * otherwise, a CPU with as many features enabled as our emulation supports.
2012 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2013 * this only needs to handle 32 bits.
2015 static void arm_max_initfn(Object *obj)
2017 ARMCPU *cpu = ARM_CPU(obj);
2019 if (kvm_enabled()) {
2020 kvm_arm_set_cpu_features_from_host(cpu);
2021 } else {
2022 cortex_a15_initfn(obj);
2023 #ifdef CONFIG_USER_ONLY
2024 /* We don't set these in system emulation mode for the moment,
2025 * since we don't correctly set (all of) the ID registers to
2026 * advertise them.
2028 set_feature(&cpu->env, ARM_FEATURE_V8);
2030 uint32_t t;
2032 t = cpu->isar.id_isar5;
2033 t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2034 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2035 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2036 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2037 t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2038 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2039 cpu->isar.id_isar5 = t;
2041 t = cpu->isar.id_isar6;
2042 t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2043 t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2044 t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2045 t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2046 t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2047 cpu->isar.id_isar6 = t;
2049 t = cpu->isar.mvfr2;
2050 t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2051 t = FIELD_DP32(t, MVFR2, FPMISC, 4); /* FP MaxNum */
2052 cpu->isar.mvfr2 = t;
2054 t = cpu->id_mmfr4;
2055 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2056 cpu->id_mmfr4 = t;
2058 #endif
2061 #endif
2063 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2065 struct ARMCPUInfo {
2066 const char *name;
2067 void (*initfn)(Object *obj);
2068 void (*class_init)(ObjectClass *oc, void *data);
2071 static const ARMCPUInfo arm_cpus[] = {
2072 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2073 { .name = "arm926", .initfn = arm926_initfn },
2074 { .name = "arm946", .initfn = arm946_initfn },
2075 { .name = "arm1026", .initfn = arm1026_initfn },
2076 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2077 * older core than plain "arm1136". In particular this does not
2078 * have the v6K features.
2080 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
2081 { .name = "arm1136", .initfn = arm1136_initfn },
2082 { .name = "arm1176", .initfn = arm1176_initfn },
2083 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2084 { .name = "cortex-m0", .initfn = cortex_m0_initfn,
2085 .class_init = arm_v7m_class_init },
2086 { .name = "cortex-m3", .initfn = cortex_m3_initfn,
2087 .class_init = arm_v7m_class_init },
2088 { .name = "cortex-m4", .initfn = cortex_m4_initfn,
2089 .class_init = arm_v7m_class_init },
2090 { .name = "cortex-m33", .initfn = cortex_m33_initfn,
2091 .class_init = arm_v7m_class_init },
2092 { .name = "cortex-r5", .initfn = cortex_r5_initfn },
2093 { .name = "cortex-r5f", .initfn = cortex_r5f_initfn },
2094 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
2095 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
2096 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
2097 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
2098 { .name = "ti925t", .initfn = ti925t_initfn },
2099 { .name = "sa1100", .initfn = sa1100_initfn },
2100 { .name = "sa1110", .initfn = sa1110_initfn },
2101 { .name = "pxa250", .initfn = pxa250_initfn },
2102 { .name = "pxa255", .initfn = pxa255_initfn },
2103 { .name = "pxa260", .initfn = pxa260_initfn },
2104 { .name = "pxa261", .initfn = pxa261_initfn },
2105 { .name = "pxa262", .initfn = pxa262_initfn },
2106 /* "pxa270" is an alias for "pxa270-a0" */
2107 { .name = "pxa270", .initfn = pxa270a0_initfn },
2108 { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
2109 { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
2110 { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
2111 { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
2112 { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
2113 { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
2114 #ifndef TARGET_AARCH64
2115 { .name = "max", .initfn = arm_max_initfn },
2116 #endif
2117 #ifdef CONFIG_USER_ONLY
2118 { .name = "any", .initfn = arm_max_initfn },
2119 #endif
2120 #endif
2121 { .name = NULL }
2124 static Property arm_cpu_properties[] = {
2125 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2126 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2127 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2128 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2129 mp_affinity, ARM64_AFFINITY_INVALID),
2130 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2131 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2132 DEFINE_PROP_END_OF_LIST()
2135 static gchar *arm_gdb_arch_name(CPUState *cs)
2137 ARMCPU *cpu = ARM_CPU(cs);
2138 CPUARMState *env = &cpu->env;
2140 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2141 return g_strdup("iwmmxt");
2143 return g_strdup("arm");
2146 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2148 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2149 CPUClass *cc = CPU_CLASS(acc);
2150 DeviceClass *dc = DEVICE_CLASS(oc);
2152 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2153 &acc->parent_realize);
2154 dc->props = arm_cpu_properties;
2156 acc->parent_reset = cc->reset;
2157 cc->reset = arm_cpu_reset;
2159 cc->class_by_name = arm_cpu_class_by_name;
2160 cc->has_work = arm_cpu_has_work;
2161 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2162 cc->dump_state = arm_cpu_dump_state;
2163 cc->set_pc = arm_cpu_set_pc;
2164 cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2165 cc->gdb_read_register = arm_cpu_gdb_read_register;
2166 cc->gdb_write_register = arm_cpu_gdb_write_register;
2167 #ifndef CONFIG_USER_ONLY
2168 cc->do_interrupt = arm_cpu_do_interrupt;
2169 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2170 cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2171 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2172 cc->asidx_from_attrs = arm_asidx_from_attrs;
2173 cc->vmsd = &vmstate_arm_cpu;
2174 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2175 cc->write_elf64_note = arm_cpu_write_elf64_note;
2176 cc->write_elf32_note = arm_cpu_write_elf32_note;
2177 #endif
2178 cc->gdb_num_core_regs = 26;
2179 cc->gdb_core_xml_file = "arm-core.xml";
2180 cc->gdb_arch_name = arm_gdb_arch_name;
2181 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2182 cc->gdb_stop_before_watchpoint = true;
2183 cc->debug_excp_handler = arm_debug_excp_handler;
2184 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2185 #if !defined(CONFIG_USER_ONLY)
2186 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2187 #endif
2189 cc->disas_set_info = arm_disas_set_info;
2190 #ifdef CONFIG_TCG
2191 cc->tcg_initialize = arm_translate_init;
2192 cc->tlb_fill = arm_cpu_tlb_fill;
2193 #endif
2196 #ifdef CONFIG_KVM
2197 static void arm_host_initfn(Object *obj)
2199 ARMCPU *cpu = ARM_CPU(obj);
2201 kvm_arm_set_cpu_features_from_host(cpu);
2202 arm_cpu_post_init(obj);
2205 static const TypeInfo host_arm_cpu_type_info = {
2206 .name = TYPE_ARM_HOST_CPU,
2207 #ifdef TARGET_AARCH64
2208 .parent = TYPE_AARCH64_CPU,
2209 #else
2210 .parent = TYPE_ARM_CPU,
2211 #endif
2212 .instance_init = arm_host_initfn,
2215 #endif
2217 static void arm_cpu_instance_init(Object *obj)
2219 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2221 acc->info->initfn(obj);
2222 arm_cpu_post_init(obj);
2225 static void cpu_register_class_init(ObjectClass *oc, void *data)
2227 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2229 acc->info = data;
2232 static void cpu_register(const ARMCPUInfo *info)
2234 TypeInfo type_info = {
2235 .parent = TYPE_ARM_CPU,
2236 .instance_size = sizeof(ARMCPU),
2237 .instance_init = arm_cpu_instance_init,
2238 .class_size = sizeof(ARMCPUClass),
2239 .class_init = info->class_init ?: cpu_register_class_init,
2240 .class_data = (void *)info,
2243 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2244 type_register(&type_info);
2245 g_free((void *)type_info.name);
2248 static const TypeInfo arm_cpu_type_info = {
2249 .name = TYPE_ARM_CPU,
2250 .parent = TYPE_CPU,
2251 .instance_size = sizeof(ARMCPU),
2252 .instance_init = arm_cpu_initfn,
2253 .instance_finalize = arm_cpu_finalizefn,
2254 .abstract = true,
2255 .class_size = sizeof(ARMCPUClass),
2256 .class_init = arm_cpu_class_init,
2259 static const TypeInfo idau_interface_type_info = {
2260 .name = TYPE_IDAU_INTERFACE,
2261 .parent = TYPE_INTERFACE,
2262 .class_size = sizeof(IDAUInterfaceClass),
2265 static void arm_cpu_register_types(void)
2267 const ARMCPUInfo *info = arm_cpus;
2269 type_register_static(&arm_cpu_type_info);
2270 type_register_static(&idau_interface_type_info);
2272 while (info->name) {
2273 cpu_register(info);
2274 info++;
2277 #ifdef CONFIG_KVM
2278 type_register_static(&host_arm_cpu_type_info);
2279 #endif
2282 type_init(arm_cpu_register_types)