4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
46 #include "exec/cpu-all.h"
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
51 #include "exec/memory-internal.h"
53 //#define DEBUG_SUBPAGE
55 #if !defined(CONFIG_USER_ONLY)
57 static int in_migration
;
59 RAMList ram_list
= { .blocks
= QTAILQ_HEAD_INITIALIZER(ram_list
.blocks
) };
61 static MemoryRegion
*system_memory
;
62 static MemoryRegion
*system_io
;
64 AddressSpace address_space_io
;
65 AddressSpace address_space_memory
;
66 DMAContext dma_context_memory
;
68 MemoryRegion io_mem_rom
, io_mem_notdirty
;
69 static MemoryRegion io_mem_unassigned
, io_mem_subpage_ram
;
73 CPUArchState
*first_cpu
;
74 /* current CPU in the current thread. It is only valid inside
76 DEFINE_TLS(CPUArchState
*,cpu_single_env
);
77 /* 0 = Do not count executed instructions.
78 1 = Precise instruction counting.
79 2 = Adaptive rate instruction counting. */
82 #if !defined(CONFIG_USER_ONLY)
84 static MemoryRegionSection
*phys_sections
;
85 static unsigned phys_sections_nb
, phys_sections_nb_alloc
;
86 static uint16_t phys_section_unassigned
;
87 static uint16_t phys_section_notdirty
;
88 static uint16_t phys_section_rom
;
89 static uint16_t phys_section_watch
;
91 /* Simple allocator for PhysPageEntry nodes */
92 static PhysPageEntry (*phys_map_nodes
)[L2_SIZE
];
93 static unsigned phys_map_nodes_nb
, phys_map_nodes_nb_alloc
;
95 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
97 static void io_mem_init(void);
98 static void memory_map_init(void);
99 static void *qemu_safe_ram_ptr(ram_addr_t addr
);
101 static MemoryRegion io_mem_watch
;
104 #if !defined(CONFIG_USER_ONLY)
106 static void phys_map_node_reserve(unsigned nodes
)
108 if (phys_map_nodes_nb
+ nodes
> phys_map_nodes_nb_alloc
) {
109 typedef PhysPageEntry Node
[L2_SIZE
];
110 phys_map_nodes_nb_alloc
= MAX(phys_map_nodes_nb_alloc
* 2, 16);
111 phys_map_nodes_nb_alloc
= MAX(phys_map_nodes_nb_alloc
,
112 phys_map_nodes_nb
+ nodes
);
113 phys_map_nodes
= g_renew(Node
, phys_map_nodes
,
114 phys_map_nodes_nb_alloc
);
118 static uint16_t phys_map_node_alloc(void)
123 ret
= phys_map_nodes_nb
++;
124 assert(ret
!= PHYS_MAP_NODE_NIL
);
125 assert(ret
!= phys_map_nodes_nb_alloc
);
126 for (i
= 0; i
< L2_SIZE
; ++i
) {
127 phys_map_nodes
[ret
][i
].is_leaf
= 0;
128 phys_map_nodes
[ret
][i
].ptr
= PHYS_MAP_NODE_NIL
;
133 static void phys_map_nodes_reset(void)
135 phys_map_nodes_nb
= 0;
139 static void phys_page_set_level(PhysPageEntry
*lp
, hwaddr
*index
,
140 hwaddr
*nb
, uint16_t leaf
,
145 hwaddr step
= (hwaddr
)1 << (level
* L2_BITS
);
147 if (!lp
->is_leaf
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
148 lp
->ptr
= phys_map_node_alloc();
149 p
= phys_map_nodes
[lp
->ptr
];
151 for (i
= 0; i
< L2_SIZE
; i
++) {
153 p
[i
].ptr
= phys_section_unassigned
;
157 p
= phys_map_nodes
[lp
->ptr
];
159 lp
= &p
[(*index
>> (level
* L2_BITS
)) & (L2_SIZE
- 1)];
161 while (*nb
&& lp
< &p
[L2_SIZE
]) {
162 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
168 phys_page_set_level(lp
, index
, nb
, leaf
, level
- 1);
174 static void phys_page_set(AddressSpaceDispatch
*d
,
175 hwaddr index
, hwaddr nb
,
178 /* Wildly overreserve - it doesn't matter much. */
179 phys_map_node_reserve(3 * P_L2_LEVELS
);
181 phys_page_set_level(&d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
184 static MemoryRegionSection
*phys_page_find(AddressSpaceDispatch
*d
, hwaddr index
)
186 PhysPageEntry lp
= d
->phys_map
;
190 for (i
= P_L2_LEVELS
- 1; i
>= 0 && !lp
.is_leaf
; i
--) {
191 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
192 return &phys_sections
[phys_section_unassigned
];
194 p
= phys_map_nodes
[lp
.ptr
];
195 lp
= p
[(index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1)];
197 return &phys_sections
[lp
.ptr
];
200 bool memory_region_is_unassigned(MemoryRegion
*mr
)
202 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
203 && mr
!= &io_mem_watch
;
206 MemoryRegionSection
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
207 hwaddr
*xlat
, hwaddr
*plen
,
210 MemoryRegionSection
*section
;
213 section
= phys_page_find(as
->dispatch
, addr
>> TARGET_PAGE_BITS
);
214 /* Compute offset within MemoryRegionSection */
215 addr
-= section
->offset_within_address_space
;
217 /* Compute offset within MemoryRegion */
218 *xlat
= addr
+ section
->offset_within_region
;
220 diff
= int128_sub(section
->mr
->size
, int128_make64(addr
));
221 *plen
= MIN(int128_get64(diff
), *plen
);
226 void cpu_exec_init_all(void)
228 #if !defined(CONFIG_USER_ONLY)
229 qemu_mutex_init(&ram_list
.mutex
);
235 #if !defined(CONFIG_USER_ONLY)
237 static int cpu_common_post_load(void *opaque
, int version_id
)
239 CPUState
*cpu
= opaque
;
241 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
242 version_id is increased. */
243 cpu
->interrupt_request
&= ~0x01;
244 tlb_flush(cpu
->env_ptr
, 1);
249 static const VMStateDescription vmstate_cpu_common
= {
250 .name
= "cpu_common",
252 .minimum_version_id
= 1,
253 .minimum_version_id_old
= 1,
254 .post_load
= cpu_common_post_load
,
255 .fields
= (VMStateField
[]) {
256 VMSTATE_UINT32(halted
, CPUState
),
257 VMSTATE_UINT32(interrupt_request
, CPUState
),
258 VMSTATE_END_OF_LIST()
262 #define vmstate_cpu_common vmstate_dummy
265 CPUState
*qemu_get_cpu(int index
)
267 CPUArchState
*env
= first_cpu
;
268 CPUState
*cpu
= NULL
;
271 cpu
= ENV_GET_CPU(env
);
272 if (cpu
->cpu_index
== index
) {
278 return env
? cpu
: NULL
;
281 void qemu_for_each_cpu(void (*func
)(CPUState
*cpu
, void *data
), void *data
)
283 CPUArchState
*env
= first_cpu
;
286 func(ENV_GET_CPU(env
), data
);
291 void cpu_exec_init(CPUArchState
*env
)
293 CPUState
*cpu
= ENV_GET_CPU(env
);
294 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
298 #if defined(CONFIG_USER_ONLY)
301 env
->next_cpu
= NULL
;
304 while (*penv
!= NULL
) {
305 penv
= &(*penv
)->next_cpu
;
308 cpu
->cpu_index
= cpu_index
;
310 QTAILQ_INIT(&env
->breakpoints
);
311 QTAILQ_INIT(&env
->watchpoints
);
312 #ifndef CONFIG_USER_ONLY
313 cpu
->thread_id
= qemu_get_thread_id();
316 #if defined(CONFIG_USER_ONLY)
319 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, cpu
);
320 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
321 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
322 cpu_save
, cpu_load
, env
);
323 assert(cc
->vmsd
== NULL
);
325 if (cc
->vmsd
!= NULL
) {
326 vmstate_register(NULL
, cpu_index
, cc
->vmsd
, cpu
);
330 #if defined(TARGET_HAS_ICE)
331 #if defined(CONFIG_USER_ONLY)
332 static void breakpoint_invalidate(CPUArchState
*env
, target_ulong pc
)
334 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
337 static void breakpoint_invalidate(CPUArchState
*env
, target_ulong pc
)
339 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env
, pc
) |
340 (pc
& ~TARGET_PAGE_MASK
));
343 #endif /* TARGET_HAS_ICE */
345 #if defined(CONFIG_USER_ONLY)
346 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
351 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
352 int flags
, CPUWatchpoint
**watchpoint
)
357 /* Add a watchpoint. */
358 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
359 int flags
, CPUWatchpoint
**watchpoint
)
361 target_ulong len_mask
= ~(len
- 1);
364 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
365 if ((len
& (len
- 1)) || (addr
& ~len_mask
) ||
366 len
== 0 || len
> TARGET_PAGE_SIZE
) {
367 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
368 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
371 wp
= g_malloc(sizeof(*wp
));
374 wp
->len_mask
= len_mask
;
377 /* keep all GDB-injected watchpoints in front */
379 QTAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
381 QTAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
383 tlb_flush_page(env
, addr
);
390 /* Remove a specific watchpoint. */
391 int cpu_watchpoint_remove(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
394 target_ulong len_mask
= ~(len
- 1);
397 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
398 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
399 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
400 cpu_watchpoint_remove_by_ref(env
, wp
);
407 /* Remove a specific watchpoint by reference. */
408 void cpu_watchpoint_remove_by_ref(CPUArchState
*env
, CPUWatchpoint
*watchpoint
)
410 QTAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
412 tlb_flush_page(env
, watchpoint
->vaddr
);
417 /* Remove all matching watchpoints. */
418 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
420 CPUWatchpoint
*wp
, *next
;
422 QTAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
423 if (wp
->flags
& mask
)
424 cpu_watchpoint_remove_by_ref(env
, wp
);
429 /* Add a breakpoint. */
430 int cpu_breakpoint_insert(CPUArchState
*env
, target_ulong pc
, int flags
,
431 CPUBreakpoint
**breakpoint
)
433 #if defined(TARGET_HAS_ICE)
436 bp
= g_malloc(sizeof(*bp
));
441 /* keep all GDB-injected breakpoints in front */
443 QTAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
445 QTAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
447 breakpoint_invalidate(env
, pc
);
457 /* Remove a specific breakpoint. */
458 int cpu_breakpoint_remove(CPUArchState
*env
, target_ulong pc
, int flags
)
460 #if defined(TARGET_HAS_ICE)
463 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
464 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
465 cpu_breakpoint_remove_by_ref(env
, bp
);
475 /* Remove a specific breakpoint by reference. */
476 void cpu_breakpoint_remove_by_ref(CPUArchState
*env
, CPUBreakpoint
*breakpoint
)
478 #if defined(TARGET_HAS_ICE)
479 QTAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
481 breakpoint_invalidate(env
, breakpoint
->pc
);
487 /* Remove all matching breakpoints. */
488 void cpu_breakpoint_remove_all(CPUArchState
*env
, int mask
)
490 #if defined(TARGET_HAS_ICE)
491 CPUBreakpoint
*bp
, *next
;
493 QTAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
494 if (bp
->flags
& mask
)
495 cpu_breakpoint_remove_by_ref(env
, bp
);
500 /* enable or disable single step mode. EXCP_DEBUG is returned by the
501 CPU loop after each instruction */
502 void cpu_single_step(CPUArchState
*env
, int enabled
)
504 #if defined(TARGET_HAS_ICE)
505 if (env
->singlestep_enabled
!= enabled
) {
506 env
->singlestep_enabled
= enabled
;
508 kvm_update_guest_debug(env
, 0);
510 /* must flush all the translated code to avoid inconsistencies */
511 /* XXX: only flush what is necessary */
518 void cpu_exit(CPUArchState
*env
)
520 CPUState
*cpu
= ENV_GET_CPU(env
);
522 cpu
->exit_request
= 1;
523 cpu
->tcg_exit_req
= 1;
526 void cpu_abort(CPUArchState
*env
, const char *fmt
, ...)
533 fprintf(stderr
, "qemu: fatal: ");
534 vfprintf(stderr
, fmt
, ap
);
535 fprintf(stderr
, "\n");
536 cpu_dump_state(env
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
537 if (qemu_log_enabled()) {
538 qemu_log("qemu: fatal: ");
539 qemu_log_vprintf(fmt
, ap2
);
541 log_cpu_state(env
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
547 #if defined(CONFIG_USER_ONLY)
549 struct sigaction act
;
550 sigfillset(&act
.sa_mask
);
551 act
.sa_handler
= SIG_DFL
;
552 sigaction(SIGABRT
, &act
, NULL
);
558 CPUArchState
*cpu_copy(CPUArchState
*env
)
560 CPUArchState
*new_env
= cpu_init(env
->cpu_model_str
);
561 CPUArchState
*next_cpu
= new_env
->next_cpu
;
562 #if defined(TARGET_HAS_ICE)
567 memcpy(new_env
, env
, sizeof(CPUArchState
));
569 /* Preserve chaining. */
570 new_env
->next_cpu
= next_cpu
;
572 /* Clone all break/watchpoints.
573 Note: Once we support ptrace with hw-debug register access, make sure
574 BP_CPU break/watchpoints are handled correctly on clone. */
575 QTAILQ_INIT(&env
->breakpoints
);
576 QTAILQ_INIT(&env
->watchpoints
);
577 #if defined(TARGET_HAS_ICE)
578 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
579 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
581 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
582 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
590 #if !defined(CONFIG_USER_ONLY)
591 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t end
,
596 /* we modify the TLB cache so that the dirty bit will be set again
597 when accessing the range */
598 start1
= (uintptr_t)qemu_safe_ram_ptr(start
);
599 /* Check that we don't span multiple blocks - this breaks the
600 address comparisons below. */
601 if ((uintptr_t)qemu_safe_ram_ptr(end
- 1) - start1
602 != (end
- 1) - start
) {
605 cpu_tlb_reset_dirty_all(start1
, length
);
609 /* Note: start and end must be within the same ram block. */
610 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
615 start
&= TARGET_PAGE_MASK
;
616 end
= TARGET_PAGE_ALIGN(end
);
618 length
= end
- start
;
621 cpu_physical_memory_mask_dirty_range(start
, length
, dirty_flags
);
624 tlb_reset_dirty_range_all(start
, end
, length
);
628 static int cpu_physical_memory_set_dirty_tracking(int enable
)
631 in_migration
= enable
;
635 hwaddr
memory_region_section_get_iotlb(CPUArchState
*env
,
636 MemoryRegionSection
*section
,
638 hwaddr paddr
, hwaddr xlat
,
640 target_ulong
*address
)
645 if (memory_region_is_ram(section
->mr
)) {
647 iotlb
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
649 if (!section
->readonly
) {
650 iotlb
|= phys_section_notdirty
;
652 iotlb
|= phys_section_rom
;
655 iotlb
= section
- phys_sections
;
659 /* Make accesses to pages with watchpoints go via the
660 watchpoint trap routines. */
661 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
662 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
663 /* Avoid trapping reads of pages with a write breakpoint. */
664 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
665 iotlb
= phys_section_watch
+ paddr
;
666 *address
|= TLB_MMIO
;
674 #endif /* defined(CONFIG_USER_ONLY) */
676 #if !defined(CONFIG_USER_ONLY)
678 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
679 typedef struct subpage_t
{
682 uint16_t sub_section
[TARGET_PAGE_SIZE
];
685 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
687 static subpage_t
*subpage_init(hwaddr base
);
688 static void destroy_page_desc(uint16_t section_index
)
690 MemoryRegionSection
*section
= &phys_sections
[section_index
];
691 MemoryRegion
*mr
= section
->mr
;
694 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
695 memory_region_destroy(&subpage
->iomem
);
700 static void destroy_l2_mapping(PhysPageEntry
*lp
, unsigned level
)
705 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
709 p
= phys_map_nodes
[lp
->ptr
];
710 for (i
= 0; i
< L2_SIZE
; ++i
) {
712 destroy_l2_mapping(&p
[i
], level
- 1);
714 destroy_page_desc(p
[i
].ptr
);
718 lp
->ptr
= PHYS_MAP_NODE_NIL
;
721 static void destroy_all_mappings(AddressSpaceDispatch
*d
)
723 destroy_l2_mapping(&d
->phys_map
, P_L2_LEVELS
- 1);
724 phys_map_nodes_reset();
727 static uint16_t phys_section_add(MemoryRegionSection
*section
)
729 /* The physical section number is ORed with a page-aligned
730 * pointer to produce the iotlb entries. Thus it should
731 * never overflow into the page-aligned value.
733 assert(phys_sections_nb
< TARGET_PAGE_SIZE
);
735 if (phys_sections_nb
== phys_sections_nb_alloc
) {
736 phys_sections_nb_alloc
= MAX(phys_sections_nb_alloc
* 2, 16);
737 phys_sections
= g_renew(MemoryRegionSection
, phys_sections
,
738 phys_sections_nb_alloc
);
740 phys_sections
[phys_sections_nb
] = *section
;
741 return phys_sections_nb
++;
744 static void phys_sections_clear(void)
746 phys_sections_nb
= 0;
749 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
752 hwaddr base
= section
->offset_within_address_space
754 MemoryRegionSection
*existing
= phys_page_find(d
, base
>> TARGET_PAGE_BITS
);
755 MemoryRegionSection subsection
= {
756 .offset_within_address_space
= base
,
757 .size
= TARGET_PAGE_SIZE
,
761 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
763 if (!(existing
->mr
->subpage
)) {
764 subpage
= subpage_init(base
);
765 subsection
.mr
= &subpage
->iomem
;
766 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
767 phys_section_add(&subsection
));
769 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
771 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
772 end
= start
+ section
->size
- 1;
773 subpage_register(subpage
, start
, end
, phys_section_add(section
));
777 static void register_multipage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
779 hwaddr start_addr
= section
->offset_within_address_space
;
780 ram_addr_t size
= section
->size
;
782 uint16_t section_index
= phys_section_add(section
);
787 phys_page_set(d
, addr
>> TARGET_PAGE_BITS
, size
>> TARGET_PAGE_BITS
,
791 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS
> MAX_PHYS_ADDR_SPACE_BITS
)
793 static MemoryRegionSection
limit(MemoryRegionSection section
)
795 section
.size
= MIN(section
.offset_within_address_space
+ section
.size
,
797 - section
.offset_within_address_space
;
802 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
804 AddressSpaceDispatch
*d
= container_of(listener
, AddressSpaceDispatch
, listener
);
805 MemoryRegionSection now
= limit(*section
), remain
= limit(*section
);
807 if ((now
.offset_within_address_space
& ~TARGET_PAGE_MASK
)
808 || (now
.size
< TARGET_PAGE_SIZE
)) {
809 now
.size
= MIN(TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
810 - now
.offset_within_address_space
,
812 register_subpage(d
, &now
);
813 remain
.size
-= now
.size
;
814 remain
.offset_within_address_space
+= now
.size
;
815 remain
.offset_within_region
+= now
.size
;
817 while (remain
.size
>= TARGET_PAGE_SIZE
) {
819 if (remain
.offset_within_region
& ~TARGET_PAGE_MASK
) {
820 now
.size
= TARGET_PAGE_SIZE
;
821 register_subpage(d
, &now
);
823 now
.size
&= TARGET_PAGE_MASK
;
824 register_multipage(d
, &now
);
826 remain
.size
-= now
.size
;
827 remain
.offset_within_address_space
+= now
.size
;
828 remain
.offset_within_region
+= now
.size
;
832 register_subpage(d
, &now
);
836 void qemu_flush_coalesced_mmio_buffer(void)
839 kvm_flush_coalesced_mmio_buffer();
842 void qemu_mutex_lock_ramlist(void)
844 qemu_mutex_lock(&ram_list
.mutex
);
847 void qemu_mutex_unlock_ramlist(void)
849 qemu_mutex_unlock(&ram_list
.mutex
);
852 #if defined(__linux__) && !defined(TARGET_S390X)
856 #define HUGETLBFS_MAGIC 0x958458f6
858 static long gethugepagesize(const char *path
)
864 ret
= statfs(path
, &fs
);
865 } while (ret
!= 0 && errno
== EINTR
);
872 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
873 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
878 static void *file_ram_alloc(RAMBlock
*block
,
883 char *sanitized_name
;
890 unsigned long hpagesize
;
892 hpagesize
= gethugepagesize(path
);
897 if (memory
< hpagesize
) {
901 if (kvm_enabled() && !kvm_has_sync_mmu()) {
902 fprintf(stderr
, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
906 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
907 sanitized_name
= g_strdup(block
->mr
->name
);
908 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
913 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
915 g_free(sanitized_name
);
917 fd
= mkstemp(filename
);
919 perror("unable to create backing store for hugepages");
926 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
929 * ftruncate is not supported by hugetlbfs in older
930 * hosts, so don't bother bailing out on errors.
931 * If anything goes wrong with it under other filesystems,
934 if (ftruncate(fd
, memory
))
938 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
939 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
940 * to sidestep this quirk.
942 flags
= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
: MAP_PRIVATE
;
943 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, flags
, fd
, 0);
945 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
, fd
, 0);
947 if (area
== MAP_FAILED
) {
948 perror("file_ram_alloc: can't mmap RAM pages");
957 static ram_addr_t
find_ram_offset(ram_addr_t size
)
959 RAMBlock
*block
, *next_block
;
960 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
962 assert(size
!= 0); /* it would hand out same offset multiple times */
964 if (QTAILQ_EMPTY(&ram_list
.blocks
))
967 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
968 ram_addr_t end
, next
= RAM_ADDR_MAX
;
970 end
= block
->offset
+ block
->length
;
972 QTAILQ_FOREACH(next_block
, &ram_list
.blocks
, next
) {
973 if (next_block
->offset
>= end
) {
974 next
= MIN(next
, next_block
->offset
);
977 if (next
- end
>= size
&& next
- end
< mingap
) {
983 if (offset
== RAM_ADDR_MAX
) {
984 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
992 ram_addr_t
last_ram_offset(void)
997 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
)
998 last
= MAX(last
, block
->offset
+ block
->length
);
1003 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1006 QemuOpts
*machine_opts
;
1008 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1009 machine_opts
= qemu_opts_find(qemu_find_opts("machine"), 0);
1011 !qemu_opt_get_bool(machine_opts
, "dump-guest-core", true)) {
1012 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1014 perror("qemu_madvise");
1015 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1016 "but dump_guest_core=off specified\n");
1021 void qemu_ram_set_idstr(ram_addr_t addr
, const char *name
, DeviceState
*dev
)
1023 RAMBlock
*new_block
, *block
;
1026 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1027 if (block
->offset
== addr
) {
1033 assert(!new_block
->idstr
[0]);
1036 char *id
= qdev_get_dev_path(dev
);
1038 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1042 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1044 /* This assumes the iothread lock is taken here too. */
1045 qemu_mutex_lock_ramlist();
1046 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1047 if (block
!= new_block
&& !strcmp(block
->idstr
, new_block
->idstr
)) {
1048 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1053 qemu_mutex_unlock_ramlist();
1056 static int memory_try_enable_merging(void *addr
, size_t len
)
1060 opts
= qemu_opts_find(qemu_find_opts("machine"), 0);
1061 if (opts
&& !qemu_opt_get_bool(opts
, "mem-merge", true)) {
1062 /* disabled by the user */
1066 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1069 ram_addr_t
qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1072 RAMBlock
*block
, *new_block
;
1074 size
= TARGET_PAGE_ALIGN(size
);
1075 new_block
= g_malloc0(sizeof(*new_block
));
1077 /* This assumes the iothread lock is taken here too. */
1078 qemu_mutex_lock_ramlist();
1080 new_block
->offset
= find_ram_offset(size
);
1082 new_block
->host
= host
;
1083 new_block
->flags
|= RAM_PREALLOC_MASK
;
1086 #if defined (__linux__) && !defined(TARGET_S390X)
1087 new_block
->host
= file_ram_alloc(new_block
, size
, mem_path
);
1088 if (!new_block
->host
) {
1089 new_block
->host
= qemu_anon_ram_alloc(size
);
1090 memory_try_enable_merging(new_block
->host
, size
);
1093 fprintf(stderr
, "-mem-path option unsupported\n");
1097 if (xen_enabled()) {
1098 xen_ram_alloc(new_block
->offset
, size
, mr
);
1099 } else if (kvm_enabled()) {
1100 /* some s390/kvm configurations have special constraints */
1101 new_block
->host
= kvm_ram_alloc(size
);
1103 new_block
->host
= qemu_anon_ram_alloc(size
);
1105 memory_try_enable_merging(new_block
->host
, size
);
1108 new_block
->length
= size
;
1110 /* Keep the list sorted from biggest to smallest block. */
1111 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1112 if (block
->length
< new_block
->length
) {
1117 QTAILQ_INSERT_BEFORE(block
, new_block
, next
);
1119 QTAILQ_INSERT_TAIL(&ram_list
.blocks
, new_block
, next
);
1121 ram_list
.mru_block
= NULL
;
1124 qemu_mutex_unlock_ramlist();
1126 ram_list
.phys_dirty
= g_realloc(ram_list
.phys_dirty
,
1127 last_ram_offset() >> TARGET_PAGE_BITS
);
1128 memset(ram_list
.phys_dirty
+ (new_block
->offset
>> TARGET_PAGE_BITS
),
1129 0, size
>> TARGET_PAGE_BITS
);
1130 cpu_physical_memory_set_dirty_range(new_block
->offset
, size
, 0xff);
1132 qemu_ram_setup_dump(new_block
->host
, size
);
1133 qemu_madvise(new_block
->host
, size
, QEMU_MADV_HUGEPAGE
);
1136 kvm_setup_guest_memory(new_block
->host
, size
);
1138 return new_block
->offset
;
1141 ram_addr_t
qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
)
1143 return qemu_ram_alloc_from_ptr(size
, NULL
, mr
);
1146 void qemu_ram_free_from_ptr(ram_addr_t addr
)
1150 /* This assumes the iothread lock is taken here too. */
1151 qemu_mutex_lock_ramlist();
1152 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1153 if (addr
== block
->offset
) {
1154 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1155 ram_list
.mru_block
= NULL
;
1161 qemu_mutex_unlock_ramlist();
1164 void qemu_ram_free(ram_addr_t addr
)
1168 /* This assumes the iothread lock is taken here too. */
1169 qemu_mutex_lock_ramlist();
1170 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1171 if (addr
== block
->offset
) {
1172 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1173 ram_list
.mru_block
= NULL
;
1175 if (block
->flags
& RAM_PREALLOC_MASK
) {
1177 } else if (mem_path
) {
1178 #if defined (__linux__) && !defined(TARGET_S390X)
1180 munmap(block
->host
, block
->length
);
1183 qemu_anon_ram_free(block
->host
, block
->length
);
1189 if (xen_enabled()) {
1190 xen_invalidate_map_cache_entry(block
->host
);
1192 qemu_anon_ram_free(block
->host
, block
->length
);
1199 qemu_mutex_unlock_ramlist();
1204 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1211 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1212 offset
= addr
- block
->offset
;
1213 if (offset
< block
->length
) {
1214 vaddr
= block
->host
+ offset
;
1215 if (block
->flags
& RAM_PREALLOC_MASK
) {
1219 munmap(vaddr
, length
);
1221 #if defined(__linux__) && !defined(TARGET_S390X)
1224 flags
|= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
:
1227 flags
|= MAP_PRIVATE
;
1229 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1230 flags
, block
->fd
, offset
);
1232 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1233 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1240 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1241 flags
|= MAP_SHARED
| MAP_ANONYMOUS
;
1242 area
= mmap(vaddr
, length
, PROT_EXEC
|PROT_READ
|PROT_WRITE
,
1245 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1246 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1250 if (area
!= vaddr
) {
1251 fprintf(stderr
, "Could not remap addr: "
1252 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1256 memory_try_enable_merging(vaddr
, length
);
1257 qemu_ram_setup_dump(vaddr
, length
);
1263 #endif /* !_WIN32 */
1265 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1266 With the exception of the softmmu code in this file, this should
1267 only be used for local memory (e.g. video ram) that the device owns,
1268 and knows it isn't going to access beyond the end of the block.
1270 It should not be used for general purpose DMA.
1271 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1273 void *qemu_get_ram_ptr(ram_addr_t addr
)
1277 /* The list is protected by the iothread lock here. */
1278 block
= ram_list
.mru_block
;
1279 if (block
&& addr
- block
->offset
< block
->length
) {
1282 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1283 if (addr
- block
->offset
< block
->length
) {
1288 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1292 ram_list
.mru_block
= block
;
1293 if (xen_enabled()) {
1294 /* We need to check if the requested address is in the RAM
1295 * because we don't want to map the entire memory in QEMU.
1296 * In that case just map until the end of the page.
1298 if (block
->offset
== 0) {
1299 return xen_map_cache(addr
, 0, 0);
1300 } else if (block
->host
== NULL
) {
1302 xen_map_cache(block
->offset
, block
->length
, 1);
1305 return block
->host
+ (addr
- block
->offset
);
1308 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1309 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1311 * ??? Is this still necessary?
1313 static void *qemu_safe_ram_ptr(ram_addr_t addr
)
1317 /* The list is protected by the iothread lock here. */
1318 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1319 if (addr
- block
->offset
< block
->length
) {
1320 if (xen_enabled()) {
1321 /* We need to check if the requested address is in the RAM
1322 * because we don't want to map the entire memory in QEMU.
1323 * In that case just map until the end of the page.
1325 if (block
->offset
== 0) {
1326 return xen_map_cache(addr
, 0, 0);
1327 } else if (block
->host
== NULL
) {
1329 xen_map_cache(block
->offset
, block
->length
, 1);
1332 return block
->host
+ (addr
- block
->offset
);
1336 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1342 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1343 * but takes a size argument */
1344 static void *qemu_ram_ptr_length(ram_addr_t addr
, ram_addr_t
*size
)
1349 if (xen_enabled()) {
1350 return xen_map_cache(addr
, *size
, 1);
1354 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1355 if (addr
- block
->offset
< block
->length
) {
1356 if (addr
- block
->offset
+ *size
> block
->length
)
1357 *size
= block
->length
- addr
+ block
->offset
;
1358 return block
->host
+ (addr
- block
->offset
);
1362 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1367 int qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
1370 uint8_t *host
= ptr
;
1372 if (xen_enabled()) {
1373 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1377 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1378 /* This case append when the block is not mapped. */
1379 if (block
->host
== NULL
) {
1382 if (host
- block
->host
< block
->length
) {
1383 *ram_addr
= block
->offset
+ (host
- block
->host
);
1391 /* Some of the softmmu routines need to translate from a host pointer
1392 (typically a TLB entry) back to a ram offset. */
1393 ram_addr_t
qemu_ram_addr_from_host_nofail(void *ptr
)
1395 ram_addr_t ram_addr
;
1397 if (qemu_ram_addr_from_host(ptr
, &ram_addr
)) {
1398 fprintf(stderr
, "Bad ram pointer %p\n", ptr
);
1404 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
1405 uint64_t val
, unsigned size
)
1408 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
1409 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
1410 tb_invalidate_phys_page_fast(ram_addr
, size
);
1411 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
1415 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
1418 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
1421 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
1426 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
1427 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
1428 /* we remove the notdirty callback only if the code has been
1430 if (dirty_flags
== 0xff)
1431 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
1434 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
1435 unsigned size
, bool is_write
)
1440 static const MemoryRegionOps notdirty_mem_ops
= {
1441 .write
= notdirty_mem_write
,
1442 .valid
.accepts
= notdirty_mem_accepts
,
1443 .endianness
= DEVICE_NATIVE_ENDIAN
,
1446 /* Generate a debug exception if a watchpoint has been hit. */
1447 static void check_watchpoint(int offset
, int len_mask
, int flags
)
1449 CPUArchState
*env
= cpu_single_env
;
1450 target_ulong pc
, cs_base
;
1455 if (env
->watchpoint_hit
) {
1456 /* We re-entered the check after replacing the TB. Now raise
1457 * the debug interrupt so that is will trigger after the
1458 * current instruction. */
1459 cpu_interrupt(ENV_GET_CPU(env
), CPU_INTERRUPT_DEBUG
);
1462 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
1463 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1464 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
1465 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
1466 wp
->flags
|= BP_WATCHPOINT_HIT
;
1467 if (!env
->watchpoint_hit
) {
1468 env
->watchpoint_hit
= wp
;
1469 tb_check_watchpoint(env
);
1470 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
1471 env
->exception_index
= EXCP_DEBUG
;
1474 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
1475 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
1476 cpu_resume_from_signal(env
, NULL
);
1480 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
1485 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1486 so these check for a hit then pass through to the normal out-of-line
1488 static uint64_t watch_mem_read(void *opaque
, hwaddr addr
,
1491 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_READ
);
1493 case 1: return ldub_phys(addr
);
1494 case 2: return lduw_phys(addr
);
1495 case 4: return ldl_phys(addr
);
1500 static void watch_mem_write(void *opaque
, hwaddr addr
,
1501 uint64_t val
, unsigned size
)
1503 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_WRITE
);
1506 stb_phys(addr
, val
);
1509 stw_phys(addr
, val
);
1512 stl_phys(addr
, val
);
1518 static const MemoryRegionOps watch_mem_ops
= {
1519 .read
= watch_mem_read
,
1520 .write
= watch_mem_write
,
1521 .endianness
= DEVICE_NATIVE_ENDIAN
,
1524 static uint64_t subpage_read(void *opaque
, hwaddr addr
,
1527 subpage_t
*mmio
= opaque
;
1528 unsigned int idx
= SUBPAGE_IDX(addr
);
1531 MemoryRegionSection
*section
;
1532 #if defined(DEBUG_SUBPAGE)
1533 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
1534 mmio
, len
, addr
, idx
);
1537 section
= &phys_sections
[mmio
->sub_section
[idx
]];
1539 addr
-= section
->offset_within_address_space
;
1540 addr
+= section
->offset_within_region
;
1541 io_mem_read(section
->mr
, addr
, &val
, len
);
1545 static void subpage_write(void *opaque
, hwaddr addr
,
1546 uint64_t value
, unsigned len
)
1548 subpage_t
*mmio
= opaque
;
1549 unsigned int idx
= SUBPAGE_IDX(addr
);
1550 MemoryRegionSection
*section
;
1551 #if defined(DEBUG_SUBPAGE)
1552 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1553 " idx %d value %"PRIx64
"\n",
1554 __func__
, mmio
, len
, addr
, idx
, value
);
1557 section
= &phys_sections
[mmio
->sub_section
[idx
]];
1559 addr
-= section
->offset_within_address_space
;
1560 addr
+= section
->offset_within_region
;
1561 io_mem_write(section
->mr
, addr
, value
, len
);
1564 static bool subpage_accepts(void *opaque
, hwaddr addr
,
1565 unsigned size
, bool is_write
)
1567 subpage_t
*mmio
= opaque
;
1568 unsigned int idx
= SUBPAGE_IDX(addr
);
1569 MemoryRegionSection
*section
;
1570 #if defined(DEBUG_SUBPAGE)
1571 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx
1572 " idx %d\n", __func__
, mmio
,
1573 is_write
? 'w' : 'r', len
, addr
, idx
);
1576 section
= &phys_sections
[mmio
->sub_section
[idx
]];
1578 addr
-= section
->offset_within_address_space
;
1579 addr
+= section
->offset_within_region
;
1580 return memory_region_access_valid(section
->mr
, addr
, size
, is_write
);
1583 static const MemoryRegionOps subpage_ops
= {
1584 .read
= subpage_read
,
1585 .write
= subpage_write
,
1586 .valid
.accepts
= subpage_accepts
,
1587 .endianness
= DEVICE_NATIVE_ENDIAN
,
1590 static uint64_t subpage_ram_read(void *opaque
, hwaddr addr
,
1593 ram_addr_t raddr
= addr
;
1594 void *ptr
= qemu_get_ram_ptr(raddr
);
1596 case 1: return ldub_p(ptr
);
1597 case 2: return lduw_p(ptr
);
1598 case 4: return ldl_p(ptr
);
1603 static void subpage_ram_write(void *opaque
, hwaddr addr
,
1604 uint64_t value
, unsigned size
)
1606 ram_addr_t raddr
= addr
;
1607 void *ptr
= qemu_get_ram_ptr(raddr
);
1609 case 1: return stb_p(ptr
, value
);
1610 case 2: return stw_p(ptr
, value
);
1611 case 4: return stl_p(ptr
, value
);
1616 static const MemoryRegionOps subpage_ram_ops
= {
1617 .read
= subpage_ram_read
,
1618 .write
= subpage_ram_write
,
1619 .endianness
= DEVICE_NATIVE_ENDIAN
,
1622 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1627 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
1629 idx
= SUBPAGE_IDX(start
);
1630 eidx
= SUBPAGE_IDX(end
);
1631 #if defined(DEBUG_SUBPAGE)
1632 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__
,
1633 mmio
, start
, end
, idx
, eidx
, memory
);
1635 if (memory_region_is_ram(phys_sections
[section
].mr
)) {
1636 MemoryRegionSection new_section
= phys_sections
[section
];
1637 new_section
.mr
= &io_mem_subpage_ram
;
1638 section
= phys_section_add(&new_section
);
1640 for (; idx
<= eidx
; idx
++) {
1641 mmio
->sub_section
[idx
] = section
;
1647 static subpage_t
*subpage_init(hwaddr base
)
1651 mmio
= g_malloc0(sizeof(subpage_t
));
1654 memory_region_init_io(&mmio
->iomem
, &subpage_ops
, mmio
,
1655 "subpage", TARGET_PAGE_SIZE
);
1656 mmio
->iomem
.subpage
= true;
1657 #if defined(DEBUG_SUBPAGE)
1658 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
1659 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
1661 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, phys_section_unassigned
);
1666 static uint16_t dummy_section(MemoryRegion
*mr
)
1668 MemoryRegionSection section
= {
1670 .offset_within_address_space
= 0,
1671 .offset_within_region
= 0,
1675 return phys_section_add(§ion
);
1678 MemoryRegion
*iotlb_to_region(hwaddr index
)
1680 return phys_sections
[index
& ~TARGET_PAGE_MASK
].mr
;
1683 static void io_mem_init(void)
1685 memory_region_init_io(&io_mem_rom
, &unassigned_mem_ops
, NULL
, "rom", UINT64_MAX
);
1686 memory_region_init_io(&io_mem_unassigned
, &unassigned_mem_ops
, NULL
,
1687 "unassigned", UINT64_MAX
);
1688 memory_region_init_io(&io_mem_notdirty
, ¬dirty_mem_ops
, NULL
,
1689 "notdirty", UINT64_MAX
);
1690 memory_region_init_io(&io_mem_subpage_ram
, &subpage_ram_ops
, NULL
,
1691 "subpage-ram", UINT64_MAX
);
1692 memory_region_init_io(&io_mem_watch
, &watch_mem_ops
, NULL
,
1693 "watch", UINT64_MAX
);
1696 static void mem_begin(MemoryListener
*listener
)
1698 AddressSpaceDispatch
*d
= container_of(listener
, AddressSpaceDispatch
, listener
);
1700 destroy_all_mappings(d
);
1701 d
->phys_map
.ptr
= PHYS_MAP_NODE_NIL
;
1704 static void core_begin(MemoryListener
*listener
)
1706 phys_sections_clear();
1707 phys_section_unassigned
= dummy_section(&io_mem_unassigned
);
1708 phys_section_notdirty
= dummy_section(&io_mem_notdirty
);
1709 phys_section_rom
= dummy_section(&io_mem_rom
);
1710 phys_section_watch
= dummy_section(&io_mem_watch
);
1713 static void tcg_commit(MemoryListener
*listener
)
1717 /* since each CPU stores ram addresses in its TLB cache, we must
1718 reset the modified entries */
1720 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1725 static void core_log_global_start(MemoryListener
*listener
)
1727 cpu_physical_memory_set_dirty_tracking(1);
1730 static void core_log_global_stop(MemoryListener
*listener
)
1732 cpu_physical_memory_set_dirty_tracking(0);
1735 static void io_region_add(MemoryListener
*listener
,
1736 MemoryRegionSection
*section
)
1738 MemoryRegionIORange
*mrio
= g_new(MemoryRegionIORange
, 1);
1740 mrio
->mr
= section
->mr
;
1741 mrio
->offset
= section
->offset_within_region
;
1742 iorange_init(&mrio
->iorange
, &memory_region_iorange_ops
,
1743 section
->offset_within_address_space
, section
->size
);
1744 ioport_register(&mrio
->iorange
);
1747 static void io_region_del(MemoryListener
*listener
,
1748 MemoryRegionSection
*section
)
1750 isa_unassign_ioport(section
->offset_within_address_space
, section
->size
);
1753 static MemoryListener core_memory_listener
= {
1754 .begin
= core_begin
,
1755 .log_global_start
= core_log_global_start
,
1756 .log_global_stop
= core_log_global_stop
,
1760 static MemoryListener io_memory_listener
= {
1761 .region_add
= io_region_add
,
1762 .region_del
= io_region_del
,
1766 static MemoryListener tcg_memory_listener
= {
1767 .commit
= tcg_commit
,
1770 void address_space_init_dispatch(AddressSpace
*as
)
1772 AddressSpaceDispatch
*d
= g_new(AddressSpaceDispatch
, 1);
1774 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .is_leaf
= 0 };
1775 d
->listener
= (MemoryListener
) {
1777 .region_add
= mem_add
,
1778 .region_nop
= mem_add
,
1782 memory_listener_register(&d
->listener
, as
);
1785 void address_space_destroy_dispatch(AddressSpace
*as
)
1787 AddressSpaceDispatch
*d
= as
->dispatch
;
1789 memory_listener_unregister(&d
->listener
);
1790 destroy_l2_mapping(&d
->phys_map
, P_L2_LEVELS
- 1);
1792 as
->dispatch
= NULL
;
1795 static void memory_map_init(void)
1797 system_memory
= g_malloc(sizeof(*system_memory
));
1798 memory_region_init(system_memory
, "system", INT64_MAX
);
1799 address_space_init(&address_space_memory
, system_memory
);
1800 address_space_memory
.name
= "memory";
1802 system_io
= g_malloc(sizeof(*system_io
));
1803 memory_region_init(system_io
, "io", 65536);
1804 address_space_init(&address_space_io
, system_io
);
1805 address_space_io
.name
= "I/O";
1807 memory_listener_register(&core_memory_listener
, &address_space_memory
);
1808 memory_listener_register(&io_memory_listener
, &address_space_io
);
1809 memory_listener_register(&tcg_memory_listener
, &address_space_memory
);
1811 dma_context_init(&dma_context_memory
, &address_space_memory
,
1815 MemoryRegion
*get_system_memory(void)
1817 return system_memory
;
1820 MemoryRegion
*get_system_io(void)
1825 #endif /* !defined(CONFIG_USER_ONLY) */
1827 /* physical memory access (slow version, mainly for debug) */
1828 #if defined(CONFIG_USER_ONLY)
1829 int cpu_memory_rw_debug(CPUArchState
*env
, target_ulong addr
,
1830 uint8_t *buf
, int len
, int is_write
)
1837 page
= addr
& TARGET_PAGE_MASK
;
1838 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
1841 flags
= page_get_flags(page
);
1842 if (!(flags
& PAGE_VALID
))
1845 if (!(flags
& PAGE_WRITE
))
1847 /* XXX: this code should not depend on lock_user */
1848 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
1851 unlock_user(p
, addr
, l
);
1853 if (!(flags
& PAGE_READ
))
1855 /* XXX: this code should not depend on lock_user */
1856 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
1859 unlock_user(p
, addr
, 0);
1870 static void invalidate_and_set_dirty(hwaddr addr
,
1873 if (!cpu_physical_memory_is_dirty(addr
)) {
1874 /* invalidate code */
1875 tb_invalidate_phys_page_range(addr
, addr
+ length
, 0);
1877 cpu_physical_memory_set_dirty_flags(addr
, (0xff & ~CODE_DIRTY_FLAG
));
1879 xen_modified_memory(addr
, length
);
1882 static inline bool memory_access_is_direct(MemoryRegion
*mr
, bool is_write
)
1884 if (memory_region_is_ram(mr
)) {
1885 return !(is_write
&& mr
->readonly
);
1887 if (memory_region_is_romd(mr
)) {
1894 static inline int memory_access_size(int l
, hwaddr addr
)
1896 if (l
>= 4 && ((addr
& 3) == 0)) {
1899 if (l
>= 2 && ((addr
& 1) == 0)) {
1905 bool address_space_rw(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
,
1906 int len
, bool is_write
)
1912 MemoryRegionSection
*section
;
1917 section
= address_space_translate(as
, addr
, &addr1
, &l
, is_write
);
1920 if (!memory_access_is_direct(section
->mr
, is_write
)) {
1921 l
= memory_access_size(l
, addr1
);
1922 /* XXX: could force cpu_single_env to NULL to avoid
1925 /* 32 bit write access */
1927 error
|= io_mem_write(section
->mr
, addr1
, val
, 4);
1928 } else if (l
== 2) {
1929 /* 16 bit write access */
1931 error
|= io_mem_write(section
->mr
, addr1
, val
, 2);
1933 /* 8 bit write access */
1935 error
|= io_mem_write(section
->mr
, addr1
, val
, 1);
1938 addr1
+= memory_region_get_ram_addr(section
->mr
);
1940 ptr
= qemu_get_ram_ptr(addr1
);
1941 memcpy(ptr
, buf
, l
);
1942 invalidate_and_set_dirty(addr1
, l
);
1945 if (!memory_access_is_direct(section
->mr
, is_write
)) {
1947 l
= memory_access_size(l
, addr1
);
1949 /* 32 bit read access */
1950 error
|= io_mem_read(section
->mr
, addr1
, &val
, 4);
1952 } else if (l
== 2) {
1953 /* 16 bit read access */
1954 error
|= io_mem_read(section
->mr
, addr1
, &val
, 2);
1957 /* 8 bit read access */
1958 error
|= io_mem_read(section
->mr
, addr1
, &val
, 1);
1963 ptr
= qemu_get_ram_ptr(section
->mr
->ram_addr
+ addr1
);
1964 memcpy(buf
, ptr
, l
);
1975 bool address_space_write(AddressSpace
*as
, hwaddr addr
,
1976 const uint8_t *buf
, int len
)
1978 return address_space_rw(as
, addr
, (uint8_t *)buf
, len
, true);
1981 bool address_space_read(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
, int len
)
1983 return address_space_rw(as
, addr
, buf
, len
, false);
1987 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
1988 int len
, int is_write
)
1990 address_space_rw(&address_space_memory
, addr
, buf
, len
, is_write
);
1993 /* used for ROM loading : can write in RAM and ROM */
1994 void cpu_physical_memory_write_rom(hwaddr addr
,
1995 const uint8_t *buf
, int len
)
2000 MemoryRegionSection
*section
;
2004 section
= address_space_translate(&address_space_memory
,
2005 addr
, &addr1
, &l
, true);
2007 if (!(memory_region_is_ram(section
->mr
) ||
2008 memory_region_is_romd(section
->mr
))) {
2011 addr1
+= memory_region_get_ram_addr(section
->mr
);
2013 ptr
= qemu_get_ram_ptr(addr1
);
2014 memcpy(ptr
, buf
, l
);
2015 invalidate_and_set_dirty(addr1
, l
);
2029 static BounceBuffer bounce
;
2031 typedef struct MapClient
{
2033 void (*callback
)(void *opaque
);
2034 QLIST_ENTRY(MapClient
) link
;
2037 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2038 = QLIST_HEAD_INITIALIZER(map_client_list
);
2040 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
2042 MapClient
*client
= g_malloc(sizeof(*client
));
2044 client
->opaque
= opaque
;
2045 client
->callback
= callback
;
2046 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2050 static void cpu_unregister_map_client(void *_client
)
2052 MapClient
*client
= (MapClient
*)_client
;
2054 QLIST_REMOVE(client
, link
);
2058 static void cpu_notify_map_clients(void)
2062 while (!QLIST_EMPTY(&map_client_list
)) {
2063 client
= QLIST_FIRST(&map_client_list
);
2064 client
->callback(client
->opaque
);
2065 cpu_unregister_map_client(client
);
2069 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2071 MemoryRegionSection
*section
;
2076 section
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2077 if (!memory_access_is_direct(section
->mr
, is_write
)) {
2078 l
= memory_access_size(l
, addr
);
2079 if (!memory_region_access_valid(section
->mr
, xlat
, l
, is_write
)) {
2090 /* Map a physical memory region into a host virtual address.
2091 * May map a subset of the requested range, given by and returned in *plen.
2092 * May return NULL if resources needed to perform the mapping are exhausted.
2093 * Use only for reads OR writes - not for read-modify-write operations.
2094 * Use cpu_register_map_client() to know when retrying the map operation is
2095 * likely to succeed.
2097 void *address_space_map(AddressSpace
*as
,
2105 MemoryRegionSection
*section
;
2106 ram_addr_t raddr
= RAM_ADDR_MAX
;
2112 section
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2114 if (!memory_access_is_direct(section
->mr
, is_write
)) {
2115 if (todo
|| bounce
.buffer
) {
2118 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
2122 address_space_read(as
, addr
, bounce
.buffer
, l
);
2126 return bounce
.buffer
;
2129 raddr
= memory_region_get_ram_addr(section
->mr
) + xlat
;
2131 if (memory_region_get_ram_addr(section
->mr
) + xlat
!= raddr
+ todo
) {
2141 ret
= qemu_ram_ptr_length(raddr
, &rlen
);
2146 /* Unmaps a memory region previously mapped by address_space_map().
2147 * Will also mark the memory as dirty if is_write == 1. access_len gives
2148 * the amount of memory that was actually read or written by the caller.
2150 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
2151 int is_write
, hwaddr access_len
)
2153 if (buffer
!= bounce
.buffer
) {
2155 ram_addr_t addr1
= qemu_ram_addr_from_host_nofail(buffer
);
2156 while (access_len
) {
2158 l
= TARGET_PAGE_SIZE
;
2161 invalidate_and_set_dirty(addr1
, l
);
2166 if (xen_enabled()) {
2167 xen_invalidate_map_cache_entry(buffer
);
2172 address_space_write(as
, bounce
.addr
, bounce
.buffer
, access_len
);
2174 qemu_vfree(bounce
.buffer
);
2175 bounce
.buffer
= NULL
;
2176 cpu_notify_map_clients();
2179 void *cpu_physical_memory_map(hwaddr addr
,
2183 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
2186 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
2187 int is_write
, hwaddr access_len
)
2189 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
2192 /* warning: addr must be aligned */
2193 static inline uint32_t ldl_phys_internal(hwaddr addr
,
2194 enum device_endian endian
)
2198 MemoryRegionSection
*section
;
2202 section
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2204 if (l
< 4 || !memory_access_is_direct(section
->mr
, false)) {
2206 io_mem_read(section
->mr
, addr1
, &val
, 4);
2207 #if defined(TARGET_WORDS_BIGENDIAN)
2208 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2212 if (endian
== DEVICE_BIG_ENDIAN
) {
2218 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
2222 case DEVICE_LITTLE_ENDIAN
:
2223 val
= ldl_le_p(ptr
);
2225 case DEVICE_BIG_ENDIAN
:
2226 val
= ldl_be_p(ptr
);
2236 uint32_t ldl_phys(hwaddr addr
)
2238 return ldl_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2241 uint32_t ldl_le_phys(hwaddr addr
)
2243 return ldl_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2246 uint32_t ldl_be_phys(hwaddr addr
)
2248 return ldl_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2251 /* warning: addr must be aligned */
2252 static inline uint64_t ldq_phys_internal(hwaddr addr
,
2253 enum device_endian endian
)
2257 MemoryRegionSection
*section
;
2261 section
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2263 if (l
< 8 || !memory_access_is_direct(section
->mr
, false)) {
2265 io_mem_read(section
->mr
, addr1
, &val
, 8);
2266 #if defined(TARGET_WORDS_BIGENDIAN)
2267 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2271 if (endian
== DEVICE_BIG_ENDIAN
) {
2277 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
2281 case DEVICE_LITTLE_ENDIAN
:
2282 val
= ldq_le_p(ptr
);
2284 case DEVICE_BIG_ENDIAN
:
2285 val
= ldq_be_p(ptr
);
2295 uint64_t ldq_phys(hwaddr addr
)
2297 return ldq_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2300 uint64_t ldq_le_phys(hwaddr addr
)
2302 return ldq_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2305 uint64_t ldq_be_phys(hwaddr addr
)
2307 return ldq_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2311 uint32_t ldub_phys(hwaddr addr
)
2314 cpu_physical_memory_read(addr
, &val
, 1);
2318 /* warning: addr must be aligned */
2319 static inline uint32_t lduw_phys_internal(hwaddr addr
,
2320 enum device_endian endian
)
2324 MemoryRegionSection
*section
;
2328 section
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2330 if (l
< 2 || !memory_access_is_direct(section
->mr
, false)) {
2332 io_mem_read(section
->mr
, addr1
, &val
, 2);
2333 #if defined(TARGET_WORDS_BIGENDIAN)
2334 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2338 if (endian
== DEVICE_BIG_ENDIAN
) {
2344 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
2348 case DEVICE_LITTLE_ENDIAN
:
2349 val
= lduw_le_p(ptr
);
2351 case DEVICE_BIG_ENDIAN
:
2352 val
= lduw_be_p(ptr
);
2362 uint32_t lduw_phys(hwaddr addr
)
2364 return lduw_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2367 uint32_t lduw_le_phys(hwaddr addr
)
2369 return lduw_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2372 uint32_t lduw_be_phys(hwaddr addr
)
2374 return lduw_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2377 /* warning: addr must be aligned. The ram page is not masked as dirty
2378 and the code inside is not invalidated. It is useful if the dirty
2379 bits are used to track modified PTEs */
2380 void stl_phys_notdirty(hwaddr addr
, uint32_t val
)
2383 MemoryRegionSection
*section
;
2387 section
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2389 if (l
< 4 || !memory_access_is_direct(section
->mr
, true)) {
2390 io_mem_write(section
->mr
, addr1
, val
, 4);
2392 addr1
+= memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
;
2393 ptr
= qemu_get_ram_ptr(addr1
);
2396 if (unlikely(in_migration
)) {
2397 if (!cpu_physical_memory_is_dirty(addr1
)) {
2398 /* invalidate code */
2399 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
2401 cpu_physical_memory_set_dirty_flags(
2402 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
2408 /* warning: addr must be aligned */
2409 static inline void stl_phys_internal(hwaddr addr
, uint32_t val
,
2410 enum device_endian endian
)
2413 MemoryRegionSection
*section
;
2417 section
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2419 if (l
< 4 || !memory_access_is_direct(section
->mr
, true)) {
2420 #if defined(TARGET_WORDS_BIGENDIAN)
2421 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2425 if (endian
== DEVICE_BIG_ENDIAN
) {
2429 io_mem_write(section
->mr
, addr1
, val
, 4);
2432 addr1
+= memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
;
2433 ptr
= qemu_get_ram_ptr(addr1
);
2435 case DEVICE_LITTLE_ENDIAN
:
2438 case DEVICE_BIG_ENDIAN
:
2445 invalidate_and_set_dirty(addr1
, 4);
2449 void stl_phys(hwaddr addr
, uint32_t val
)
2451 stl_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
2454 void stl_le_phys(hwaddr addr
, uint32_t val
)
2456 stl_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
2459 void stl_be_phys(hwaddr addr
, uint32_t val
)
2461 stl_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
2465 void stb_phys(hwaddr addr
, uint32_t val
)
2468 cpu_physical_memory_write(addr
, &v
, 1);
2471 /* warning: addr must be aligned */
2472 static inline void stw_phys_internal(hwaddr addr
, uint32_t val
,
2473 enum device_endian endian
)
2476 MemoryRegionSection
*section
;
2480 section
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2482 if (l
< 2 || !memory_access_is_direct(section
->mr
, true)) {
2483 #if defined(TARGET_WORDS_BIGENDIAN)
2484 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2488 if (endian
== DEVICE_BIG_ENDIAN
) {
2492 io_mem_write(section
->mr
, addr1
, val
, 2);
2495 addr1
+= memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
;
2496 ptr
= qemu_get_ram_ptr(addr1
);
2498 case DEVICE_LITTLE_ENDIAN
:
2501 case DEVICE_BIG_ENDIAN
:
2508 invalidate_and_set_dirty(addr1
, 2);
2512 void stw_phys(hwaddr addr
, uint32_t val
)
2514 stw_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
2517 void stw_le_phys(hwaddr addr
, uint32_t val
)
2519 stw_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
2522 void stw_be_phys(hwaddr addr
, uint32_t val
)
2524 stw_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
2528 void stq_phys(hwaddr addr
, uint64_t val
)
2531 cpu_physical_memory_write(addr
, &val
, 8);
2534 void stq_le_phys(hwaddr addr
, uint64_t val
)
2536 val
= cpu_to_le64(val
);
2537 cpu_physical_memory_write(addr
, &val
, 8);
2540 void stq_be_phys(hwaddr addr
, uint64_t val
)
2542 val
= cpu_to_be64(val
);
2543 cpu_physical_memory_write(addr
, &val
, 8);
2546 /* virtual memory access for debug (includes writing to ROM) */
2547 int cpu_memory_rw_debug(CPUArchState
*env
, target_ulong addr
,
2548 uint8_t *buf
, int len
, int is_write
)
2555 page
= addr
& TARGET_PAGE_MASK
;
2556 phys_addr
= cpu_get_phys_page_debug(env
, page
);
2557 /* if no physical page mapped, return an error */
2558 if (phys_addr
== -1)
2560 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2563 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
2565 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
2567 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
2576 #if !defined(CONFIG_USER_ONLY)
2579 * A helper function for the _utterly broken_ virtio device model to find out if
2580 * it's running on a big endian machine. Don't do this at home kids!
2582 bool virtio_is_big_endian(void);
2583 bool virtio_is_big_endian(void)
2585 #if defined(TARGET_WORDS_BIGENDIAN)
2594 #ifndef CONFIG_USER_ONLY
2595 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
2597 MemoryRegionSection
*section
;
2600 section
= address_space_translate(&address_space_memory
,
2601 phys_addr
, &phys_addr
, &l
, false);
2603 return !(memory_region_is_ram(section
->mr
) ||
2604 memory_region_is_romd(section
->mr
));