iotests/026: Test EIO on allocation in a data-file
[qemu/ar7.git] / target / mips / internal.h
blobdf55f845baf99f761bb48da26083dba82851888f
1 /*
2 * MIPS internal definitions and helpers
4 * This work is licensed under the terms of the GNU GPL, version 2 or later.
5 * See the COPYING file in the top-level directory.
6 */
8 #ifndef MIPS_INTERNAL_H
9 #define MIPS_INTERNAL_H
11 #include "fpu/softfloat-helpers.h"
14 * MMU types, the first four entries have the same layout as the
15 * CP0C0_MT field.
17 enum mips_mmu_types {
18 MMU_TYPE_NONE,
19 MMU_TYPE_R4000,
20 MMU_TYPE_RESERVED,
21 MMU_TYPE_FMT,
22 MMU_TYPE_R3000,
23 MMU_TYPE_R6000,
24 MMU_TYPE_R8000
27 struct mips_def_t {
28 const char *name;
29 int32_t CP0_PRid;
30 int32_t CP0_Config0;
31 int32_t CP0_Config1;
32 int32_t CP0_Config2;
33 int32_t CP0_Config3;
34 int32_t CP0_Config4;
35 int32_t CP0_Config4_rw_bitmask;
36 int32_t CP0_Config5;
37 int32_t CP0_Config5_rw_bitmask;
38 int32_t CP0_Config6;
39 int32_t CP0_Config7;
40 target_ulong CP0_LLAddr_rw_bitmask;
41 int CP0_LLAddr_shift;
42 int32_t SYNCI_Step;
43 int32_t CCRes;
44 int32_t CP0_Status_rw_bitmask;
45 int32_t CP0_TCStatus_rw_bitmask;
46 int32_t CP0_SRSCtl;
47 int32_t CP1_fcr0;
48 int32_t CP1_fcr31_rw_bitmask;
49 int32_t CP1_fcr31;
50 int32_t MSAIR;
51 int32_t SEGBITS;
52 int32_t PABITS;
53 int32_t CP0_SRSConf0_rw_bitmask;
54 int32_t CP0_SRSConf0;
55 int32_t CP0_SRSConf1_rw_bitmask;
56 int32_t CP0_SRSConf1;
57 int32_t CP0_SRSConf2_rw_bitmask;
58 int32_t CP0_SRSConf2;
59 int32_t CP0_SRSConf3_rw_bitmask;
60 int32_t CP0_SRSConf3;
61 int32_t CP0_SRSConf4_rw_bitmask;
62 int32_t CP0_SRSConf4;
63 int32_t CP0_PageGrain_rw_bitmask;
64 int32_t CP0_PageGrain;
65 target_ulong CP0_EBaseWG_rw_bitmask;
66 uint64_t insn_flags;
67 enum mips_mmu_types mmu_type;
68 int32_t SAARP;
71 extern const struct mips_def_t mips_defs[];
72 extern const int mips_defs_number;
74 enum CPUMIPSMSADataFormat {
75 DF_BYTE = 0,
76 DF_HALF,
77 DF_WORD,
78 DF_DOUBLE
81 void mips_cpu_do_interrupt(CPUState *cpu);
82 bool mips_cpu_exec_interrupt(CPUState *cpu, int int_req);
83 void mips_cpu_dump_state(CPUState *cpu, FILE *f, int flags);
84 hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
85 int mips_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
86 int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
87 void mips_cpu_do_unaligned_access(CPUState *cpu, vaddr addr,
88 MMUAccessType access_type,
89 int mmu_idx, uintptr_t retaddr);
91 #if !defined(CONFIG_USER_ONLY)
93 typedef struct r4k_tlb_t r4k_tlb_t;
94 struct r4k_tlb_t {
95 target_ulong VPN;
96 uint32_t PageMask;
97 uint16_t ASID;
98 uint32_t MMID;
99 unsigned int G:1;
100 unsigned int C0:3;
101 unsigned int C1:3;
102 unsigned int V0:1;
103 unsigned int V1:1;
104 unsigned int D0:1;
105 unsigned int D1:1;
106 unsigned int XI0:1;
107 unsigned int XI1:1;
108 unsigned int RI0:1;
109 unsigned int RI1:1;
110 unsigned int EHINV:1;
111 uint64_t PFN[2];
114 struct CPUMIPSTLBContext {
115 uint32_t nb_tlb;
116 uint32_t tlb_in_use;
117 int (*map_address)(struct CPUMIPSState *env, hwaddr *physical, int *prot,
118 target_ulong address, int rw, int access_type);
119 void (*helper_tlbwi)(struct CPUMIPSState *env);
120 void (*helper_tlbwr)(struct CPUMIPSState *env);
121 void (*helper_tlbp)(struct CPUMIPSState *env);
122 void (*helper_tlbr)(struct CPUMIPSState *env);
123 void (*helper_tlbinv)(struct CPUMIPSState *env);
124 void (*helper_tlbinvf)(struct CPUMIPSState *env);
125 union {
126 struct {
127 r4k_tlb_t tlb[MIPS_TLB_MAX];
128 } r4k;
129 } mmu;
132 int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
133 target_ulong address, int rw, int access_type);
134 int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
135 target_ulong address, int rw, int access_type);
136 int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
137 target_ulong address, int rw, int access_type);
138 void r4k_helper_tlbwi(CPUMIPSState *env);
139 void r4k_helper_tlbwr(CPUMIPSState *env);
140 void r4k_helper_tlbp(CPUMIPSState *env);
141 void r4k_helper_tlbr(CPUMIPSState *env);
142 void r4k_helper_tlbinv(CPUMIPSState *env);
143 void r4k_helper_tlbinvf(CPUMIPSState *env);
144 void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra);
146 void mips_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
147 vaddr addr, unsigned size,
148 MMUAccessType access_type,
149 int mmu_idx, MemTxAttrs attrs,
150 MemTxResult response, uintptr_t retaddr);
151 hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address,
152 int rw);
153 #endif
155 #define cpu_signal_handler cpu_mips_signal_handler
157 #ifndef CONFIG_USER_ONLY
158 extern const VMStateDescription vmstate_mips_cpu;
159 #endif
161 static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env)
163 return (env->CP0_Status & (1 << CP0St_IE)) &&
164 !(env->CP0_Status & (1 << CP0St_EXL)) &&
165 !(env->CP0_Status & (1 << CP0St_ERL)) &&
166 !(env->hflags & MIPS_HFLAG_DM) &&
168 * Note that the TCStatus IXMT field is initialized to zero,
169 * and only MT capable cores can set it to one. So we don't
170 * need to check for MT capabilities here.
172 !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT));
175 /* Check if there is pending and not masked out interrupt */
176 static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
178 int32_t pending;
179 int32_t status;
180 bool r;
182 pending = env->CP0_Cause & CP0Ca_IP_mask;
183 status = env->CP0_Status & CP0Ca_IP_mask;
185 if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
187 * A MIPS configured with a vectorizing external interrupt controller
188 * will feed a vector into the Cause pending lines. The core treats
189 * the status lines as a vector level, not as indiviual masks.
191 r = pending > status;
192 } else {
194 * A MIPS configured with compatibility or VInt (Vectored Interrupts)
195 * treats the pending lines as individual interrupt lines, the status
196 * lines are individual masks.
198 r = (pending & status) != 0;
200 return r;
203 void mips_tcg_init(void);
205 /* TODO QOM'ify CPU reset and remove */
206 void cpu_state_reset(CPUMIPSState *s);
207 void cpu_mips_realize_env(CPUMIPSState *env);
209 /* cp0_timer.c */
210 uint32_t cpu_mips_get_random(CPUMIPSState *env);
211 uint32_t cpu_mips_get_count(CPUMIPSState *env);
212 void cpu_mips_store_count(CPUMIPSState *env, uint32_t value);
213 void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value);
214 void cpu_mips_start_count(CPUMIPSState *env);
215 void cpu_mips_stop_count(CPUMIPSState *env);
217 /* helper.c */
218 bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
219 MMUAccessType access_type, int mmu_idx,
220 bool probe, uintptr_t retaddr);
222 /* op_helper.c */
223 uint32_t float_class_s(uint32_t arg, float_status *fst);
224 uint64_t float_class_d(uint64_t arg, float_status *fst);
226 extern unsigned int ieee_rm[];
227 int ieee_ex_to_mips(int xcpt);
228 void update_pagemask(CPUMIPSState *env, target_ulong arg1, int32_t *pagemask);
230 static inline void restore_rounding_mode(CPUMIPSState *env)
232 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3],
233 &env->active_fpu.fp_status);
236 static inline void restore_flush_mode(CPUMIPSState *env)
238 set_flush_to_zero((env->active_fpu.fcr31 & (1 << FCR31_FS)) != 0,
239 &env->active_fpu.fp_status);
242 static inline void restore_snan_bit_mode(CPUMIPSState *env)
244 set_snan_bit_is_one((env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) == 0,
245 &env->active_fpu.fp_status);
248 static inline void restore_fp_status(CPUMIPSState *env)
250 restore_rounding_mode(env);
251 restore_flush_mode(env);
252 restore_snan_bit_mode(env);
255 static inline void restore_msa_fp_status(CPUMIPSState *env)
257 float_status *status = &env->active_tc.msa_fp_status;
258 int rounding_mode = (env->active_tc.msacsr & MSACSR_RM_MASK) >> MSACSR_RM;
259 bool flush_to_zero = (env->active_tc.msacsr & MSACSR_FS_MASK) != 0;
261 set_float_rounding_mode(ieee_rm[rounding_mode], status);
262 set_flush_to_zero(flush_to_zero, status);
263 set_flush_inputs_to_zero(flush_to_zero, status);
266 static inline void restore_pamask(CPUMIPSState *env)
268 if (env->hflags & MIPS_HFLAG_ELPA) {
269 env->PAMask = (1ULL << env->PABITS) - 1;
270 } else {
271 env->PAMask = PAMASK_BASE;
275 static inline int mips_vpe_active(CPUMIPSState *env)
277 int active = 1;
279 /* Check that the VPE is enabled. */
280 if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
281 active = 0;
283 /* Check that the VPE is activated. */
284 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
285 active = 0;
289 * Now verify that there are active thread contexts in the VPE.
291 * This assumes the CPU model will internally reschedule threads
292 * if the active one goes to sleep. If there are no threads available
293 * the active one will be in a sleeping state, and we can turn off
294 * the entire VPE.
296 if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
297 /* TC is not activated. */
298 active = 0;
300 if (env->active_tc.CP0_TCHalt & 1) {
301 /* TC is in halt state. */
302 active = 0;
305 return active;
308 static inline int mips_vp_active(CPUMIPSState *env)
310 CPUState *other_cs = first_cpu;
312 /* Check if the VP disabled other VPs (which means the VP is enabled) */
313 if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
314 return 1;
317 /* Check if the virtual processor is disabled due to a DVP */
318 CPU_FOREACH(other_cs) {
319 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
320 if ((&other_cpu->env != env) &&
321 ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
322 return 0;
325 return 1;
328 static inline void compute_hflags(CPUMIPSState *env)
330 env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
331 MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
332 MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
333 MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA |
334 MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL);
335 if (env->CP0_Status & (1 << CP0St_ERL)) {
336 env->hflags |= MIPS_HFLAG_ERL;
338 if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
339 !(env->CP0_Status & (1 << CP0St_ERL)) &&
340 !(env->hflags & MIPS_HFLAG_DM)) {
341 env->hflags |= (env->CP0_Status >> CP0St_KSU) &
342 MIPS_HFLAG_KSU;
344 #if defined(TARGET_MIPS64)
345 if ((env->insn_flags & ISA_MIPS3) &&
346 (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
347 (env->CP0_Status & (1 << CP0St_PX)) ||
348 (env->CP0_Status & (1 << CP0St_UX)))) {
349 env->hflags |= MIPS_HFLAG_64;
352 if (!(env->insn_flags & ISA_MIPS3)) {
353 env->hflags |= MIPS_HFLAG_AWRAP;
354 } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) &&
355 !(env->CP0_Status & (1 << CP0St_UX))) {
356 env->hflags |= MIPS_HFLAG_AWRAP;
357 } else if (env->insn_flags & ISA_MIPS64R6) {
358 /* Address wrapping for Supervisor and Kernel is specified in R6 */
359 if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) &&
360 !(env->CP0_Status & (1 << CP0St_SX))) ||
361 (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) &&
362 !(env->CP0_Status & (1 << CP0St_KX)))) {
363 env->hflags |= MIPS_HFLAG_AWRAP;
366 #endif
367 if (((env->CP0_Status & (1 << CP0St_CU0)) &&
368 !(env->insn_flags & ISA_MIPS32R6)) ||
369 !(env->hflags & MIPS_HFLAG_KSU)) {
370 env->hflags |= MIPS_HFLAG_CP0;
372 if (env->CP0_Status & (1 << CP0St_CU1)) {
373 env->hflags |= MIPS_HFLAG_FPU;
375 if (env->CP0_Status & (1 << CP0St_FR)) {
376 env->hflags |= MIPS_HFLAG_F64;
378 if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) &&
379 (env->CP0_Config5 & (1 << CP0C5_SBRI))) {
380 env->hflags |= MIPS_HFLAG_SBRI;
382 if (env->insn_flags & ASE_DSP_R3) {
384 * Our cpu supports DSP R3 ASE, so enable
385 * access to DSP R3 resources.
387 if (env->CP0_Status & (1 << CP0St_MX)) {
388 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
389 MIPS_HFLAG_DSP_R3;
391 } else if (env->insn_flags & ASE_DSP_R2) {
393 * Our cpu supports DSP R2 ASE, so enable
394 * access to DSP R2 resources.
396 if (env->CP0_Status & (1 << CP0St_MX)) {
397 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2;
400 } else if (env->insn_flags & ASE_DSP) {
402 * Our cpu supports DSP ASE, so enable
403 * access to DSP resources.
405 if (env->CP0_Status & (1 << CP0St_MX)) {
406 env->hflags |= MIPS_HFLAG_DSP;
410 if (env->insn_flags & ISA_MIPS32R2) {
411 if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
412 env->hflags |= MIPS_HFLAG_COP1X;
414 } else if (env->insn_flags & ISA_MIPS32) {
415 if (env->hflags & MIPS_HFLAG_64) {
416 env->hflags |= MIPS_HFLAG_COP1X;
418 } else if (env->insn_flags & ISA_MIPS4) {
420 * All supported MIPS IV CPUs use the XX (CU3) to enable
421 * and disable the MIPS IV extensions to the MIPS III ISA.
422 * Some other MIPS IV CPUs ignore the bit, so the check here
423 * would be too restrictive for them.
425 if (env->CP0_Status & (1U << CP0St_CU3)) {
426 env->hflags |= MIPS_HFLAG_COP1X;
429 if (env->insn_flags & ASE_MSA) {
430 if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) {
431 env->hflags |= MIPS_HFLAG_MSA;
434 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
435 if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
436 env->hflags |= MIPS_HFLAG_FRE;
439 if (env->CP0_Config3 & (1 << CP0C3_LPA)) {
440 if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) {
441 env->hflags |= MIPS_HFLAG_ELPA;
446 void cpu_mips_tlb_flush(CPUMIPSState *env);
447 void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc);
448 void cpu_mips_store_status(CPUMIPSState *env, target_ulong val);
449 void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val);
451 void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env, uint32_t exception,
452 int error_code, uintptr_t pc);
454 static inline void QEMU_NORETURN do_raise_exception(CPUMIPSState *env,
455 uint32_t exception,
456 uintptr_t pc)
458 do_raise_exception_err(env, exception, 0, pc);
461 #endif