Merge tag 'pull-block-2023-11-06' of https://gitlab.com/hreitz/qemu into staging
[qemu/ar7.git] / target / tricore / fpu_helper.c
blob5d38aea143af77116f2250def0e4b0873b77b0b0
1 /*
2 * TriCore emulation for qemu: fpu helper.
4 * Copyright (c) 2016 Bastian Koppelmann University of Paderborn
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "fpu/softfloat.h"
25 #define QUIET_NAN 0x7fc00000
26 #define ADD_NAN 0x7fc00001
27 #define SQRT_NAN 0x7fc00004
28 #define DIV_NAN 0x7fc00008
29 #define MUL_NAN 0x7fc00002
30 #define FPU_FS PSW_USB_C
31 #define FPU_FI PSW_USB_V
32 #define FPU_FV PSW_USB_SV
33 #define FPU_FZ PSW_USB_AV
34 #define FPU_FU PSW_USB_SAV
36 #define float32_sqrt_nan make_float32(SQRT_NAN)
37 #define float32_quiet_nan make_float32(QUIET_NAN)
39 /* we don't care about input_denormal */
40 static inline uint8_t f_get_excp_flags(CPUTriCoreState *env)
42 return get_float_exception_flags(&env->fp_status)
43 & (float_flag_invalid
44 | float_flag_overflow
45 | float_flag_underflow
46 | float_flag_output_denormal
47 | float_flag_divbyzero
48 | float_flag_inexact);
51 static inline float32 f_maddsub_nan_result(float32 arg1, float32 arg2,
52 float32 arg3, float32 result,
53 uint32_t muladd_negate_c)
55 uint32_t aSign, bSign, cSign;
56 uint32_t aExp, bExp, cExp;
58 if (float32_is_any_nan(arg1) || float32_is_any_nan(arg2) ||
59 float32_is_any_nan(arg3)) {
60 return QUIET_NAN;
61 } else if (float32_is_infinity(arg1) && float32_is_zero(arg2)) {
62 return MUL_NAN;
63 } else if (float32_is_zero(arg1) && float32_is_infinity(arg2)) {
64 return MUL_NAN;
65 } else {
66 aSign = arg1 >> 31;
67 bSign = arg2 >> 31;
68 cSign = arg3 >> 31;
70 aExp = (arg1 >> 23) & 0xff;
71 bExp = (arg2 >> 23) & 0xff;
72 cExp = (arg3 >> 23) & 0xff;
74 if (muladd_negate_c) {
75 cSign ^= 1;
77 if (((aExp == 0xff) || (bExp == 0xff)) && (cExp == 0xff)) {
78 if (aSign ^ bSign ^ cSign) {
79 return ADD_NAN;
84 return result;
87 static void f_update_psw_flags(CPUTriCoreState *env, uint8_t flags)
89 uint8_t some_excp = 0;
90 set_float_exception_flags(0, &env->fp_status);
92 if (flags & float_flag_invalid) {
93 env->FPU_FI = 1 << 31;
94 some_excp = 1;
97 if (flags & float_flag_overflow) {
98 env->FPU_FV = 1 << 31;
99 some_excp = 1;
102 if (flags & float_flag_underflow || flags & float_flag_output_denormal) {
103 env->FPU_FU = 1 << 31;
104 some_excp = 1;
107 if (flags & float_flag_divbyzero) {
108 env->FPU_FZ = 1 << 31;
109 some_excp = 1;
112 if (flags & float_flag_inexact || flags & float_flag_output_denormal) {
113 env->PSW |= 1 << 26;
114 some_excp = 1;
117 env->FPU_FS = some_excp;
120 #define FADD_SUB(op) \
121 uint32_t helper_f##op(CPUTriCoreState *env, uint32_t r1, uint32_t r2) \
123 float32 arg1 = make_float32(r1); \
124 float32 arg2 = make_float32(r2); \
125 uint32_t flags; \
126 float32 f_result; \
128 f_result = float32_##op(arg2, arg1, &env->fp_status); \
129 flags = f_get_excp_flags(env); \
130 if (flags) { \
131 /* If the output is a NaN, but the inputs aren't, \
132 we return a unique value. */ \
133 if ((flags & float_flag_invalid) \
134 && !float32_is_any_nan(arg1) \
135 && !float32_is_any_nan(arg2)) { \
136 f_result = ADD_NAN; \
138 f_update_psw_flags(env, flags); \
139 } else { \
140 env->FPU_FS = 0; \
142 return (uint32_t)f_result; \
144 FADD_SUB(add)
145 FADD_SUB(sub)
147 uint32_t helper_fmul(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
149 uint32_t flags;
150 float32 arg1 = make_float32(r1);
151 float32 arg2 = make_float32(r2);
152 float32 f_result;
154 f_result = float32_mul(arg1, arg2, &env->fp_status);
156 flags = f_get_excp_flags(env);
157 if (flags) {
158 /* If the output is a NaN, but the inputs aren't,
159 we return a unique value. */
160 if ((flags & float_flag_invalid)
161 && !float32_is_any_nan(arg1)
162 && !float32_is_any_nan(arg2)) {
163 f_result = MUL_NAN;
165 f_update_psw_flags(env, flags);
166 } else {
167 env->FPU_FS = 0;
169 return (uint32_t)f_result;
174 * Target TriCore QSEED.F significand Lookup Table
176 * The QSEED.F output significand depends on the least-significant
177 * exponent bit and the 6 most-significant significand bits.
179 * IEEE 754 float datatype
180 * partitioned into Sign (S), Exponent (E) and Significand (M):
182 * S E E E E E E E E M M M M M M ...
183 * | | |
184 * +------+------+-------+-------+
185 * | |
186 * for lookup table
187 * calculating index for
188 * output E output M
190 * This lookup table was extracted by analyzing QSEED output
191 * from the real hardware
193 static const uint8_t target_qseed_significand_table[128] = {
194 253, 252, 245, 244, 239, 238, 231, 230, 225, 224, 217, 216,
195 211, 210, 205, 204, 201, 200, 195, 194, 189, 188, 185, 184,
196 179, 178, 175, 174, 169, 168, 165, 164, 161, 160, 157, 156,
197 153, 152, 149, 148, 145, 144, 141, 140, 137, 136, 133, 132,
198 131, 130, 127, 126, 123, 122, 121, 120, 117, 116, 115, 114,
199 111, 110, 109, 108, 103, 102, 99, 98, 93, 92, 89, 88, 83,
200 82, 79, 78, 75, 74, 71, 70, 67, 66, 63, 62, 59, 58, 55,
201 54, 53, 52, 49, 48, 45, 44, 43, 42, 39, 38, 37, 36, 33,
202 32, 31, 30, 27, 26, 25, 24, 23, 22, 19, 18, 17, 16, 15,
203 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2
206 uint32_t helper_qseed(CPUTriCoreState *env, uint32_t r1)
208 uint32_t arg1, S, E, M, E_minus_one, m_idx;
209 uint32_t new_E, new_M, new_S, result;
211 arg1 = make_float32(r1);
213 /* fetch IEEE-754 fields S, E and the uppermost 6-bit of M */
214 S = extract32(arg1, 31, 1);
215 E = extract32(arg1, 23, 8);
216 M = extract32(arg1, 17, 6);
218 if (float32_is_any_nan(arg1)) {
219 result = float32_quiet_nan;
220 } else if (float32_is_zero_or_denormal(arg1)) {
221 if (float32_is_neg(arg1)) {
222 result = float32_infinity | (1 << 31);
223 } else {
224 result = float32_infinity;
226 } else if (float32_is_neg(arg1)) {
227 result = float32_sqrt_nan;
228 } else if (float32_is_infinity(arg1)) {
229 result = float32_zero;
230 } else {
231 E_minus_one = E - 1;
232 m_idx = ((E_minus_one & 1) << 6) | M;
233 new_S = S;
234 new_E = 0xBD - E_minus_one / 2;
235 new_M = target_qseed_significand_table[m_idx];
237 result = 0;
238 result = deposit32(result, 31, 1, new_S);
239 result = deposit32(result, 23, 8, new_E);
240 result = deposit32(result, 15, 8, new_M);
243 if (float32_is_signaling_nan(arg1, &env->fp_status)
244 || result == float32_sqrt_nan) {
245 env->FPU_FI = 1 << 31;
246 env->FPU_FS = 1;
247 } else {
248 env->FPU_FS = 0;
251 return (uint32_t) result;
254 uint32_t helper_fdiv(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
256 uint32_t flags;
257 float32 arg1 = make_float32(r1);
258 float32 arg2 = make_float32(r2);
259 float32 f_result;
261 f_result = float32_div(arg1, arg2 , &env->fp_status);
263 flags = f_get_excp_flags(env);
264 if (flags) {
265 /* If the output is a NaN, but the inputs aren't,
266 we return a unique value. */
267 if ((flags & float_flag_invalid)
268 && !float32_is_any_nan(arg1)
269 && !float32_is_any_nan(arg2)) {
270 f_result = DIV_NAN;
272 f_update_psw_flags(env, flags);
273 } else {
274 env->FPU_FS = 0;
277 return (uint32_t)f_result;
280 uint32_t helper_fmadd(CPUTriCoreState *env, uint32_t r1,
281 uint32_t r2, uint32_t r3)
283 uint32_t flags;
284 float32 arg1 = make_float32(r1);
285 float32 arg2 = make_float32(r2);
286 float32 arg3 = make_float32(r3);
287 float32 f_result;
289 f_result = float32_muladd(arg1, arg2, arg3, 0, &env->fp_status);
291 flags = f_get_excp_flags(env);
292 if (flags) {
293 if (flags & float_flag_invalid) {
294 arg1 = float32_squash_input_denormal(arg1, &env->fp_status);
295 arg2 = float32_squash_input_denormal(arg2, &env->fp_status);
296 arg3 = float32_squash_input_denormal(arg3, &env->fp_status);
297 f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 0);
299 f_update_psw_flags(env, flags);
300 } else {
301 env->FPU_FS = 0;
303 return (uint32_t)f_result;
306 uint32_t helper_fmsub(CPUTriCoreState *env, uint32_t r1,
307 uint32_t r2, uint32_t r3)
309 uint32_t flags;
310 float32 arg1 = make_float32(r1);
311 float32 arg2 = make_float32(r2);
312 float32 arg3 = make_float32(r3);
313 float32 f_result;
315 f_result = float32_muladd(arg1, arg2, arg3, float_muladd_negate_product,
316 &env->fp_status);
318 flags = f_get_excp_flags(env);
319 if (flags) {
320 if (flags & float_flag_invalid) {
321 arg1 = float32_squash_input_denormal(arg1, &env->fp_status);
322 arg2 = float32_squash_input_denormal(arg2, &env->fp_status);
323 arg3 = float32_squash_input_denormal(arg3, &env->fp_status);
325 f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 1);
327 f_update_psw_flags(env, flags);
328 } else {
329 env->FPU_FS = 0;
331 return (uint32_t)f_result;
334 uint32_t helper_fcmp(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
336 uint32_t result, flags;
337 float32 arg1 = make_float32(r1);
338 float32 arg2 = make_float32(r2);
340 set_flush_inputs_to_zero(0, &env->fp_status);
342 result = 1 << (float32_compare_quiet(arg1, arg2, &env->fp_status) + 1);
343 result |= float32_is_denormal(arg1) << 4;
344 result |= float32_is_denormal(arg2) << 5;
346 flags = f_get_excp_flags(env);
347 if (flags) {
348 f_update_psw_flags(env, flags);
349 } else {
350 env->FPU_FS = 0;
353 set_flush_inputs_to_zero(1, &env->fp_status);
354 return result;
357 uint32_t helper_ftoi(CPUTriCoreState *env, uint32_t arg)
359 float32 f_arg = make_float32(arg);
360 int32_t result, flags;
362 result = float32_to_int32(f_arg, &env->fp_status);
364 flags = f_get_excp_flags(env);
365 if (flags) {
366 if (float32_is_any_nan(f_arg)) {
367 result = 0;
369 f_update_psw_flags(env, flags);
370 } else {
371 env->FPU_FS = 0;
373 return (uint32_t)result;
376 uint32_t helper_hptof(CPUTriCoreState *env, uint32_t arg)
378 float16 f_arg = make_float16(arg);
379 uint32_t result = 0;
380 int32_t flags = 0;
383 * if we have any NAN we need to move the top 2 and lower 8 input mantissa
384 * bits to the top 2 and lower 8 output mantissa bits respectively.
385 * Softfloat on the other hand uses the top 10 mantissa bits.
387 if (float16_is_any_nan(f_arg)) {
388 if (float16_is_signaling_nan(f_arg, &env->fp_status)) {
389 flags |= float_flag_invalid;
391 result = 0;
392 result = float32_set_sign(result, f_arg >> 15);
393 result = deposit32(result, 23, 8, 0xff);
394 result = deposit32(result, 21, 2, extract32(f_arg, 8, 2));
395 result = deposit32(result, 0, 8, extract32(f_arg, 0, 8));
396 } else {
397 set_flush_inputs_to_zero(0, &env->fp_status);
398 result = float16_to_float32(f_arg, true, &env->fp_status);
399 set_flush_inputs_to_zero(1, &env->fp_status);
400 flags = f_get_excp_flags(env);
403 if (flags) {
404 f_update_psw_flags(env, flags);
405 } else {
406 env->FPU_FS = 0;
409 return result;
412 uint32_t helper_ftohp(CPUTriCoreState *env, uint32_t arg)
414 float32 f_arg = make_float32(arg);
415 uint32_t result = 0;
416 int32_t flags = 0;
419 * if we have any NAN we need to move the top 2 and lower 8 input mantissa
420 * bits to the top 2 and lower 8 output mantissa bits respectively.
421 * Softfloat on the other hand uses the top 10 mantissa bits.
423 if (float32_is_any_nan(f_arg)) {
424 if (float32_is_signaling_nan(f_arg, &env->fp_status)) {
425 flags |= float_flag_invalid;
427 result = float16_set_sign(result, arg >> 31);
428 result = deposit32(result, 10, 5, 0x1f);
429 result = deposit32(result, 8, 2, extract32(arg, 21, 2));
430 result = deposit32(result, 0, 8, extract32(arg, 0, 8));
431 if (extract32(result, 0, 10) == 0) {
432 result |= (1 << 8);
434 } else {
435 set_flush_to_zero(0, &env->fp_status);
436 result = float32_to_float16(f_arg, true, &env->fp_status);
437 set_flush_to_zero(1, &env->fp_status);
438 flags = f_get_excp_flags(env);
441 if (flags) {
442 f_update_psw_flags(env, flags);
443 } else {
444 env->FPU_FS = 0;
447 return result;
450 uint32_t helper_itof(CPUTriCoreState *env, uint32_t arg)
452 float32 f_result;
453 uint32_t flags;
454 f_result = int32_to_float32(arg, &env->fp_status);
456 flags = f_get_excp_flags(env);
457 if (flags) {
458 f_update_psw_flags(env, flags);
459 } else {
460 env->FPU_FS = 0;
462 return (uint32_t)f_result;
465 uint32_t helper_utof(CPUTriCoreState *env, uint32_t arg)
467 float32 f_result;
468 uint32_t flags;
470 f_result = uint32_to_float32(arg, &env->fp_status);
472 flags = f_get_excp_flags(env);
473 if (flags) {
474 f_update_psw_flags(env, flags);
475 } else {
476 env->FPU_FS = 0;
478 return (uint32_t)f_result;
481 uint32_t helper_ftoiz(CPUTriCoreState *env, uint32_t arg)
483 float32 f_arg = make_float32(arg);
484 uint32_t result;
485 int32_t flags;
487 result = float32_to_int32_round_to_zero(f_arg, &env->fp_status);
489 flags = f_get_excp_flags(env);
490 if (flags & float_flag_invalid) {
491 flags &= ~float_flag_inexact;
492 if (float32_is_any_nan(f_arg)) {
493 result = 0;
497 if (flags) {
498 f_update_psw_flags(env, flags);
499 } else {
500 env->FPU_FS = 0;
503 return result;
506 uint32_t helper_ftou(CPUTriCoreState *env, uint32_t arg)
508 float32 f_arg = make_float32(arg);
509 uint32_t result;
510 int32_t flags = 0;
512 result = float32_to_uint32(f_arg, &env->fp_status);
514 flags = f_get_excp_flags(env);
515 if (flags & float_flag_invalid) {
516 flags &= ~float_flag_inexact;
517 if (float32_is_any_nan(f_arg)) {
518 result = 0;
521 * we need to check arg < 0.0 before rounding as TriCore needs to raise
522 * float_flag_invalid as well. For instance, when we have a negative
523 * exponent and sign, softfloat would only raise float_flat_inexact.
525 } else if (float32_lt_quiet(f_arg, 0, &env->fp_status)) {
526 flags = float_flag_invalid;
527 result = 0;
530 if (flags) {
531 f_update_psw_flags(env, flags);
532 } else {
533 env->FPU_FS = 0;
535 return result;
538 uint32_t helper_ftouz(CPUTriCoreState *env, uint32_t arg)
540 float32 f_arg = make_float32(arg);
541 uint32_t result;
542 int32_t flags;
544 result = float32_to_uint32_round_to_zero(f_arg, &env->fp_status);
546 flags = f_get_excp_flags(env);
547 if (flags & float_flag_invalid) {
548 flags &= ~float_flag_inexact;
549 if (float32_is_any_nan(f_arg)) {
550 result = 0;
553 * we need to check arg < 0.0 before rounding as TriCore needs to raise
554 * float_flag_invalid as well. For instance, when we have a negative
555 * exponent and sign, softfloat would only raise float_flat_inexact.
557 } else if (float32_lt_quiet(f_arg, 0, &env->fp_status)) {
558 flags = float_flag_invalid;
559 result = 0;
562 if (flags) {
563 f_update_psw_flags(env, flags);
564 } else {
565 env->FPU_FS = 0;
567 return result;
570 void helper_updfl(CPUTriCoreState *env, uint32_t arg)
572 env->FPU_FS = extract32(arg, 7, 1) & extract32(arg, 15, 1);
573 env->FPU_FI = (extract32(arg, 6, 1) & extract32(arg, 14, 1)) << 31;
574 env->FPU_FV = (extract32(arg, 5, 1) & extract32(arg, 13, 1)) << 31;
575 env->FPU_FZ = (extract32(arg, 4, 1) & extract32(arg, 12, 1)) << 31;
576 env->FPU_FU = (extract32(arg, 3, 1) & extract32(arg, 11, 1)) << 31;
577 /* clear FX and RM */
578 env->PSW &= ~(extract32(arg, 10, 1) << 26);
579 env->PSW |= (extract32(arg, 2, 1) & extract32(arg, 10, 1)) << 26;
581 fpu_set_state(env);