Update version for v7.0.0-rc4 release
[qemu/ar7.git] / hw / net / e1000.c
blobf5bc81296d1a07f65176a7f71b22ea851fae4879
1 /*
2 * QEMU e1000 emulation
4 * Software developer's manual:
5 * http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf
7 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
8 * Copyright (c) 2008 Qumranet
9 * Based on work done by:
10 * Copyright (c) 2007 Dan Aloni
11 * Copyright (c) 2004 Antony T Curtis
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
28 #include "qemu/osdep.h"
29 #include "hw/pci/pci.h"
30 #include "hw/qdev-properties.h"
31 #include "migration/vmstate.h"
32 #include "net/eth.h"
33 #include "net/net.h"
34 #include "net/checksum.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/dma.h"
37 #include "qemu/iov.h"
38 #include "qemu/module.h"
39 #include "qemu/range.h"
41 #include "e1000x_common.h"
42 #include "trace.h"
43 #include "qom/object.h"
45 static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
47 /* #define E1000_DEBUG */
49 #ifdef E1000_DEBUG
50 enum {
51 DEBUG_GENERAL, DEBUG_IO, DEBUG_MMIO, DEBUG_INTERRUPT,
52 DEBUG_RX, DEBUG_TX, DEBUG_MDIC, DEBUG_EEPROM,
53 DEBUG_UNKNOWN, DEBUG_TXSUM, DEBUG_TXERR, DEBUG_RXERR,
54 DEBUG_RXFILTER, DEBUG_PHY, DEBUG_NOTYET,
56 #define DBGBIT(x) (1<<DEBUG_##x)
57 static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL);
59 #define DBGOUT(what, fmt, ...) do { \
60 if (debugflags & DBGBIT(what)) \
61 fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \
62 } while (0)
63 #else
64 #define DBGOUT(what, fmt, ...) do {} while (0)
65 #endif
67 #define IOPORT_SIZE 0x40
68 #define PNPMMIO_SIZE 0x20000
69 #define MIN_BUF_SIZE 60 /* Min. octets in an ethernet frame sans FCS */
71 #define MAXIMUM_ETHERNET_HDR_LEN (14+4)
74 * HW models:
75 * E1000_DEV_ID_82540EM works with Windows, Linux, and OS X <= 10.8
76 * E1000_DEV_ID_82544GC_COPPER appears to work; not well tested
77 * E1000_DEV_ID_82545EM_COPPER works with Linux and OS X >= 10.6
78 * Others never tested
81 struct E1000State_st {
82 /*< private >*/
83 PCIDevice parent_obj;
84 /*< public >*/
86 NICState *nic;
87 NICConf conf;
88 MemoryRegion mmio;
89 MemoryRegion io;
91 uint32_t mac_reg[0x8000];
92 uint16_t phy_reg[0x20];
93 uint16_t eeprom_data[64];
95 uint32_t rxbuf_size;
96 uint32_t rxbuf_min_shift;
97 struct e1000_tx {
98 unsigned char header[256];
99 unsigned char vlan_header[4];
100 /* Fields vlan and data must not be reordered or separated. */
101 unsigned char vlan[4];
102 unsigned char data[0x10000];
103 uint16_t size;
104 unsigned char vlan_needed;
105 unsigned char sum_needed;
106 bool cptse;
107 e1000x_txd_props props;
108 e1000x_txd_props tso_props;
109 uint16_t tso_frames;
110 bool busy;
111 } tx;
113 struct {
114 uint32_t val_in; /* shifted in from guest driver */
115 uint16_t bitnum_in;
116 uint16_t bitnum_out;
117 uint16_t reading;
118 uint32_t old_eecd;
119 } eecd_state;
121 QEMUTimer *autoneg_timer;
123 QEMUTimer *mit_timer; /* Mitigation timer. */
124 bool mit_timer_on; /* Mitigation timer is running. */
125 bool mit_irq_level; /* Tracks interrupt pin level. */
126 uint32_t mit_ide; /* Tracks E1000_TXD_CMD_IDE bit. */
128 QEMUTimer *flush_queue_timer;
130 /* Compatibility flags for migration to/from qemu 1.3.0 and older */
131 #define E1000_FLAG_AUTONEG_BIT 0
132 #define E1000_FLAG_MIT_BIT 1
133 #define E1000_FLAG_MAC_BIT 2
134 #define E1000_FLAG_TSO_BIT 3
135 #define E1000_FLAG_VET_BIT 4
136 #define E1000_FLAG_AUTONEG (1 << E1000_FLAG_AUTONEG_BIT)
137 #define E1000_FLAG_MIT (1 << E1000_FLAG_MIT_BIT)
138 #define E1000_FLAG_MAC (1 << E1000_FLAG_MAC_BIT)
139 #define E1000_FLAG_TSO (1 << E1000_FLAG_TSO_BIT)
140 #define E1000_FLAG_VET (1 << E1000_FLAG_VET_BIT)
142 uint32_t compat_flags;
143 bool received_tx_tso;
144 bool use_tso_for_migration;
145 e1000x_txd_props mig_props;
147 typedef struct E1000State_st E1000State;
149 #define chkflag(x) (s->compat_flags & E1000_FLAG_##x)
151 struct E1000BaseClass {
152 PCIDeviceClass parent_class;
153 uint16_t phy_id2;
155 typedef struct E1000BaseClass E1000BaseClass;
157 #define TYPE_E1000_BASE "e1000-base"
159 DECLARE_OBJ_CHECKERS(E1000State, E1000BaseClass,
160 E1000, TYPE_E1000_BASE)
163 static void
164 e1000_link_up(E1000State *s)
166 e1000x_update_regs_on_link_up(s->mac_reg, s->phy_reg);
168 /* E1000_STATUS_LU is tested by e1000_can_receive() */
169 qemu_flush_queued_packets(qemu_get_queue(s->nic));
172 static void
173 e1000_autoneg_done(E1000State *s)
175 e1000x_update_regs_on_autoneg_done(s->mac_reg, s->phy_reg);
177 /* E1000_STATUS_LU is tested by e1000_can_receive() */
178 qemu_flush_queued_packets(qemu_get_queue(s->nic));
181 static bool
182 have_autoneg(E1000State *s)
184 return chkflag(AUTONEG) && (s->phy_reg[PHY_CTRL] & MII_CR_AUTO_NEG_EN);
187 static void
188 set_phy_ctrl(E1000State *s, int index, uint16_t val)
190 /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */
191 s->phy_reg[PHY_CTRL] = val & ~(0x3f |
192 MII_CR_RESET |
193 MII_CR_RESTART_AUTO_NEG);
196 * QEMU 1.3 does not support link auto-negotiation emulation, so if we
197 * migrate during auto negotiation, after migration the link will be
198 * down.
200 if (have_autoneg(s) && (val & MII_CR_RESTART_AUTO_NEG)) {
201 e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer);
205 static void (*phyreg_writeops[])(E1000State *, int, uint16_t) = {
206 [PHY_CTRL] = set_phy_ctrl,
209 enum { NPHYWRITEOPS = ARRAY_SIZE(phyreg_writeops) };
211 enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W };
212 static const char phy_regcap[0x20] = {
213 [PHY_STATUS] = PHY_R, [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW,
214 [PHY_ID1] = PHY_R, [M88E1000_PHY_SPEC_CTRL] = PHY_RW,
215 [PHY_CTRL] = PHY_RW, [PHY_1000T_CTRL] = PHY_RW,
216 [PHY_LP_ABILITY] = PHY_R, [PHY_1000T_STATUS] = PHY_R,
217 [PHY_AUTONEG_ADV] = PHY_RW, [M88E1000_RX_ERR_CNTR] = PHY_R,
218 [PHY_ID2] = PHY_R, [M88E1000_PHY_SPEC_STATUS] = PHY_R,
219 [PHY_AUTONEG_EXP] = PHY_R,
222 /* PHY_ID2 documented in 8254x_GBe_SDM.pdf, pp. 250 */
223 static const uint16_t phy_reg_init[] = {
224 [PHY_CTRL] = MII_CR_SPEED_SELECT_MSB |
225 MII_CR_FULL_DUPLEX |
226 MII_CR_AUTO_NEG_EN,
228 [PHY_STATUS] = MII_SR_EXTENDED_CAPS |
229 MII_SR_LINK_STATUS | /* link initially up */
230 MII_SR_AUTONEG_CAPS |
231 /* MII_SR_AUTONEG_COMPLETE: initially NOT completed */
232 MII_SR_PREAMBLE_SUPPRESS |
233 MII_SR_EXTENDED_STATUS |
234 MII_SR_10T_HD_CAPS |
235 MII_SR_10T_FD_CAPS |
236 MII_SR_100X_HD_CAPS |
237 MII_SR_100X_FD_CAPS,
239 [PHY_ID1] = 0x141,
240 /* [PHY_ID2] configured per DevId, from e1000_reset() */
241 [PHY_AUTONEG_ADV] = 0xde1,
242 [PHY_LP_ABILITY] = 0x1e0,
243 [PHY_1000T_CTRL] = 0x0e00,
244 [PHY_1000T_STATUS] = 0x3c00,
245 [M88E1000_PHY_SPEC_CTRL] = 0x360,
246 [M88E1000_PHY_SPEC_STATUS] = 0xac00,
247 [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60,
250 static const uint32_t mac_reg_init[] = {
251 [PBA] = 0x00100030,
252 [LEDCTL] = 0x602,
253 [CTRL] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
254 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU,
255 [STATUS] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE |
256 E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK |
257 E1000_STATUS_SPEED_1000 | E1000_STATUS_FD |
258 E1000_STATUS_LU,
259 [MANC] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN |
260 E1000_MANC_ARP_EN | E1000_MANC_0298_EN |
261 E1000_MANC_RMCP_EN,
264 /* Helper function, *curr == 0 means the value is not set */
265 static inline void
266 mit_update_delay(uint32_t *curr, uint32_t value)
268 if (value && (*curr == 0 || value < *curr)) {
269 *curr = value;
273 static void
274 set_interrupt_cause(E1000State *s, int index, uint32_t val)
276 PCIDevice *d = PCI_DEVICE(s);
277 uint32_t pending_ints;
278 uint32_t mit_delay;
280 s->mac_reg[ICR] = val;
283 * Make sure ICR and ICS registers have the same value.
284 * The spec says that the ICS register is write-only. However in practice,
285 * on real hardware ICS is readable, and for reads it has the same value as
286 * ICR (except that ICS does not have the clear on read behaviour of ICR).
288 * The VxWorks PRO/1000 driver uses this behaviour.
290 s->mac_reg[ICS] = val;
292 pending_ints = (s->mac_reg[IMS] & s->mac_reg[ICR]);
293 if (!s->mit_irq_level && pending_ints) {
295 * Here we detect a potential raising edge. We postpone raising the
296 * interrupt line if we are inside the mitigation delay window
297 * (s->mit_timer_on == 1).
298 * We provide a partial implementation of interrupt mitigation,
299 * emulating only RADV, TADV and ITR (lower 16 bits, 1024ns units for
300 * RADV and TADV, 256ns units for ITR). RDTR is only used to enable
301 * RADV; relative timers based on TIDV and RDTR are not implemented.
303 if (s->mit_timer_on) {
304 return;
306 if (chkflag(MIT)) {
307 /* Compute the next mitigation delay according to pending
308 * interrupts and the current values of RADV (provided
309 * RDTR!=0), TADV and ITR.
310 * Then rearm the timer.
312 mit_delay = 0;
313 if (s->mit_ide &&
314 (pending_ints & (E1000_ICR_TXQE | E1000_ICR_TXDW))) {
315 mit_update_delay(&mit_delay, s->mac_reg[TADV] * 4);
317 if (s->mac_reg[RDTR] && (pending_ints & E1000_ICS_RXT0)) {
318 mit_update_delay(&mit_delay, s->mac_reg[RADV] * 4);
320 mit_update_delay(&mit_delay, s->mac_reg[ITR]);
323 * According to e1000 SPEC, the Ethernet controller guarantees
324 * a maximum observable interrupt rate of 7813 interrupts/sec.
325 * Thus if mit_delay < 500 then the delay should be set to the
326 * minimum delay possible which is 500.
328 mit_delay = (mit_delay < 500) ? 500 : mit_delay;
330 s->mit_timer_on = 1;
331 timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
332 mit_delay * 256);
333 s->mit_ide = 0;
337 s->mit_irq_level = (pending_ints != 0);
338 pci_set_irq(d, s->mit_irq_level);
341 static void
342 e1000_mit_timer(void *opaque)
344 E1000State *s = opaque;
346 s->mit_timer_on = 0;
347 /* Call set_interrupt_cause to update the irq level (if necessary). */
348 set_interrupt_cause(s, 0, s->mac_reg[ICR]);
351 static void
352 set_ics(E1000State *s, int index, uint32_t val)
354 DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR],
355 s->mac_reg[IMS]);
356 set_interrupt_cause(s, 0, val | s->mac_reg[ICR]);
359 static void
360 e1000_autoneg_timer(void *opaque)
362 E1000State *s = opaque;
363 if (!qemu_get_queue(s->nic)->link_down) {
364 e1000_autoneg_done(s);
365 set_ics(s, 0, E1000_ICS_LSC); /* signal link status change to guest */
369 static bool e1000_vet_init_need(void *opaque)
371 E1000State *s = opaque;
373 return chkflag(VET);
376 static void e1000_reset(void *opaque)
378 E1000State *d = opaque;
379 E1000BaseClass *edc = E1000_GET_CLASS(d);
380 uint8_t *macaddr = d->conf.macaddr.a;
382 timer_del(d->autoneg_timer);
383 timer_del(d->mit_timer);
384 timer_del(d->flush_queue_timer);
385 d->mit_timer_on = 0;
386 d->mit_irq_level = 0;
387 d->mit_ide = 0;
388 memset(d->phy_reg, 0, sizeof d->phy_reg);
389 memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init);
390 d->phy_reg[PHY_ID2] = edc->phy_id2;
391 memset(d->mac_reg, 0, sizeof d->mac_reg);
392 memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init);
393 d->rxbuf_min_shift = 1;
394 memset(&d->tx, 0, sizeof d->tx);
396 if (qemu_get_queue(d->nic)->link_down) {
397 e1000x_update_regs_on_link_down(d->mac_reg, d->phy_reg);
400 e1000x_reset_mac_addr(d->nic, d->mac_reg, macaddr);
402 if (e1000_vet_init_need(d)) {
403 d->mac_reg[VET] = ETH_P_VLAN;
407 static void
408 set_ctrl(E1000State *s, int index, uint32_t val)
410 /* RST is self clearing */
411 s->mac_reg[CTRL] = val & ~E1000_CTRL_RST;
414 static void
415 e1000_flush_queue_timer(void *opaque)
417 E1000State *s = opaque;
419 qemu_flush_queued_packets(qemu_get_queue(s->nic));
422 static void
423 set_rx_control(E1000State *s, int index, uint32_t val)
425 s->mac_reg[RCTL] = val;
426 s->rxbuf_size = e1000x_rxbufsize(val);
427 s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1;
428 DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT],
429 s->mac_reg[RCTL]);
430 timer_mod(s->flush_queue_timer,
431 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 1000);
434 static void
435 set_mdic(E1000State *s, int index, uint32_t val)
437 uint32_t data = val & E1000_MDIC_DATA_MASK;
438 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
440 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy #
441 val = s->mac_reg[MDIC] | E1000_MDIC_ERROR;
442 else if (val & E1000_MDIC_OP_READ) {
443 DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr);
444 if (!(phy_regcap[addr] & PHY_R)) {
445 DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr);
446 val |= E1000_MDIC_ERROR;
447 } else
448 val = (val ^ data) | s->phy_reg[addr];
449 } else if (val & E1000_MDIC_OP_WRITE) {
450 DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data);
451 if (!(phy_regcap[addr] & PHY_W)) {
452 DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr);
453 val |= E1000_MDIC_ERROR;
454 } else {
455 if (addr < NPHYWRITEOPS && phyreg_writeops[addr]) {
456 phyreg_writeops[addr](s, index, data);
457 } else {
458 s->phy_reg[addr] = data;
462 s->mac_reg[MDIC] = val | E1000_MDIC_READY;
464 if (val & E1000_MDIC_INT_EN) {
465 set_ics(s, 0, E1000_ICR_MDAC);
469 static uint32_t
470 get_eecd(E1000State *s, int index)
472 uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd;
474 DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n",
475 s->eecd_state.bitnum_out, s->eecd_state.reading);
476 if (!s->eecd_state.reading ||
477 ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >>
478 ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1)
479 ret |= E1000_EECD_DO;
480 return ret;
483 static void
484 set_eecd(E1000State *s, int index, uint32_t val)
486 uint32_t oldval = s->eecd_state.old_eecd;
488 s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS |
489 E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ);
490 if (!(E1000_EECD_CS & val)) { /* CS inactive; nothing to do */
491 return;
493 if (E1000_EECD_CS & (val ^ oldval)) { /* CS rise edge; reset state */
494 s->eecd_state.val_in = 0;
495 s->eecd_state.bitnum_in = 0;
496 s->eecd_state.bitnum_out = 0;
497 s->eecd_state.reading = 0;
499 if (!(E1000_EECD_SK & (val ^ oldval))) { /* no clock edge */
500 return;
502 if (!(E1000_EECD_SK & val)) { /* falling edge */
503 s->eecd_state.bitnum_out++;
504 return;
506 s->eecd_state.val_in <<= 1;
507 if (val & E1000_EECD_DI)
508 s->eecd_state.val_in |= 1;
509 if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) {
510 s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1;
511 s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) ==
512 EEPROM_READ_OPCODE_MICROWIRE);
514 DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n",
515 s->eecd_state.bitnum_in, s->eecd_state.bitnum_out,
516 s->eecd_state.reading);
519 static uint32_t
520 flash_eerd_read(E1000State *s, int x)
522 unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START;
524 if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0)
525 return (s->mac_reg[EERD]);
527 if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG)
528 return (E1000_EEPROM_RW_REG_DONE | r);
530 return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) |
531 E1000_EEPROM_RW_REG_DONE | r);
534 static void
535 putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse)
537 uint32_t sum;
539 if (cse && cse < n)
540 n = cse + 1;
541 if (sloc < n-1) {
542 sum = net_checksum_add(n-css, data+css);
543 stw_be_p(data + sloc, net_checksum_finish_nozero(sum));
547 static inline void
548 inc_tx_bcast_or_mcast_count(E1000State *s, const unsigned char *arr)
550 if (!memcmp(arr, bcast, sizeof bcast)) {
551 e1000x_inc_reg_if_not_full(s->mac_reg, BPTC);
552 } else if (arr[0] & 1) {
553 e1000x_inc_reg_if_not_full(s->mac_reg, MPTC);
557 static void
558 e1000_send_packet(E1000State *s, const uint8_t *buf, int size)
560 static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
561 PTC1023, PTC1522 };
563 NetClientState *nc = qemu_get_queue(s->nic);
564 if (s->phy_reg[PHY_CTRL] & MII_CR_LOOPBACK) {
565 qemu_receive_packet(nc, buf, size);
566 } else {
567 qemu_send_packet(nc, buf, size);
569 inc_tx_bcast_or_mcast_count(s, buf);
570 e1000x_increase_size_stats(s->mac_reg, PTCregs, size);
573 static void
574 xmit_seg(E1000State *s)
576 uint16_t len;
577 unsigned int frames = s->tx.tso_frames, css, sofar;
578 struct e1000_tx *tp = &s->tx;
579 struct e1000x_txd_props *props = tp->cptse ? &tp->tso_props : &tp->props;
581 if (tp->cptse) {
582 css = props->ipcss;
583 DBGOUT(TXSUM, "frames %d size %d ipcss %d\n",
584 frames, tp->size, css);
585 if (props->ip) { /* IPv4 */
586 stw_be_p(tp->data+css+2, tp->size - css);
587 stw_be_p(tp->data+css+4,
588 lduw_be_p(tp->data + css + 4) + frames);
589 } else { /* IPv6 */
590 stw_be_p(tp->data+css+4, tp->size - css);
592 css = props->tucss;
593 len = tp->size - css;
594 DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", props->tcp, css, len);
595 if (props->tcp) {
596 sofar = frames * props->mss;
597 stl_be_p(tp->data+css+4, ldl_be_p(tp->data+css+4)+sofar); /* seq */
598 if (props->paylen - sofar > props->mss) {
599 tp->data[css + 13] &= ~9; /* PSH, FIN */
600 } else if (frames) {
601 e1000x_inc_reg_if_not_full(s->mac_reg, TSCTC);
603 } else { /* UDP */
604 stw_be_p(tp->data+css+4, len);
606 if (tp->sum_needed & E1000_TXD_POPTS_TXSM) {
607 unsigned int phsum;
608 // add pseudo-header length before checksum calculation
609 void *sp = tp->data + props->tucso;
611 phsum = lduw_be_p(sp) + len;
612 phsum = (phsum >> 16) + (phsum & 0xffff);
613 stw_be_p(sp, phsum);
615 tp->tso_frames++;
618 if (tp->sum_needed & E1000_TXD_POPTS_TXSM) {
619 putsum(tp->data, tp->size, props->tucso, props->tucss, props->tucse);
621 if (tp->sum_needed & E1000_TXD_POPTS_IXSM) {
622 putsum(tp->data, tp->size, props->ipcso, props->ipcss, props->ipcse);
624 if (tp->vlan_needed) {
625 memmove(tp->vlan, tp->data, 4);
626 memmove(tp->data, tp->data + 4, 8);
627 memcpy(tp->data + 8, tp->vlan_header, 4);
628 e1000_send_packet(s, tp->vlan, tp->size + 4);
629 } else {
630 e1000_send_packet(s, tp->data, tp->size);
633 e1000x_inc_reg_if_not_full(s->mac_reg, TPT);
634 e1000x_grow_8reg_if_not_full(s->mac_reg, TOTL, s->tx.size);
635 s->mac_reg[GPTC] = s->mac_reg[TPT];
636 s->mac_reg[GOTCL] = s->mac_reg[TOTL];
637 s->mac_reg[GOTCH] = s->mac_reg[TOTH];
640 static void
641 process_tx_desc(E1000State *s, struct e1000_tx_desc *dp)
643 PCIDevice *d = PCI_DEVICE(s);
644 uint32_t txd_lower = le32_to_cpu(dp->lower.data);
645 uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
646 unsigned int split_size = txd_lower & 0xffff, bytes, sz;
647 unsigned int msh = 0xfffff;
648 uint64_t addr;
649 struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
650 struct e1000_tx *tp = &s->tx;
652 s->mit_ide |= (txd_lower & E1000_TXD_CMD_IDE);
653 if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
654 if (le32_to_cpu(xp->cmd_and_length) & E1000_TXD_CMD_TSE) {
655 e1000x_read_tx_ctx_descr(xp, &tp->tso_props);
656 s->use_tso_for_migration = 1;
657 tp->tso_frames = 0;
658 } else {
659 e1000x_read_tx_ctx_descr(xp, &tp->props);
660 s->use_tso_for_migration = 0;
662 return;
663 } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
664 // data descriptor
665 if (tp->size == 0) {
666 tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
668 tp->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
669 } else {
670 // legacy descriptor
671 tp->cptse = 0;
674 if (e1000x_vlan_enabled(s->mac_reg) &&
675 e1000x_is_vlan_txd(txd_lower) &&
676 (tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) {
677 tp->vlan_needed = 1;
678 stw_be_p(tp->vlan_header,
679 le16_to_cpu(s->mac_reg[VET]));
680 stw_be_p(tp->vlan_header + 2,
681 le16_to_cpu(dp->upper.fields.special));
684 addr = le64_to_cpu(dp->buffer_addr);
685 if (tp->cptse) {
686 msh = tp->tso_props.hdr_len + tp->tso_props.mss;
687 do {
688 bytes = split_size;
689 if (tp->size >= msh) {
690 goto eop;
692 if (tp->size + bytes > msh)
693 bytes = msh - tp->size;
695 bytes = MIN(sizeof(tp->data) - tp->size, bytes);
696 pci_dma_read(d, addr, tp->data + tp->size, bytes);
697 sz = tp->size + bytes;
698 if (sz >= tp->tso_props.hdr_len
699 && tp->size < tp->tso_props.hdr_len) {
700 memmove(tp->header, tp->data, tp->tso_props.hdr_len);
702 tp->size = sz;
703 addr += bytes;
704 if (sz == msh) {
705 xmit_seg(s);
706 memmove(tp->data, tp->header, tp->tso_props.hdr_len);
707 tp->size = tp->tso_props.hdr_len;
709 split_size -= bytes;
710 } while (bytes && split_size);
711 } else {
712 split_size = MIN(sizeof(tp->data) - tp->size, split_size);
713 pci_dma_read(d, addr, tp->data + tp->size, split_size);
714 tp->size += split_size;
717 eop:
718 if (!(txd_lower & E1000_TXD_CMD_EOP))
719 return;
720 if (!(tp->cptse && tp->size < tp->tso_props.hdr_len)) {
721 xmit_seg(s);
723 tp->tso_frames = 0;
724 tp->sum_needed = 0;
725 tp->vlan_needed = 0;
726 tp->size = 0;
727 tp->cptse = 0;
730 static uint32_t
731 txdesc_writeback(E1000State *s, dma_addr_t base, struct e1000_tx_desc *dp)
733 PCIDevice *d = PCI_DEVICE(s);
734 uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
736 if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS)))
737 return 0;
738 txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) &
739 ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU);
740 dp->upper.data = cpu_to_le32(txd_upper);
741 pci_dma_write(d, base + ((char *)&dp->upper - (char *)dp),
742 &dp->upper, sizeof(dp->upper));
743 return E1000_ICR_TXDW;
746 static uint64_t tx_desc_base(E1000State *s)
748 uint64_t bah = s->mac_reg[TDBAH];
749 uint64_t bal = s->mac_reg[TDBAL] & ~0xf;
751 return (bah << 32) + bal;
754 static void
755 start_xmit(E1000State *s)
757 PCIDevice *d = PCI_DEVICE(s);
758 dma_addr_t base;
759 struct e1000_tx_desc desc;
760 uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE;
762 if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) {
763 DBGOUT(TX, "tx disabled\n");
764 return;
767 if (s->tx.busy) {
768 return;
770 s->tx.busy = true;
772 while (s->mac_reg[TDH] != s->mac_reg[TDT]) {
773 base = tx_desc_base(s) +
774 sizeof(struct e1000_tx_desc) * s->mac_reg[TDH];
775 pci_dma_read(d, base, &desc, sizeof(desc));
777 DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH],
778 (void *)(intptr_t)desc.buffer_addr, desc.lower.data,
779 desc.upper.data);
781 process_tx_desc(s, &desc);
782 cause |= txdesc_writeback(s, base, &desc);
784 if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN])
785 s->mac_reg[TDH] = 0;
787 * the following could happen only if guest sw assigns
788 * bogus values to TDT/TDLEN.
789 * there's nothing too intelligent we could do about this.
791 if (s->mac_reg[TDH] == tdh_start ||
792 tdh_start >= s->mac_reg[TDLEN] / sizeof(desc)) {
793 DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n",
794 tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]);
795 break;
798 s->tx.busy = false;
799 set_ics(s, 0, cause);
802 static int
803 receive_filter(E1000State *s, const uint8_t *buf, int size)
805 uint32_t rctl = s->mac_reg[RCTL];
806 int isbcast = !memcmp(buf, bcast, sizeof bcast), ismcast = (buf[0] & 1);
808 if (e1000x_is_vlan_packet(buf, le16_to_cpu(s->mac_reg[VET])) &&
809 e1000x_vlan_rx_filter_enabled(s->mac_reg)) {
810 uint16_t vid = lduw_be_p(buf + 14);
811 uint32_t vfta = ldl_le_p((uint32_t*)(s->mac_reg + VFTA) +
812 ((vid >> 5) & 0x7f));
813 if ((vfta & (1 << (vid & 0x1f))) == 0)
814 return 0;
817 if (!isbcast && !ismcast && (rctl & E1000_RCTL_UPE)) { /* promiscuous ucast */
818 return 1;
821 if (ismcast && (rctl & E1000_RCTL_MPE)) { /* promiscuous mcast */
822 e1000x_inc_reg_if_not_full(s->mac_reg, MPRC);
823 return 1;
826 if (isbcast && (rctl & E1000_RCTL_BAM)) { /* broadcast enabled */
827 e1000x_inc_reg_if_not_full(s->mac_reg, BPRC);
828 return 1;
831 return e1000x_rx_group_filter(s->mac_reg, buf);
834 static void
835 e1000_set_link_status(NetClientState *nc)
837 E1000State *s = qemu_get_nic_opaque(nc);
838 uint32_t old_status = s->mac_reg[STATUS];
840 if (nc->link_down) {
841 e1000x_update_regs_on_link_down(s->mac_reg, s->phy_reg);
842 } else {
843 if (have_autoneg(s) &&
844 !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
845 e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer);
846 } else {
847 e1000_link_up(s);
851 if (s->mac_reg[STATUS] != old_status)
852 set_ics(s, 0, E1000_ICR_LSC);
855 static bool e1000_has_rxbufs(E1000State *s, size_t total_size)
857 int bufs;
858 /* Fast-path short packets */
859 if (total_size <= s->rxbuf_size) {
860 return s->mac_reg[RDH] != s->mac_reg[RDT];
862 if (s->mac_reg[RDH] < s->mac_reg[RDT]) {
863 bufs = s->mac_reg[RDT] - s->mac_reg[RDH];
864 } else if (s->mac_reg[RDH] > s->mac_reg[RDT]) {
865 bufs = s->mac_reg[RDLEN] / sizeof(struct e1000_rx_desc) +
866 s->mac_reg[RDT] - s->mac_reg[RDH];
867 } else {
868 return false;
870 return total_size <= bufs * s->rxbuf_size;
873 static bool
874 e1000_can_receive(NetClientState *nc)
876 E1000State *s = qemu_get_nic_opaque(nc);
878 return e1000x_rx_ready(&s->parent_obj, s->mac_reg) &&
879 e1000_has_rxbufs(s, 1) && !timer_pending(s->flush_queue_timer);
882 static uint64_t rx_desc_base(E1000State *s)
884 uint64_t bah = s->mac_reg[RDBAH];
885 uint64_t bal = s->mac_reg[RDBAL] & ~0xf;
887 return (bah << 32) + bal;
890 static void
891 e1000_receiver_overrun(E1000State *s, size_t size)
893 trace_e1000_receiver_overrun(size, s->mac_reg[RDH], s->mac_reg[RDT]);
894 e1000x_inc_reg_if_not_full(s->mac_reg, RNBC);
895 e1000x_inc_reg_if_not_full(s->mac_reg, MPC);
896 set_ics(s, 0, E1000_ICS_RXO);
899 static ssize_t
900 e1000_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt)
902 E1000State *s = qemu_get_nic_opaque(nc);
903 PCIDevice *d = PCI_DEVICE(s);
904 struct e1000_rx_desc desc;
905 dma_addr_t base;
906 unsigned int n, rdt;
907 uint32_t rdh_start;
908 uint16_t vlan_special = 0;
909 uint8_t vlan_status = 0;
910 uint8_t min_buf[MIN_BUF_SIZE];
911 struct iovec min_iov;
912 uint8_t *filter_buf = iov->iov_base;
913 size_t size = iov_size(iov, iovcnt);
914 size_t iov_ofs = 0;
915 size_t desc_offset;
916 size_t desc_size;
917 size_t total_size;
919 if (!e1000x_hw_rx_enabled(s->mac_reg)) {
920 return -1;
923 if (timer_pending(s->flush_queue_timer)) {
924 return 0;
927 /* Pad to minimum Ethernet frame length */
928 if (size < sizeof(min_buf)) {
929 iov_to_buf(iov, iovcnt, 0, min_buf, size);
930 memset(&min_buf[size], 0, sizeof(min_buf) - size);
931 min_iov.iov_base = filter_buf = min_buf;
932 min_iov.iov_len = size = sizeof(min_buf);
933 iovcnt = 1;
934 iov = &min_iov;
935 } else if (iov->iov_len < MAXIMUM_ETHERNET_HDR_LEN) {
936 /* This is very unlikely, but may happen. */
937 iov_to_buf(iov, iovcnt, 0, min_buf, MAXIMUM_ETHERNET_HDR_LEN);
938 filter_buf = min_buf;
941 /* Discard oversized packets if !LPE and !SBP. */
942 if (e1000x_is_oversized(s->mac_reg, size)) {
943 return size;
946 if (!receive_filter(s, filter_buf, size)) {
947 return size;
950 if (e1000x_vlan_enabled(s->mac_reg) &&
951 e1000x_is_vlan_packet(filter_buf, le16_to_cpu(s->mac_reg[VET]))) {
952 vlan_special = cpu_to_le16(lduw_be_p(filter_buf + 14));
953 iov_ofs = 4;
954 if (filter_buf == iov->iov_base) {
955 memmove(filter_buf + 4, filter_buf, 12);
956 } else {
957 iov_from_buf(iov, iovcnt, 4, filter_buf, 12);
958 while (iov->iov_len <= iov_ofs) {
959 iov_ofs -= iov->iov_len;
960 iov++;
963 vlan_status = E1000_RXD_STAT_VP;
964 size -= 4;
967 rdh_start = s->mac_reg[RDH];
968 desc_offset = 0;
969 total_size = size + e1000x_fcs_len(s->mac_reg);
970 if (!e1000_has_rxbufs(s, total_size)) {
971 e1000_receiver_overrun(s, total_size);
972 return -1;
974 do {
975 desc_size = total_size - desc_offset;
976 if (desc_size > s->rxbuf_size) {
977 desc_size = s->rxbuf_size;
979 base = rx_desc_base(s) + sizeof(desc) * s->mac_reg[RDH];
980 pci_dma_read(d, base, &desc, sizeof(desc));
981 desc.special = vlan_special;
982 desc.status |= (vlan_status | E1000_RXD_STAT_DD);
983 if (desc.buffer_addr) {
984 if (desc_offset < size) {
985 size_t iov_copy;
986 hwaddr ba = le64_to_cpu(desc.buffer_addr);
987 size_t copy_size = size - desc_offset;
988 if (copy_size > s->rxbuf_size) {
989 copy_size = s->rxbuf_size;
991 do {
992 iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
993 pci_dma_write(d, ba, iov->iov_base + iov_ofs, iov_copy);
994 copy_size -= iov_copy;
995 ba += iov_copy;
996 iov_ofs += iov_copy;
997 if (iov_ofs == iov->iov_len) {
998 iov++;
999 iov_ofs = 0;
1001 } while (copy_size);
1003 desc_offset += desc_size;
1004 desc.length = cpu_to_le16(desc_size);
1005 if (desc_offset >= total_size) {
1006 desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM;
1007 } else {
1008 /* Guest zeroing out status is not a hardware requirement.
1009 Clear EOP in case guest didn't do it. */
1010 desc.status &= ~E1000_RXD_STAT_EOP;
1012 } else { // as per intel docs; skip descriptors with null buf addr
1013 DBGOUT(RX, "Null RX descriptor!!\n");
1015 pci_dma_write(d, base, &desc, sizeof(desc));
1017 if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN])
1018 s->mac_reg[RDH] = 0;
1019 /* see comment in start_xmit; same here */
1020 if (s->mac_reg[RDH] == rdh_start ||
1021 rdh_start >= s->mac_reg[RDLEN] / sizeof(desc)) {
1022 DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n",
1023 rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]);
1024 e1000_receiver_overrun(s, total_size);
1025 return -1;
1027 } while (desc_offset < total_size);
1029 e1000x_update_rx_total_stats(s->mac_reg, size, total_size);
1031 n = E1000_ICS_RXT0;
1032 if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH])
1033 rdt += s->mac_reg[RDLEN] / sizeof(desc);
1034 if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >>
1035 s->rxbuf_min_shift)
1036 n |= E1000_ICS_RXDMT0;
1038 set_ics(s, 0, n);
1040 return size;
1043 static ssize_t
1044 e1000_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1046 const struct iovec iov = {
1047 .iov_base = (uint8_t *)buf,
1048 .iov_len = size
1051 return e1000_receive_iov(nc, &iov, 1);
1054 static uint32_t
1055 mac_readreg(E1000State *s, int index)
1057 return s->mac_reg[index];
1060 static uint32_t
1061 mac_low4_read(E1000State *s, int index)
1063 return s->mac_reg[index] & 0xf;
1066 static uint32_t
1067 mac_low11_read(E1000State *s, int index)
1069 return s->mac_reg[index] & 0x7ff;
1072 static uint32_t
1073 mac_low13_read(E1000State *s, int index)
1075 return s->mac_reg[index] & 0x1fff;
1078 static uint32_t
1079 mac_low16_read(E1000State *s, int index)
1081 return s->mac_reg[index] & 0xffff;
1084 static uint32_t
1085 mac_icr_read(E1000State *s, int index)
1087 uint32_t ret = s->mac_reg[ICR];
1089 DBGOUT(INTERRUPT, "ICR read: %x\n", ret);
1090 set_interrupt_cause(s, 0, 0);
1091 return ret;
1094 static uint32_t
1095 mac_read_clr4(E1000State *s, int index)
1097 uint32_t ret = s->mac_reg[index];
1099 s->mac_reg[index] = 0;
1100 return ret;
1103 static uint32_t
1104 mac_read_clr8(E1000State *s, int index)
1106 uint32_t ret = s->mac_reg[index];
1108 s->mac_reg[index] = 0;
1109 s->mac_reg[index-1] = 0;
1110 return ret;
1113 static void
1114 mac_writereg(E1000State *s, int index, uint32_t val)
1116 uint32_t macaddr[2];
1118 s->mac_reg[index] = val;
1120 if (index == RA + 1) {
1121 macaddr[0] = cpu_to_le32(s->mac_reg[RA]);
1122 macaddr[1] = cpu_to_le32(s->mac_reg[RA + 1]);
1123 qemu_format_nic_info_str(qemu_get_queue(s->nic), (uint8_t *)macaddr);
1127 static void
1128 set_rdt(E1000State *s, int index, uint32_t val)
1130 s->mac_reg[index] = val & 0xffff;
1131 if (e1000_has_rxbufs(s, 1)) {
1132 qemu_flush_queued_packets(qemu_get_queue(s->nic));
1136 static void
1137 set_16bit(E1000State *s, int index, uint32_t val)
1139 s->mac_reg[index] = val & 0xffff;
1142 static void
1143 set_dlen(E1000State *s, int index, uint32_t val)
1145 s->mac_reg[index] = val & 0xfff80;
1148 static void
1149 set_tctl(E1000State *s, int index, uint32_t val)
1151 s->mac_reg[index] = val;
1152 s->mac_reg[TDT] &= 0xffff;
1153 start_xmit(s);
1156 static void
1157 set_icr(E1000State *s, int index, uint32_t val)
1159 DBGOUT(INTERRUPT, "set_icr %x\n", val);
1160 set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val);
1163 static void
1164 set_imc(E1000State *s, int index, uint32_t val)
1166 s->mac_reg[IMS] &= ~val;
1167 set_ics(s, 0, 0);
1170 static void
1171 set_ims(E1000State *s, int index, uint32_t val)
1173 s->mac_reg[IMS] |= val;
1174 set_ics(s, 0, 0);
1177 #define getreg(x) [x] = mac_readreg
1178 typedef uint32_t (*readops)(E1000State *, int);
1179 static const readops macreg_readops[] = {
1180 getreg(PBA), getreg(RCTL), getreg(TDH), getreg(TXDCTL),
1181 getreg(WUFC), getreg(TDT), getreg(CTRL), getreg(LEDCTL),
1182 getreg(MANC), getreg(MDIC), getreg(SWSM), getreg(STATUS),
1183 getreg(TORL), getreg(TOTL), getreg(IMS), getreg(TCTL),
1184 getreg(RDH), getreg(RDT), getreg(VET), getreg(ICS),
1185 getreg(TDBAL), getreg(TDBAH), getreg(RDBAH), getreg(RDBAL),
1186 getreg(TDLEN), getreg(RDLEN), getreg(RDTR), getreg(RADV),
1187 getreg(TADV), getreg(ITR), getreg(FCRUC), getreg(IPAV),
1188 getreg(WUC), getreg(WUS), getreg(SCC), getreg(ECOL),
1189 getreg(MCC), getreg(LATECOL), getreg(COLC), getreg(DC),
1190 getreg(TNCRS), getreg(SEQEC), getreg(CEXTERR), getreg(RLEC),
1191 getreg(XONRXC), getreg(XONTXC), getreg(XOFFRXC), getreg(XOFFTXC),
1192 getreg(RFC), getreg(RJC), getreg(RNBC), getreg(TSCTFC),
1193 getreg(MGTPRC), getreg(MGTPDC), getreg(MGTPTC), getreg(GORCL),
1194 getreg(GOTCL),
1196 [TOTH] = mac_read_clr8, [TORH] = mac_read_clr8,
1197 [GOTCH] = mac_read_clr8, [GORCH] = mac_read_clr8,
1198 [PRC64] = mac_read_clr4, [PRC127] = mac_read_clr4,
1199 [PRC255] = mac_read_clr4, [PRC511] = mac_read_clr4,
1200 [PRC1023] = mac_read_clr4, [PRC1522] = mac_read_clr4,
1201 [PTC64] = mac_read_clr4, [PTC127] = mac_read_clr4,
1202 [PTC255] = mac_read_clr4, [PTC511] = mac_read_clr4,
1203 [PTC1023] = mac_read_clr4, [PTC1522] = mac_read_clr4,
1204 [GPRC] = mac_read_clr4, [GPTC] = mac_read_clr4,
1205 [TPT] = mac_read_clr4, [TPR] = mac_read_clr4,
1206 [RUC] = mac_read_clr4, [ROC] = mac_read_clr4,
1207 [BPRC] = mac_read_clr4, [MPRC] = mac_read_clr4,
1208 [TSCTC] = mac_read_clr4, [BPTC] = mac_read_clr4,
1209 [MPTC] = mac_read_clr4,
1210 [ICR] = mac_icr_read, [EECD] = get_eecd,
1211 [EERD] = flash_eerd_read,
1212 [RDFH] = mac_low13_read, [RDFT] = mac_low13_read,
1213 [RDFHS] = mac_low13_read, [RDFTS] = mac_low13_read,
1214 [RDFPC] = mac_low13_read,
1215 [TDFH] = mac_low11_read, [TDFT] = mac_low11_read,
1216 [TDFHS] = mac_low13_read, [TDFTS] = mac_low13_read,
1217 [TDFPC] = mac_low13_read,
1218 [AIT] = mac_low16_read,
1220 [CRCERRS ... MPC] = &mac_readreg,
1221 [IP6AT ... IP6AT+3] = &mac_readreg, [IP4AT ... IP4AT+6] = &mac_readreg,
1222 [FFLT ... FFLT+6] = &mac_low11_read,
1223 [RA ... RA+31] = &mac_readreg,
1224 [WUPM ... WUPM+31] = &mac_readreg,
1225 [MTA ... MTA+127] = &mac_readreg,
1226 [VFTA ... VFTA+127] = &mac_readreg,
1227 [FFMT ... FFMT+254] = &mac_low4_read,
1228 [FFVT ... FFVT+254] = &mac_readreg,
1229 [PBM ... PBM+16383] = &mac_readreg,
1231 enum { NREADOPS = ARRAY_SIZE(macreg_readops) };
1233 #define putreg(x) [x] = mac_writereg
1234 typedef void (*writeops)(E1000State *, int, uint32_t);
1235 static const writeops macreg_writeops[] = {
1236 putreg(PBA), putreg(EERD), putreg(SWSM), putreg(WUFC),
1237 putreg(TDBAL), putreg(TDBAH), putreg(TXDCTL), putreg(RDBAH),
1238 putreg(RDBAL), putreg(LEDCTL), putreg(VET), putreg(FCRUC),
1239 putreg(TDFH), putreg(TDFT), putreg(TDFHS), putreg(TDFTS),
1240 putreg(TDFPC), putreg(RDFH), putreg(RDFT), putreg(RDFHS),
1241 putreg(RDFTS), putreg(RDFPC), putreg(IPAV), putreg(WUC),
1242 putreg(WUS), putreg(AIT),
1244 [TDLEN] = set_dlen, [RDLEN] = set_dlen, [TCTL] = set_tctl,
1245 [TDT] = set_tctl, [MDIC] = set_mdic, [ICS] = set_ics,
1246 [TDH] = set_16bit, [RDH] = set_16bit, [RDT] = set_rdt,
1247 [IMC] = set_imc, [IMS] = set_ims, [ICR] = set_icr,
1248 [EECD] = set_eecd, [RCTL] = set_rx_control, [CTRL] = set_ctrl,
1249 [RDTR] = set_16bit, [RADV] = set_16bit, [TADV] = set_16bit,
1250 [ITR] = set_16bit,
1252 [IP6AT ... IP6AT+3] = &mac_writereg, [IP4AT ... IP4AT+6] = &mac_writereg,
1253 [FFLT ... FFLT+6] = &mac_writereg,
1254 [RA ... RA+31] = &mac_writereg,
1255 [WUPM ... WUPM+31] = &mac_writereg,
1256 [MTA ... MTA+127] = &mac_writereg,
1257 [VFTA ... VFTA+127] = &mac_writereg,
1258 [FFMT ... FFMT+254] = &mac_writereg, [FFVT ... FFVT+254] = &mac_writereg,
1259 [PBM ... PBM+16383] = &mac_writereg,
1262 enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) };
1264 enum { MAC_ACCESS_PARTIAL = 1, MAC_ACCESS_FLAG_NEEDED = 2 };
1266 #define markflag(x) ((E1000_FLAG_##x << 2) | MAC_ACCESS_FLAG_NEEDED)
1267 /* In the array below the meaning of the bits is: [f|f|f|f|f|f|n|p]
1268 * f - flag bits (up to 6 possible flags)
1269 * n - flag needed
1270 * p - partially implenented */
1271 static const uint8_t mac_reg_access[0x8000] = {
1272 [RDTR] = markflag(MIT), [TADV] = markflag(MIT),
1273 [RADV] = markflag(MIT), [ITR] = markflag(MIT),
1275 [IPAV] = markflag(MAC), [WUC] = markflag(MAC),
1276 [IP6AT] = markflag(MAC), [IP4AT] = markflag(MAC),
1277 [FFVT] = markflag(MAC), [WUPM] = markflag(MAC),
1278 [ECOL] = markflag(MAC), [MCC] = markflag(MAC),
1279 [DC] = markflag(MAC), [TNCRS] = markflag(MAC),
1280 [RLEC] = markflag(MAC), [XONRXC] = markflag(MAC),
1281 [XOFFTXC] = markflag(MAC), [RFC] = markflag(MAC),
1282 [TSCTFC] = markflag(MAC), [MGTPRC] = markflag(MAC),
1283 [WUS] = markflag(MAC), [AIT] = markflag(MAC),
1284 [FFLT] = markflag(MAC), [FFMT] = markflag(MAC),
1285 [SCC] = markflag(MAC), [FCRUC] = markflag(MAC),
1286 [LATECOL] = markflag(MAC), [COLC] = markflag(MAC),
1287 [SEQEC] = markflag(MAC), [CEXTERR] = markflag(MAC),
1288 [XONTXC] = markflag(MAC), [XOFFRXC] = markflag(MAC),
1289 [RJC] = markflag(MAC), [RNBC] = markflag(MAC),
1290 [MGTPDC] = markflag(MAC), [MGTPTC] = markflag(MAC),
1291 [RUC] = markflag(MAC), [ROC] = markflag(MAC),
1292 [GORCL] = markflag(MAC), [GORCH] = markflag(MAC),
1293 [GOTCL] = markflag(MAC), [GOTCH] = markflag(MAC),
1294 [BPRC] = markflag(MAC), [MPRC] = markflag(MAC),
1295 [TSCTC] = markflag(MAC), [PRC64] = markflag(MAC),
1296 [PRC127] = markflag(MAC), [PRC255] = markflag(MAC),
1297 [PRC511] = markflag(MAC), [PRC1023] = markflag(MAC),
1298 [PRC1522] = markflag(MAC), [PTC64] = markflag(MAC),
1299 [PTC127] = markflag(MAC), [PTC255] = markflag(MAC),
1300 [PTC511] = markflag(MAC), [PTC1023] = markflag(MAC),
1301 [PTC1522] = markflag(MAC), [MPTC] = markflag(MAC),
1302 [BPTC] = markflag(MAC),
1304 [TDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1305 [TDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1306 [TDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1307 [TDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1308 [TDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1309 [RDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1310 [RDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1311 [RDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1312 [RDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1313 [RDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1314 [PBM] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1317 static void
1318 e1000_mmio_write(void *opaque, hwaddr addr, uint64_t val,
1319 unsigned size)
1321 E1000State *s = opaque;
1322 unsigned int index = (addr & 0x1ffff) >> 2;
1324 if (index < NWRITEOPS && macreg_writeops[index]) {
1325 if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED)
1326 || (s->compat_flags & (mac_reg_access[index] >> 2))) {
1327 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
1328 DBGOUT(GENERAL, "Writing to register at offset: 0x%08x. "
1329 "It is not fully implemented.\n", index<<2);
1331 macreg_writeops[index](s, index, val);
1332 } else { /* "flag needed" bit is set, but the flag is not active */
1333 DBGOUT(MMIO, "MMIO write attempt to disabled reg. addr=0x%08x\n",
1334 index<<2);
1336 } else if (index < NREADOPS && macreg_readops[index]) {
1337 DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04"PRIx64"\n",
1338 index<<2, val);
1339 } else {
1340 DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64"\n",
1341 index<<2, val);
1345 static uint64_t
1346 e1000_mmio_read(void *opaque, hwaddr addr, unsigned size)
1348 E1000State *s = opaque;
1349 unsigned int index = (addr & 0x1ffff) >> 2;
1351 if (index < NREADOPS && macreg_readops[index]) {
1352 if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED)
1353 || (s->compat_flags & (mac_reg_access[index] >> 2))) {
1354 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
1355 DBGOUT(GENERAL, "Reading register at offset: 0x%08x. "
1356 "It is not fully implemented.\n", index<<2);
1358 return macreg_readops[index](s, index);
1359 } else { /* "flag needed" bit is set, but the flag is not active */
1360 DBGOUT(MMIO, "MMIO read attempt of disabled reg. addr=0x%08x\n",
1361 index<<2);
1363 } else {
1364 DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2);
1366 return 0;
1369 static const MemoryRegionOps e1000_mmio_ops = {
1370 .read = e1000_mmio_read,
1371 .write = e1000_mmio_write,
1372 .endianness = DEVICE_LITTLE_ENDIAN,
1373 .impl = {
1374 .min_access_size = 4,
1375 .max_access_size = 4,
1379 static uint64_t e1000_io_read(void *opaque, hwaddr addr,
1380 unsigned size)
1382 E1000State *s = opaque;
1384 (void)s;
1385 return 0;
1388 static void e1000_io_write(void *opaque, hwaddr addr,
1389 uint64_t val, unsigned size)
1391 E1000State *s = opaque;
1393 (void)s;
1396 static const MemoryRegionOps e1000_io_ops = {
1397 .read = e1000_io_read,
1398 .write = e1000_io_write,
1399 .endianness = DEVICE_LITTLE_ENDIAN,
1402 static bool is_version_1(void *opaque, int version_id)
1404 return version_id == 1;
1407 static int e1000_pre_save(void *opaque)
1409 E1000State *s = opaque;
1410 NetClientState *nc = qemu_get_queue(s->nic);
1413 * If link is down and auto-negotiation is supported and ongoing,
1414 * complete auto-negotiation immediately. This allows us to look
1415 * at MII_SR_AUTONEG_COMPLETE to infer link status on load.
1417 if (nc->link_down && have_autoneg(s)) {
1418 s->phy_reg[PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
1421 /* Decide which set of props to migrate in the main structure */
1422 if (chkflag(TSO) || !s->use_tso_for_migration) {
1423 /* Either we're migrating with the extra subsection, in which
1424 * case the mig_props is always 'props' OR
1425 * we've not got the subsection, but 'props' was the last
1426 * updated.
1428 s->mig_props = s->tx.props;
1429 } else {
1430 /* We're not using the subsection, and 'tso_props' was
1431 * the last updated.
1433 s->mig_props = s->tx.tso_props;
1435 return 0;
1438 static int e1000_post_load(void *opaque, int version_id)
1440 E1000State *s = opaque;
1441 NetClientState *nc = qemu_get_queue(s->nic);
1443 if (!chkflag(MIT)) {
1444 s->mac_reg[ITR] = s->mac_reg[RDTR] = s->mac_reg[RADV] =
1445 s->mac_reg[TADV] = 0;
1446 s->mit_irq_level = false;
1448 s->mit_ide = 0;
1449 s->mit_timer_on = true;
1450 timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1);
1452 /* nc.link_down can't be migrated, so infer link_down according
1453 * to link status bit in mac_reg[STATUS].
1454 * Alternatively, restart link negotiation if it was in progress. */
1455 nc->link_down = (s->mac_reg[STATUS] & E1000_STATUS_LU) == 0;
1457 if (have_autoneg(s) &&
1458 !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
1459 nc->link_down = false;
1460 timer_mod(s->autoneg_timer,
1461 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
1464 s->tx.props = s->mig_props;
1465 if (!s->received_tx_tso) {
1466 /* We received only one set of offload data (tx.props)
1467 * and haven't got tx.tso_props. The best we can do
1468 * is dupe the data.
1470 s->tx.tso_props = s->mig_props;
1472 return 0;
1475 static int e1000_tx_tso_post_load(void *opaque, int version_id)
1477 E1000State *s = opaque;
1478 s->received_tx_tso = true;
1479 return 0;
1482 static bool e1000_mit_state_needed(void *opaque)
1484 E1000State *s = opaque;
1486 return chkflag(MIT);
1489 static bool e1000_full_mac_needed(void *opaque)
1491 E1000State *s = opaque;
1493 return chkflag(MAC);
1496 static bool e1000_tso_state_needed(void *opaque)
1498 E1000State *s = opaque;
1500 return chkflag(TSO);
1503 static const VMStateDescription vmstate_e1000_mit_state = {
1504 .name = "e1000/mit_state",
1505 .version_id = 1,
1506 .minimum_version_id = 1,
1507 .needed = e1000_mit_state_needed,
1508 .fields = (VMStateField[]) {
1509 VMSTATE_UINT32(mac_reg[RDTR], E1000State),
1510 VMSTATE_UINT32(mac_reg[RADV], E1000State),
1511 VMSTATE_UINT32(mac_reg[TADV], E1000State),
1512 VMSTATE_UINT32(mac_reg[ITR], E1000State),
1513 VMSTATE_BOOL(mit_irq_level, E1000State),
1514 VMSTATE_END_OF_LIST()
1518 static const VMStateDescription vmstate_e1000_full_mac_state = {
1519 .name = "e1000/full_mac_state",
1520 .version_id = 1,
1521 .minimum_version_id = 1,
1522 .needed = e1000_full_mac_needed,
1523 .fields = (VMStateField[]) {
1524 VMSTATE_UINT32_ARRAY(mac_reg, E1000State, 0x8000),
1525 VMSTATE_END_OF_LIST()
1529 static const VMStateDescription vmstate_e1000_tx_tso_state = {
1530 .name = "e1000/tx_tso_state",
1531 .version_id = 1,
1532 .minimum_version_id = 1,
1533 .needed = e1000_tso_state_needed,
1534 .post_load = e1000_tx_tso_post_load,
1535 .fields = (VMStateField[]) {
1536 VMSTATE_UINT8(tx.tso_props.ipcss, E1000State),
1537 VMSTATE_UINT8(tx.tso_props.ipcso, E1000State),
1538 VMSTATE_UINT16(tx.tso_props.ipcse, E1000State),
1539 VMSTATE_UINT8(tx.tso_props.tucss, E1000State),
1540 VMSTATE_UINT8(tx.tso_props.tucso, E1000State),
1541 VMSTATE_UINT16(tx.tso_props.tucse, E1000State),
1542 VMSTATE_UINT32(tx.tso_props.paylen, E1000State),
1543 VMSTATE_UINT8(tx.tso_props.hdr_len, E1000State),
1544 VMSTATE_UINT16(tx.tso_props.mss, E1000State),
1545 VMSTATE_INT8(tx.tso_props.ip, E1000State),
1546 VMSTATE_INT8(tx.tso_props.tcp, E1000State),
1547 VMSTATE_END_OF_LIST()
1551 static const VMStateDescription vmstate_e1000 = {
1552 .name = "e1000",
1553 .version_id = 2,
1554 .minimum_version_id = 1,
1555 .pre_save = e1000_pre_save,
1556 .post_load = e1000_post_load,
1557 .fields = (VMStateField[]) {
1558 VMSTATE_PCI_DEVICE(parent_obj, E1000State),
1559 VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */
1560 VMSTATE_UNUSED(4), /* Was mmio_base. */
1561 VMSTATE_UINT32(rxbuf_size, E1000State),
1562 VMSTATE_UINT32(rxbuf_min_shift, E1000State),
1563 VMSTATE_UINT32(eecd_state.val_in, E1000State),
1564 VMSTATE_UINT16(eecd_state.bitnum_in, E1000State),
1565 VMSTATE_UINT16(eecd_state.bitnum_out, E1000State),
1566 VMSTATE_UINT16(eecd_state.reading, E1000State),
1567 VMSTATE_UINT32(eecd_state.old_eecd, E1000State),
1568 VMSTATE_UINT8(mig_props.ipcss, E1000State),
1569 VMSTATE_UINT8(mig_props.ipcso, E1000State),
1570 VMSTATE_UINT16(mig_props.ipcse, E1000State),
1571 VMSTATE_UINT8(mig_props.tucss, E1000State),
1572 VMSTATE_UINT8(mig_props.tucso, E1000State),
1573 VMSTATE_UINT16(mig_props.tucse, E1000State),
1574 VMSTATE_UINT32(mig_props.paylen, E1000State),
1575 VMSTATE_UINT8(mig_props.hdr_len, E1000State),
1576 VMSTATE_UINT16(mig_props.mss, E1000State),
1577 VMSTATE_UINT16(tx.size, E1000State),
1578 VMSTATE_UINT16(tx.tso_frames, E1000State),
1579 VMSTATE_UINT8(tx.sum_needed, E1000State),
1580 VMSTATE_INT8(mig_props.ip, E1000State),
1581 VMSTATE_INT8(mig_props.tcp, E1000State),
1582 VMSTATE_BUFFER(tx.header, E1000State),
1583 VMSTATE_BUFFER(tx.data, E1000State),
1584 VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64),
1585 VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20),
1586 VMSTATE_UINT32(mac_reg[CTRL], E1000State),
1587 VMSTATE_UINT32(mac_reg[EECD], E1000State),
1588 VMSTATE_UINT32(mac_reg[EERD], E1000State),
1589 VMSTATE_UINT32(mac_reg[GPRC], E1000State),
1590 VMSTATE_UINT32(mac_reg[GPTC], E1000State),
1591 VMSTATE_UINT32(mac_reg[ICR], E1000State),
1592 VMSTATE_UINT32(mac_reg[ICS], E1000State),
1593 VMSTATE_UINT32(mac_reg[IMC], E1000State),
1594 VMSTATE_UINT32(mac_reg[IMS], E1000State),
1595 VMSTATE_UINT32(mac_reg[LEDCTL], E1000State),
1596 VMSTATE_UINT32(mac_reg[MANC], E1000State),
1597 VMSTATE_UINT32(mac_reg[MDIC], E1000State),
1598 VMSTATE_UINT32(mac_reg[MPC], E1000State),
1599 VMSTATE_UINT32(mac_reg[PBA], E1000State),
1600 VMSTATE_UINT32(mac_reg[RCTL], E1000State),
1601 VMSTATE_UINT32(mac_reg[RDBAH], E1000State),
1602 VMSTATE_UINT32(mac_reg[RDBAL], E1000State),
1603 VMSTATE_UINT32(mac_reg[RDH], E1000State),
1604 VMSTATE_UINT32(mac_reg[RDLEN], E1000State),
1605 VMSTATE_UINT32(mac_reg[RDT], E1000State),
1606 VMSTATE_UINT32(mac_reg[STATUS], E1000State),
1607 VMSTATE_UINT32(mac_reg[SWSM], E1000State),
1608 VMSTATE_UINT32(mac_reg[TCTL], E1000State),
1609 VMSTATE_UINT32(mac_reg[TDBAH], E1000State),
1610 VMSTATE_UINT32(mac_reg[TDBAL], E1000State),
1611 VMSTATE_UINT32(mac_reg[TDH], E1000State),
1612 VMSTATE_UINT32(mac_reg[TDLEN], E1000State),
1613 VMSTATE_UINT32(mac_reg[TDT], E1000State),
1614 VMSTATE_UINT32(mac_reg[TORH], E1000State),
1615 VMSTATE_UINT32(mac_reg[TORL], E1000State),
1616 VMSTATE_UINT32(mac_reg[TOTH], E1000State),
1617 VMSTATE_UINT32(mac_reg[TOTL], E1000State),
1618 VMSTATE_UINT32(mac_reg[TPR], E1000State),
1619 VMSTATE_UINT32(mac_reg[TPT], E1000State),
1620 VMSTATE_UINT32(mac_reg[TXDCTL], E1000State),
1621 VMSTATE_UINT32(mac_reg[WUFC], E1000State),
1622 VMSTATE_UINT32(mac_reg[VET], E1000State),
1623 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32),
1624 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, 128),
1625 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA, 128),
1626 VMSTATE_END_OF_LIST()
1628 .subsections = (const VMStateDescription*[]) {
1629 &vmstate_e1000_mit_state,
1630 &vmstate_e1000_full_mac_state,
1631 &vmstate_e1000_tx_tso_state,
1632 NULL
1637 * EEPROM contents documented in Tables 5-2 and 5-3, pp. 98-102.
1638 * Note: A valid DevId will be inserted during pci_e1000_realize().
1640 static const uint16_t e1000_eeprom_template[64] = {
1641 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000,
1642 0x3000, 0x1000, 0x6403, 0 /*DevId*/, 0x8086, 0 /*DevId*/, 0x8086, 0x3040,
1643 0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700,
1644 0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706,
1645 0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff,
1646 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
1647 0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
1648 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000,
1651 /* PCI interface */
1653 static void
1654 e1000_mmio_setup(E1000State *d)
1656 int i;
1657 const uint32_t excluded_regs[] = {
1658 E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS,
1659 E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE
1662 memory_region_init_io(&d->mmio, OBJECT(d), &e1000_mmio_ops, d,
1663 "e1000-mmio", PNPMMIO_SIZE);
1664 memory_region_add_coalescing(&d->mmio, 0, excluded_regs[0]);
1665 for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++)
1666 memory_region_add_coalescing(&d->mmio, excluded_regs[i] + 4,
1667 excluded_regs[i+1] - excluded_regs[i] - 4);
1668 memory_region_init_io(&d->io, OBJECT(d), &e1000_io_ops, d, "e1000-io", IOPORT_SIZE);
1671 static void
1672 pci_e1000_uninit(PCIDevice *dev)
1674 E1000State *d = E1000(dev);
1676 timer_free(d->autoneg_timer);
1677 timer_free(d->mit_timer);
1678 timer_free(d->flush_queue_timer);
1679 qemu_del_nic(d->nic);
1682 static NetClientInfo net_e1000_info = {
1683 .type = NET_CLIENT_DRIVER_NIC,
1684 .size = sizeof(NICState),
1685 .can_receive = e1000_can_receive,
1686 .receive = e1000_receive,
1687 .receive_iov = e1000_receive_iov,
1688 .link_status_changed = e1000_set_link_status,
1691 static void e1000_write_config(PCIDevice *pci_dev, uint32_t address,
1692 uint32_t val, int len)
1694 E1000State *s = E1000(pci_dev);
1696 pci_default_write_config(pci_dev, address, val, len);
1698 if (range_covers_byte(address, len, PCI_COMMAND) &&
1699 (pci_dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) {
1700 qemu_flush_queued_packets(qemu_get_queue(s->nic));
1704 static void pci_e1000_realize(PCIDevice *pci_dev, Error **errp)
1706 DeviceState *dev = DEVICE(pci_dev);
1707 E1000State *d = E1000(pci_dev);
1708 uint8_t *pci_conf;
1709 uint8_t *macaddr;
1711 pci_dev->config_write = e1000_write_config;
1713 pci_conf = pci_dev->config;
1715 /* TODO: RST# value should be 0, PCI spec 6.2.4 */
1716 pci_conf[PCI_CACHE_LINE_SIZE] = 0x10;
1718 pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
1720 e1000_mmio_setup(d);
1722 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &d->mmio);
1724 pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io);
1726 qemu_macaddr_default_if_unset(&d->conf.macaddr);
1727 macaddr = d->conf.macaddr.a;
1729 e1000x_core_prepare_eeprom(d->eeprom_data,
1730 e1000_eeprom_template,
1731 sizeof(e1000_eeprom_template),
1732 PCI_DEVICE_GET_CLASS(pci_dev)->device_id,
1733 macaddr);
1735 d->nic = qemu_new_nic(&net_e1000_info, &d->conf,
1736 object_get_typename(OBJECT(d)), dev->id, d);
1738 qemu_format_nic_info_str(qemu_get_queue(d->nic), macaddr);
1740 d->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, e1000_autoneg_timer, d);
1741 d->mit_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000_mit_timer, d);
1742 d->flush_queue_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
1743 e1000_flush_queue_timer, d);
1746 static void qdev_e1000_reset(DeviceState *dev)
1748 E1000State *d = E1000(dev);
1749 e1000_reset(d);
1752 static Property e1000_properties[] = {
1753 DEFINE_NIC_PROPERTIES(E1000State, conf),
1754 DEFINE_PROP_BIT("autonegotiation", E1000State,
1755 compat_flags, E1000_FLAG_AUTONEG_BIT, true),
1756 DEFINE_PROP_BIT("mitigation", E1000State,
1757 compat_flags, E1000_FLAG_MIT_BIT, true),
1758 DEFINE_PROP_BIT("extra_mac_registers", E1000State,
1759 compat_flags, E1000_FLAG_MAC_BIT, true),
1760 DEFINE_PROP_BIT("migrate_tso_props", E1000State,
1761 compat_flags, E1000_FLAG_TSO_BIT, true),
1762 DEFINE_PROP_BIT("init-vet", E1000State,
1763 compat_flags, E1000_FLAG_VET_BIT, true),
1764 DEFINE_PROP_END_OF_LIST(),
1767 typedef struct E1000Info {
1768 const char *name;
1769 uint16_t device_id;
1770 uint8_t revision;
1771 uint16_t phy_id2;
1772 } E1000Info;
1774 static void e1000_class_init(ObjectClass *klass, void *data)
1776 DeviceClass *dc = DEVICE_CLASS(klass);
1777 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1778 E1000BaseClass *e = E1000_CLASS(klass);
1779 const E1000Info *info = data;
1781 k->realize = pci_e1000_realize;
1782 k->exit = pci_e1000_uninit;
1783 k->romfile = "efi-e1000.rom";
1784 k->vendor_id = PCI_VENDOR_ID_INTEL;
1785 k->device_id = info->device_id;
1786 k->revision = info->revision;
1787 e->phy_id2 = info->phy_id2;
1788 k->class_id = PCI_CLASS_NETWORK_ETHERNET;
1789 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
1790 dc->desc = "Intel Gigabit Ethernet";
1791 dc->reset = qdev_e1000_reset;
1792 dc->vmsd = &vmstate_e1000;
1793 device_class_set_props(dc, e1000_properties);
1796 static void e1000_instance_init(Object *obj)
1798 E1000State *n = E1000(obj);
1799 device_add_bootindex_property(obj, &n->conf.bootindex,
1800 "bootindex", "/ethernet-phy@0",
1801 DEVICE(n));
1804 static const TypeInfo e1000_base_info = {
1805 .name = TYPE_E1000_BASE,
1806 .parent = TYPE_PCI_DEVICE,
1807 .instance_size = sizeof(E1000State),
1808 .instance_init = e1000_instance_init,
1809 .class_size = sizeof(E1000BaseClass),
1810 .abstract = true,
1811 .interfaces = (InterfaceInfo[]) {
1812 { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1813 { },
1817 static const E1000Info e1000_devices[] = {
1819 .name = "e1000",
1820 .device_id = E1000_DEV_ID_82540EM,
1821 .revision = 0x03,
1822 .phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT,
1825 .name = "e1000-82544gc",
1826 .device_id = E1000_DEV_ID_82544GC_COPPER,
1827 .revision = 0x03,
1828 .phy_id2 = E1000_PHY_ID2_82544x,
1831 .name = "e1000-82545em",
1832 .device_id = E1000_DEV_ID_82545EM_COPPER,
1833 .revision = 0x03,
1834 .phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT,
1838 static void e1000_register_types(void)
1840 int i;
1842 type_register_static(&e1000_base_info);
1843 for (i = 0; i < ARRAY_SIZE(e1000_devices); i++) {
1844 const E1000Info *info = &e1000_devices[i];
1845 TypeInfo type_info = {};
1847 type_info.name = info->name;
1848 type_info.parent = TYPE_E1000_BASE;
1849 type_info.class_data = (void *)info;
1850 type_info.class_init = e1000_class_init;
1852 type_register(&type_info);
1856 type_init(e1000_register_types)