2 * QEMU block layer thread pool
4 * Copyright IBM, Corp. 2008
5 * Copyright Red Hat, Inc. 2012
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Paolo Bonzini <pbonzini@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2. See
12 * the COPYING file in the top-level directory.
14 * Contributions after 2012-01-13 are licensed under the terms of the
15 * GNU GPL, version 2 or (at your option) any later version.
17 #include "qemu/osdep.h"
18 #include "qemu/queue.h"
19 #include "qemu/thread.h"
20 #include "qemu/coroutine.h"
22 #include "block/thread-pool.h"
23 #include "qemu/main-loop.h"
25 static void do_spawn_thread(ThreadPool
*pool
);
27 typedef struct ThreadPoolElement ThreadPoolElement
;
35 struct ThreadPoolElement
{
41 /* Moving state out of THREAD_QUEUED is protected by lock. After
42 * that, only the worker thread can write to it. Reads and writes
43 * of state and ret are ordered with memory barriers.
45 enum ThreadState state
;
48 /* Access to this list is protected by lock. */
49 QTAILQ_ENTRY(ThreadPoolElement
) reqs
;
51 /* Access to this list is protected by the global mutex. */
52 QLIST_ENTRY(ThreadPoolElement
) all
;
57 QEMUBH
*completion_bh
;
59 QemuCond worker_stopped
;
62 QEMUBH
*new_thread_bh
;
64 /* The following variables are only accessed from one AioContext. */
65 QLIST_HEAD(, ThreadPoolElement
) head
;
67 /* The following variables are protected by lock. */
68 QTAILQ_HEAD(, ThreadPoolElement
) request_list
;
71 int new_threads
; /* backlog of threads we need to create */
72 int pending_threads
; /* threads created but not running yet */
76 static void *worker_thread(void *opaque
)
78 ThreadPool
*pool
= opaque
;
80 qemu_mutex_lock(&pool
->lock
);
81 pool
->pending_threads
--;
82 do_spawn_thread(pool
);
84 while (!pool
->stopping
) {
85 ThreadPoolElement
*req
;
90 qemu_mutex_unlock(&pool
->lock
);
91 ret
= qemu_sem_timedwait(&pool
->sem
, 10000);
92 qemu_mutex_lock(&pool
->lock
);
94 } while (ret
== -1 && !QTAILQ_EMPTY(&pool
->request_list
));
95 if (ret
== -1 || pool
->stopping
) {
99 req
= QTAILQ_FIRST(&pool
->request_list
);
100 QTAILQ_REMOVE(&pool
->request_list
, req
, reqs
);
101 req
->state
= THREAD_ACTIVE
;
102 qemu_mutex_unlock(&pool
->lock
);
104 ret
= req
->func(req
->arg
);
107 /* Write ret before state. */
109 req
->state
= THREAD_DONE
;
111 qemu_mutex_lock(&pool
->lock
);
113 qemu_bh_schedule(pool
->completion_bh
);
117 qemu_cond_signal(&pool
->worker_stopped
);
118 qemu_mutex_unlock(&pool
->lock
);
122 static void do_spawn_thread(ThreadPool
*pool
)
126 /* Runs with lock taken. */
127 if (!pool
->new_threads
) {
132 pool
->pending_threads
++;
134 qemu_thread_create(&t
, "worker", worker_thread
, pool
, QEMU_THREAD_DETACHED
);
137 static void spawn_thread_bh_fn(void *opaque
)
139 ThreadPool
*pool
= opaque
;
141 qemu_mutex_lock(&pool
->lock
);
142 do_spawn_thread(pool
);
143 qemu_mutex_unlock(&pool
->lock
);
146 static void spawn_thread(ThreadPool
*pool
)
150 /* If there are threads being created, they will spawn new workers, so
151 * we don't spend time creating many threads in a loop holding a mutex or
152 * starving the current vcpu.
154 * If there are no idle threads, ask the main thread to create one, so we
155 * inherit the correct affinity instead of the vcpu affinity.
157 if (!pool
->pending_threads
) {
158 qemu_bh_schedule(pool
->new_thread_bh
);
162 static void thread_pool_completion_bh(void *opaque
)
164 ThreadPool
*pool
= opaque
;
165 ThreadPoolElement
*elem
, *next
;
167 aio_context_acquire(pool
->ctx
);
169 QLIST_FOREACH_SAFE(elem
, &pool
->head
, all
, next
) {
170 if (elem
->state
!= THREAD_DONE
) {
174 trace_thread_pool_complete(pool
, elem
, elem
->common
.opaque
,
176 QLIST_REMOVE(elem
, all
);
178 if (elem
->common
.cb
) {
179 /* Read state before ret. */
182 /* Schedule ourselves in case elem->common.cb() calls aio_poll() to
183 * wait for another request that completed at the same time.
185 qemu_bh_schedule(pool
->completion_bh
);
187 aio_context_release(pool
->ctx
);
188 elem
->common
.cb(elem
->common
.opaque
, elem
->ret
);
189 aio_context_acquire(pool
->ctx
);
191 /* We can safely cancel the completion_bh here regardless of someone
192 * else having scheduled it meanwhile because we reenter the
193 * completion function anyway (goto restart).
195 qemu_bh_cancel(pool
->completion_bh
);
197 qemu_aio_unref(elem
);
200 qemu_aio_unref(elem
);
203 aio_context_release(pool
->ctx
);
206 static void thread_pool_cancel(BlockAIOCB
*acb
)
208 ThreadPoolElement
*elem
= (ThreadPoolElement
*)acb
;
209 ThreadPool
*pool
= elem
->pool
;
211 trace_thread_pool_cancel(elem
, elem
->common
.opaque
);
213 qemu_mutex_lock(&pool
->lock
);
214 if (elem
->state
== THREAD_QUEUED
&&
215 /* No thread has yet started working on elem. we can try to "steal"
216 * the item from the worker if we can get a signal from the
217 * semaphore. Because this is non-blocking, we can do it with
218 * the lock taken and ensure that elem will remain THREAD_QUEUED.
220 qemu_sem_timedwait(&pool
->sem
, 0) == 0) {
221 QTAILQ_REMOVE(&pool
->request_list
, elem
, reqs
);
222 qemu_bh_schedule(pool
->completion_bh
);
224 elem
->state
= THREAD_DONE
;
225 elem
->ret
= -ECANCELED
;
228 qemu_mutex_unlock(&pool
->lock
);
231 static AioContext
*thread_pool_get_aio_context(BlockAIOCB
*acb
)
233 ThreadPoolElement
*elem
= (ThreadPoolElement
*)acb
;
234 ThreadPool
*pool
= elem
->pool
;
238 static const AIOCBInfo thread_pool_aiocb_info
= {
239 .aiocb_size
= sizeof(ThreadPoolElement
),
240 .cancel_async
= thread_pool_cancel
,
241 .get_aio_context
= thread_pool_get_aio_context
,
244 BlockAIOCB
*thread_pool_submit_aio(ThreadPool
*pool
,
245 ThreadPoolFunc
*func
, void *arg
,
246 BlockCompletionFunc
*cb
, void *opaque
)
248 ThreadPoolElement
*req
;
250 req
= qemu_aio_get(&thread_pool_aiocb_info
, NULL
, cb
, opaque
);
253 req
->state
= THREAD_QUEUED
;
256 QLIST_INSERT_HEAD(&pool
->head
, req
, all
);
258 trace_thread_pool_submit(pool
, req
, arg
);
260 qemu_mutex_lock(&pool
->lock
);
261 if (pool
->idle_threads
== 0 && pool
->cur_threads
< pool
->max_threads
) {
264 QTAILQ_INSERT_TAIL(&pool
->request_list
, req
, reqs
);
265 qemu_mutex_unlock(&pool
->lock
);
266 qemu_sem_post(&pool
->sem
);
270 typedef struct ThreadPoolCo
{
275 static void thread_pool_co_cb(void *opaque
, int ret
)
277 ThreadPoolCo
*co
= opaque
;
283 int coroutine_fn
thread_pool_submit_co(ThreadPool
*pool
, ThreadPoolFunc
*func
,
286 ThreadPoolCo tpc
= { .co
= qemu_coroutine_self(), .ret
= -EINPROGRESS
};
287 assert(qemu_in_coroutine());
288 thread_pool_submit_aio(pool
, func
, arg
, thread_pool_co_cb
, &tpc
);
289 qemu_coroutine_yield();
293 void thread_pool_submit(ThreadPool
*pool
, ThreadPoolFunc
*func
, void *arg
)
295 thread_pool_submit_aio(pool
, func
, arg
, NULL
, NULL
);
298 static void thread_pool_init_one(ThreadPool
*pool
, AioContext
*ctx
)
301 ctx
= qemu_get_aio_context();
304 memset(pool
, 0, sizeof(*pool
));
306 pool
->completion_bh
= aio_bh_new(ctx
, thread_pool_completion_bh
, pool
);
307 qemu_mutex_init(&pool
->lock
);
308 qemu_cond_init(&pool
->worker_stopped
);
309 qemu_sem_init(&pool
->sem
, 0);
310 pool
->max_threads
= 64;
311 pool
->new_thread_bh
= aio_bh_new(ctx
, spawn_thread_bh_fn
, pool
);
313 QLIST_INIT(&pool
->head
);
314 QTAILQ_INIT(&pool
->request_list
);
317 ThreadPool
*thread_pool_new(AioContext
*ctx
)
319 ThreadPool
*pool
= g_new(ThreadPool
, 1);
320 thread_pool_init_one(pool
, ctx
);
324 void thread_pool_free(ThreadPool
*pool
)
330 assert(QLIST_EMPTY(&pool
->head
));
332 qemu_mutex_lock(&pool
->lock
);
334 /* Stop new threads from spawning */
335 qemu_bh_delete(pool
->new_thread_bh
);
336 pool
->cur_threads
-= pool
->new_threads
;
337 pool
->new_threads
= 0;
339 /* Wait for worker threads to terminate */
340 pool
->stopping
= true;
341 while (pool
->cur_threads
> 0) {
342 qemu_sem_post(&pool
->sem
);
343 qemu_cond_wait(&pool
->worker_stopped
, &pool
->lock
);
346 qemu_mutex_unlock(&pool
->lock
);
348 qemu_bh_delete(pool
->completion_bh
);
349 qemu_sem_destroy(&pool
->sem
);
350 qemu_cond_destroy(&pool
->worker_stopped
);
351 qemu_mutex_destroy(&pool
->lock
);