spapr: Use DT memory node rendering helper for other nodes
[qemu/ar7.git] / hw / ppc / spapr.c
blob9b9b6c477542c9acd7ba0769aa079a920db5b5d9
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/fw-path-provider.h"
30 #include "elf.h"
31 #include "net/net.h"
32 #include "sysemu/blockdev.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/kvm.h"
35 #include "kvm_ppc.h"
36 #include "mmu-hash64.h"
37 #include "qom/cpu.h"
39 #include "hw/boards.h"
40 #include "hw/ppc/ppc.h"
41 #include "hw/loader.h"
43 #include "hw/ppc/spapr.h"
44 #include "hw/ppc/spapr_vio.h"
45 #include "hw/pci-host/spapr.h"
46 #include "hw/ppc/xics.h"
47 #include "hw/pci/msi.h"
49 #include "hw/pci/pci.h"
50 #include "hw/scsi/scsi.h"
51 #include "hw/virtio/virtio-scsi.h"
53 #include "exec/address-spaces.h"
54 #include "hw/usb.h"
55 #include "qemu/config-file.h"
56 #include "qemu/error-report.h"
57 #include "trace.h"
58 #include "hw/nmi.h"
60 #include <libfdt.h>
62 /* SLOF memory layout:
64 * SLOF raw image loaded at 0, copies its romfs right below the flat
65 * device-tree, then position SLOF itself 31M below that
67 * So we set FW_OVERHEAD to 40MB which should account for all of that
68 * and more
70 * We load our kernel at 4M, leaving space for SLOF initial image
72 #define FDT_MAX_SIZE 0x40000
73 #define RTAS_MAX_SIZE 0x10000
74 #define FW_MAX_SIZE 0x400000
75 #define FW_FILE_NAME "slof.bin"
76 #define FW_OVERHEAD 0x2800000
77 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
79 #define MIN_RMA_SLOF 128UL
81 #define TIMEBASE_FREQ 512000000ULL
83 #define MAX_CPUS 256
85 #define PHANDLE_XICP 0x00001111
87 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
89 typedef struct sPAPRMachineState sPAPRMachineState;
91 #define TYPE_SPAPR_MACHINE "spapr-machine"
92 #define SPAPR_MACHINE(obj) \
93 OBJECT_CHECK(sPAPRMachineState, (obj), TYPE_SPAPR_MACHINE)
95 /**
96 * sPAPRMachineState:
98 struct sPAPRMachineState {
99 /*< private >*/
100 MachineState parent_obj;
102 /*< public >*/
103 char *kvm_type;
106 sPAPREnvironment *spapr;
108 static XICSState *try_create_xics(const char *type, int nr_servers,
109 int nr_irqs)
111 DeviceState *dev;
113 dev = qdev_create(NULL, type);
114 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
115 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
116 if (qdev_init(dev) < 0) {
117 return NULL;
120 return XICS_COMMON(dev);
123 static XICSState *xics_system_init(int nr_servers, int nr_irqs)
125 XICSState *icp = NULL;
127 if (kvm_enabled()) {
128 QemuOpts *machine_opts = qemu_get_machine_opts();
129 bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
130 "kernel_irqchip", true);
131 bool irqchip_required = qemu_opt_get_bool(machine_opts,
132 "kernel_irqchip", false);
133 if (irqchip_allowed) {
134 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs);
137 if (irqchip_required && !icp) {
138 perror("Failed to create in-kernel XICS\n");
139 abort();
143 if (!icp) {
144 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
147 if (!icp) {
148 perror("Failed to create XICS\n");
149 abort();
152 return icp;
155 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
156 int smt_threads)
158 int i, ret = 0;
159 uint32_t servers_prop[smt_threads];
160 uint32_t gservers_prop[smt_threads * 2];
161 int index = ppc_get_vcpu_dt_id(cpu);
163 if (cpu->cpu_version) {
164 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
165 if (ret < 0) {
166 return ret;
170 /* Build interrupt servers and gservers properties */
171 for (i = 0; i < smt_threads; i++) {
172 servers_prop[i] = cpu_to_be32(index + i);
173 /* Hack, direct the group queues back to cpu 0 */
174 gservers_prop[i*2] = cpu_to_be32(index + i);
175 gservers_prop[i*2 + 1] = 0;
177 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
178 servers_prop, sizeof(servers_prop));
179 if (ret < 0) {
180 return ret;
182 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
183 gservers_prop, sizeof(gservers_prop));
185 return ret;
188 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
190 int ret = 0, offset, cpus_offset;
191 CPUState *cs;
192 char cpu_model[32];
193 int smt = kvmppc_smt_threads();
194 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
196 CPU_FOREACH(cs) {
197 PowerPCCPU *cpu = POWERPC_CPU(cs);
198 DeviceClass *dc = DEVICE_GET_CLASS(cs);
199 int index = ppc_get_vcpu_dt_id(cpu);
200 uint32_t associativity[] = {cpu_to_be32(0x5),
201 cpu_to_be32(0x0),
202 cpu_to_be32(0x0),
203 cpu_to_be32(0x0),
204 cpu_to_be32(cs->numa_node),
205 cpu_to_be32(index)};
207 if ((index % smt) != 0) {
208 continue;
211 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
213 cpus_offset = fdt_path_offset(fdt, "/cpus");
214 if (cpus_offset < 0) {
215 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
216 "cpus");
217 if (cpus_offset < 0) {
218 return cpus_offset;
221 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
222 if (offset < 0) {
223 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
224 if (offset < 0) {
225 return offset;
229 if (nb_numa_nodes > 1) {
230 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
231 sizeof(associativity));
232 if (ret < 0) {
233 return ret;
237 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
238 pft_size_prop, sizeof(pft_size_prop));
239 if (ret < 0) {
240 return ret;
243 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
244 ppc_get_compat_smt_threads(cpu));
245 if (ret < 0) {
246 return ret;
249 return ret;
253 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
254 size_t maxsize)
256 size_t maxcells = maxsize / sizeof(uint32_t);
257 int i, j, count;
258 uint32_t *p = prop;
260 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
261 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
263 if (!sps->page_shift) {
264 break;
266 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
267 if (sps->enc[count].page_shift == 0) {
268 break;
271 if ((p - prop) >= (maxcells - 3 - count * 2)) {
272 break;
274 *(p++) = cpu_to_be32(sps->page_shift);
275 *(p++) = cpu_to_be32(sps->slb_enc);
276 *(p++) = cpu_to_be32(count);
277 for (j = 0; j < count; j++) {
278 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
279 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
283 return (p - prop) * sizeof(uint32_t);
286 #define _FDT(exp) \
287 do { \
288 int ret = (exp); \
289 if (ret < 0) { \
290 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
291 #exp, fdt_strerror(ret)); \
292 exit(1); \
294 } while (0)
296 static void add_str(GString *s, const gchar *s1)
298 g_string_append_len(s, s1, strlen(s1) + 1);
301 static void *spapr_create_fdt_skel(hwaddr initrd_base,
302 hwaddr initrd_size,
303 hwaddr kernel_size,
304 bool little_endian,
305 const char *boot_device,
306 const char *kernel_cmdline,
307 uint32_t epow_irq)
309 void *fdt;
310 CPUState *cs;
311 uint32_t start_prop = cpu_to_be32(initrd_base);
312 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
313 GString *hypertas = g_string_sized_new(256);
314 GString *qemu_hypertas = g_string_sized_new(256);
315 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
316 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
317 int smt = kvmppc_smt_threads();
318 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
319 QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL);
320 unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0;
321 uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1;
322 char *buf;
324 add_str(hypertas, "hcall-pft");
325 add_str(hypertas, "hcall-term");
326 add_str(hypertas, "hcall-dabr");
327 add_str(hypertas, "hcall-interrupt");
328 add_str(hypertas, "hcall-tce");
329 add_str(hypertas, "hcall-vio");
330 add_str(hypertas, "hcall-splpar");
331 add_str(hypertas, "hcall-bulk");
332 add_str(hypertas, "hcall-set-mode");
333 add_str(qemu_hypertas, "hcall-memop1");
335 fdt = g_malloc0(FDT_MAX_SIZE);
336 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
338 if (kernel_size) {
339 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
341 if (initrd_size) {
342 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
344 _FDT((fdt_finish_reservemap(fdt)));
346 /* Root node */
347 _FDT((fdt_begin_node(fdt, "")));
348 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
349 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
350 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
352 if (kvm_enabled()) {
353 _FDT((fdt_property_string(fdt, "hypervisor", "kvm")));
357 * Add info to guest to indentify which host is it being run on
358 * and what is the uuid of the guest
360 if (kvmppc_get_host_model(&buf)) {
361 _FDT((fdt_property_string(fdt, "host-model", buf)));
362 g_free(buf);
364 if (kvmppc_get_host_serial(&buf)) {
365 _FDT((fdt_property_string(fdt, "host-serial", buf)));
366 g_free(buf);
369 buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
370 qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
371 qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
372 qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
373 qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
374 qemu_uuid[14], qemu_uuid[15]);
376 _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
377 g_free(buf);
379 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
380 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
382 /* /chosen */
383 _FDT((fdt_begin_node(fdt, "chosen")));
385 /* Set Form1_affinity */
386 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
388 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
389 _FDT((fdt_property(fdt, "linux,initrd-start",
390 &start_prop, sizeof(start_prop))));
391 _FDT((fdt_property(fdt, "linux,initrd-end",
392 &end_prop, sizeof(end_prop))));
393 if (kernel_size) {
394 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
395 cpu_to_be64(kernel_size) };
397 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
398 if (little_endian) {
399 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
402 if (boot_device) {
403 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
405 if (boot_menu) {
406 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
408 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
409 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
410 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
412 _FDT((fdt_end_node(fdt)));
414 /* cpus */
415 _FDT((fdt_begin_node(fdt, "cpus")));
417 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
418 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
420 CPU_FOREACH(cs) {
421 PowerPCCPU *cpu = POWERPC_CPU(cs);
422 CPUPPCState *env = &cpu->env;
423 DeviceClass *dc = DEVICE_GET_CLASS(cs);
424 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
425 int index = ppc_get_vcpu_dt_id(cpu);
426 char *nodename;
427 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
428 0xffffffff, 0xffffffff};
429 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
430 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
431 uint32_t page_sizes_prop[64];
432 size_t page_sizes_prop_size;
434 if ((index % smt) != 0) {
435 continue;
438 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
440 _FDT((fdt_begin_node(fdt, nodename)));
442 g_free(nodename);
444 _FDT((fdt_property_cell(fdt, "reg", index)));
445 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
447 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
448 _FDT((fdt_property_cell(fdt, "d-cache-block-size",
449 env->dcache_line_size)));
450 _FDT((fdt_property_cell(fdt, "d-cache-line-size",
451 env->dcache_line_size)));
452 _FDT((fdt_property_cell(fdt, "i-cache-block-size",
453 env->icache_line_size)));
454 _FDT((fdt_property_cell(fdt, "i-cache-line-size",
455 env->icache_line_size)));
457 if (pcc->l1_dcache_size) {
458 _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
459 } else {
460 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
462 if (pcc->l1_icache_size) {
463 _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
464 } else {
465 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
468 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
469 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
470 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
471 _FDT((fdt_property_string(fdt, "status", "okay")));
472 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
474 if (env->spr_cb[SPR_PURR].oea_read) {
475 _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
478 if (env->mmu_model & POWERPC_MMU_1TSEG) {
479 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
480 segs, sizeof(segs))));
483 /* Advertise VMX/VSX (vector extensions) if available
484 * 0 / no property == no vector extensions
485 * 1 == VMX / Altivec available
486 * 2 == VSX available */
487 if (env->insns_flags & PPC_ALTIVEC) {
488 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
490 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
493 /* Advertise DFP (Decimal Floating Point) if available
494 * 0 / no property == no DFP
495 * 1 == DFP available */
496 if (env->insns_flags2 & PPC2_DFP) {
497 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
500 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
501 sizeof(page_sizes_prop));
502 if (page_sizes_prop_size) {
503 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
504 page_sizes_prop, page_sizes_prop_size)));
507 _FDT((fdt_property_cell(fdt, "ibm,chip-id",
508 cs->cpu_index / cpus_per_socket)));
510 _FDT((fdt_end_node(fdt)));
513 _FDT((fdt_end_node(fdt)));
515 /* RTAS */
516 _FDT((fdt_begin_node(fdt, "rtas")));
518 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
519 add_str(hypertas, "hcall-multi-tce");
521 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
522 hypertas->len)));
523 g_string_free(hypertas, TRUE);
524 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
525 qemu_hypertas->len)));
526 g_string_free(qemu_hypertas, TRUE);
528 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
529 refpoints, sizeof(refpoints))));
531 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
534 * According to PAPR, rtas ibm,os-term, does not gaurantee a return
535 * back to the guest cpu.
537 * While an additional ibm,extended-os-term property indicates that
538 * rtas call return will always occur. Set this property.
540 _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
542 _FDT((fdt_end_node(fdt)));
544 /* interrupt controller */
545 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
547 _FDT((fdt_property_string(fdt, "device_type",
548 "PowerPC-External-Interrupt-Presentation")));
549 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
550 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
551 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
552 interrupt_server_ranges_prop,
553 sizeof(interrupt_server_ranges_prop))));
554 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
555 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
556 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
558 _FDT((fdt_end_node(fdt)));
560 /* vdevice */
561 _FDT((fdt_begin_node(fdt, "vdevice")));
563 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
564 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
565 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
566 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
567 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
568 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
570 _FDT((fdt_end_node(fdt)));
572 /* event-sources */
573 spapr_events_fdt_skel(fdt, epow_irq);
575 /* /hypervisor node */
576 if (kvm_enabled()) {
577 uint8_t hypercall[16];
579 /* indicate KVM hypercall interface */
580 _FDT((fdt_begin_node(fdt, "hypervisor")));
581 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
582 if (kvmppc_has_cap_fixup_hcalls()) {
584 * Older KVM versions with older guest kernels were broken with the
585 * magic page, don't allow the guest to map it.
587 kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
588 sizeof(hypercall));
589 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
590 sizeof(hypercall))));
592 _FDT((fdt_end_node(fdt)));
595 _FDT((fdt_end_node(fdt))); /* close root node */
596 _FDT((fdt_finish(fdt)));
598 return fdt;
601 int spapr_h_cas_compose_response(target_ulong addr, target_ulong size)
603 void *fdt, *fdt_skel;
604 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
606 size -= sizeof(hdr);
608 /* Create sceleton */
609 fdt_skel = g_malloc0(size);
610 _FDT((fdt_create(fdt_skel, size)));
611 _FDT((fdt_begin_node(fdt_skel, "")));
612 _FDT((fdt_end_node(fdt_skel)));
613 _FDT((fdt_finish(fdt_skel)));
614 fdt = g_malloc0(size);
615 _FDT((fdt_open_into(fdt_skel, fdt, size)));
616 g_free(fdt_skel);
618 /* Fix skeleton up */
619 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
621 /* Pack resulting tree */
622 _FDT((fdt_pack(fdt)));
624 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
625 trace_spapr_cas_failed(size);
626 return -1;
629 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
630 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
631 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
632 g_free(fdt);
634 return 0;
637 static void spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
638 hwaddr size)
640 uint32_t associativity[] = {
641 cpu_to_be32(0x4), /* length */
642 cpu_to_be32(0x0), cpu_to_be32(0x0),
643 cpu_to_be32(nodeid), cpu_to_be32(nodeid)
645 char mem_name[32];
646 uint64_t mem_reg_property[2];
647 int off;
649 mem_reg_property[0] = cpu_to_be64(start);
650 mem_reg_property[1] = cpu_to_be64(size);
652 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
653 off = fdt_add_subnode(fdt, 0, mem_name);
654 _FDT(off);
655 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
656 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
657 sizeof(mem_reg_property))));
658 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
659 sizeof(associativity))));
662 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
664 hwaddr node0_size, mem_start, node_size;
665 int i;
667 /* memory node(s) */
668 if (nb_numa_nodes > 1 && numa_info[0].node_mem < ram_size) {
669 node0_size = numa_info[0].node_mem;
670 } else {
671 node0_size = ram_size;
674 /* RMA */
675 spapr_populate_memory_node(fdt, 0, 0, spapr->rma_size);
677 /* RAM: Node 0 */
678 if (node0_size > spapr->rma_size) {
679 spapr_populate_memory_node(fdt, 0, spapr->rma_size,
680 node0_size - spapr->rma_size);
683 /* RAM: Node 1 and beyond */
684 mem_start = node0_size;
685 for (i = 1; i < nb_numa_nodes; i++) {
686 if (mem_start >= ram_size) {
687 node_size = 0;
688 } else {
689 node_size = numa_info[i].node_mem;
690 if (node_size > ram_size - mem_start) {
691 node_size = ram_size - mem_start;
694 spapr_populate_memory_node(fdt, i, mem_start, node_size);
695 mem_start += node_size;
698 return 0;
701 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
702 hwaddr fdt_addr,
703 hwaddr rtas_addr,
704 hwaddr rtas_size)
706 int ret, i;
707 size_t cb = 0;
708 char *bootlist;
709 void *fdt;
710 sPAPRPHBState *phb;
712 fdt = g_malloc(FDT_MAX_SIZE);
714 /* open out the base tree into a temp buffer for the final tweaks */
715 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
717 ret = spapr_populate_memory(spapr, fdt);
718 if (ret < 0) {
719 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
720 exit(1);
723 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
724 if (ret < 0) {
725 fprintf(stderr, "couldn't setup vio devices in fdt\n");
726 exit(1);
729 QLIST_FOREACH(phb, &spapr->phbs, list) {
730 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
733 if (ret < 0) {
734 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
735 exit(1);
738 /* RTAS */
739 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
740 if (ret < 0) {
741 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
744 /* Advertise NUMA via ibm,associativity */
745 ret = spapr_fixup_cpu_dt(fdt, spapr);
746 if (ret < 0) {
747 fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
750 bootlist = get_boot_devices_list(&cb, true);
751 if (cb && bootlist) {
752 int offset = fdt_path_offset(fdt, "/chosen");
753 if (offset < 0) {
754 exit(1);
756 for (i = 0; i < cb; i++) {
757 if (bootlist[i] == '\n') {
758 bootlist[i] = ' ';
762 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
765 if (!spapr->has_graphics) {
766 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
769 _FDT((fdt_pack(fdt)));
771 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
772 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
773 fdt_totalsize(fdt), FDT_MAX_SIZE);
774 exit(1);
777 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
779 g_free(bootlist);
780 g_free(fdt);
783 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
785 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
788 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
790 CPUPPCState *env = &cpu->env;
792 if (msr_pr) {
793 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
794 env->gpr[3] = H_PRIVILEGE;
795 } else {
796 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
800 static void spapr_reset_htab(sPAPREnvironment *spapr)
802 long shift;
804 /* allocate hash page table. For now we always make this 16mb,
805 * later we should probably make it scale to the size of guest
806 * RAM */
808 shift = kvmppc_reset_htab(spapr->htab_shift);
810 if (shift > 0) {
811 /* Kernel handles htab, we don't need to allocate one */
812 spapr->htab_shift = shift;
813 kvmppc_kern_htab = true;
814 } else {
815 if (!spapr->htab) {
816 /* Allocate an htab if we don't yet have one */
817 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
820 /* And clear it */
821 memset(spapr->htab, 0, HTAB_SIZE(spapr));
824 /* Update the RMA size if necessary */
825 if (spapr->vrma_adjust) {
826 hwaddr node0_size = (nb_numa_nodes > 1) ?
827 numa_info[0].node_mem : ram_size;
828 spapr->rma_size = kvmppc_rma_size(node0_size, spapr->htab_shift);
832 static void ppc_spapr_reset(void)
834 PowerPCCPU *first_ppc_cpu;
836 /* Reset the hash table & recalc the RMA */
837 spapr_reset_htab(spapr);
839 qemu_devices_reset();
841 /* Load the fdt */
842 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
843 spapr->rtas_size);
845 /* Set up the entry state */
846 first_ppc_cpu = POWERPC_CPU(first_cpu);
847 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
848 first_ppc_cpu->env.gpr[5] = 0;
849 first_cpu->halted = 0;
850 first_ppc_cpu->env.nip = spapr->entry_point;
854 static void spapr_cpu_reset(void *opaque)
856 PowerPCCPU *cpu = opaque;
857 CPUState *cs = CPU(cpu);
858 CPUPPCState *env = &cpu->env;
860 cpu_reset(cs);
862 /* All CPUs start halted. CPU0 is unhalted from the machine level
863 * reset code and the rest are explicitly started up by the guest
864 * using an RTAS call */
865 cs->halted = 1;
867 env->spr[SPR_HIOR] = 0;
869 env->external_htab = (uint8_t *)spapr->htab;
870 if (kvm_enabled() && !env->external_htab) {
872 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
873 * functions do the right thing.
875 env->external_htab = (void *)1;
877 env->htab_base = -1;
879 * htab_mask is the mask used to normalize hash value to PTEG index.
880 * htab_shift is log2 of hash table size.
881 * We have 8 hpte per group, and each hpte is 16 bytes.
882 * ie have 128 bytes per hpte entry.
884 env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1;
885 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
886 (spapr->htab_shift - 18);
889 static void spapr_create_nvram(sPAPREnvironment *spapr)
891 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
892 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
894 if (dinfo) {
895 qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv);
898 qdev_init_nofail(dev);
900 spapr->nvram = (struct sPAPRNVRAM *)dev;
903 /* Returns whether we want to use VGA or not */
904 static int spapr_vga_init(PCIBus *pci_bus)
906 switch (vga_interface_type) {
907 case VGA_NONE:
908 return false;
909 case VGA_DEVICE:
910 return true;
911 case VGA_STD:
912 return pci_vga_init(pci_bus) != NULL;
913 default:
914 fprintf(stderr, "This vga model is not supported,"
915 "currently it only supports -vga std\n");
916 exit(0);
920 static const VMStateDescription vmstate_spapr = {
921 .name = "spapr",
922 .version_id = 2,
923 .minimum_version_id = 1,
924 .fields = (VMStateField[]) {
925 VMSTATE_UNUSED(4), /* used to be @next_irq */
927 /* RTC offset */
928 VMSTATE_UINT64(rtc_offset, sPAPREnvironment),
929 VMSTATE_PPC_TIMEBASE_V(tb, sPAPREnvironment, 2),
930 VMSTATE_END_OF_LIST()
934 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
935 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
936 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
937 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
939 static int htab_save_setup(QEMUFile *f, void *opaque)
941 sPAPREnvironment *spapr = opaque;
943 /* "Iteration" header */
944 qemu_put_be32(f, spapr->htab_shift);
946 if (spapr->htab) {
947 spapr->htab_save_index = 0;
948 spapr->htab_first_pass = true;
949 } else {
950 assert(kvm_enabled());
952 spapr->htab_fd = kvmppc_get_htab_fd(false);
953 if (spapr->htab_fd < 0) {
954 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
955 strerror(errno));
956 return -1;
961 return 0;
964 static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
965 int64_t max_ns)
967 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
968 int index = spapr->htab_save_index;
969 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
971 assert(spapr->htab_first_pass);
973 do {
974 int chunkstart;
976 /* Consume invalid HPTEs */
977 while ((index < htabslots)
978 && !HPTE_VALID(HPTE(spapr->htab, index))) {
979 index++;
980 CLEAN_HPTE(HPTE(spapr->htab, index));
983 /* Consume valid HPTEs */
984 chunkstart = index;
985 while ((index < htabslots)
986 && HPTE_VALID(HPTE(spapr->htab, index))) {
987 index++;
988 CLEAN_HPTE(HPTE(spapr->htab, index));
991 if (index > chunkstart) {
992 int n_valid = index - chunkstart;
994 qemu_put_be32(f, chunkstart);
995 qemu_put_be16(f, n_valid);
996 qemu_put_be16(f, 0);
997 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
998 HASH_PTE_SIZE_64 * n_valid);
1000 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1001 break;
1004 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1006 if (index >= htabslots) {
1007 assert(index == htabslots);
1008 index = 0;
1009 spapr->htab_first_pass = false;
1011 spapr->htab_save_index = index;
1014 static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
1015 int64_t max_ns)
1017 bool final = max_ns < 0;
1018 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1019 int examined = 0, sent = 0;
1020 int index = spapr->htab_save_index;
1021 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1023 assert(!spapr->htab_first_pass);
1025 do {
1026 int chunkstart, invalidstart;
1028 /* Consume non-dirty HPTEs */
1029 while ((index < htabslots)
1030 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1031 index++;
1032 examined++;
1035 chunkstart = index;
1036 /* Consume valid dirty HPTEs */
1037 while ((index < htabslots)
1038 && HPTE_DIRTY(HPTE(spapr->htab, index))
1039 && HPTE_VALID(HPTE(spapr->htab, index))) {
1040 CLEAN_HPTE(HPTE(spapr->htab, index));
1041 index++;
1042 examined++;
1045 invalidstart = index;
1046 /* Consume invalid dirty HPTEs */
1047 while ((index < htabslots)
1048 && HPTE_DIRTY(HPTE(spapr->htab, index))
1049 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1050 CLEAN_HPTE(HPTE(spapr->htab, index));
1051 index++;
1052 examined++;
1055 if (index > chunkstart) {
1056 int n_valid = invalidstart - chunkstart;
1057 int n_invalid = index - invalidstart;
1059 qemu_put_be32(f, chunkstart);
1060 qemu_put_be16(f, n_valid);
1061 qemu_put_be16(f, n_invalid);
1062 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1063 HASH_PTE_SIZE_64 * n_valid);
1064 sent += index - chunkstart;
1066 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1067 break;
1071 if (examined >= htabslots) {
1072 break;
1075 if (index >= htabslots) {
1076 assert(index == htabslots);
1077 index = 0;
1079 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1081 if (index >= htabslots) {
1082 assert(index == htabslots);
1083 index = 0;
1086 spapr->htab_save_index = index;
1088 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1091 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1092 #define MAX_KVM_BUF_SIZE 2048
1094 static int htab_save_iterate(QEMUFile *f, void *opaque)
1096 sPAPREnvironment *spapr = opaque;
1097 int rc = 0;
1099 /* Iteration header */
1100 qemu_put_be32(f, 0);
1102 if (!spapr->htab) {
1103 assert(kvm_enabled());
1105 rc = kvmppc_save_htab(f, spapr->htab_fd,
1106 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1107 if (rc < 0) {
1108 return rc;
1110 } else if (spapr->htab_first_pass) {
1111 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1112 } else {
1113 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1116 /* End marker */
1117 qemu_put_be32(f, 0);
1118 qemu_put_be16(f, 0);
1119 qemu_put_be16(f, 0);
1121 return rc;
1124 static int htab_save_complete(QEMUFile *f, void *opaque)
1126 sPAPREnvironment *spapr = opaque;
1128 /* Iteration header */
1129 qemu_put_be32(f, 0);
1131 if (!spapr->htab) {
1132 int rc;
1134 assert(kvm_enabled());
1136 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1137 if (rc < 0) {
1138 return rc;
1140 close(spapr->htab_fd);
1141 spapr->htab_fd = -1;
1142 } else {
1143 htab_save_later_pass(f, spapr, -1);
1146 /* End marker */
1147 qemu_put_be32(f, 0);
1148 qemu_put_be16(f, 0);
1149 qemu_put_be16(f, 0);
1151 return 0;
1154 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1156 sPAPREnvironment *spapr = opaque;
1157 uint32_t section_hdr;
1158 int fd = -1;
1160 if (version_id < 1 || version_id > 1) {
1161 fprintf(stderr, "htab_load() bad version\n");
1162 return -EINVAL;
1165 section_hdr = qemu_get_be32(f);
1167 if (section_hdr) {
1168 /* First section, just the hash shift */
1169 if (spapr->htab_shift != section_hdr) {
1170 return -EINVAL;
1172 return 0;
1175 if (!spapr->htab) {
1176 assert(kvm_enabled());
1178 fd = kvmppc_get_htab_fd(true);
1179 if (fd < 0) {
1180 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1181 strerror(errno));
1185 while (true) {
1186 uint32_t index;
1187 uint16_t n_valid, n_invalid;
1189 index = qemu_get_be32(f);
1190 n_valid = qemu_get_be16(f);
1191 n_invalid = qemu_get_be16(f);
1193 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1194 /* End of Stream */
1195 break;
1198 if ((index + n_valid + n_invalid) >
1199 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1200 /* Bad index in stream */
1201 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1202 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1203 spapr->htab_shift);
1204 return -EINVAL;
1207 if (spapr->htab) {
1208 if (n_valid) {
1209 qemu_get_buffer(f, HPTE(spapr->htab, index),
1210 HASH_PTE_SIZE_64 * n_valid);
1212 if (n_invalid) {
1213 memset(HPTE(spapr->htab, index + n_valid), 0,
1214 HASH_PTE_SIZE_64 * n_invalid);
1216 } else {
1217 int rc;
1219 assert(fd >= 0);
1221 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1222 if (rc < 0) {
1223 return rc;
1228 if (!spapr->htab) {
1229 assert(fd >= 0);
1230 close(fd);
1233 return 0;
1236 static SaveVMHandlers savevm_htab_handlers = {
1237 .save_live_setup = htab_save_setup,
1238 .save_live_iterate = htab_save_iterate,
1239 .save_live_complete = htab_save_complete,
1240 .load_state = htab_load,
1243 /* pSeries LPAR / sPAPR hardware init */
1244 static void ppc_spapr_init(MachineState *machine)
1246 ram_addr_t ram_size = machine->ram_size;
1247 const char *cpu_model = machine->cpu_model;
1248 const char *kernel_filename = machine->kernel_filename;
1249 const char *kernel_cmdline = machine->kernel_cmdline;
1250 const char *initrd_filename = machine->initrd_filename;
1251 const char *boot_device = machine->boot_order;
1252 PowerPCCPU *cpu;
1253 CPUPPCState *env;
1254 PCIHostState *phb;
1255 int i;
1256 MemoryRegion *sysmem = get_system_memory();
1257 MemoryRegion *ram = g_new(MemoryRegion, 1);
1258 MemoryRegion *rma_region;
1259 void *rma = NULL;
1260 hwaddr rma_alloc_size;
1261 hwaddr node0_size = (nb_numa_nodes > 1) ? numa_info[0].node_mem : ram_size;
1262 uint32_t initrd_base = 0;
1263 long kernel_size = 0, initrd_size = 0;
1264 long load_limit, rtas_limit, fw_size;
1265 bool kernel_le = false;
1266 char *filename;
1268 msi_supported = true;
1270 spapr = g_malloc0(sizeof(*spapr));
1271 QLIST_INIT(&spapr->phbs);
1273 cpu_ppc_hypercall = emulate_spapr_hypercall;
1275 /* Allocate RMA if necessary */
1276 rma_alloc_size = kvmppc_alloc_rma(&rma);
1278 if (rma_alloc_size == -1) {
1279 hw_error("qemu: Unable to create RMA\n");
1280 exit(1);
1283 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1284 spapr->rma_size = rma_alloc_size;
1285 } else {
1286 spapr->rma_size = node0_size;
1288 /* With KVM, we don't actually know whether KVM supports an
1289 * unbounded RMA (PR KVM) or is limited by the hash table size
1290 * (HV KVM using VRMA), so we always assume the latter
1292 * In that case, we also limit the initial allocations for RTAS
1293 * etc... to 256M since we have no way to know what the VRMA size
1294 * is going to be as it depends on the size of the hash table
1295 * isn't determined yet.
1297 if (kvm_enabled()) {
1298 spapr->vrma_adjust = 1;
1299 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1303 if (spapr->rma_size > node0_size) {
1304 fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1305 spapr->rma_size);
1306 exit(1);
1309 /* We place the device tree and RTAS just below either the top of the RMA,
1310 * or just below 2GB, whichever is lowere, so that it can be
1311 * processed with 32-bit real mode code if necessary */
1312 rtas_limit = MIN(spapr->rma_size, 0x80000000);
1313 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1314 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1315 load_limit = spapr->fdt_addr - FW_OVERHEAD;
1317 /* We aim for a hash table of size 1/128 the size of RAM. The
1318 * normal rule of thumb is 1/64 the size of RAM, but that's much
1319 * more than needed for the Linux guests we support. */
1320 spapr->htab_shift = 18; /* Minimum architected size */
1321 while (spapr->htab_shift <= 46) {
1322 if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
1323 break;
1325 spapr->htab_shift++;
1328 /* Set up Interrupt Controller before we create the VCPUs */
1329 spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
1330 XICS_IRQS);
1332 /* init CPUs */
1333 if (cpu_model == NULL) {
1334 cpu_model = kvm_enabled() ? "host" : "POWER7";
1336 for (i = 0; i < smp_cpus; i++) {
1337 cpu = cpu_ppc_init(cpu_model);
1338 if (cpu == NULL) {
1339 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1340 exit(1);
1342 env = &cpu->env;
1344 /* Set time-base frequency to 512 MHz */
1345 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1347 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1348 * MSR[IP] should never be set.
1350 env->msr_mask &= ~(1 << 6);
1352 /* Tell KVM that we're in PAPR mode */
1353 if (kvm_enabled()) {
1354 kvmppc_set_papr(cpu);
1357 if (cpu->max_compat) {
1358 if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
1359 exit(1);
1363 xics_cpu_setup(spapr->icp, cpu);
1365 qemu_register_reset(spapr_cpu_reset, cpu);
1368 /* allocate RAM */
1369 spapr->ram_limit = ram_size;
1370 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1371 spapr->ram_limit);
1372 memory_region_add_subregion(sysmem, 0, ram);
1374 if (rma_alloc_size && rma) {
1375 rma_region = g_new(MemoryRegion, 1);
1376 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1377 rma_alloc_size, rma);
1378 vmstate_register_ram_global(rma_region);
1379 memory_region_add_subregion(sysmem, 0, rma_region);
1382 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1383 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
1384 rtas_limit - spapr->rtas_addr);
1385 if (spapr->rtas_size < 0) {
1386 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1387 exit(1);
1389 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1390 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
1391 spapr->rtas_size, RTAS_MAX_SIZE);
1392 exit(1);
1394 g_free(filename);
1396 /* Set up EPOW events infrastructure */
1397 spapr_events_init(spapr);
1399 /* Set up VIO bus */
1400 spapr->vio_bus = spapr_vio_bus_init();
1402 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1403 if (serial_hds[i]) {
1404 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1408 /* We always have at least the nvram device on VIO */
1409 spapr_create_nvram(spapr);
1411 /* Set up PCI */
1412 spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW);
1413 spapr_pci_rtas_init();
1415 phb = spapr_create_phb(spapr, 0);
1417 for (i = 0; i < nb_nics; i++) {
1418 NICInfo *nd = &nd_table[i];
1420 if (!nd->model) {
1421 nd->model = g_strdup("ibmveth");
1424 if (strcmp(nd->model, "ibmveth") == 0) {
1425 spapr_vlan_create(spapr->vio_bus, nd);
1426 } else {
1427 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1431 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1432 spapr_vscsi_create(spapr->vio_bus);
1435 /* Graphics */
1436 if (spapr_vga_init(phb->bus)) {
1437 spapr->has_graphics = true;
1440 if (usb_enabled(spapr->has_graphics)) {
1441 pci_create_simple(phb->bus, -1, "pci-ohci");
1442 if (spapr->has_graphics) {
1443 usbdevice_create("keyboard");
1444 usbdevice_create("mouse");
1448 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1449 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1450 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1451 exit(1);
1454 if (kernel_filename) {
1455 uint64_t lowaddr = 0;
1457 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1458 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1459 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1460 kernel_size = load_elf(kernel_filename,
1461 translate_kernel_address, NULL,
1462 NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
1463 kernel_le = kernel_size > 0;
1465 if (kernel_size < 0) {
1466 fprintf(stderr, "qemu: error loading %s: %s\n",
1467 kernel_filename, load_elf_strerror(kernel_size));
1468 exit(1);
1471 /* load initrd */
1472 if (initrd_filename) {
1473 /* Try to locate the initrd in the gap between the kernel
1474 * and the firmware. Add a bit of space just in case
1476 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1477 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1478 load_limit - initrd_base);
1479 if (initrd_size < 0) {
1480 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1481 initrd_filename);
1482 exit(1);
1484 } else {
1485 initrd_base = 0;
1486 initrd_size = 0;
1490 if (bios_name == NULL) {
1491 bios_name = FW_FILE_NAME;
1493 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1494 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1495 if (fw_size < 0) {
1496 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1497 exit(1);
1499 g_free(filename);
1501 spapr->entry_point = 0x100;
1503 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1504 register_savevm_live(NULL, "spapr/htab", -1, 1,
1505 &savevm_htab_handlers, spapr);
1507 /* Prepare the device tree */
1508 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1509 kernel_size, kernel_le,
1510 boot_device, kernel_cmdline,
1511 spapr->epow_irq);
1512 assert(spapr->fdt_skel != NULL);
1515 static int spapr_kvm_type(const char *vm_type)
1517 if (!vm_type) {
1518 return 0;
1521 if (!strcmp(vm_type, "HV")) {
1522 return 1;
1525 if (!strcmp(vm_type, "PR")) {
1526 return 2;
1529 error_report("Unknown kvm-type specified '%s'", vm_type);
1530 exit(1);
1534 * Implementation of an interface to adjust firmware patch
1535 * for the bootindex property handling.
1537 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
1538 DeviceState *dev)
1540 #define CAST(type, obj, name) \
1541 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
1542 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
1543 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
1545 if (d) {
1546 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
1547 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
1548 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
1550 if (spapr) {
1552 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
1553 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
1554 * in the top 16 bits of the 64-bit LUN
1556 unsigned id = 0x8000 | (d->id << 8) | d->lun;
1557 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1558 (uint64_t)id << 48);
1559 } else if (virtio) {
1561 * We use SRP luns of the form 01000000 | (target << 8) | lun
1562 * in the top 32 bits of the 64-bit LUN
1563 * Note: the quote above is from SLOF and it is wrong,
1564 * the actual binding is:
1565 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
1567 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
1568 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1569 (uint64_t)id << 32);
1570 } else if (usb) {
1572 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
1573 * in the top 32 bits of the 64-bit LUN
1575 unsigned usb_port = atoi(usb->port->path);
1576 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
1577 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1578 (uint64_t)id << 32);
1582 if (phb) {
1583 /* Replace "pci" with "pci@800000020000000" */
1584 return g_strdup_printf("pci@%"PRIX64, phb->buid);
1587 return NULL;
1590 static char *spapr_get_kvm_type(Object *obj, Error **errp)
1592 sPAPRMachineState *sm = SPAPR_MACHINE(obj);
1594 return g_strdup(sm->kvm_type);
1597 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
1599 sPAPRMachineState *sm = SPAPR_MACHINE(obj);
1601 g_free(sm->kvm_type);
1602 sm->kvm_type = g_strdup(value);
1605 static void spapr_machine_initfn(Object *obj)
1607 object_property_add_str(obj, "kvm-type",
1608 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
1611 static void ppc_cpu_do_nmi_on_cpu(void *arg)
1613 CPUState *cs = arg;
1615 cpu_synchronize_state(cs);
1616 ppc_cpu_do_system_reset(cs);
1619 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
1621 CPUState *cs;
1623 CPU_FOREACH(cs) {
1624 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
1628 static void spapr_machine_class_init(ObjectClass *oc, void *data)
1630 MachineClass *mc = MACHINE_CLASS(oc);
1631 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
1632 NMIClass *nc = NMI_CLASS(oc);
1634 mc->name = "pseries";
1635 mc->desc = "pSeries Logical Partition (PAPR compliant)";
1636 mc->is_default = 1;
1637 mc->init = ppc_spapr_init;
1638 mc->reset = ppc_spapr_reset;
1639 mc->block_default_type = IF_SCSI;
1640 mc->max_cpus = MAX_CPUS;
1641 mc->no_parallel = 1;
1642 mc->default_boot_order = NULL;
1643 mc->kvm_type = spapr_kvm_type;
1645 fwc->get_dev_path = spapr_get_fw_dev_path;
1646 nc->nmi_monitor_handler = spapr_nmi;
1649 static const TypeInfo spapr_machine_info = {
1650 .name = TYPE_SPAPR_MACHINE,
1651 .parent = TYPE_MACHINE,
1652 .instance_size = sizeof(sPAPRMachineState),
1653 .instance_init = spapr_machine_initfn,
1654 .class_init = spapr_machine_class_init,
1655 .interfaces = (InterfaceInfo[]) {
1656 { TYPE_FW_PATH_PROVIDER },
1657 { TYPE_NMI },
1662 static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
1664 MachineClass *mc = MACHINE_CLASS(oc);
1666 mc->name = "pseries-2.1";
1667 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
1668 mc->is_default = 0;
1671 static const TypeInfo spapr_machine_2_1_info = {
1672 .name = TYPE_SPAPR_MACHINE "2.1",
1673 .parent = TYPE_SPAPR_MACHINE,
1674 .class_init = spapr_machine_2_1_class_init,
1677 static void spapr_machine_register_types(void)
1679 type_register_static(&spapr_machine_info);
1680 type_register_static(&spapr_machine_2_1_info);
1683 type_init(spapr_machine_register_types)