4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
26 #include <sys/syscall.h>
27 #include <sys/resource.h>
30 #include "qemu-common.h"
31 #include "qemu/cache-utils.h"
34 #include "qemu/timer.h"
35 #include "qemu/envlist.h"
45 static const char *cpu_model
;
46 unsigned long mmap_min_addr
;
47 #if defined(CONFIG_USE_GUEST_BASE)
48 unsigned long guest_base
;
50 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64)
52 * When running 32-on-64 we should make sure we can fit all of the possible
53 * guest address space into a contiguous chunk of virtual host memory.
55 * This way we will never overlap with our own libraries or binaries or stack
56 * or anything else that QEMU maps.
59 /* MIPS only supports 31 bits of virtual address space for user space */
60 unsigned long reserved_va
= 0x77000000;
62 unsigned long reserved_va
= 0xf7000000;
65 unsigned long reserved_va
;
69 static void usage(void);
71 static const char *interp_prefix
= CONFIG_QEMU_INTERP_PREFIX
;
72 const char *qemu_uname_release
= CONFIG_UNAME_RELEASE
;
74 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
75 we allocate a bigger stack. Need a better solution, for example
76 by remapping the process stack directly at the right place */
77 unsigned long guest_stack_size
= 8 * 1024 * 1024UL;
79 void gemu_log(const char *fmt
, ...)
84 vfprintf(stderr
, fmt
, ap
);
88 #if defined(TARGET_I386)
89 int cpu_get_pic_interrupt(CPUX86State
*env
)
95 /***********************************************************/
96 /* Helper routines for implementing atomic operations. */
98 /* To implement exclusive operations we force all cpus to syncronise.
99 We don't require a full sync, only that no cpus are executing guest code.
100 The alternative is to map target atomic ops onto host equivalents,
101 which requires quite a lot of per host/target work. */
102 static pthread_mutex_t cpu_list_mutex
= PTHREAD_MUTEX_INITIALIZER
;
103 static pthread_mutex_t exclusive_lock
= PTHREAD_MUTEX_INITIALIZER
;
104 static pthread_cond_t exclusive_cond
= PTHREAD_COND_INITIALIZER
;
105 static pthread_cond_t exclusive_resume
= PTHREAD_COND_INITIALIZER
;
106 static int pending_cpus
;
108 /* Make sure everything is in a consistent state for calling fork(). */
109 void fork_start(void)
111 pthread_mutex_lock(&tcg_ctx
.tb_ctx
.tb_lock
);
112 pthread_mutex_lock(&exclusive_lock
);
116 void fork_end(int child
)
118 mmap_fork_end(child
);
120 CPUState
*cpu
, *next_cpu
;
121 /* Child processes created by fork() only have a single thread.
122 Discard information about the parent threads. */
123 CPU_FOREACH_SAFE(cpu
, next_cpu
) {
124 if (cpu
!= thread_cpu
) {
125 QTAILQ_REMOVE(&cpus
, thread_cpu
, node
);
129 pthread_mutex_init(&exclusive_lock
, NULL
);
130 pthread_mutex_init(&cpu_list_mutex
, NULL
);
131 pthread_cond_init(&exclusive_cond
, NULL
);
132 pthread_cond_init(&exclusive_resume
, NULL
);
133 pthread_mutex_init(&tcg_ctx
.tb_ctx
.tb_lock
, NULL
);
134 gdbserver_fork((CPUArchState
*)thread_cpu
->env_ptr
);
136 pthread_mutex_unlock(&exclusive_lock
);
137 pthread_mutex_unlock(&tcg_ctx
.tb_ctx
.tb_lock
);
141 /* Wait for pending exclusive operations to complete. The exclusive lock
143 static inline void exclusive_idle(void)
145 while (pending_cpus
) {
146 pthread_cond_wait(&exclusive_resume
, &exclusive_lock
);
150 /* Start an exclusive operation.
151 Must only be called from outside cpu_arm_exec. */
152 static inline void start_exclusive(void)
156 pthread_mutex_lock(&exclusive_lock
);
160 /* Make all other cpus stop executing. */
161 CPU_FOREACH(other_cpu
) {
162 if (other_cpu
->running
) {
167 if (pending_cpus
> 1) {
168 pthread_cond_wait(&exclusive_cond
, &exclusive_lock
);
172 /* Finish an exclusive operation. */
173 static inline void end_exclusive(void)
176 pthread_cond_broadcast(&exclusive_resume
);
177 pthread_mutex_unlock(&exclusive_lock
);
180 /* Wait for exclusive ops to finish, and begin cpu execution. */
181 static inline void cpu_exec_start(CPUState
*cpu
)
183 pthread_mutex_lock(&exclusive_lock
);
186 pthread_mutex_unlock(&exclusive_lock
);
189 /* Mark cpu as not executing, and release pending exclusive ops. */
190 static inline void cpu_exec_end(CPUState
*cpu
)
192 pthread_mutex_lock(&exclusive_lock
);
193 cpu
->running
= false;
194 if (pending_cpus
> 1) {
196 if (pending_cpus
== 1) {
197 pthread_cond_signal(&exclusive_cond
);
201 pthread_mutex_unlock(&exclusive_lock
);
204 void cpu_list_lock(void)
206 pthread_mutex_lock(&cpu_list_mutex
);
209 void cpu_list_unlock(void)
211 pthread_mutex_unlock(&cpu_list_mutex
);
216 /***********************************************************/
217 /* CPUX86 core interface */
219 void cpu_smm_update(CPUX86State
*env
)
223 uint64_t cpu_get_tsc(CPUX86State
*env
)
225 return cpu_get_real_ticks();
228 static void write_dt(void *ptr
, unsigned long addr
, unsigned long limit
,
233 e1
= (addr
<< 16) | (limit
& 0xffff);
234 e2
= ((addr
>> 16) & 0xff) | (addr
& 0xff000000) | (limit
& 0x000f0000);
241 static uint64_t *idt_table
;
243 static void set_gate64(void *ptr
, unsigned int type
, unsigned int dpl
,
244 uint64_t addr
, unsigned int sel
)
247 e1
= (addr
& 0xffff) | (sel
<< 16);
248 e2
= (addr
& 0xffff0000) | 0x8000 | (dpl
<< 13) | (type
<< 8);
252 p
[2] = tswap32(addr
>> 32);
255 /* only dpl matters as we do only user space emulation */
256 static void set_idt(int n
, unsigned int dpl
)
258 set_gate64(idt_table
+ n
* 2, 0, dpl
, 0, 0);
261 static void set_gate(void *ptr
, unsigned int type
, unsigned int dpl
,
262 uint32_t addr
, unsigned int sel
)
265 e1
= (addr
& 0xffff) | (sel
<< 16);
266 e2
= (addr
& 0xffff0000) | 0x8000 | (dpl
<< 13) | (type
<< 8);
272 /* only dpl matters as we do only user space emulation */
273 static void set_idt(int n
, unsigned int dpl
)
275 set_gate(idt_table
+ n
, 0, dpl
, 0, 0);
279 void cpu_loop(CPUX86State
*env
)
281 CPUState
*cs
= CPU(x86_env_get_cpu(env
));
284 target_siginfo_t info
;
287 trapnr
= cpu_x86_exec(env
);
290 /* linux syscall from int $0x80 */
291 env
->regs
[R_EAX
] = do_syscall(env
,
303 /* linux syscall from syscall instruction */
304 env
->regs
[R_EAX
] = do_syscall(env
,
313 env
->eip
= env
->exception_next_eip
;
318 info
.si_signo
= SIGBUS
;
320 info
.si_code
= TARGET_SI_KERNEL
;
321 info
._sifields
._sigfault
._addr
= 0;
322 queue_signal(env
, info
.si_signo
, &info
);
325 /* XXX: potential problem if ABI32 */
326 #ifndef TARGET_X86_64
327 if (env
->eflags
& VM_MASK
) {
328 handle_vm86_fault(env
);
332 info
.si_signo
= SIGSEGV
;
334 info
.si_code
= TARGET_SI_KERNEL
;
335 info
._sifields
._sigfault
._addr
= 0;
336 queue_signal(env
, info
.si_signo
, &info
);
340 info
.si_signo
= SIGSEGV
;
342 if (!(env
->error_code
& 1))
343 info
.si_code
= TARGET_SEGV_MAPERR
;
345 info
.si_code
= TARGET_SEGV_ACCERR
;
346 info
._sifields
._sigfault
._addr
= env
->cr
[2];
347 queue_signal(env
, info
.si_signo
, &info
);
350 #ifndef TARGET_X86_64
351 if (env
->eflags
& VM_MASK
) {
352 handle_vm86_trap(env
, trapnr
);
356 /* division by zero */
357 info
.si_signo
= SIGFPE
;
359 info
.si_code
= TARGET_FPE_INTDIV
;
360 info
._sifields
._sigfault
._addr
= env
->eip
;
361 queue_signal(env
, info
.si_signo
, &info
);
366 #ifndef TARGET_X86_64
367 if (env
->eflags
& VM_MASK
) {
368 handle_vm86_trap(env
, trapnr
);
372 info
.si_signo
= SIGTRAP
;
374 if (trapnr
== EXCP01_DB
) {
375 info
.si_code
= TARGET_TRAP_BRKPT
;
376 info
._sifields
._sigfault
._addr
= env
->eip
;
378 info
.si_code
= TARGET_SI_KERNEL
;
379 info
._sifields
._sigfault
._addr
= 0;
381 queue_signal(env
, info
.si_signo
, &info
);
386 #ifndef TARGET_X86_64
387 if (env
->eflags
& VM_MASK
) {
388 handle_vm86_trap(env
, trapnr
);
392 info
.si_signo
= SIGSEGV
;
394 info
.si_code
= TARGET_SI_KERNEL
;
395 info
._sifields
._sigfault
._addr
= 0;
396 queue_signal(env
, info
.si_signo
, &info
);
400 info
.si_signo
= SIGILL
;
402 info
.si_code
= TARGET_ILL_ILLOPN
;
403 info
._sifields
._sigfault
._addr
= env
->eip
;
404 queue_signal(env
, info
.si_signo
, &info
);
407 /* just indicate that signals should be handled asap */
413 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
418 info
.si_code
= TARGET_TRAP_BRKPT
;
419 queue_signal(env
, info
.si_signo
, &info
);
424 pc
= env
->segs
[R_CS
].base
+ env
->eip
;
425 fprintf(stderr
, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
429 process_pending_signals(env
);
436 #define get_user_code_u32(x, gaddr, doswap) \
437 ({ abi_long __r = get_user_u32((x), (gaddr)); \
438 if (!__r && (doswap)) { \
444 #define get_user_code_u16(x, gaddr, doswap) \
445 ({ abi_long __r = get_user_u16((x), (gaddr)); \
446 if (!__r && (doswap)) { \
453 /* Commpage handling -- there is no commpage for AArch64 */
456 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt
458 * r0 = pointer to oldval
459 * r1 = pointer to newval
460 * r2 = pointer to target value
463 * r0 = 0 if *ptr was changed, non-0 if no exchange happened
464 * C set if *ptr was changed, clear if no exchange happened
466 * Note segv's in kernel helpers are a bit tricky, we can set the
467 * data address sensibly but the PC address is just the entry point.
469 static void arm_kernel_cmpxchg64_helper(CPUARMState
*env
)
471 uint64_t oldval
, newval
, val
;
473 target_siginfo_t info
;
475 /* Based on the 32 bit code in do_kernel_trap */
477 /* XXX: This only works between threads, not between processes.
478 It's probably possible to implement this with native host
479 operations. However things like ldrex/strex are much harder so
480 there's not much point trying. */
482 cpsr
= cpsr_read(env
);
485 if (get_user_u64(oldval
, env
->regs
[0])) {
486 env
->cp15
.c6_data
= env
->regs
[0];
490 if (get_user_u64(newval
, env
->regs
[1])) {
491 env
->cp15
.c6_data
= env
->regs
[1];
495 if (get_user_u64(val
, addr
)) {
496 env
->cp15
.c6_data
= addr
;
503 if (put_user_u64(val
, addr
)) {
504 env
->cp15
.c6_data
= addr
;
514 cpsr_write(env
, cpsr
, CPSR_C
);
520 /* We get the PC of the entry address - which is as good as anything,
521 on a real kernel what you get depends on which mode it uses. */
522 info
.si_signo
= SIGSEGV
;
524 /* XXX: check env->error_code */
525 info
.si_code
= TARGET_SEGV_MAPERR
;
526 info
._sifields
._sigfault
._addr
= env
->cp15
.c6_data
;
527 queue_signal(env
, info
.si_signo
, &info
);
532 /* Handle a jump to the kernel code page. */
534 do_kernel_trap(CPUARMState
*env
)
540 switch (env
->regs
[15]) {
541 case 0xffff0fa0: /* __kernel_memory_barrier */
542 /* ??? No-op. Will need to do better for SMP. */
544 case 0xffff0fc0: /* __kernel_cmpxchg */
545 /* XXX: This only works between threads, not between processes.
546 It's probably possible to implement this with native host
547 operations. However things like ldrex/strex are much harder so
548 there's not much point trying. */
550 cpsr
= cpsr_read(env
);
552 /* FIXME: This should SEGV if the access fails. */
553 if (get_user_u32(val
, addr
))
555 if (val
== env
->regs
[0]) {
557 /* FIXME: Check for segfaults. */
558 put_user_u32(val
, addr
);
565 cpsr_write(env
, cpsr
, CPSR_C
);
568 case 0xffff0fe0: /* __kernel_get_tls */
569 env
->regs
[0] = env
->cp15
.tpidrro_el0
;
571 case 0xffff0f60: /* __kernel_cmpxchg64 */
572 arm_kernel_cmpxchg64_helper(env
);
578 /* Jump back to the caller. */
579 addr
= env
->regs
[14];
584 env
->regs
[15] = addr
;
589 /* Store exclusive handling for AArch32 */
590 static int do_strex(CPUARMState
*env
)
598 if (env
->exclusive_addr
!= env
->exclusive_test
) {
601 /* We know we're always AArch32 so the address is in uint32_t range
602 * unless it was the -1 exclusive-monitor-lost value (which won't
603 * match exclusive_test above).
605 assert(extract64(env
->exclusive_addr
, 32, 32) == 0);
606 addr
= env
->exclusive_addr
;
607 size
= env
->exclusive_info
& 0xf;
610 segv
= get_user_u8(val
, addr
);
613 segv
= get_user_u16(val
, addr
);
617 segv
= get_user_u32(val
, addr
);
623 env
->cp15
.c6_data
= addr
;
628 segv
= get_user_u32(valhi
, addr
+ 4);
630 env
->cp15
.c6_data
= addr
+ 4;
633 val
= deposit64(val
, 32, 32, valhi
);
635 if (val
!= env
->exclusive_val
) {
639 val
= env
->regs
[(env
->exclusive_info
>> 8) & 0xf];
642 segv
= put_user_u8(val
, addr
);
645 segv
= put_user_u16(val
, addr
);
649 segv
= put_user_u32(val
, addr
);
653 env
->cp15
.c6_data
= addr
;
657 val
= env
->regs
[(env
->exclusive_info
>> 12) & 0xf];
658 segv
= put_user_u32(val
, addr
+ 4);
660 env
->cp15
.c6_data
= addr
+ 4;
667 env
->regs
[(env
->exclusive_info
>> 4) & 0xf] = rc
;
673 void cpu_loop(CPUARMState
*env
)
675 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
677 unsigned int n
, insn
;
678 target_siginfo_t info
;
683 trapnr
= cpu_arm_exec(env
);
688 TaskState
*ts
= env
->opaque
;
692 /* we handle the FPU emulation here, as Linux */
693 /* we get the opcode */
694 /* FIXME - what to do if get_user() fails? */
695 get_user_code_u32(opcode
, env
->regs
[15], env
->bswap_code
);
697 rc
= EmulateAll(opcode
, &ts
->fpa
, env
);
698 if (rc
== 0) { /* illegal instruction */
699 info
.si_signo
= SIGILL
;
701 info
.si_code
= TARGET_ILL_ILLOPN
;
702 info
._sifields
._sigfault
._addr
= env
->regs
[15];
703 queue_signal(env
, info
.si_signo
, &info
);
704 } else if (rc
< 0) { /* FP exception */
707 /* translate softfloat flags to FPSR flags */
708 if (-rc
& float_flag_invalid
)
710 if (-rc
& float_flag_divbyzero
)
712 if (-rc
& float_flag_overflow
)
714 if (-rc
& float_flag_underflow
)
716 if (-rc
& float_flag_inexact
)
719 FPSR fpsr
= ts
->fpa
.fpsr
;
720 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe);
722 if (fpsr
& (arm_fpe
<< 16)) { /* exception enabled? */
723 info
.si_signo
= SIGFPE
;
726 /* ordered by priority, least first */
727 if (arm_fpe
& BIT_IXC
) info
.si_code
= TARGET_FPE_FLTRES
;
728 if (arm_fpe
& BIT_UFC
) info
.si_code
= TARGET_FPE_FLTUND
;
729 if (arm_fpe
& BIT_OFC
) info
.si_code
= TARGET_FPE_FLTOVF
;
730 if (arm_fpe
& BIT_DZC
) info
.si_code
= TARGET_FPE_FLTDIV
;
731 if (arm_fpe
& BIT_IOC
) info
.si_code
= TARGET_FPE_FLTINV
;
733 info
._sifields
._sigfault
._addr
= env
->regs
[15];
734 queue_signal(env
, info
.si_signo
, &info
);
739 /* accumulate unenabled exceptions */
740 if ((!(fpsr
& BIT_IXE
)) && (arm_fpe
& BIT_IXC
))
742 if ((!(fpsr
& BIT_UFE
)) && (arm_fpe
& BIT_UFC
))
744 if ((!(fpsr
& BIT_OFE
)) && (arm_fpe
& BIT_OFC
))
746 if ((!(fpsr
& BIT_DZE
)) && (arm_fpe
& BIT_DZC
))
748 if ((!(fpsr
& BIT_IOE
)) && (arm_fpe
& BIT_IOC
))
751 } else { /* everything OK */
762 if (trapnr
== EXCP_BKPT
) {
764 /* FIXME - what to do if get_user() fails? */
765 get_user_code_u16(insn
, env
->regs
[15], env
->bswap_code
);
769 /* FIXME - what to do if get_user() fails? */
770 get_user_code_u32(insn
, env
->regs
[15], env
->bswap_code
);
771 n
= (insn
& 0xf) | ((insn
>> 4) & 0xff0);
776 /* FIXME - what to do if get_user() fails? */
777 get_user_code_u16(insn
, env
->regs
[15] - 2,
781 /* FIXME - what to do if get_user() fails? */
782 get_user_code_u32(insn
, env
->regs
[15] - 4,
788 if (n
== ARM_NR_cacheflush
) {
790 } else if (n
== ARM_NR_semihosting
791 || n
== ARM_NR_thumb_semihosting
) {
792 env
->regs
[0] = do_arm_semihosting (env
);
793 } else if (n
== 0 || n
>= ARM_SYSCALL_BASE
|| env
->thumb
) {
795 if (env
->thumb
|| n
== 0) {
798 n
-= ARM_SYSCALL_BASE
;
801 if ( n
> ARM_NR_BASE
) {
803 case ARM_NR_cacheflush
:
807 cpu_set_tls(env
, env
->regs
[0]);
811 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n",
813 env
->regs
[0] = -TARGET_ENOSYS
;
817 env
->regs
[0] = do_syscall(env
,
833 /* just indicate that signals should be handled asap */
835 case EXCP_PREFETCH_ABORT
:
836 addr
= env
->cp15
.c6_insn
;
838 case EXCP_DATA_ABORT
:
839 addr
= env
->cp15
.c6_data
;
842 info
.si_signo
= SIGSEGV
;
844 /* XXX: check env->error_code */
845 info
.si_code
= TARGET_SEGV_MAPERR
;
846 info
._sifields
._sigfault
._addr
= addr
;
847 queue_signal(env
, info
.si_signo
, &info
);
854 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
859 info
.si_code
= TARGET_TRAP_BRKPT
;
860 queue_signal(env
, info
.si_signo
, &info
);
864 case EXCP_KERNEL_TRAP
:
865 if (do_kernel_trap(env
))
870 addr
= env
->cp15
.c6_data
;
876 fprintf(stderr
, "qemu: unhandled CPU exception 0x%x - aborting\n",
878 cpu_dump_state(cs
, stderr
, fprintf
, 0);
881 process_pending_signals(env
);
888 * Handle AArch64 store-release exclusive
890 * rs = gets the status result of store exclusive
891 * rt = is the register that is stored
892 * rt2 = is the second register store (in STP)
895 static int do_strex_a64(CPUARMState
*env
)
906 /* size | is_pair << 2 | (rs << 4) | (rt << 9) | (rt2 << 14)); */
907 size
= extract32(env
->exclusive_info
, 0, 2);
908 is_pair
= extract32(env
->exclusive_info
, 2, 1);
909 rs
= extract32(env
->exclusive_info
, 4, 5);
910 rt
= extract32(env
->exclusive_info
, 9, 5);
911 rt2
= extract32(env
->exclusive_info
, 14, 5);
913 addr
= env
->exclusive_addr
;
915 if (addr
!= env
->exclusive_test
) {
921 segv
= get_user_u8(val
, addr
);
924 segv
= get_user_u16(val
, addr
);
927 segv
= get_user_u32(val
, addr
);
930 segv
= get_user_u64(val
, addr
);
936 env
->cp15
.c6_data
= addr
;
939 if (val
!= env
->exclusive_val
) {
944 segv
= get_user_u32(val
, addr
+ 4);
946 segv
= get_user_u64(val
, addr
+ 8);
949 env
->cp15
.c6_data
= addr
+ (size
== 2 ? 4 : 8);
952 if (val
!= env
->exclusive_high
) {
956 /* handle the zero register */
957 val
= rt
== 31 ? 0 : env
->xregs
[rt
];
960 segv
= put_user_u8(val
, addr
);
963 segv
= put_user_u16(val
, addr
);
966 segv
= put_user_u32(val
, addr
);
969 segv
= put_user_u64(val
, addr
);
976 /* handle the zero register */
977 val
= rt2
== 31 ? 0 : env
->xregs
[rt2
];
979 segv
= put_user_u32(val
, addr
+ 4);
981 segv
= put_user_u64(val
, addr
+ 8);
984 env
->cp15
.c6_data
= addr
+ (size
== 2 ? 4 : 8);
991 /* rs == 31 encodes a write to the ZR, thus throwing away
992 * the status return. This is rather silly but valid.
998 /* instruction faulted, PC does not advance */
999 /* either way a strex releases any exclusive lock we have */
1000 env
->exclusive_addr
= -1;
1005 /* AArch64 main loop */
1006 void cpu_loop(CPUARMState
*env
)
1008 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
1010 target_siginfo_t info
;
1015 trapnr
= cpu_arm_exec(env
);
1020 env
->xregs
[0] = do_syscall(env
,
1030 case EXCP_INTERRUPT
:
1031 /* just indicate that signals should be handled asap */
1034 info
.si_signo
= SIGILL
;
1036 info
.si_code
= TARGET_ILL_ILLOPN
;
1037 info
._sifields
._sigfault
._addr
= env
->pc
;
1038 queue_signal(env
, info
.si_signo
, &info
);
1040 case EXCP_PREFETCH_ABORT
:
1041 addr
= env
->cp15
.c6_insn
;
1043 case EXCP_DATA_ABORT
:
1044 addr
= env
->cp15
.c6_data
;
1046 info
.si_signo
= SIGSEGV
;
1048 /* XXX: check env->error_code */
1049 info
.si_code
= TARGET_SEGV_MAPERR
;
1050 info
._sifields
._sigfault
._addr
= addr
;
1051 queue_signal(env
, info
.si_signo
, &info
);
1055 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1057 info
.si_signo
= sig
;
1059 info
.si_code
= TARGET_TRAP_BRKPT
;
1060 queue_signal(env
, info
.si_signo
, &info
);
1064 if (do_strex_a64(env
)) {
1065 addr
= env
->cp15
.c6_data
;
1070 fprintf(stderr
, "qemu: unhandled CPU exception 0x%x - aborting\n",
1072 cpu_dump_state(cs
, stderr
, fprintf
, 0);
1075 process_pending_signals(env
);
1076 /* Exception return on AArch64 always clears the exclusive monitor,
1077 * so any return to running guest code implies this.
1078 * A strex (successful or otherwise) also clears the monitor, so
1079 * we don't need to specialcase EXCP_STREX.
1081 env
->exclusive_addr
= -1;
1084 #endif /* ndef TARGET_ABI32 */
1088 #ifdef TARGET_UNICORE32
1090 void cpu_loop(CPUUniCore32State
*env
)
1092 CPUState
*cs
= CPU(uc32_env_get_cpu(env
));
1094 unsigned int n
, insn
;
1095 target_siginfo_t info
;
1099 trapnr
= uc32_cpu_exec(env
);
1102 case UC32_EXCP_PRIV
:
1105 get_user_u32(insn
, env
->regs
[31] - 4);
1106 n
= insn
& 0xffffff;
1108 if (n
>= UC32_SYSCALL_BASE
) {
1110 n
-= UC32_SYSCALL_BASE
;
1111 if (n
== UC32_SYSCALL_NR_set_tls
) {
1112 cpu_set_tls(env
, env
->regs
[0]);
1115 env
->regs
[0] = do_syscall(env
,
1130 case UC32_EXCP_DTRAP
:
1131 case UC32_EXCP_ITRAP
:
1132 info
.si_signo
= SIGSEGV
;
1134 /* XXX: check env->error_code */
1135 info
.si_code
= TARGET_SEGV_MAPERR
;
1136 info
._sifields
._sigfault
._addr
= env
->cp0
.c4_faultaddr
;
1137 queue_signal(env
, info
.si_signo
, &info
);
1139 case EXCP_INTERRUPT
:
1140 /* just indicate that signals should be handled asap */
1146 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1148 info
.si_signo
= sig
;
1150 info
.si_code
= TARGET_TRAP_BRKPT
;
1151 queue_signal(env
, info
.si_signo
, &info
);
1158 process_pending_signals(env
);
1162 fprintf(stderr
, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr
);
1163 cpu_dump_state(cs
, stderr
, fprintf
, 0);
1169 #define SPARC64_STACK_BIAS 2047
1173 /* WARNING: dealing with register windows _is_ complicated. More info
1174 can be found at http://www.sics.se/~psm/sparcstack.html */
1175 static inline int get_reg_index(CPUSPARCState
*env
, int cwp
, int index
)
1177 index
= (index
+ cwp
* 16) % (16 * env
->nwindows
);
1178 /* wrap handling : if cwp is on the last window, then we use the
1179 registers 'after' the end */
1180 if (index
< 8 && env
->cwp
== env
->nwindows
- 1)
1181 index
+= 16 * env
->nwindows
;
1185 /* save the register window 'cwp1' */
1186 static inline void save_window_offset(CPUSPARCState
*env
, int cwp1
)
1191 sp_ptr
= env
->regbase
[get_reg_index(env
, cwp1
, 6)];
1192 #ifdef TARGET_SPARC64
1194 sp_ptr
+= SPARC64_STACK_BIAS
;
1196 #if defined(DEBUG_WIN)
1197 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx
" save_cwp=%d\n",
1200 for(i
= 0; i
< 16; i
++) {
1201 /* FIXME - what to do if put_user() fails? */
1202 put_user_ual(env
->regbase
[get_reg_index(env
, cwp1
, 8 + i
)], sp_ptr
);
1203 sp_ptr
+= sizeof(abi_ulong
);
1207 static void save_window(CPUSPARCState
*env
)
1209 #ifndef TARGET_SPARC64
1210 unsigned int new_wim
;
1211 new_wim
= ((env
->wim
>> 1) | (env
->wim
<< (env
->nwindows
- 1))) &
1212 ((1LL << env
->nwindows
) - 1);
1213 save_window_offset(env
, cpu_cwp_dec(env
, env
->cwp
- 2));
1216 save_window_offset(env
, cpu_cwp_dec(env
, env
->cwp
- 2));
1222 static void restore_window(CPUSPARCState
*env
)
1224 #ifndef TARGET_SPARC64
1225 unsigned int new_wim
;
1227 unsigned int i
, cwp1
;
1230 #ifndef TARGET_SPARC64
1231 new_wim
= ((env
->wim
<< 1) | (env
->wim
>> (env
->nwindows
- 1))) &
1232 ((1LL << env
->nwindows
) - 1);
1235 /* restore the invalid window */
1236 cwp1
= cpu_cwp_inc(env
, env
->cwp
+ 1);
1237 sp_ptr
= env
->regbase
[get_reg_index(env
, cwp1
, 6)];
1238 #ifdef TARGET_SPARC64
1240 sp_ptr
+= SPARC64_STACK_BIAS
;
1242 #if defined(DEBUG_WIN)
1243 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx
" load_cwp=%d\n",
1246 for(i
= 0; i
< 16; i
++) {
1247 /* FIXME - what to do if get_user() fails? */
1248 get_user_ual(env
->regbase
[get_reg_index(env
, cwp1
, 8 + i
)], sp_ptr
);
1249 sp_ptr
+= sizeof(abi_ulong
);
1251 #ifdef TARGET_SPARC64
1253 if (env
->cleanwin
< env
->nwindows
- 1)
1261 static void flush_windows(CPUSPARCState
*env
)
1267 /* if restore would invoke restore_window(), then we can stop */
1268 cwp1
= cpu_cwp_inc(env
, env
->cwp
+ offset
);
1269 #ifndef TARGET_SPARC64
1270 if (env
->wim
& (1 << cwp1
))
1273 if (env
->canrestore
== 0)
1278 save_window_offset(env
, cwp1
);
1281 cwp1
= cpu_cwp_inc(env
, env
->cwp
+ 1);
1282 #ifndef TARGET_SPARC64
1283 /* set wim so that restore will reload the registers */
1284 env
->wim
= 1 << cwp1
;
1286 #if defined(DEBUG_WIN)
1287 printf("flush_windows: nb=%d\n", offset
- 1);
1291 void cpu_loop (CPUSPARCState
*env
)
1293 CPUState
*cs
= CPU(sparc_env_get_cpu(env
));
1296 target_siginfo_t info
;
1299 trapnr
= cpu_sparc_exec (env
);
1301 /* Compute PSR before exposing state. */
1302 if (env
->cc_op
!= CC_OP_FLAGS
) {
1307 #ifndef TARGET_SPARC64
1314 ret
= do_syscall (env
, env
->gregs
[1],
1315 env
->regwptr
[0], env
->regwptr
[1],
1316 env
->regwptr
[2], env
->regwptr
[3],
1317 env
->regwptr
[4], env
->regwptr
[5],
1319 if ((abi_ulong
)ret
>= (abi_ulong
)(-515)) {
1320 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1321 env
->xcc
|= PSR_CARRY
;
1323 env
->psr
|= PSR_CARRY
;
1327 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1328 env
->xcc
&= ~PSR_CARRY
;
1330 env
->psr
&= ~PSR_CARRY
;
1333 env
->regwptr
[0] = ret
;
1334 /* next instruction */
1336 env
->npc
= env
->npc
+ 4;
1338 case 0x83: /* flush windows */
1343 /* next instruction */
1345 env
->npc
= env
->npc
+ 4;
1347 #ifndef TARGET_SPARC64
1348 case TT_WIN_OVF
: /* window overflow */
1351 case TT_WIN_UNF
: /* window underflow */
1352 restore_window(env
);
1357 info
.si_signo
= TARGET_SIGSEGV
;
1359 /* XXX: check env->error_code */
1360 info
.si_code
= TARGET_SEGV_MAPERR
;
1361 info
._sifields
._sigfault
._addr
= env
->mmuregs
[4];
1362 queue_signal(env
, info
.si_signo
, &info
);
1366 case TT_SPILL
: /* window overflow */
1369 case TT_FILL
: /* window underflow */
1370 restore_window(env
);
1375 info
.si_signo
= TARGET_SIGSEGV
;
1377 /* XXX: check env->error_code */
1378 info
.si_code
= TARGET_SEGV_MAPERR
;
1379 if (trapnr
== TT_DFAULT
)
1380 info
._sifields
._sigfault
._addr
= env
->dmmuregs
[4];
1382 info
._sifields
._sigfault
._addr
= cpu_tsptr(env
)->tpc
;
1383 queue_signal(env
, info
.si_signo
, &info
);
1386 #ifndef TARGET_ABI32
1389 sparc64_get_context(env
);
1393 sparc64_set_context(env
);
1397 case EXCP_INTERRUPT
:
1398 /* just indicate that signals should be handled asap */
1402 info
.si_signo
= TARGET_SIGILL
;
1404 info
.si_code
= TARGET_ILL_ILLOPC
;
1405 info
._sifields
._sigfault
._addr
= env
->pc
;
1406 queue_signal(env
, info
.si_signo
, &info
);
1413 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1416 info
.si_signo
= sig
;
1418 info
.si_code
= TARGET_TRAP_BRKPT
;
1419 queue_signal(env
, info
.si_signo
, &info
);
1424 printf ("Unhandled trap: 0x%x\n", trapnr
);
1425 cpu_dump_state(cs
, stderr
, fprintf
, 0);
1428 process_pending_signals (env
);
1435 static inline uint64_t cpu_ppc_get_tb(CPUPPCState
*env
)
1441 uint64_t cpu_ppc_load_tbl(CPUPPCState
*env
)
1443 return cpu_ppc_get_tb(env
);
1446 uint32_t cpu_ppc_load_tbu(CPUPPCState
*env
)
1448 return cpu_ppc_get_tb(env
) >> 32;
1451 uint64_t cpu_ppc_load_atbl(CPUPPCState
*env
)
1453 return cpu_ppc_get_tb(env
);
1456 uint32_t cpu_ppc_load_atbu(CPUPPCState
*env
)
1458 return cpu_ppc_get_tb(env
) >> 32;
1461 uint32_t cpu_ppc601_load_rtcu(CPUPPCState
*env
)
1462 __attribute__ (( alias ("cpu_ppc_load_tbu") ));
1464 uint32_t cpu_ppc601_load_rtcl(CPUPPCState
*env
)
1466 return cpu_ppc_load_tbl(env
) & 0x3FFFFF80;
1469 /* XXX: to be fixed */
1470 int ppc_dcr_read (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t *valp
)
1475 int ppc_dcr_write (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t val
)
1480 #define EXCP_DUMP(env, fmt, ...) \
1482 CPUState *cs = ENV_GET_CPU(env); \
1483 fprintf(stderr, fmt , ## __VA_ARGS__); \
1484 cpu_dump_state(cs, stderr, fprintf, 0); \
1485 qemu_log(fmt, ## __VA_ARGS__); \
1486 if (qemu_log_enabled()) { \
1487 log_cpu_state(cs, 0); \
1491 static int do_store_exclusive(CPUPPCState
*env
)
1494 target_ulong page_addr
;
1499 addr
= env
->reserve_ea
;
1500 page_addr
= addr
& TARGET_PAGE_MASK
;
1503 flags
= page_get_flags(page_addr
);
1504 if ((flags
& PAGE_READ
) == 0) {
1507 int reg
= env
->reserve_info
& 0x1f;
1508 int size
= (env
->reserve_info
>> 5) & 0xf;
1511 if (addr
== env
->reserve_addr
) {
1513 case 1: segv
= get_user_u8(val
, addr
); break;
1514 case 2: segv
= get_user_u16(val
, addr
); break;
1515 case 4: segv
= get_user_u32(val
, addr
); break;
1516 #if defined(TARGET_PPC64)
1517 case 8: segv
= get_user_u64(val
, addr
); break;
1521 if (!segv
&& val
== env
->reserve_val
) {
1522 val
= env
->gpr
[reg
];
1524 case 1: segv
= put_user_u8(val
, addr
); break;
1525 case 2: segv
= put_user_u16(val
, addr
); break;
1526 case 4: segv
= put_user_u32(val
, addr
); break;
1527 #if defined(TARGET_PPC64)
1528 case 8: segv
= put_user_u64(val
, addr
); break;
1537 env
->crf
[0] = (stored
<< 1) | xer_so
;
1538 env
->reserve_addr
= (target_ulong
)-1;
1548 void cpu_loop(CPUPPCState
*env
)
1550 CPUState
*cs
= CPU(ppc_env_get_cpu(env
));
1551 target_siginfo_t info
;
1557 trapnr
= cpu_ppc_exec(env
);
1560 case POWERPC_EXCP_NONE
:
1563 case POWERPC_EXCP_CRITICAL
: /* Critical input */
1564 cpu_abort(env
, "Critical interrupt while in user mode. "
1567 case POWERPC_EXCP_MCHECK
: /* Machine check exception */
1568 cpu_abort(env
, "Machine check exception while in user mode. "
1571 case POWERPC_EXCP_DSI
: /* Data storage exception */
1572 EXCP_DUMP(env
, "Invalid data memory access: 0x" TARGET_FMT_lx
"\n",
1574 /* XXX: check this. Seems bugged */
1575 switch (env
->error_code
& 0xFF000000) {
1577 info
.si_signo
= TARGET_SIGSEGV
;
1579 info
.si_code
= TARGET_SEGV_MAPERR
;
1582 info
.si_signo
= TARGET_SIGILL
;
1584 info
.si_code
= TARGET_ILL_ILLADR
;
1587 info
.si_signo
= TARGET_SIGSEGV
;
1589 info
.si_code
= TARGET_SEGV_ACCERR
;
1592 /* Let's send a regular segfault... */
1593 EXCP_DUMP(env
, "Invalid segfault errno (%02x)\n",
1595 info
.si_signo
= TARGET_SIGSEGV
;
1597 info
.si_code
= TARGET_SEGV_MAPERR
;
1600 info
._sifields
._sigfault
._addr
= env
->nip
;
1601 queue_signal(env
, info
.si_signo
, &info
);
1603 case POWERPC_EXCP_ISI
: /* Instruction storage exception */
1604 EXCP_DUMP(env
, "Invalid instruction fetch: 0x\n" TARGET_FMT_lx
1605 "\n", env
->spr
[SPR_SRR0
]);
1606 /* XXX: check this */
1607 switch (env
->error_code
& 0xFF000000) {
1609 info
.si_signo
= TARGET_SIGSEGV
;
1611 info
.si_code
= TARGET_SEGV_MAPERR
;
1615 info
.si_signo
= TARGET_SIGSEGV
;
1617 info
.si_code
= TARGET_SEGV_ACCERR
;
1620 /* Let's send a regular segfault... */
1621 EXCP_DUMP(env
, "Invalid segfault errno (%02x)\n",
1623 info
.si_signo
= TARGET_SIGSEGV
;
1625 info
.si_code
= TARGET_SEGV_MAPERR
;
1628 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1629 queue_signal(env
, info
.si_signo
, &info
);
1631 case POWERPC_EXCP_EXTERNAL
: /* External input */
1632 cpu_abort(env
, "External interrupt while in user mode. "
1635 case POWERPC_EXCP_ALIGN
: /* Alignment exception */
1636 EXCP_DUMP(env
, "Unaligned memory access\n");
1637 /* XXX: check this */
1638 info
.si_signo
= TARGET_SIGBUS
;
1640 info
.si_code
= TARGET_BUS_ADRALN
;
1641 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1642 queue_signal(env
, info
.si_signo
, &info
);
1644 case POWERPC_EXCP_PROGRAM
: /* Program exception */
1645 /* XXX: check this */
1646 switch (env
->error_code
& ~0xF) {
1647 case POWERPC_EXCP_FP
:
1648 EXCP_DUMP(env
, "Floating point program exception\n");
1649 info
.si_signo
= TARGET_SIGFPE
;
1651 switch (env
->error_code
& 0xF) {
1652 case POWERPC_EXCP_FP_OX
:
1653 info
.si_code
= TARGET_FPE_FLTOVF
;
1655 case POWERPC_EXCP_FP_UX
:
1656 info
.si_code
= TARGET_FPE_FLTUND
;
1658 case POWERPC_EXCP_FP_ZX
:
1659 case POWERPC_EXCP_FP_VXZDZ
:
1660 info
.si_code
= TARGET_FPE_FLTDIV
;
1662 case POWERPC_EXCP_FP_XX
:
1663 info
.si_code
= TARGET_FPE_FLTRES
;
1665 case POWERPC_EXCP_FP_VXSOFT
:
1666 info
.si_code
= TARGET_FPE_FLTINV
;
1668 case POWERPC_EXCP_FP_VXSNAN
:
1669 case POWERPC_EXCP_FP_VXISI
:
1670 case POWERPC_EXCP_FP_VXIDI
:
1671 case POWERPC_EXCP_FP_VXIMZ
:
1672 case POWERPC_EXCP_FP_VXVC
:
1673 case POWERPC_EXCP_FP_VXSQRT
:
1674 case POWERPC_EXCP_FP_VXCVI
:
1675 info
.si_code
= TARGET_FPE_FLTSUB
;
1678 EXCP_DUMP(env
, "Unknown floating point exception (%02x)\n",
1683 case POWERPC_EXCP_INVAL
:
1684 EXCP_DUMP(env
, "Invalid instruction\n");
1685 info
.si_signo
= TARGET_SIGILL
;
1687 switch (env
->error_code
& 0xF) {
1688 case POWERPC_EXCP_INVAL_INVAL
:
1689 info
.si_code
= TARGET_ILL_ILLOPC
;
1691 case POWERPC_EXCP_INVAL_LSWX
:
1692 info
.si_code
= TARGET_ILL_ILLOPN
;
1694 case POWERPC_EXCP_INVAL_SPR
:
1695 info
.si_code
= TARGET_ILL_PRVREG
;
1697 case POWERPC_EXCP_INVAL_FP
:
1698 info
.si_code
= TARGET_ILL_COPROC
;
1701 EXCP_DUMP(env
, "Unknown invalid operation (%02x)\n",
1702 env
->error_code
& 0xF);
1703 info
.si_code
= TARGET_ILL_ILLADR
;
1707 case POWERPC_EXCP_PRIV
:
1708 EXCP_DUMP(env
, "Privilege violation\n");
1709 info
.si_signo
= TARGET_SIGILL
;
1711 switch (env
->error_code
& 0xF) {
1712 case POWERPC_EXCP_PRIV_OPC
:
1713 info
.si_code
= TARGET_ILL_PRVOPC
;
1715 case POWERPC_EXCP_PRIV_REG
:
1716 info
.si_code
= TARGET_ILL_PRVREG
;
1719 EXCP_DUMP(env
, "Unknown privilege violation (%02x)\n",
1720 env
->error_code
& 0xF);
1721 info
.si_code
= TARGET_ILL_PRVOPC
;
1725 case POWERPC_EXCP_TRAP
:
1726 cpu_abort(env
, "Tried to call a TRAP\n");
1729 /* Should not happen ! */
1730 cpu_abort(env
, "Unknown program exception (%02x)\n",
1734 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1735 queue_signal(env
, info
.si_signo
, &info
);
1737 case POWERPC_EXCP_FPU
: /* Floating-point unavailable exception */
1738 EXCP_DUMP(env
, "No floating point allowed\n");
1739 info
.si_signo
= TARGET_SIGILL
;
1741 info
.si_code
= TARGET_ILL_COPROC
;
1742 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1743 queue_signal(env
, info
.si_signo
, &info
);
1745 case POWERPC_EXCP_SYSCALL
: /* System call exception */
1746 cpu_abort(env
, "Syscall exception while in user mode. "
1749 case POWERPC_EXCP_APU
: /* Auxiliary processor unavailable */
1750 EXCP_DUMP(env
, "No APU instruction allowed\n");
1751 info
.si_signo
= TARGET_SIGILL
;
1753 info
.si_code
= TARGET_ILL_COPROC
;
1754 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1755 queue_signal(env
, info
.si_signo
, &info
);
1757 case POWERPC_EXCP_DECR
: /* Decrementer exception */
1758 cpu_abort(env
, "Decrementer interrupt while in user mode. "
1761 case POWERPC_EXCP_FIT
: /* Fixed-interval timer interrupt */
1762 cpu_abort(env
, "Fix interval timer interrupt while in user mode. "
1765 case POWERPC_EXCP_WDT
: /* Watchdog timer interrupt */
1766 cpu_abort(env
, "Watchdog timer interrupt while in user mode. "
1769 case POWERPC_EXCP_DTLB
: /* Data TLB error */
1770 cpu_abort(env
, "Data TLB exception while in user mode. "
1773 case POWERPC_EXCP_ITLB
: /* Instruction TLB error */
1774 cpu_abort(env
, "Instruction TLB exception while in user mode. "
1777 case POWERPC_EXCP_SPEU
: /* SPE/embedded floating-point unavail. */
1778 EXCP_DUMP(env
, "No SPE/floating-point instruction allowed\n");
1779 info
.si_signo
= TARGET_SIGILL
;
1781 info
.si_code
= TARGET_ILL_COPROC
;
1782 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1783 queue_signal(env
, info
.si_signo
, &info
);
1785 case POWERPC_EXCP_EFPDI
: /* Embedded floating-point data IRQ */
1786 cpu_abort(env
, "Embedded floating-point data IRQ not handled\n");
1788 case POWERPC_EXCP_EFPRI
: /* Embedded floating-point round IRQ */
1789 cpu_abort(env
, "Embedded floating-point round IRQ not handled\n");
1791 case POWERPC_EXCP_EPERFM
: /* Embedded performance monitor IRQ */
1792 cpu_abort(env
, "Performance monitor exception not handled\n");
1794 case POWERPC_EXCP_DOORI
: /* Embedded doorbell interrupt */
1795 cpu_abort(env
, "Doorbell interrupt while in user mode. "
1798 case POWERPC_EXCP_DOORCI
: /* Embedded doorbell critical interrupt */
1799 cpu_abort(env
, "Doorbell critical interrupt while in user mode. "
1802 case POWERPC_EXCP_RESET
: /* System reset exception */
1803 cpu_abort(env
, "Reset interrupt while in user mode. "
1806 case POWERPC_EXCP_DSEG
: /* Data segment exception */
1807 cpu_abort(env
, "Data segment exception while in user mode. "
1810 case POWERPC_EXCP_ISEG
: /* Instruction segment exception */
1811 cpu_abort(env
, "Instruction segment exception "
1812 "while in user mode. Aborting\n");
1814 /* PowerPC 64 with hypervisor mode support */
1815 case POWERPC_EXCP_HDECR
: /* Hypervisor decrementer exception */
1816 cpu_abort(env
, "Hypervisor decrementer interrupt "
1817 "while in user mode. Aborting\n");
1819 case POWERPC_EXCP_TRACE
: /* Trace exception */
1821 * we use this exception to emulate step-by-step execution mode.
1824 /* PowerPC 64 with hypervisor mode support */
1825 case POWERPC_EXCP_HDSI
: /* Hypervisor data storage exception */
1826 cpu_abort(env
, "Hypervisor data storage exception "
1827 "while in user mode. Aborting\n");
1829 case POWERPC_EXCP_HISI
: /* Hypervisor instruction storage excp */
1830 cpu_abort(env
, "Hypervisor instruction storage exception "
1831 "while in user mode. Aborting\n");
1833 case POWERPC_EXCP_HDSEG
: /* Hypervisor data segment exception */
1834 cpu_abort(env
, "Hypervisor data segment exception "
1835 "while in user mode. Aborting\n");
1837 case POWERPC_EXCP_HISEG
: /* Hypervisor instruction segment excp */
1838 cpu_abort(env
, "Hypervisor instruction segment exception "
1839 "while in user mode. Aborting\n");
1841 case POWERPC_EXCP_VPU
: /* Vector unavailable exception */
1842 EXCP_DUMP(env
, "No Altivec instructions allowed\n");
1843 info
.si_signo
= TARGET_SIGILL
;
1845 info
.si_code
= TARGET_ILL_COPROC
;
1846 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1847 queue_signal(env
, info
.si_signo
, &info
);
1849 case POWERPC_EXCP_PIT
: /* Programmable interval timer IRQ */
1850 cpu_abort(env
, "Programmable interval timer interrupt "
1851 "while in user mode. Aborting\n");
1853 case POWERPC_EXCP_IO
: /* IO error exception */
1854 cpu_abort(env
, "IO error exception while in user mode. "
1857 case POWERPC_EXCP_RUNM
: /* Run mode exception */
1858 cpu_abort(env
, "Run mode exception while in user mode. "
1861 case POWERPC_EXCP_EMUL
: /* Emulation trap exception */
1862 cpu_abort(env
, "Emulation trap exception not handled\n");
1864 case POWERPC_EXCP_IFTLB
: /* Instruction fetch TLB error */
1865 cpu_abort(env
, "Instruction fetch TLB exception "
1866 "while in user-mode. Aborting");
1868 case POWERPC_EXCP_DLTLB
: /* Data load TLB miss */
1869 cpu_abort(env
, "Data load TLB exception while in user-mode. "
1872 case POWERPC_EXCP_DSTLB
: /* Data store TLB miss */
1873 cpu_abort(env
, "Data store TLB exception while in user-mode. "
1876 case POWERPC_EXCP_FPA
: /* Floating-point assist exception */
1877 cpu_abort(env
, "Floating-point assist exception not handled\n");
1879 case POWERPC_EXCP_IABR
: /* Instruction address breakpoint */
1880 cpu_abort(env
, "Instruction address breakpoint exception "
1883 case POWERPC_EXCP_SMI
: /* System management interrupt */
1884 cpu_abort(env
, "System management interrupt while in user mode. "
1887 case POWERPC_EXCP_THERM
: /* Thermal interrupt */
1888 cpu_abort(env
, "Thermal interrupt interrupt while in user mode. "
1891 case POWERPC_EXCP_PERFM
: /* Embedded performance monitor IRQ */
1892 cpu_abort(env
, "Performance monitor exception not handled\n");
1894 case POWERPC_EXCP_VPUA
: /* Vector assist exception */
1895 cpu_abort(env
, "Vector assist exception not handled\n");
1897 case POWERPC_EXCP_SOFTP
: /* Soft patch exception */
1898 cpu_abort(env
, "Soft patch exception not handled\n");
1900 case POWERPC_EXCP_MAINT
: /* Maintenance exception */
1901 cpu_abort(env
, "Maintenance exception while in user mode. "
1904 case POWERPC_EXCP_STOP
: /* stop translation */
1905 /* We did invalidate the instruction cache. Go on */
1907 case POWERPC_EXCP_BRANCH
: /* branch instruction: */
1908 /* We just stopped because of a branch. Go on */
1910 case POWERPC_EXCP_SYSCALL_USER
:
1911 /* system call in user-mode emulation */
1913 * PPC ABI uses overflow flag in cr0 to signal an error
1916 env
->crf
[0] &= ~0x1;
1917 ret
= do_syscall(env
, env
->gpr
[0], env
->gpr
[3], env
->gpr
[4],
1918 env
->gpr
[5], env
->gpr
[6], env
->gpr
[7],
1920 if (ret
== (target_ulong
)(-TARGET_QEMU_ESIGRETURN
)) {
1921 /* Returning from a successful sigreturn syscall.
1922 Avoid corrupting register state. */
1925 if (ret
> (target_ulong
)(-515)) {
1931 case POWERPC_EXCP_STCX
:
1932 if (do_store_exclusive(env
)) {
1933 info
.si_signo
= TARGET_SIGSEGV
;
1935 info
.si_code
= TARGET_SEGV_MAPERR
;
1936 info
._sifields
._sigfault
._addr
= env
->nip
;
1937 queue_signal(env
, info
.si_signo
, &info
);
1944 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1946 info
.si_signo
= sig
;
1948 info
.si_code
= TARGET_TRAP_BRKPT
;
1949 queue_signal(env
, info
.si_signo
, &info
);
1953 case EXCP_INTERRUPT
:
1954 /* just indicate that signals should be handled asap */
1957 cpu_abort(env
, "Unknown exception 0x%d. Aborting\n", trapnr
);
1960 process_pending_signals(env
);
1967 # ifdef TARGET_ABI_MIPSO32
1968 # define MIPS_SYS(name, args) args,
1969 static const uint8_t mips_syscall_args
[] = {
1970 MIPS_SYS(sys_syscall
, 8) /* 4000 */
1971 MIPS_SYS(sys_exit
, 1)
1972 MIPS_SYS(sys_fork
, 0)
1973 MIPS_SYS(sys_read
, 3)
1974 MIPS_SYS(sys_write
, 3)
1975 MIPS_SYS(sys_open
, 3) /* 4005 */
1976 MIPS_SYS(sys_close
, 1)
1977 MIPS_SYS(sys_waitpid
, 3)
1978 MIPS_SYS(sys_creat
, 2)
1979 MIPS_SYS(sys_link
, 2)
1980 MIPS_SYS(sys_unlink
, 1) /* 4010 */
1981 MIPS_SYS(sys_execve
, 0)
1982 MIPS_SYS(sys_chdir
, 1)
1983 MIPS_SYS(sys_time
, 1)
1984 MIPS_SYS(sys_mknod
, 3)
1985 MIPS_SYS(sys_chmod
, 2) /* 4015 */
1986 MIPS_SYS(sys_lchown
, 3)
1987 MIPS_SYS(sys_ni_syscall
, 0)
1988 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_stat */
1989 MIPS_SYS(sys_lseek
, 3)
1990 MIPS_SYS(sys_getpid
, 0) /* 4020 */
1991 MIPS_SYS(sys_mount
, 5)
1992 MIPS_SYS(sys_umount
, 1)
1993 MIPS_SYS(sys_setuid
, 1)
1994 MIPS_SYS(sys_getuid
, 0)
1995 MIPS_SYS(sys_stime
, 1) /* 4025 */
1996 MIPS_SYS(sys_ptrace
, 4)
1997 MIPS_SYS(sys_alarm
, 1)
1998 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_fstat */
1999 MIPS_SYS(sys_pause
, 0)
2000 MIPS_SYS(sys_utime
, 2) /* 4030 */
2001 MIPS_SYS(sys_ni_syscall
, 0)
2002 MIPS_SYS(sys_ni_syscall
, 0)
2003 MIPS_SYS(sys_access
, 2)
2004 MIPS_SYS(sys_nice
, 1)
2005 MIPS_SYS(sys_ni_syscall
, 0) /* 4035 */
2006 MIPS_SYS(sys_sync
, 0)
2007 MIPS_SYS(sys_kill
, 2)
2008 MIPS_SYS(sys_rename
, 2)
2009 MIPS_SYS(sys_mkdir
, 2)
2010 MIPS_SYS(sys_rmdir
, 1) /* 4040 */
2011 MIPS_SYS(sys_dup
, 1)
2012 MIPS_SYS(sys_pipe
, 0)
2013 MIPS_SYS(sys_times
, 1)
2014 MIPS_SYS(sys_ni_syscall
, 0)
2015 MIPS_SYS(sys_brk
, 1) /* 4045 */
2016 MIPS_SYS(sys_setgid
, 1)
2017 MIPS_SYS(sys_getgid
, 0)
2018 MIPS_SYS(sys_ni_syscall
, 0) /* was signal(2) */
2019 MIPS_SYS(sys_geteuid
, 0)
2020 MIPS_SYS(sys_getegid
, 0) /* 4050 */
2021 MIPS_SYS(sys_acct
, 0)
2022 MIPS_SYS(sys_umount2
, 2)
2023 MIPS_SYS(sys_ni_syscall
, 0)
2024 MIPS_SYS(sys_ioctl
, 3)
2025 MIPS_SYS(sys_fcntl
, 3) /* 4055 */
2026 MIPS_SYS(sys_ni_syscall
, 2)
2027 MIPS_SYS(sys_setpgid
, 2)
2028 MIPS_SYS(sys_ni_syscall
, 0)
2029 MIPS_SYS(sys_olduname
, 1)
2030 MIPS_SYS(sys_umask
, 1) /* 4060 */
2031 MIPS_SYS(sys_chroot
, 1)
2032 MIPS_SYS(sys_ustat
, 2)
2033 MIPS_SYS(sys_dup2
, 2)
2034 MIPS_SYS(sys_getppid
, 0)
2035 MIPS_SYS(sys_getpgrp
, 0) /* 4065 */
2036 MIPS_SYS(sys_setsid
, 0)
2037 MIPS_SYS(sys_sigaction
, 3)
2038 MIPS_SYS(sys_sgetmask
, 0)
2039 MIPS_SYS(sys_ssetmask
, 1)
2040 MIPS_SYS(sys_setreuid
, 2) /* 4070 */
2041 MIPS_SYS(sys_setregid
, 2)
2042 MIPS_SYS(sys_sigsuspend
, 0)
2043 MIPS_SYS(sys_sigpending
, 1)
2044 MIPS_SYS(sys_sethostname
, 2)
2045 MIPS_SYS(sys_setrlimit
, 2) /* 4075 */
2046 MIPS_SYS(sys_getrlimit
, 2)
2047 MIPS_SYS(sys_getrusage
, 2)
2048 MIPS_SYS(sys_gettimeofday
, 2)
2049 MIPS_SYS(sys_settimeofday
, 2)
2050 MIPS_SYS(sys_getgroups
, 2) /* 4080 */
2051 MIPS_SYS(sys_setgroups
, 2)
2052 MIPS_SYS(sys_ni_syscall
, 0) /* old_select */
2053 MIPS_SYS(sys_symlink
, 2)
2054 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_lstat */
2055 MIPS_SYS(sys_readlink
, 3) /* 4085 */
2056 MIPS_SYS(sys_uselib
, 1)
2057 MIPS_SYS(sys_swapon
, 2)
2058 MIPS_SYS(sys_reboot
, 3)
2059 MIPS_SYS(old_readdir
, 3)
2060 MIPS_SYS(old_mmap
, 6) /* 4090 */
2061 MIPS_SYS(sys_munmap
, 2)
2062 MIPS_SYS(sys_truncate
, 2)
2063 MIPS_SYS(sys_ftruncate
, 2)
2064 MIPS_SYS(sys_fchmod
, 2)
2065 MIPS_SYS(sys_fchown
, 3) /* 4095 */
2066 MIPS_SYS(sys_getpriority
, 2)
2067 MIPS_SYS(sys_setpriority
, 3)
2068 MIPS_SYS(sys_ni_syscall
, 0)
2069 MIPS_SYS(sys_statfs
, 2)
2070 MIPS_SYS(sys_fstatfs
, 2) /* 4100 */
2071 MIPS_SYS(sys_ni_syscall
, 0) /* was ioperm(2) */
2072 MIPS_SYS(sys_socketcall
, 2)
2073 MIPS_SYS(sys_syslog
, 3)
2074 MIPS_SYS(sys_setitimer
, 3)
2075 MIPS_SYS(sys_getitimer
, 2) /* 4105 */
2076 MIPS_SYS(sys_newstat
, 2)
2077 MIPS_SYS(sys_newlstat
, 2)
2078 MIPS_SYS(sys_newfstat
, 2)
2079 MIPS_SYS(sys_uname
, 1)
2080 MIPS_SYS(sys_ni_syscall
, 0) /* 4110 was iopl(2) */
2081 MIPS_SYS(sys_vhangup
, 0)
2082 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_idle() */
2083 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_vm86 */
2084 MIPS_SYS(sys_wait4
, 4)
2085 MIPS_SYS(sys_swapoff
, 1) /* 4115 */
2086 MIPS_SYS(sys_sysinfo
, 1)
2087 MIPS_SYS(sys_ipc
, 6)
2088 MIPS_SYS(sys_fsync
, 1)
2089 MIPS_SYS(sys_sigreturn
, 0)
2090 MIPS_SYS(sys_clone
, 6) /* 4120 */
2091 MIPS_SYS(sys_setdomainname
, 2)
2092 MIPS_SYS(sys_newuname
, 1)
2093 MIPS_SYS(sys_ni_syscall
, 0) /* sys_modify_ldt */
2094 MIPS_SYS(sys_adjtimex
, 1)
2095 MIPS_SYS(sys_mprotect
, 3) /* 4125 */
2096 MIPS_SYS(sys_sigprocmask
, 3)
2097 MIPS_SYS(sys_ni_syscall
, 0) /* was create_module */
2098 MIPS_SYS(sys_init_module
, 5)
2099 MIPS_SYS(sys_delete_module
, 1)
2100 MIPS_SYS(sys_ni_syscall
, 0) /* 4130 was get_kernel_syms */
2101 MIPS_SYS(sys_quotactl
, 0)
2102 MIPS_SYS(sys_getpgid
, 1)
2103 MIPS_SYS(sys_fchdir
, 1)
2104 MIPS_SYS(sys_bdflush
, 2)
2105 MIPS_SYS(sys_sysfs
, 3) /* 4135 */
2106 MIPS_SYS(sys_personality
, 1)
2107 MIPS_SYS(sys_ni_syscall
, 0) /* for afs_syscall */
2108 MIPS_SYS(sys_setfsuid
, 1)
2109 MIPS_SYS(sys_setfsgid
, 1)
2110 MIPS_SYS(sys_llseek
, 5) /* 4140 */
2111 MIPS_SYS(sys_getdents
, 3)
2112 MIPS_SYS(sys_select
, 5)
2113 MIPS_SYS(sys_flock
, 2)
2114 MIPS_SYS(sys_msync
, 3)
2115 MIPS_SYS(sys_readv
, 3) /* 4145 */
2116 MIPS_SYS(sys_writev
, 3)
2117 MIPS_SYS(sys_cacheflush
, 3)
2118 MIPS_SYS(sys_cachectl
, 3)
2119 MIPS_SYS(sys_sysmips
, 4)
2120 MIPS_SYS(sys_ni_syscall
, 0) /* 4150 */
2121 MIPS_SYS(sys_getsid
, 1)
2122 MIPS_SYS(sys_fdatasync
, 0)
2123 MIPS_SYS(sys_sysctl
, 1)
2124 MIPS_SYS(sys_mlock
, 2)
2125 MIPS_SYS(sys_munlock
, 2) /* 4155 */
2126 MIPS_SYS(sys_mlockall
, 1)
2127 MIPS_SYS(sys_munlockall
, 0)
2128 MIPS_SYS(sys_sched_setparam
, 2)
2129 MIPS_SYS(sys_sched_getparam
, 2)
2130 MIPS_SYS(sys_sched_setscheduler
, 3) /* 4160 */
2131 MIPS_SYS(sys_sched_getscheduler
, 1)
2132 MIPS_SYS(sys_sched_yield
, 0)
2133 MIPS_SYS(sys_sched_get_priority_max
, 1)
2134 MIPS_SYS(sys_sched_get_priority_min
, 1)
2135 MIPS_SYS(sys_sched_rr_get_interval
, 2) /* 4165 */
2136 MIPS_SYS(sys_nanosleep
, 2)
2137 MIPS_SYS(sys_mremap
, 5)
2138 MIPS_SYS(sys_accept
, 3)
2139 MIPS_SYS(sys_bind
, 3)
2140 MIPS_SYS(sys_connect
, 3) /* 4170 */
2141 MIPS_SYS(sys_getpeername
, 3)
2142 MIPS_SYS(sys_getsockname
, 3)
2143 MIPS_SYS(sys_getsockopt
, 5)
2144 MIPS_SYS(sys_listen
, 2)
2145 MIPS_SYS(sys_recv
, 4) /* 4175 */
2146 MIPS_SYS(sys_recvfrom
, 6)
2147 MIPS_SYS(sys_recvmsg
, 3)
2148 MIPS_SYS(sys_send
, 4)
2149 MIPS_SYS(sys_sendmsg
, 3)
2150 MIPS_SYS(sys_sendto
, 6) /* 4180 */
2151 MIPS_SYS(sys_setsockopt
, 5)
2152 MIPS_SYS(sys_shutdown
, 2)
2153 MIPS_SYS(sys_socket
, 3)
2154 MIPS_SYS(sys_socketpair
, 4)
2155 MIPS_SYS(sys_setresuid
, 3) /* 4185 */
2156 MIPS_SYS(sys_getresuid
, 3)
2157 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_query_module */
2158 MIPS_SYS(sys_poll
, 3)
2159 MIPS_SYS(sys_nfsservctl
, 3)
2160 MIPS_SYS(sys_setresgid
, 3) /* 4190 */
2161 MIPS_SYS(sys_getresgid
, 3)
2162 MIPS_SYS(sys_prctl
, 5)
2163 MIPS_SYS(sys_rt_sigreturn
, 0)
2164 MIPS_SYS(sys_rt_sigaction
, 4)
2165 MIPS_SYS(sys_rt_sigprocmask
, 4) /* 4195 */
2166 MIPS_SYS(sys_rt_sigpending
, 2)
2167 MIPS_SYS(sys_rt_sigtimedwait
, 4)
2168 MIPS_SYS(sys_rt_sigqueueinfo
, 3)
2169 MIPS_SYS(sys_rt_sigsuspend
, 0)
2170 MIPS_SYS(sys_pread64
, 6) /* 4200 */
2171 MIPS_SYS(sys_pwrite64
, 6)
2172 MIPS_SYS(sys_chown
, 3)
2173 MIPS_SYS(sys_getcwd
, 2)
2174 MIPS_SYS(sys_capget
, 2)
2175 MIPS_SYS(sys_capset
, 2) /* 4205 */
2176 MIPS_SYS(sys_sigaltstack
, 2)
2177 MIPS_SYS(sys_sendfile
, 4)
2178 MIPS_SYS(sys_ni_syscall
, 0)
2179 MIPS_SYS(sys_ni_syscall
, 0)
2180 MIPS_SYS(sys_mmap2
, 6) /* 4210 */
2181 MIPS_SYS(sys_truncate64
, 4)
2182 MIPS_SYS(sys_ftruncate64
, 4)
2183 MIPS_SYS(sys_stat64
, 2)
2184 MIPS_SYS(sys_lstat64
, 2)
2185 MIPS_SYS(sys_fstat64
, 2) /* 4215 */
2186 MIPS_SYS(sys_pivot_root
, 2)
2187 MIPS_SYS(sys_mincore
, 3)
2188 MIPS_SYS(sys_madvise
, 3)
2189 MIPS_SYS(sys_getdents64
, 3)
2190 MIPS_SYS(sys_fcntl64
, 3) /* 4220 */
2191 MIPS_SYS(sys_ni_syscall
, 0)
2192 MIPS_SYS(sys_gettid
, 0)
2193 MIPS_SYS(sys_readahead
, 5)
2194 MIPS_SYS(sys_setxattr
, 5)
2195 MIPS_SYS(sys_lsetxattr
, 5) /* 4225 */
2196 MIPS_SYS(sys_fsetxattr
, 5)
2197 MIPS_SYS(sys_getxattr
, 4)
2198 MIPS_SYS(sys_lgetxattr
, 4)
2199 MIPS_SYS(sys_fgetxattr
, 4)
2200 MIPS_SYS(sys_listxattr
, 3) /* 4230 */
2201 MIPS_SYS(sys_llistxattr
, 3)
2202 MIPS_SYS(sys_flistxattr
, 3)
2203 MIPS_SYS(sys_removexattr
, 2)
2204 MIPS_SYS(sys_lremovexattr
, 2)
2205 MIPS_SYS(sys_fremovexattr
, 2) /* 4235 */
2206 MIPS_SYS(sys_tkill
, 2)
2207 MIPS_SYS(sys_sendfile64
, 5)
2208 MIPS_SYS(sys_futex
, 6)
2209 MIPS_SYS(sys_sched_setaffinity
, 3)
2210 MIPS_SYS(sys_sched_getaffinity
, 3) /* 4240 */
2211 MIPS_SYS(sys_io_setup
, 2)
2212 MIPS_SYS(sys_io_destroy
, 1)
2213 MIPS_SYS(sys_io_getevents
, 5)
2214 MIPS_SYS(sys_io_submit
, 3)
2215 MIPS_SYS(sys_io_cancel
, 3) /* 4245 */
2216 MIPS_SYS(sys_exit_group
, 1)
2217 MIPS_SYS(sys_lookup_dcookie
, 3)
2218 MIPS_SYS(sys_epoll_create
, 1)
2219 MIPS_SYS(sys_epoll_ctl
, 4)
2220 MIPS_SYS(sys_epoll_wait
, 3) /* 4250 */
2221 MIPS_SYS(sys_remap_file_pages
, 5)
2222 MIPS_SYS(sys_set_tid_address
, 1)
2223 MIPS_SYS(sys_restart_syscall
, 0)
2224 MIPS_SYS(sys_fadvise64_64
, 7)
2225 MIPS_SYS(sys_statfs64
, 3) /* 4255 */
2226 MIPS_SYS(sys_fstatfs64
, 2)
2227 MIPS_SYS(sys_timer_create
, 3)
2228 MIPS_SYS(sys_timer_settime
, 4)
2229 MIPS_SYS(sys_timer_gettime
, 2)
2230 MIPS_SYS(sys_timer_getoverrun
, 1) /* 4260 */
2231 MIPS_SYS(sys_timer_delete
, 1)
2232 MIPS_SYS(sys_clock_settime
, 2)
2233 MIPS_SYS(sys_clock_gettime
, 2)
2234 MIPS_SYS(sys_clock_getres
, 2)
2235 MIPS_SYS(sys_clock_nanosleep
, 4) /* 4265 */
2236 MIPS_SYS(sys_tgkill
, 3)
2237 MIPS_SYS(sys_utimes
, 2)
2238 MIPS_SYS(sys_mbind
, 4)
2239 MIPS_SYS(sys_ni_syscall
, 0) /* sys_get_mempolicy */
2240 MIPS_SYS(sys_ni_syscall
, 0) /* 4270 sys_set_mempolicy */
2241 MIPS_SYS(sys_mq_open
, 4)
2242 MIPS_SYS(sys_mq_unlink
, 1)
2243 MIPS_SYS(sys_mq_timedsend
, 5)
2244 MIPS_SYS(sys_mq_timedreceive
, 5)
2245 MIPS_SYS(sys_mq_notify
, 2) /* 4275 */
2246 MIPS_SYS(sys_mq_getsetattr
, 3)
2247 MIPS_SYS(sys_ni_syscall
, 0) /* sys_vserver */
2248 MIPS_SYS(sys_waitid
, 4)
2249 MIPS_SYS(sys_ni_syscall
, 0) /* available, was setaltroot */
2250 MIPS_SYS(sys_add_key
, 5)
2251 MIPS_SYS(sys_request_key
, 4)
2252 MIPS_SYS(sys_keyctl
, 5)
2253 MIPS_SYS(sys_set_thread_area
, 1)
2254 MIPS_SYS(sys_inotify_init
, 0)
2255 MIPS_SYS(sys_inotify_add_watch
, 3) /* 4285 */
2256 MIPS_SYS(sys_inotify_rm_watch
, 2)
2257 MIPS_SYS(sys_migrate_pages
, 4)
2258 MIPS_SYS(sys_openat
, 4)
2259 MIPS_SYS(sys_mkdirat
, 3)
2260 MIPS_SYS(sys_mknodat
, 4) /* 4290 */
2261 MIPS_SYS(sys_fchownat
, 5)
2262 MIPS_SYS(sys_futimesat
, 3)
2263 MIPS_SYS(sys_fstatat64
, 4)
2264 MIPS_SYS(sys_unlinkat
, 3)
2265 MIPS_SYS(sys_renameat
, 4) /* 4295 */
2266 MIPS_SYS(sys_linkat
, 5)
2267 MIPS_SYS(sys_symlinkat
, 3)
2268 MIPS_SYS(sys_readlinkat
, 4)
2269 MIPS_SYS(sys_fchmodat
, 3)
2270 MIPS_SYS(sys_faccessat
, 3) /* 4300 */
2271 MIPS_SYS(sys_pselect6
, 6)
2272 MIPS_SYS(sys_ppoll
, 5)
2273 MIPS_SYS(sys_unshare
, 1)
2274 MIPS_SYS(sys_splice
, 6)
2275 MIPS_SYS(sys_sync_file_range
, 7) /* 4305 */
2276 MIPS_SYS(sys_tee
, 4)
2277 MIPS_SYS(sys_vmsplice
, 4)
2278 MIPS_SYS(sys_move_pages
, 6)
2279 MIPS_SYS(sys_set_robust_list
, 2)
2280 MIPS_SYS(sys_get_robust_list
, 3) /* 4310 */
2281 MIPS_SYS(sys_kexec_load
, 4)
2282 MIPS_SYS(sys_getcpu
, 3)
2283 MIPS_SYS(sys_epoll_pwait
, 6)
2284 MIPS_SYS(sys_ioprio_set
, 3)
2285 MIPS_SYS(sys_ioprio_get
, 2)
2286 MIPS_SYS(sys_utimensat
, 4)
2287 MIPS_SYS(sys_signalfd
, 3)
2288 MIPS_SYS(sys_ni_syscall
, 0) /* was timerfd */
2289 MIPS_SYS(sys_eventfd
, 1)
2290 MIPS_SYS(sys_fallocate
, 6) /* 4320 */
2291 MIPS_SYS(sys_timerfd_create
, 2)
2292 MIPS_SYS(sys_timerfd_gettime
, 2)
2293 MIPS_SYS(sys_timerfd_settime
, 4)
2294 MIPS_SYS(sys_signalfd4
, 4)
2295 MIPS_SYS(sys_eventfd2
, 2) /* 4325 */
2296 MIPS_SYS(sys_epoll_create1
, 1)
2297 MIPS_SYS(sys_dup3
, 3)
2298 MIPS_SYS(sys_pipe2
, 2)
2299 MIPS_SYS(sys_inotify_init1
, 1)
2300 MIPS_SYS(sys_preadv
, 6) /* 4330 */
2301 MIPS_SYS(sys_pwritev
, 6)
2302 MIPS_SYS(sys_rt_tgsigqueueinfo
, 4)
2303 MIPS_SYS(sys_perf_event_open
, 5)
2304 MIPS_SYS(sys_accept4
, 4)
2305 MIPS_SYS(sys_recvmmsg
, 5) /* 4335 */
2306 MIPS_SYS(sys_fanotify_init
, 2)
2307 MIPS_SYS(sys_fanotify_mark
, 6)
2308 MIPS_SYS(sys_prlimit64
, 4)
2309 MIPS_SYS(sys_name_to_handle_at
, 5)
2310 MIPS_SYS(sys_open_by_handle_at
, 3) /* 4340 */
2311 MIPS_SYS(sys_clock_adjtime
, 2)
2312 MIPS_SYS(sys_syncfs
, 1)
2317 static int do_store_exclusive(CPUMIPSState
*env
)
2320 target_ulong page_addr
;
2328 page_addr
= addr
& TARGET_PAGE_MASK
;
2331 flags
= page_get_flags(page_addr
);
2332 if ((flags
& PAGE_READ
) == 0) {
2335 reg
= env
->llreg
& 0x1f;
2336 d
= (env
->llreg
& 0x20) != 0;
2338 segv
= get_user_s64(val
, addr
);
2340 segv
= get_user_s32(val
, addr
);
2343 if (val
!= env
->llval
) {
2344 env
->active_tc
.gpr
[reg
] = 0;
2347 segv
= put_user_u64(env
->llnewval
, addr
);
2349 segv
= put_user_u32(env
->llnewval
, addr
);
2352 env
->active_tc
.gpr
[reg
] = 1;
2359 env
->active_tc
.PC
+= 4;
2372 static int do_break(CPUMIPSState
*env
, target_siginfo_t
*info
,
2380 info
->si_signo
= TARGET_SIGFPE
;
2382 info
->si_code
= (code
== BRK_OVERFLOW
) ? FPE_INTOVF
: FPE_INTDIV
;
2383 queue_signal(env
, info
->si_signo
, &*info
);
2393 void cpu_loop(CPUMIPSState
*env
)
2395 CPUState
*cs
= CPU(mips_env_get_cpu(env
));
2396 target_siginfo_t info
;
2399 # ifdef TARGET_ABI_MIPSO32
2400 unsigned int syscall_num
;
2405 trapnr
= cpu_mips_exec(env
);
2409 env
->active_tc
.PC
+= 4;
2410 # ifdef TARGET_ABI_MIPSO32
2411 syscall_num
= env
->active_tc
.gpr
[2] - 4000;
2412 if (syscall_num
>= sizeof(mips_syscall_args
)) {
2413 ret
= -TARGET_ENOSYS
;
2417 abi_ulong arg5
= 0, arg6
= 0, arg7
= 0, arg8
= 0;
2419 nb_args
= mips_syscall_args
[syscall_num
];
2420 sp_reg
= env
->active_tc
.gpr
[29];
2422 /* these arguments are taken from the stack */
2424 if ((ret
= get_user_ual(arg8
, sp_reg
+ 28)) != 0) {
2428 if ((ret
= get_user_ual(arg7
, sp_reg
+ 24)) != 0) {
2432 if ((ret
= get_user_ual(arg6
, sp_reg
+ 20)) != 0) {
2436 if ((ret
= get_user_ual(arg5
, sp_reg
+ 16)) != 0) {
2442 ret
= do_syscall(env
, env
->active_tc
.gpr
[2],
2443 env
->active_tc
.gpr
[4],
2444 env
->active_tc
.gpr
[5],
2445 env
->active_tc
.gpr
[6],
2446 env
->active_tc
.gpr
[7],
2447 arg5
, arg6
, arg7
, arg8
);
2451 ret
= do_syscall(env
, env
->active_tc
.gpr
[2],
2452 env
->active_tc
.gpr
[4], env
->active_tc
.gpr
[5],
2453 env
->active_tc
.gpr
[6], env
->active_tc
.gpr
[7],
2454 env
->active_tc
.gpr
[8], env
->active_tc
.gpr
[9],
2455 env
->active_tc
.gpr
[10], env
->active_tc
.gpr
[11]);
2457 if (ret
== -TARGET_QEMU_ESIGRETURN
) {
2458 /* Returning from a successful sigreturn syscall.
2459 Avoid clobbering register state. */
2462 if ((abi_ulong
)ret
>= (abi_ulong
)-1133) {
2463 env
->active_tc
.gpr
[7] = 1; /* error flag */
2466 env
->active_tc
.gpr
[7] = 0; /* error flag */
2468 env
->active_tc
.gpr
[2] = ret
;
2474 info
.si_signo
= TARGET_SIGSEGV
;
2476 /* XXX: check env->error_code */
2477 info
.si_code
= TARGET_SEGV_MAPERR
;
2478 info
._sifields
._sigfault
._addr
= env
->CP0_BadVAddr
;
2479 queue_signal(env
, info
.si_signo
, &info
);
2483 info
.si_signo
= TARGET_SIGILL
;
2486 queue_signal(env
, info
.si_signo
, &info
);
2488 case EXCP_INTERRUPT
:
2489 /* just indicate that signals should be handled asap */
2495 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2498 info
.si_signo
= sig
;
2500 info
.si_code
= TARGET_TRAP_BRKPT
;
2501 queue_signal(env
, info
.si_signo
, &info
);
2506 if (do_store_exclusive(env
)) {
2507 info
.si_signo
= TARGET_SIGSEGV
;
2509 info
.si_code
= TARGET_SEGV_MAPERR
;
2510 info
._sifields
._sigfault
._addr
= env
->active_tc
.PC
;
2511 queue_signal(env
, info
.si_signo
, &info
);
2515 info
.si_signo
= TARGET_SIGILL
;
2517 info
.si_code
= TARGET_ILL_ILLOPC
;
2518 queue_signal(env
, info
.si_signo
, &info
);
2520 /* The code below was inspired by the MIPS Linux kernel trap
2521 * handling code in arch/mips/kernel/traps.c.
2525 abi_ulong trap_instr
;
2528 if (env
->hflags
& MIPS_HFLAG_M16
) {
2529 if (env
->insn_flags
& ASE_MICROMIPS
) {
2530 /* microMIPS mode */
2531 ret
= get_user_u16(trap_instr
, env
->active_tc
.PC
);
2536 if ((trap_instr
>> 10) == 0x11) {
2537 /* 16-bit instruction */
2538 code
= trap_instr
& 0xf;
2540 /* 32-bit instruction */
2543 ret
= get_user_u16(instr_lo
,
2544 env
->active_tc
.PC
+ 2);
2548 trap_instr
= (trap_instr
<< 16) | instr_lo
;
2549 code
= ((trap_instr
>> 6) & ((1 << 20) - 1));
2550 /* Unfortunately, microMIPS also suffers from
2551 the old assembler bug... */
2552 if (code
>= (1 << 10)) {
2558 ret
= get_user_u16(trap_instr
, env
->active_tc
.PC
);
2562 code
= (trap_instr
>> 6) & 0x3f;
2565 ret
= get_user_ual(trap_instr
, env
->active_tc
.PC
);
2570 /* As described in the original Linux kernel code, the
2571 * below checks on 'code' are to work around an old
2574 code
= ((trap_instr
>> 6) & ((1 << 20) - 1));
2575 if (code
>= (1 << 10)) {
2580 if (do_break(env
, &info
, code
) != 0) {
2587 abi_ulong trap_instr
;
2588 unsigned int code
= 0;
2590 if (env
->hflags
& MIPS_HFLAG_M16
) {
2591 /* microMIPS mode */
2594 ret
= get_user_u16(instr
[0], env
->active_tc
.PC
) ||
2595 get_user_u16(instr
[1], env
->active_tc
.PC
+ 2);
2597 trap_instr
= (instr
[0] << 16) | instr
[1];
2599 ret
= get_user_ual(trap_instr
, env
->active_tc
.PC
);
2606 /* The immediate versions don't provide a code. */
2607 if (!(trap_instr
& 0xFC000000)) {
2608 if (env
->hflags
& MIPS_HFLAG_M16
) {
2609 /* microMIPS mode */
2610 code
= ((trap_instr
>> 12) & ((1 << 4) - 1));
2612 code
= ((trap_instr
>> 6) & ((1 << 10) - 1));
2616 if (do_break(env
, &info
, code
) != 0) {
2623 fprintf(stderr
, "qemu: unhandled CPU exception 0x%x - aborting\n",
2625 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2628 process_pending_signals(env
);
2633 #ifdef TARGET_OPENRISC
2635 void cpu_loop(CPUOpenRISCState
*env
)
2637 CPUState
*cs
= CPU(openrisc_env_get_cpu(env
));
2641 trapnr
= cpu_exec(env
);
2646 qemu_log("\nReset request, exit, pc is %#x\n", env
->pc
);
2650 qemu_log("\nBus error, exit, pc is %#x\n", env
->pc
);
2655 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2656 gdbsig
= TARGET_SIGSEGV
;
2659 qemu_log("\nTick time interrupt pc is %#x\n", env
->pc
);
2662 qemu_log("\nAlignment pc is %#x\n", env
->pc
);
2666 qemu_log("\nIllegal instructionpc is %#x\n", env
->pc
);
2670 qemu_log("\nExternal interruptpc is %#x\n", env
->pc
);
2674 qemu_log("\nTLB miss\n");
2677 qemu_log("\nRange\n");
2681 env
->pc
+= 4; /* 0xc00; */
2682 env
->gpr
[11] = do_syscall(env
,
2683 env
->gpr
[11], /* return value */
2684 env
->gpr
[3], /* r3 - r7 are params */
2692 qemu_log("\nFloating point error\n");
2695 qemu_log("\nTrap\n");
2702 qemu_log("\nqemu: unhandled CPU exception %#x - aborting\n",
2704 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2705 gdbsig
= TARGET_SIGILL
;
2709 gdb_handlesig(cs
, gdbsig
);
2710 if (gdbsig
!= TARGET_SIGTRAP
) {
2715 process_pending_signals(env
);
2719 #endif /* TARGET_OPENRISC */
2722 void cpu_loop(CPUSH4State
*env
)
2724 CPUState
*cs
= CPU(sh_env_get_cpu(env
));
2726 target_siginfo_t info
;
2729 trapnr
= cpu_sh4_exec (env
);
2734 ret
= do_syscall(env
,
2743 env
->gregs
[0] = ret
;
2745 case EXCP_INTERRUPT
:
2746 /* just indicate that signals should be handled asap */
2752 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2755 info
.si_signo
= sig
;
2757 info
.si_code
= TARGET_TRAP_BRKPT
;
2758 queue_signal(env
, info
.si_signo
, &info
);
2764 info
.si_signo
= SIGSEGV
;
2766 info
.si_code
= TARGET_SEGV_MAPERR
;
2767 info
._sifields
._sigfault
._addr
= env
->tea
;
2768 queue_signal(env
, info
.si_signo
, &info
);
2772 printf ("Unhandled trap: 0x%x\n", trapnr
);
2773 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2776 process_pending_signals (env
);
2782 void cpu_loop(CPUCRISState
*env
)
2784 CPUState
*cs
= CPU(cris_env_get_cpu(env
));
2786 target_siginfo_t info
;
2789 trapnr
= cpu_cris_exec (env
);
2793 info
.si_signo
= SIGSEGV
;
2795 /* XXX: check env->error_code */
2796 info
.si_code
= TARGET_SEGV_MAPERR
;
2797 info
._sifields
._sigfault
._addr
= env
->pregs
[PR_EDA
];
2798 queue_signal(env
, info
.si_signo
, &info
);
2801 case EXCP_INTERRUPT
:
2802 /* just indicate that signals should be handled asap */
2805 ret
= do_syscall(env
,
2814 env
->regs
[10] = ret
;
2820 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2823 info
.si_signo
= sig
;
2825 info
.si_code
= TARGET_TRAP_BRKPT
;
2826 queue_signal(env
, info
.si_signo
, &info
);
2831 printf ("Unhandled trap: 0x%x\n", trapnr
);
2832 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2835 process_pending_signals (env
);
2840 #ifdef TARGET_MICROBLAZE
2841 void cpu_loop(CPUMBState
*env
)
2843 CPUState
*cs
= CPU(mb_env_get_cpu(env
));
2845 target_siginfo_t info
;
2848 trapnr
= cpu_mb_exec (env
);
2852 info
.si_signo
= SIGSEGV
;
2854 /* XXX: check env->error_code */
2855 info
.si_code
= TARGET_SEGV_MAPERR
;
2856 info
._sifields
._sigfault
._addr
= 0;
2857 queue_signal(env
, info
.si_signo
, &info
);
2860 case EXCP_INTERRUPT
:
2861 /* just indicate that signals should be handled asap */
2864 /* Return address is 4 bytes after the call. */
2866 env
->sregs
[SR_PC
] = env
->regs
[14];
2867 ret
= do_syscall(env
,
2879 env
->regs
[17] = env
->sregs
[SR_PC
] + 4;
2880 if (env
->iflags
& D_FLAG
) {
2881 env
->sregs
[SR_ESR
] |= 1 << 12;
2882 env
->sregs
[SR_PC
] -= 4;
2883 /* FIXME: if branch was immed, replay the imm as well. */
2886 env
->iflags
&= ~(IMM_FLAG
| D_FLAG
);
2888 switch (env
->sregs
[SR_ESR
] & 31) {
2889 case ESR_EC_DIVZERO
:
2890 info
.si_signo
= SIGFPE
;
2892 info
.si_code
= TARGET_FPE_FLTDIV
;
2893 info
._sifields
._sigfault
._addr
= 0;
2894 queue_signal(env
, info
.si_signo
, &info
);
2897 info
.si_signo
= SIGFPE
;
2899 if (env
->sregs
[SR_FSR
] & FSR_IO
) {
2900 info
.si_code
= TARGET_FPE_FLTINV
;
2902 if (env
->sregs
[SR_FSR
] & FSR_DZ
) {
2903 info
.si_code
= TARGET_FPE_FLTDIV
;
2905 info
._sifields
._sigfault
._addr
= 0;
2906 queue_signal(env
, info
.si_signo
, &info
);
2909 printf ("Unhandled hw-exception: 0x%x\n",
2910 env
->sregs
[SR_ESR
] & ESR_EC_MASK
);
2911 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2920 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2923 info
.si_signo
= sig
;
2925 info
.si_code
= TARGET_TRAP_BRKPT
;
2926 queue_signal(env
, info
.si_signo
, &info
);
2931 printf ("Unhandled trap: 0x%x\n", trapnr
);
2932 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2935 process_pending_signals (env
);
2942 void cpu_loop(CPUM68KState
*env
)
2944 CPUState
*cs
= CPU(m68k_env_get_cpu(env
));
2947 target_siginfo_t info
;
2948 TaskState
*ts
= env
->opaque
;
2951 trapnr
= cpu_m68k_exec(env
);
2955 if (ts
->sim_syscalls
) {
2957 nr
= lduw(env
->pc
+ 2);
2959 do_m68k_simcall(env
, nr
);
2965 case EXCP_HALT_INSN
:
2966 /* Semihosing syscall. */
2968 do_m68k_semihosting(env
, env
->dregs
[0]);
2972 case EXCP_UNSUPPORTED
:
2974 info
.si_signo
= SIGILL
;
2976 info
.si_code
= TARGET_ILL_ILLOPN
;
2977 info
._sifields
._sigfault
._addr
= env
->pc
;
2978 queue_signal(env
, info
.si_signo
, &info
);
2982 ts
->sim_syscalls
= 0;
2985 env
->dregs
[0] = do_syscall(env
,
2996 case EXCP_INTERRUPT
:
2997 /* just indicate that signals should be handled asap */
3001 info
.si_signo
= SIGSEGV
;
3003 /* XXX: check env->error_code */
3004 info
.si_code
= TARGET_SEGV_MAPERR
;
3005 info
._sifields
._sigfault
._addr
= env
->mmu
.ar
;
3006 queue_signal(env
, info
.si_signo
, &info
);
3013 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3016 info
.si_signo
= sig
;
3018 info
.si_code
= TARGET_TRAP_BRKPT
;
3019 queue_signal(env
, info
.si_signo
, &info
);
3024 fprintf(stderr
, "qemu: unhandled CPU exception 0x%x - aborting\n",
3026 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3029 process_pending_signals(env
);
3032 #endif /* TARGET_M68K */
3035 static void do_store_exclusive(CPUAlphaState
*env
, int reg
, int quad
)
3037 target_ulong addr
, val
, tmp
;
3038 target_siginfo_t info
;
3041 addr
= env
->lock_addr
;
3042 tmp
= env
->lock_st_addr
;
3043 env
->lock_addr
= -1;
3044 env
->lock_st_addr
= 0;
3050 if (quad
? get_user_s64(val
, addr
) : get_user_s32(val
, addr
)) {
3054 if (val
== env
->lock_value
) {
3056 if (quad
? put_user_u64(tmp
, addr
) : put_user_u32(tmp
, addr
)) {
3073 info
.si_signo
= TARGET_SIGSEGV
;
3075 info
.si_code
= TARGET_SEGV_MAPERR
;
3076 info
._sifields
._sigfault
._addr
= addr
;
3077 queue_signal(env
, TARGET_SIGSEGV
, &info
);
3080 void cpu_loop(CPUAlphaState
*env
)
3082 CPUState
*cs
= CPU(alpha_env_get_cpu(env
));
3084 target_siginfo_t info
;
3088 trapnr
= cpu_alpha_exec (env
);
3090 /* All of the traps imply a transition through PALcode, which
3091 implies an REI instruction has been executed. Which means
3092 that the intr_flag should be cleared. */
3097 fprintf(stderr
, "Reset requested. Exit\n");
3101 fprintf(stderr
, "Machine check exception. Exit\n");
3104 case EXCP_SMP_INTERRUPT
:
3105 case EXCP_CLK_INTERRUPT
:
3106 case EXCP_DEV_INTERRUPT
:
3107 fprintf(stderr
, "External interrupt. Exit\n");
3111 env
->lock_addr
= -1;
3112 info
.si_signo
= TARGET_SIGSEGV
;
3114 info
.si_code
= (page_get_flags(env
->trap_arg0
) & PAGE_VALID
3115 ? TARGET_SEGV_ACCERR
: TARGET_SEGV_MAPERR
);
3116 info
._sifields
._sigfault
._addr
= env
->trap_arg0
;
3117 queue_signal(env
, info
.si_signo
, &info
);
3120 env
->lock_addr
= -1;
3121 info
.si_signo
= TARGET_SIGBUS
;
3123 info
.si_code
= TARGET_BUS_ADRALN
;
3124 info
._sifields
._sigfault
._addr
= env
->trap_arg0
;
3125 queue_signal(env
, info
.si_signo
, &info
);
3129 env
->lock_addr
= -1;
3130 info
.si_signo
= TARGET_SIGILL
;
3132 info
.si_code
= TARGET_ILL_ILLOPC
;
3133 info
._sifields
._sigfault
._addr
= env
->pc
;
3134 queue_signal(env
, info
.si_signo
, &info
);
3137 env
->lock_addr
= -1;
3138 info
.si_signo
= TARGET_SIGFPE
;
3140 info
.si_code
= TARGET_FPE_FLTINV
;
3141 info
._sifields
._sigfault
._addr
= env
->pc
;
3142 queue_signal(env
, info
.si_signo
, &info
);
3145 /* No-op. Linux simply re-enables the FPU. */
3148 env
->lock_addr
= -1;
3149 switch (env
->error_code
) {
3152 info
.si_signo
= TARGET_SIGTRAP
;
3154 info
.si_code
= TARGET_TRAP_BRKPT
;
3155 info
._sifields
._sigfault
._addr
= env
->pc
;
3156 queue_signal(env
, info
.si_signo
, &info
);
3160 info
.si_signo
= TARGET_SIGTRAP
;
3163 info
._sifields
._sigfault
._addr
= env
->pc
;
3164 queue_signal(env
, info
.si_signo
, &info
);
3168 trapnr
= env
->ir
[IR_V0
];
3169 sysret
= do_syscall(env
, trapnr
,
3170 env
->ir
[IR_A0
], env
->ir
[IR_A1
],
3171 env
->ir
[IR_A2
], env
->ir
[IR_A3
],
3172 env
->ir
[IR_A4
], env
->ir
[IR_A5
],
3174 if (trapnr
== TARGET_NR_sigreturn
3175 || trapnr
== TARGET_NR_rt_sigreturn
) {
3178 /* Syscall writes 0 to V0 to bypass error check, similar
3179 to how this is handled internal to Linux kernel.
3180 (Ab)use trapnr temporarily as boolean indicating error. */
3181 trapnr
= (env
->ir
[IR_V0
] != 0 && sysret
< 0);
3182 env
->ir
[IR_V0
] = (trapnr
? -sysret
: sysret
);
3183 env
->ir
[IR_A3
] = trapnr
;
3187 /* ??? We can probably elide the code using page_unprotect
3188 that is checking for self-modifying code. Instead we
3189 could simply call tb_flush here. Until we work out the
3190 changes required to turn off the extra write protection,
3191 this can be a no-op. */
3195 /* Handled in the translator for usermode. */
3199 /* Handled in the translator for usermode. */
3203 info
.si_signo
= TARGET_SIGFPE
;
3204 switch (env
->ir
[IR_A0
]) {
3205 case TARGET_GEN_INTOVF
:
3206 info
.si_code
= TARGET_FPE_INTOVF
;
3208 case TARGET_GEN_INTDIV
:
3209 info
.si_code
= TARGET_FPE_INTDIV
;
3211 case TARGET_GEN_FLTOVF
:
3212 info
.si_code
= TARGET_FPE_FLTOVF
;
3214 case TARGET_GEN_FLTUND
:
3215 info
.si_code
= TARGET_FPE_FLTUND
;
3217 case TARGET_GEN_FLTINV
:
3218 info
.si_code
= TARGET_FPE_FLTINV
;
3220 case TARGET_GEN_FLTINE
:
3221 info
.si_code
= TARGET_FPE_FLTRES
;
3223 case TARGET_GEN_ROPRAND
:
3227 info
.si_signo
= TARGET_SIGTRAP
;
3232 info
._sifields
._sigfault
._addr
= env
->pc
;
3233 queue_signal(env
, info
.si_signo
, &info
);
3240 info
.si_signo
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3241 if (info
.si_signo
) {
3242 env
->lock_addr
= -1;
3244 info
.si_code
= TARGET_TRAP_BRKPT
;
3245 queue_signal(env
, info
.si_signo
, &info
);
3250 do_store_exclusive(env
, env
->error_code
, trapnr
- EXCP_STL_C
);
3252 case EXCP_INTERRUPT
:
3253 /* Just indicate that signals should be handled asap. */
3256 printf ("Unhandled trap: 0x%x\n", trapnr
);
3257 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3260 process_pending_signals (env
);
3263 #endif /* TARGET_ALPHA */
3266 void cpu_loop(CPUS390XState
*env
)
3268 CPUState
*cs
= CPU(s390_env_get_cpu(env
));
3270 target_siginfo_t info
;
3274 trapnr
= cpu_s390x_exec(env
);
3276 case EXCP_INTERRUPT
:
3277 /* Just indicate that signals should be handled asap. */
3281 n
= env
->int_svc_code
;
3283 /* syscalls > 255 */
3286 env
->psw
.addr
+= env
->int_svc_ilen
;
3287 env
->regs
[2] = do_syscall(env
, n
, env
->regs
[2], env
->regs
[3],
3288 env
->regs
[4], env
->regs
[5],
3289 env
->regs
[6], env
->regs
[7], 0, 0);
3293 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3295 n
= TARGET_TRAP_BRKPT
;
3300 n
= env
->int_pgm_code
;
3303 case PGM_PRIVILEGED
:
3305 n
= TARGET_ILL_ILLOPC
;
3307 case PGM_PROTECTION
:
3308 case PGM_ADDRESSING
:
3310 /* XXX: check env->error_code */
3311 n
= TARGET_SEGV_MAPERR
;
3312 addr
= env
->__excp_addr
;
3315 case PGM_SPECIFICATION
:
3316 case PGM_SPECIAL_OP
:
3320 n
= TARGET_ILL_ILLOPN
;
3323 case PGM_FIXPT_OVERFLOW
:
3325 n
= TARGET_FPE_INTOVF
;
3327 case PGM_FIXPT_DIVIDE
:
3329 n
= TARGET_FPE_INTDIV
;
3333 n
= (env
->fpc
>> 8) & 0xff;
3335 /* compare-and-trap */
3338 /* An IEEE exception, simulated or otherwise. */
3340 n
= TARGET_FPE_FLTINV
;
3341 } else if (n
& 0x40) {
3342 n
= TARGET_FPE_FLTDIV
;
3343 } else if (n
& 0x20) {
3344 n
= TARGET_FPE_FLTOVF
;
3345 } else if (n
& 0x10) {
3346 n
= TARGET_FPE_FLTUND
;
3347 } else if (n
& 0x08) {
3348 n
= TARGET_FPE_FLTRES
;
3350 /* ??? Quantum exception; BFP, DFP error. */
3358 fprintf(stderr
, "Unhandled program exception: %#x\n", n
);
3359 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3365 addr
= env
->psw
.addr
;
3367 info
.si_signo
= sig
;
3370 info
._sifields
._sigfault
._addr
= addr
;
3371 queue_signal(env
, info
.si_signo
, &info
);
3375 fprintf(stderr
, "Unhandled trap: 0x%x\n", trapnr
);
3376 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3379 process_pending_signals (env
);
3383 #endif /* TARGET_S390X */
3385 THREAD CPUState
*thread_cpu
;
3387 void task_settid(TaskState
*ts
)
3389 if (ts
->ts_tid
== 0) {
3390 ts
->ts_tid
= (pid_t
)syscall(SYS_gettid
);
3394 void stop_all_tasks(void)
3397 * We trust that when using NPTL, start_exclusive()
3398 * handles thread stopping correctly.
3403 /* Assumes contents are already zeroed. */
3404 void init_task_state(TaskState
*ts
)
3409 ts
->first_free
= ts
->sigqueue_table
;
3410 for (i
= 0; i
< MAX_SIGQUEUE_SIZE
- 1; i
++) {
3411 ts
->sigqueue_table
[i
].next
= &ts
->sigqueue_table
[i
+ 1];
3413 ts
->sigqueue_table
[i
].next
= NULL
;
3416 CPUArchState
*cpu_copy(CPUArchState
*env
)
3418 CPUArchState
*new_env
= cpu_init(cpu_model
);
3419 #if defined(TARGET_HAS_ICE)
3424 /* Reset non arch specific state */
3425 cpu_reset(ENV_GET_CPU(new_env
));
3427 memcpy(new_env
, env
, sizeof(CPUArchState
));
3429 /* Clone all break/watchpoints.
3430 Note: Once we support ptrace with hw-debug register access, make sure
3431 BP_CPU break/watchpoints are handled correctly on clone. */
3432 QTAILQ_INIT(&env
->breakpoints
);
3433 QTAILQ_INIT(&env
->watchpoints
);
3434 #if defined(TARGET_HAS_ICE)
3435 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
3436 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
3438 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
3439 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
3447 static void handle_arg_help(const char *arg
)
3452 static void handle_arg_log(const char *arg
)
3456 mask
= qemu_str_to_log_mask(arg
);
3458 qemu_print_log_usage(stdout
);
3464 static void handle_arg_log_filename(const char *arg
)
3466 qemu_set_log_filename(arg
);
3469 static void handle_arg_set_env(const char *arg
)
3471 char *r
, *p
, *token
;
3472 r
= p
= strdup(arg
);
3473 while ((token
= strsep(&p
, ",")) != NULL
) {
3474 if (envlist_setenv(envlist
, token
) != 0) {
3481 static void handle_arg_unset_env(const char *arg
)
3483 char *r
, *p
, *token
;
3484 r
= p
= strdup(arg
);
3485 while ((token
= strsep(&p
, ",")) != NULL
) {
3486 if (envlist_unsetenv(envlist
, token
) != 0) {
3493 static void handle_arg_argv0(const char *arg
)
3495 argv0
= strdup(arg
);
3498 static void handle_arg_stack_size(const char *arg
)
3501 guest_stack_size
= strtoul(arg
, &p
, 0);
3502 if (guest_stack_size
== 0) {
3507 guest_stack_size
*= 1024 * 1024;
3508 } else if (*p
== 'k' || *p
== 'K') {
3509 guest_stack_size
*= 1024;
3513 static void handle_arg_ld_prefix(const char *arg
)
3515 interp_prefix
= strdup(arg
);
3518 static void handle_arg_pagesize(const char *arg
)
3520 qemu_host_page_size
= atoi(arg
);
3521 if (qemu_host_page_size
== 0 ||
3522 (qemu_host_page_size
& (qemu_host_page_size
- 1)) != 0) {
3523 fprintf(stderr
, "page size must be a power of two\n");
3528 static void handle_arg_gdb(const char *arg
)
3530 gdbstub_port
= atoi(arg
);
3533 static void handle_arg_uname(const char *arg
)
3535 qemu_uname_release
= strdup(arg
);
3538 static void handle_arg_cpu(const char *arg
)
3540 cpu_model
= strdup(arg
);
3541 if (cpu_model
== NULL
|| is_help_option(cpu_model
)) {
3542 /* XXX: implement xxx_cpu_list for targets that still miss it */
3543 #if defined(cpu_list)
3544 cpu_list(stdout
, &fprintf
);
3550 #if defined(CONFIG_USE_GUEST_BASE)
3551 static void handle_arg_guest_base(const char *arg
)
3553 guest_base
= strtol(arg
, NULL
, 0);
3554 have_guest_base
= 1;
3557 static void handle_arg_reserved_va(const char *arg
)
3561 reserved_va
= strtoul(arg
, &p
, 0);
3575 unsigned long unshifted
= reserved_va
;
3577 reserved_va
<<= shift
;
3578 if (((reserved_va
>> shift
) != unshifted
)
3579 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS
3580 || (reserved_va
> (1ul << TARGET_VIRT_ADDR_SPACE_BITS
))
3583 fprintf(stderr
, "Reserved virtual address too big\n");
3588 fprintf(stderr
, "Unrecognised -R size suffix '%s'\n", p
);
3594 static void handle_arg_singlestep(const char *arg
)
3599 static void handle_arg_strace(const char *arg
)
3604 static void handle_arg_version(const char *arg
)
3606 printf("qemu-" TARGET_NAME
" version " QEMU_VERSION QEMU_PKGVERSION
3607 ", Copyright (c) 2003-2008 Fabrice Bellard\n");
3611 struct qemu_argument
{
3615 void (*handle_opt
)(const char *arg
);
3616 const char *example
;
3620 static const struct qemu_argument arg_table
[] = {
3621 {"h", "", false, handle_arg_help
,
3622 "", "print this help"},
3623 {"g", "QEMU_GDB", true, handle_arg_gdb
,
3624 "port", "wait gdb connection to 'port'"},
3625 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix
,
3626 "path", "set the elf interpreter prefix to 'path'"},
3627 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size
,
3628 "size", "set the stack size to 'size' bytes"},
3629 {"cpu", "QEMU_CPU", true, handle_arg_cpu
,
3630 "model", "select CPU (-cpu help for list)"},
3631 {"E", "QEMU_SET_ENV", true, handle_arg_set_env
,
3632 "var=value", "sets targets environment variable (see below)"},
3633 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env
,
3634 "var", "unsets targets environment variable (see below)"},
3635 {"0", "QEMU_ARGV0", true, handle_arg_argv0
,
3636 "argv0", "forces target process argv[0] to be 'argv0'"},
3637 {"r", "QEMU_UNAME", true, handle_arg_uname
,
3638 "uname", "set qemu uname release string to 'uname'"},
3639 #if defined(CONFIG_USE_GUEST_BASE)
3640 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base
,
3641 "address", "set guest_base address to 'address'"},
3642 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va
,
3643 "size", "reserve 'size' bytes for guest virtual address space"},
3645 {"d", "QEMU_LOG", true, handle_arg_log
,
3646 "item[,...]", "enable logging of specified items "
3647 "(use '-d help' for a list of items)"},
3648 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename
,
3649 "logfile", "write logs to 'logfile' (default stderr)"},
3650 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize
,
3651 "pagesize", "set the host page size to 'pagesize'"},
3652 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep
,
3653 "", "run in singlestep mode"},
3654 {"strace", "QEMU_STRACE", false, handle_arg_strace
,
3655 "", "log system calls"},
3656 {"version", "QEMU_VERSION", false, handle_arg_version
,
3657 "", "display version information and exit"},
3658 {NULL
, NULL
, false, NULL
, NULL
, NULL
}
3661 static void usage(void)
3663 const struct qemu_argument
*arginfo
;
3667 printf("usage: qemu-" TARGET_NAME
" [options] program [arguments...]\n"
3668 "Linux CPU emulator (compiled for " TARGET_NAME
" emulation)\n"
3670 "Options and associated environment variables:\n"
3673 /* Calculate column widths. We must always have at least enough space
3674 * for the column header.
3676 maxarglen
= strlen("Argument");
3677 maxenvlen
= strlen("Env-variable");
3679 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
3680 int arglen
= strlen(arginfo
->argv
);
3681 if (arginfo
->has_arg
) {
3682 arglen
+= strlen(arginfo
->example
) + 1;
3684 if (strlen(arginfo
->env
) > maxenvlen
) {
3685 maxenvlen
= strlen(arginfo
->env
);
3687 if (arglen
> maxarglen
) {
3692 printf("%-*s %-*s Description\n", maxarglen
+1, "Argument",
3693 maxenvlen
, "Env-variable");
3695 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
3696 if (arginfo
->has_arg
) {
3697 printf("-%s %-*s %-*s %s\n", arginfo
->argv
,
3698 (int)(maxarglen
- strlen(arginfo
->argv
) - 1),
3699 arginfo
->example
, maxenvlen
, arginfo
->env
, arginfo
->help
);
3701 printf("-%-*s %-*s %s\n", maxarglen
, arginfo
->argv
,
3702 maxenvlen
, arginfo
->env
,
3709 "QEMU_LD_PREFIX = %s\n"
3710 "QEMU_STACK_SIZE = %ld byte\n",
3715 "You can use -E and -U options or the QEMU_SET_ENV and\n"
3716 "QEMU_UNSET_ENV environment variables to set and unset\n"
3717 "environment variables for the target process.\n"
3718 "It is possible to provide several variables by separating them\n"
3719 "by commas in getsubopt(3) style. Additionally it is possible to\n"
3720 "provide the -E and -U options multiple times.\n"
3721 "The following lines are equivalent:\n"
3722 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
3723 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n"
3724 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n"
3725 "Note that if you provide several changes to a single variable\n"
3726 "the last change will stay in effect.\n");
3731 static int parse_args(int argc
, char **argv
)
3735 const struct qemu_argument
*arginfo
;
3737 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
3738 if (arginfo
->env
== NULL
) {
3742 r
= getenv(arginfo
->env
);
3744 arginfo
->handle_opt(r
);
3750 if (optind
>= argc
) {
3759 if (!strcmp(r
, "-")) {
3763 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
3764 if (!strcmp(r
, arginfo
->argv
)) {
3765 if (arginfo
->has_arg
) {
3766 if (optind
>= argc
) {
3769 arginfo
->handle_opt(argv
[optind
]);
3772 arginfo
->handle_opt(NULL
);
3778 /* no option matched the current argv */
3779 if (arginfo
->handle_opt
== NULL
) {
3784 if (optind
>= argc
) {
3788 filename
= argv
[optind
];
3789 exec_path
= argv
[optind
];
3794 int main(int argc
, char **argv
, char **envp
)
3796 struct target_pt_regs regs1
, *regs
= ®s1
;
3797 struct image_info info1
, *info
= &info1
;
3798 struct linux_binprm bprm
;
3803 char **target_environ
, **wrk
;
3810 module_call_init(MODULE_INIT_QOM
);
3812 qemu_init_auxval(envp
);
3813 qemu_cache_utils_init();
3815 if ((envlist
= envlist_create()) == NULL
) {
3816 (void) fprintf(stderr
, "Unable to allocate envlist\n");
3820 /* add current environment into the list */
3821 for (wrk
= environ
; *wrk
!= NULL
; wrk
++) {
3822 (void) envlist_setenv(envlist
, *wrk
);
3825 /* Read the stack limit from the kernel. If it's "unlimited",
3826 then we can do little else besides use the default. */
3829 if (getrlimit(RLIMIT_STACK
, &lim
) == 0
3830 && lim
.rlim_cur
!= RLIM_INFINITY
3831 && lim
.rlim_cur
== (target_long
)lim
.rlim_cur
) {
3832 guest_stack_size
= lim
.rlim_cur
;
3837 #if defined(cpudef_setup)
3838 cpudef_setup(); /* parse cpu definitions in target config file (TBD) */
3841 optind
= parse_args(argc
, argv
);
3844 memset(regs
, 0, sizeof(struct target_pt_regs
));
3846 /* Zero out image_info */
3847 memset(info
, 0, sizeof(struct image_info
));
3849 memset(&bprm
, 0, sizeof (bprm
));
3851 /* Scan interp_prefix dir for replacement files. */
3852 init_paths(interp_prefix
);
3854 init_qemu_uname_release();
3856 if (cpu_model
== NULL
) {
3857 #if defined(TARGET_I386)
3858 #ifdef TARGET_X86_64
3859 cpu_model
= "qemu64";
3861 cpu_model
= "qemu32";
3863 #elif defined(TARGET_ARM)
3865 #elif defined(TARGET_UNICORE32)
3867 #elif defined(TARGET_M68K)
3869 #elif defined(TARGET_SPARC)
3870 #ifdef TARGET_SPARC64
3871 cpu_model
= "TI UltraSparc II";
3873 cpu_model
= "Fujitsu MB86904";
3875 #elif defined(TARGET_MIPS)
3876 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64)
3881 #elif defined TARGET_OPENRISC
3882 cpu_model
= "or1200";
3883 #elif defined(TARGET_PPC)
3885 cpu_model
= "970fx";
3894 cpu_exec_init_all();
3895 /* NOTE: we need to init the CPU at this stage to get
3896 qemu_host_page_size */
3897 env
= cpu_init(cpu_model
);
3899 fprintf(stderr
, "Unable to find CPU definition\n");
3902 cpu
= ENV_GET_CPU(env
);
3907 if (getenv("QEMU_STRACE")) {
3911 target_environ
= envlist_to_environ(envlist
, NULL
);
3912 envlist_free(envlist
);
3914 #if defined(CONFIG_USE_GUEST_BASE)
3916 * Now that page sizes are configured in cpu_init() we can do
3917 * proper page alignment for guest_base.
3919 guest_base
= HOST_PAGE_ALIGN(guest_base
);
3921 if (reserved_va
|| have_guest_base
) {
3922 guest_base
= init_guest_space(guest_base
, reserved_va
, 0,
3924 if (guest_base
== (unsigned long)-1) {
3925 fprintf(stderr
, "Unable to reserve 0x%lx bytes of virtual address "
3926 "space for use as guest address space (check your virtual "
3927 "memory ulimit setting or reserve less using -R option)\n",
3933 mmap_next_start
= reserved_va
;
3936 #endif /* CONFIG_USE_GUEST_BASE */
3939 * Read in mmap_min_addr kernel parameter. This value is used
3940 * When loading the ELF image to determine whether guest_base
3941 * is needed. It is also used in mmap_find_vma.
3946 if ((fp
= fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL
) {
3948 if (fscanf(fp
, "%lu", &tmp
) == 1) {
3949 mmap_min_addr
= tmp
;
3950 qemu_log("host mmap_min_addr=0x%lx\n", mmap_min_addr
);
3957 * Prepare copy of argv vector for target.
3959 target_argc
= argc
- optind
;
3960 target_argv
= calloc(target_argc
+ 1, sizeof (char *));
3961 if (target_argv
== NULL
) {
3962 (void) fprintf(stderr
, "Unable to allocate memory for target_argv\n");
3967 * If argv0 is specified (using '-0' switch) we replace
3968 * argv[0] pointer with the given one.
3971 if (argv0
!= NULL
) {
3972 target_argv
[i
++] = strdup(argv0
);
3974 for (; i
< target_argc
; i
++) {
3975 target_argv
[i
] = strdup(argv
[optind
+ i
]);
3977 target_argv
[target_argc
] = NULL
;
3979 ts
= g_malloc0 (sizeof(TaskState
));
3980 init_task_state(ts
);
3981 /* build Task State */
3987 execfd
= qemu_getauxval(AT_EXECFD
);
3989 execfd
= open(filename
, O_RDONLY
);
3991 printf("Error while loading %s: %s\n", filename
, strerror(errno
));
3996 ret
= loader_exec(execfd
, filename
, target_argv
, target_environ
, regs
,
3999 printf("Error while loading %s: %s\n", filename
, strerror(-ret
));
4003 for (wrk
= target_environ
; *wrk
; wrk
++) {
4007 free(target_environ
);
4009 if (qemu_log_enabled()) {
4010 #if defined(CONFIG_USE_GUEST_BASE)
4011 qemu_log("guest_base 0x%lx\n", guest_base
);
4015 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx
"\n", info
->start_brk
);
4016 qemu_log("end_code 0x" TARGET_ABI_FMT_lx
"\n", info
->end_code
);
4017 qemu_log("start_code 0x" TARGET_ABI_FMT_lx
"\n",
4019 qemu_log("start_data 0x" TARGET_ABI_FMT_lx
"\n",
4021 qemu_log("end_data 0x" TARGET_ABI_FMT_lx
"\n", info
->end_data
);
4022 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx
"\n",
4024 qemu_log("brk 0x" TARGET_ABI_FMT_lx
"\n", info
->brk
);
4025 qemu_log("entry 0x" TARGET_ABI_FMT_lx
"\n", info
->entry
);
4028 target_set_brk(info
->brk
);
4032 #if defined(CONFIG_USE_GUEST_BASE)
4033 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay
4034 generating the prologue until now so that the prologue can take
4035 the real value of GUEST_BASE into account. */
4036 tcg_prologue_init(&tcg_ctx
);
4039 #if defined(TARGET_I386)
4040 cpu_x86_set_cpl(env
, 3);
4042 env
->cr
[0] = CR0_PG_MASK
| CR0_WP_MASK
| CR0_PE_MASK
;
4043 env
->hflags
|= HF_PE_MASK
;
4044 if (env
->features
[FEAT_1_EDX
] & CPUID_SSE
) {
4045 env
->cr
[4] |= CR4_OSFXSR_MASK
;
4046 env
->hflags
|= HF_OSFXSR_MASK
;
4048 #ifndef TARGET_ABI32
4049 /* enable 64 bit mode if possible */
4050 if (!(env
->features
[FEAT_8000_0001_EDX
] & CPUID_EXT2_LM
)) {
4051 fprintf(stderr
, "The selected x86 CPU does not support 64 bit mode\n");
4054 env
->cr
[4] |= CR4_PAE_MASK
;
4055 env
->efer
|= MSR_EFER_LMA
| MSR_EFER_LME
;
4056 env
->hflags
|= HF_LMA_MASK
;
4059 /* flags setup : we activate the IRQs by default as in user mode */
4060 env
->eflags
|= IF_MASK
;
4062 /* linux register setup */
4063 #ifndef TARGET_ABI32
4064 env
->regs
[R_EAX
] = regs
->rax
;
4065 env
->regs
[R_EBX
] = regs
->rbx
;
4066 env
->regs
[R_ECX
] = regs
->rcx
;
4067 env
->regs
[R_EDX
] = regs
->rdx
;
4068 env
->regs
[R_ESI
] = regs
->rsi
;
4069 env
->regs
[R_EDI
] = regs
->rdi
;
4070 env
->regs
[R_EBP
] = regs
->rbp
;
4071 env
->regs
[R_ESP
] = regs
->rsp
;
4072 env
->eip
= regs
->rip
;
4074 env
->regs
[R_EAX
] = regs
->eax
;
4075 env
->regs
[R_EBX
] = regs
->ebx
;
4076 env
->regs
[R_ECX
] = regs
->ecx
;
4077 env
->regs
[R_EDX
] = regs
->edx
;
4078 env
->regs
[R_ESI
] = regs
->esi
;
4079 env
->regs
[R_EDI
] = regs
->edi
;
4080 env
->regs
[R_EBP
] = regs
->ebp
;
4081 env
->regs
[R_ESP
] = regs
->esp
;
4082 env
->eip
= regs
->eip
;
4085 /* linux interrupt setup */
4086 #ifndef TARGET_ABI32
4087 env
->idt
.limit
= 511;
4089 env
->idt
.limit
= 255;
4091 env
->idt
.base
= target_mmap(0, sizeof(uint64_t) * (env
->idt
.limit
+ 1),
4092 PROT_READ
|PROT_WRITE
,
4093 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
4094 idt_table
= g2h(env
->idt
.base
);
4117 /* linux segment setup */
4119 uint64_t *gdt_table
;
4120 env
->gdt
.base
= target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES
,
4121 PROT_READ
|PROT_WRITE
,
4122 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
4123 env
->gdt
.limit
= sizeof(uint64_t) * TARGET_GDT_ENTRIES
- 1;
4124 gdt_table
= g2h(env
->gdt
.base
);
4126 write_dt(&gdt_table
[__USER_CS
>> 3], 0, 0xfffff,
4127 DESC_G_MASK
| DESC_B_MASK
| DESC_P_MASK
| DESC_S_MASK
|
4128 (3 << DESC_DPL_SHIFT
) | (0xa << DESC_TYPE_SHIFT
));
4130 /* 64 bit code segment */
4131 write_dt(&gdt_table
[__USER_CS
>> 3], 0, 0xfffff,
4132 DESC_G_MASK
| DESC_B_MASK
| DESC_P_MASK
| DESC_S_MASK
|
4134 (3 << DESC_DPL_SHIFT
) | (0xa << DESC_TYPE_SHIFT
));
4136 write_dt(&gdt_table
[__USER_DS
>> 3], 0, 0xfffff,
4137 DESC_G_MASK
| DESC_B_MASK
| DESC_P_MASK
| DESC_S_MASK
|
4138 (3 << DESC_DPL_SHIFT
) | (0x2 << DESC_TYPE_SHIFT
));
4140 cpu_x86_load_seg(env
, R_CS
, __USER_CS
);
4141 cpu_x86_load_seg(env
, R_SS
, __USER_DS
);
4143 cpu_x86_load_seg(env
, R_DS
, __USER_DS
);
4144 cpu_x86_load_seg(env
, R_ES
, __USER_DS
);
4145 cpu_x86_load_seg(env
, R_FS
, __USER_DS
);
4146 cpu_x86_load_seg(env
, R_GS
, __USER_DS
);
4147 /* This hack makes Wine work... */
4148 env
->segs
[R_FS
].selector
= 0;
4150 cpu_x86_load_seg(env
, R_DS
, 0);
4151 cpu_x86_load_seg(env
, R_ES
, 0);
4152 cpu_x86_load_seg(env
, R_FS
, 0);
4153 cpu_x86_load_seg(env
, R_GS
, 0);
4155 #elif defined(TARGET_AARCH64)
4159 if (!(arm_feature(env
, ARM_FEATURE_AARCH64
))) {
4161 "The selected ARM CPU does not support 64 bit mode\n");
4165 for (i
= 0; i
< 31; i
++) {
4166 env
->xregs
[i
] = regs
->regs
[i
];
4169 env
->xregs
[31] = regs
->sp
;
4171 #elif defined(TARGET_ARM)
4174 cpsr_write(env
, regs
->uregs
[16], 0xffffffff);
4175 for(i
= 0; i
< 16; i
++) {
4176 env
->regs
[i
] = regs
->uregs
[i
];
4179 if (EF_ARM_EABI_VERSION(info
->elf_flags
) >= EF_ARM_EABI_VER4
4180 && (info
->elf_flags
& EF_ARM_BE8
)) {
4181 env
->bswap_code
= 1;
4184 #elif defined(TARGET_UNICORE32)
4187 cpu_asr_write(env
, regs
->uregs
[32], 0xffffffff);
4188 for (i
= 0; i
< 32; i
++) {
4189 env
->regs
[i
] = regs
->uregs
[i
];
4192 #elif defined(TARGET_SPARC)
4196 env
->npc
= regs
->npc
;
4198 for(i
= 0; i
< 8; i
++)
4199 env
->gregs
[i
] = regs
->u_regs
[i
];
4200 for(i
= 0; i
< 8; i
++)
4201 env
->regwptr
[i
] = regs
->u_regs
[i
+ 8];
4203 #elif defined(TARGET_PPC)
4207 #if defined(TARGET_PPC64)
4208 #if defined(TARGET_ABI32)
4209 env
->msr
&= ~((target_ulong
)1 << MSR_SF
);
4211 env
->msr
|= (target_ulong
)1 << MSR_SF
;
4214 env
->nip
= regs
->nip
;
4215 for(i
= 0; i
< 32; i
++) {
4216 env
->gpr
[i
] = regs
->gpr
[i
];
4219 #elif defined(TARGET_M68K)
4222 env
->dregs
[0] = regs
->d0
;
4223 env
->dregs
[1] = regs
->d1
;
4224 env
->dregs
[2] = regs
->d2
;
4225 env
->dregs
[3] = regs
->d3
;
4226 env
->dregs
[4] = regs
->d4
;
4227 env
->dregs
[5] = regs
->d5
;
4228 env
->dregs
[6] = regs
->d6
;
4229 env
->dregs
[7] = regs
->d7
;
4230 env
->aregs
[0] = regs
->a0
;
4231 env
->aregs
[1] = regs
->a1
;
4232 env
->aregs
[2] = regs
->a2
;
4233 env
->aregs
[3] = regs
->a3
;
4234 env
->aregs
[4] = regs
->a4
;
4235 env
->aregs
[5] = regs
->a5
;
4236 env
->aregs
[6] = regs
->a6
;
4237 env
->aregs
[7] = regs
->usp
;
4239 ts
->sim_syscalls
= 1;
4241 #elif defined(TARGET_MICROBLAZE)
4243 env
->regs
[0] = regs
->r0
;
4244 env
->regs
[1] = regs
->r1
;
4245 env
->regs
[2] = regs
->r2
;
4246 env
->regs
[3] = regs
->r3
;
4247 env
->regs
[4] = regs
->r4
;
4248 env
->regs
[5] = regs
->r5
;
4249 env
->regs
[6] = regs
->r6
;
4250 env
->regs
[7] = regs
->r7
;
4251 env
->regs
[8] = regs
->r8
;
4252 env
->regs
[9] = regs
->r9
;
4253 env
->regs
[10] = regs
->r10
;
4254 env
->regs
[11] = regs
->r11
;
4255 env
->regs
[12] = regs
->r12
;
4256 env
->regs
[13] = regs
->r13
;
4257 env
->regs
[14] = regs
->r14
;
4258 env
->regs
[15] = regs
->r15
;
4259 env
->regs
[16] = regs
->r16
;
4260 env
->regs
[17] = regs
->r17
;
4261 env
->regs
[18] = regs
->r18
;
4262 env
->regs
[19] = regs
->r19
;
4263 env
->regs
[20] = regs
->r20
;
4264 env
->regs
[21] = regs
->r21
;
4265 env
->regs
[22] = regs
->r22
;
4266 env
->regs
[23] = regs
->r23
;
4267 env
->regs
[24] = regs
->r24
;
4268 env
->regs
[25] = regs
->r25
;
4269 env
->regs
[26] = regs
->r26
;
4270 env
->regs
[27] = regs
->r27
;
4271 env
->regs
[28] = regs
->r28
;
4272 env
->regs
[29] = regs
->r29
;
4273 env
->regs
[30] = regs
->r30
;
4274 env
->regs
[31] = regs
->r31
;
4275 env
->sregs
[SR_PC
] = regs
->pc
;
4277 #elif defined(TARGET_MIPS)
4281 for(i
= 0; i
< 32; i
++) {
4282 env
->active_tc
.gpr
[i
] = regs
->regs
[i
];
4284 env
->active_tc
.PC
= regs
->cp0_epc
& ~(target_ulong
)1;
4285 if (regs
->cp0_epc
& 1) {
4286 env
->hflags
|= MIPS_HFLAG_M16
;
4289 #elif defined(TARGET_OPENRISC)
4293 for (i
= 0; i
< 32; i
++) {
4294 env
->gpr
[i
] = regs
->gpr
[i
];
4300 #elif defined(TARGET_SH4)
4304 for(i
= 0; i
< 16; i
++) {
4305 env
->gregs
[i
] = regs
->regs
[i
];
4309 #elif defined(TARGET_ALPHA)
4313 for(i
= 0; i
< 28; i
++) {
4314 env
->ir
[i
] = ((abi_ulong
*)regs
)[i
];
4316 env
->ir
[IR_SP
] = regs
->usp
;
4319 #elif defined(TARGET_CRIS)
4321 env
->regs
[0] = regs
->r0
;
4322 env
->regs
[1] = regs
->r1
;
4323 env
->regs
[2] = regs
->r2
;
4324 env
->regs
[3] = regs
->r3
;
4325 env
->regs
[4] = regs
->r4
;
4326 env
->regs
[5] = regs
->r5
;
4327 env
->regs
[6] = regs
->r6
;
4328 env
->regs
[7] = regs
->r7
;
4329 env
->regs
[8] = regs
->r8
;
4330 env
->regs
[9] = regs
->r9
;
4331 env
->regs
[10] = regs
->r10
;
4332 env
->regs
[11] = regs
->r11
;
4333 env
->regs
[12] = regs
->r12
;
4334 env
->regs
[13] = regs
->r13
;
4335 env
->regs
[14] = info
->start_stack
;
4336 env
->regs
[15] = regs
->acr
;
4337 env
->pc
= regs
->erp
;
4339 #elif defined(TARGET_S390X)
4342 for (i
= 0; i
< 16; i
++) {
4343 env
->regs
[i
] = regs
->gprs
[i
];
4345 env
->psw
.mask
= regs
->psw
.mask
;
4346 env
->psw
.addr
= regs
->psw
.addr
;
4349 #error unsupported target CPU
4352 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
4353 ts
->stack_base
= info
->start_stack
;
4354 ts
->heap_base
= info
->brk
;
4355 /* This will be filled in on the first SYS_HEAPINFO call. */
4360 if (gdbserver_start(gdbstub_port
) < 0) {
4361 fprintf(stderr
, "qemu: could not open gdbserver on port %d\n",
4365 gdb_handlesig(cpu
, 0);