trace: split out trace events for hw/s390x/ directory
[qemu/ar7.git] / hw / ppc / spapr.c
blob778fa255a946ef36edf8f33add00dcc8db5038cb
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/device_tree.h"
41 #include "kvm_ppc.h"
42 #include "migration/migration.h"
43 #include "mmu-hash64.h"
44 #include "qom/cpu.h"
46 #include "hw/boards.h"
47 #include "hw/ppc/ppc.h"
48 #include "hw/loader.h"
50 #include "hw/ppc/spapr.h"
51 #include "hw/ppc/spapr_vio.h"
52 #include "hw/pci-host/spapr.h"
53 #include "hw/ppc/xics.h"
54 #include "hw/pci/msi.h"
56 #include "hw/pci/pci.h"
57 #include "hw/scsi/scsi.h"
58 #include "hw/virtio/virtio-scsi.h"
60 #include "exec/address-spaces.h"
61 #include "hw/usb.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "trace.h"
65 #include "hw/nmi.h"
67 #include "hw/compat.h"
68 #include "qemu/cutils.h"
69 #include "hw/ppc/spapr_cpu_core.h"
70 #include "qmp-commands.h"
72 #include <libfdt.h>
74 /* SLOF memory layout:
76 * SLOF raw image loaded at 0, copies its romfs right below the flat
77 * device-tree, then position SLOF itself 31M below that
79 * So we set FW_OVERHEAD to 40MB which should account for all of that
80 * and more
82 * We load our kernel at 4M, leaving space for SLOF initial image
84 #define FDT_MAX_SIZE 0x100000
85 #define RTAS_MAX_SIZE 0x10000
86 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
87 #define FW_MAX_SIZE 0x400000
88 #define FW_FILE_NAME "slof.bin"
89 #define FW_OVERHEAD 0x2800000
90 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
92 #define MIN_RMA_SLOF 128UL
94 #define PHANDLE_XICP 0x00001111
96 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
98 static XICSState *try_create_xics(const char *type, int nr_servers,
99 int nr_irqs, Error **errp)
101 Error *err = NULL;
102 DeviceState *dev;
104 dev = qdev_create(NULL, type);
105 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
106 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
107 object_property_set_bool(OBJECT(dev), true, "realized", &err);
108 if (err) {
109 error_propagate(errp, err);
110 object_unparent(OBJECT(dev));
111 return NULL;
113 return XICS_COMMON(dev);
116 static XICSState *xics_system_init(MachineState *machine,
117 int nr_servers, int nr_irqs, Error **errp)
119 XICSState *icp = NULL;
121 if (kvm_enabled()) {
122 Error *err = NULL;
124 if (machine_kernel_irqchip_allowed(machine)) {
125 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
127 if (machine_kernel_irqchip_required(machine) && !icp) {
128 error_reportf_err(err,
129 "kernel_irqchip requested but unavailable: ");
130 } else {
131 error_free(err);
135 if (!icp) {
136 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, errp);
139 return icp;
142 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
143 int smt_threads)
145 int i, ret = 0;
146 uint32_t servers_prop[smt_threads];
147 uint32_t gservers_prop[smt_threads * 2];
148 int index = ppc_get_vcpu_dt_id(cpu);
150 if (cpu->cpu_version) {
151 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
152 if (ret < 0) {
153 return ret;
157 /* Build interrupt servers and gservers properties */
158 for (i = 0; i < smt_threads; i++) {
159 servers_prop[i] = cpu_to_be32(index + i);
160 /* Hack, direct the group queues back to cpu 0 */
161 gservers_prop[i*2] = cpu_to_be32(index + i);
162 gservers_prop[i*2 + 1] = 0;
164 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
165 servers_prop, sizeof(servers_prop));
166 if (ret < 0) {
167 return ret;
169 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
170 gservers_prop, sizeof(gservers_prop));
172 return ret;
175 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
177 int ret = 0;
178 PowerPCCPU *cpu = POWERPC_CPU(cs);
179 int index = ppc_get_vcpu_dt_id(cpu);
180 uint32_t associativity[] = {cpu_to_be32(0x5),
181 cpu_to_be32(0x0),
182 cpu_to_be32(0x0),
183 cpu_to_be32(0x0),
184 cpu_to_be32(cs->numa_node),
185 cpu_to_be32(index)};
187 /* Advertise NUMA via ibm,associativity */
188 if (nb_numa_nodes > 1) {
189 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
190 sizeof(associativity));
193 return ret;
196 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
198 int ret = 0, offset, cpus_offset;
199 CPUState *cs;
200 char cpu_model[32];
201 int smt = kvmppc_smt_threads();
202 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
204 CPU_FOREACH(cs) {
205 PowerPCCPU *cpu = POWERPC_CPU(cs);
206 DeviceClass *dc = DEVICE_GET_CLASS(cs);
207 int index = ppc_get_vcpu_dt_id(cpu);
209 if ((index % smt) != 0) {
210 continue;
213 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
215 cpus_offset = fdt_path_offset(fdt, "/cpus");
216 if (cpus_offset < 0) {
217 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
218 "cpus");
219 if (cpus_offset < 0) {
220 return cpus_offset;
223 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
224 if (offset < 0) {
225 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
226 if (offset < 0) {
227 return offset;
231 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
232 pft_size_prop, sizeof(pft_size_prop));
233 if (ret < 0) {
234 return ret;
237 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
238 if (ret < 0) {
239 return ret;
242 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
243 ppc_get_compat_smt_threads(cpu));
244 if (ret < 0) {
245 return ret;
248 return ret;
252 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
253 size_t maxsize)
255 size_t maxcells = maxsize / sizeof(uint32_t);
256 int i, j, count;
257 uint32_t *p = prop;
259 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
260 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
262 if (!sps->page_shift) {
263 break;
265 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
266 if (sps->enc[count].page_shift == 0) {
267 break;
270 if ((p - prop) >= (maxcells - 3 - count * 2)) {
271 break;
273 *(p++) = cpu_to_be32(sps->page_shift);
274 *(p++) = cpu_to_be32(sps->slb_enc);
275 *(p++) = cpu_to_be32(count);
276 for (j = 0; j < count; j++) {
277 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
278 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
282 return (p - prop) * sizeof(uint32_t);
285 static hwaddr spapr_node0_size(void)
287 MachineState *machine = MACHINE(qdev_get_machine());
289 if (nb_numa_nodes) {
290 int i;
291 for (i = 0; i < nb_numa_nodes; ++i) {
292 if (numa_info[i].node_mem) {
293 return MIN(pow2floor(numa_info[i].node_mem),
294 machine->ram_size);
298 return machine->ram_size;
301 #define _FDT(exp) \
302 do { \
303 int ret = (exp); \
304 if (ret < 0) { \
305 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
306 #exp, fdt_strerror(ret)); \
307 exit(1); \
309 } while (0)
311 static void add_str(GString *s, const gchar *s1)
313 g_string_append_len(s, s1, strlen(s1) + 1);
316 static void *spapr_create_fdt_skel(hwaddr initrd_base,
317 hwaddr initrd_size,
318 hwaddr kernel_size,
319 bool little_endian,
320 const char *kernel_cmdline,
321 uint32_t epow_irq)
323 void *fdt;
324 uint32_t start_prop = cpu_to_be32(initrd_base);
325 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
326 GString *hypertas = g_string_sized_new(256);
327 GString *qemu_hypertas = g_string_sized_new(256);
328 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
329 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
330 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
331 char *buf;
333 add_str(hypertas, "hcall-pft");
334 add_str(hypertas, "hcall-term");
335 add_str(hypertas, "hcall-dabr");
336 add_str(hypertas, "hcall-interrupt");
337 add_str(hypertas, "hcall-tce");
338 add_str(hypertas, "hcall-vio");
339 add_str(hypertas, "hcall-splpar");
340 add_str(hypertas, "hcall-bulk");
341 add_str(hypertas, "hcall-set-mode");
342 add_str(qemu_hypertas, "hcall-memop1");
344 fdt = g_malloc0(FDT_MAX_SIZE);
345 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
347 if (kernel_size) {
348 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
350 if (initrd_size) {
351 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
353 _FDT((fdt_finish_reservemap(fdt)));
355 /* Root node */
356 _FDT((fdt_begin_node(fdt, "")));
357 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
358 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
359 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
362 * Add info to guest to indentify which host is it being run on
363 * and what is the uuid of the guest
365 if (kvmppc_get_host_model(&buf)) {
366 _FDT((fdt_property_string(fdt, "host-model", buf)));
367 g_free(buf);
369 if (kvmppc_get_host_serial(&buf)) {
370 _FDT((fdt_property_string(fdt, "host-serial", buf)));
371 g_free(buf);
374 buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
375 qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
376 qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
377 qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
378 qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
379 qemu_uuid[14], qemu_uuid[15]);
381 _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
382 if (qemu_uuid_set) {
383 _FDT((fdt_property_string(fdt, "system-id", buf)));
385 g_free(buf);
387 if (qemu_get_vm_name()) {
388 _FDT((fdt_property_string(fdt, "ibm,partition-name",
389 qemu_get_vm_name())));
392 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
393 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
395 /* /chosen */
396 _FDT((fdt_begin_node(fdt, "chosen")));
398 /* Set Form1_affinity */
399 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
401 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
402 _FDT((fdt_property(fdt, "linux,initrd-start",
403 &start_prop, sizeof(start_prop))));
404 _FDT((fdt_property(fdt, "linux,initrd-end",
405 &end_prop, sizeof(end_prop))));
406 if (kernel_size) {
407 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
408 cpu_to_be64(kernel_size) };
410 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
411 if (little_endian) {
412 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
415 if (boot_menu) {
416 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
418 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
419 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
420 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
422 _FDT((fdt_end_node(fdt)));
424 /* RTAS */
425 _FDT((fdt_begin_node(fdt, "rtas")));
427 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
428 add_str(hypertas, "hcall-multi-tce");
430 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
431 hypertas->len)));
432 g_string_free(hypertas, TRUE);
433 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
434 qemu_hypertas->len)));
435 g_string_free(qemu_hypertas, TRUE);
437 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
438 refpoints, sizeof(refpoints))));
440 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
441 _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
442 RTAS_EVENT_SCAN_RATE)));
444 if (msi_nonbroken) {
445 _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
449 * According to PAPR, rtas ibm,os-term does not guarantee a return
450 * back to the guest cpu.
452 * While an additional ibm,extended-os-term property indicates that
453 * rtas call return will always occur. Set this property.
455 _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
457 _FDT((fdt_end_node(fdt)));
459 /* interrupt controller */
460 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
462 _FDT((fdt_property_string(fdt, "device_type",
463 "PowerPC-External-Interrupt-Presentation")));
464 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
465 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
466 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
467 interrupt_server_ranges_prop,
468 sizeof(interrupt_server_ranges_prop))));
469 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
470 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
471 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
473 _FDT((fdt_end_node(fdt)));
475 /* vdevice */
476 _FDT((fdt_begin_node(fdt, "vdevice")));
478 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
479 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
480 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
481 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
482 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
483 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
485 _FDT((fdt_end_node(fdt)));
487 /* event-sources */
488 spapr_events_fdt_skel(fdt, epow_irq);
490 /* /hypervisor node */
491 if (kvm_enabled()) {
492 uint8_t hypercall[16];
494 /* indicate KVM hypercall interface */
495 _FDT((fdt_begin_node(fdt, "hypervisor")));
496 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
497 if (kvmppc_has_cap_fixup_hcalls()) {
499 * Older KVM versions with older guest kernels were broken with the
500 * magic page, don't allow the guest to map it.
502 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
503 sizeof(hypercall))) {
504 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
505 sizeof(hypercall))));
508 _FDT((fdt_end_node(fdt)));
511 _FDT((fdt_end_node(fdt))); /* close root node */
512 _FDT((fdt_finish(fdt)));
514 return fdt;
517 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
518 hwaddr size)
520 uint32_t associativity[] = {
521 cpu_to_be32(0x4), /* length */
522 cpu_to_be32(0x0), cpu_to_be32(0x0),
523 cpu_to_be32(0x0), cpu_to_be32(nodeid)
525 char mem_name[32];
526 uint64_t mem_reg_property[2];
527 int off;
529 mem_reg_property[0] = cpu_to_be64(start);
530 mem_reg_property[1] = cpu_to_be64(size);
532 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
533 off = fdt_add_subnode(fdt, 0, mem_name);
534 _FDT(off);
535 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
536 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
537 sizeof(mem_reg_property))));
538 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
539 sizeof(associativity))));
540 return off;
543 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
545 MachineState *machine = MACHINE(spapr);
546 hwaddr mem_start, node_size;
547 int i, nb_nodes = nb_numa_nodes;
548 NodeInfo *nodes = numa_info;
549 NodeInfo ramnode;
551 /* No NUMA nodes, assume there is just one node with whole RAM */
552 if (!nb_numa_nodes) {
553 nb_nodes = 1;
554 ramnode.node_mem = machine->ram_size;
555 nodes = &ramnode;
558 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
559 if (!nodes[i].node_mem) {
560 continue;
562 if (mem_start >= machine->ram_size) {
563 node_size = 0;
564 } else {
565 node_size = nodes[i].node_mem;
566 if (node_size > machine->ram_size - mem_start) {
567 node_size = machine->ram_size - mem_start;
570 if (!mem_start) {
571 /* ppc_spapr_init() checks for rma_size <= node0_size already */
572 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
573 mem_start += spapr->rma_size;
574 node_size -= spapr->rma_size;
576 for ( ; node_size; ) {
577 hwaddr sizetmp = pow2floor(node_size);
579 /* mem_start != 0 here */
580 if (ctzl(mem_start) < ctzl(sizetmp)) {
581 sizetmp = 1ULL << ctzl(mem_start);
584 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
585 node_size -= sizetmp;
586 mem_start += sizetmp;
590 return 0;
593 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
594 sPAPRMachineState *spapr)
596 PowerPCCPU *cpu = POWERPC_CPU(cs);
597 CPUPPCState *env = &cpu->env;
598 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
599 int index = ppc_get_vcpu_dt_id(cpu);
600 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
601 0xffffffff, 0xffffffff};
602 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
603 : SPAPR_TIMEBASE_FREQ;
604 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
605 uint32_t page_sizes_prop[64];
606 size_t page_sizes_prop_size;
607 uint32_t vcpus_per_socket = smp_threads * smp_cores;
608 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
609 sPAPRDRConnector *drc;
610 sPAPRDRConnectorClass *drck;
611 int drc_index;
613 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
614 if (drc) {
615 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
616 drc_index = drck->get_index(drc);
617 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
620 /* Note: we keep CI large pages off for now because a 64K capable guest
621 * provisioned with large pages might otherwise try to map a qemu
622 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
623 * even if that qemu runs on a 4k host.
625 * We can later add this bit back when we are confident this is not
626 * an issue (!HV KVM or 64K host)
628 uint8_t pa_features_206[] = { 6, 0,
629 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
630 uint8_t pa_features_207[] = { 24, 0,
631 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
632 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
633 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
634 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
635 uint8_t *pa_features;
636 size_t pa_size;
638 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
639 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
641 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
642 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
643 env->dcache_line_size)));
644 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
645 env->dcache_line_size)));
646 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
647 env->icache_line_size)));
648 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
649 env->icache_line_size)));
651 if (pcc->l1_dcache_size) {
652 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
653 pcc->l1_dcache_size)));
654 } else {
655 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
657 if (pcc->l1_icache_size) {
658 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
659 pcc->l1_icache_size)));
660 } else {
661 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
664 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
665 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
666 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
667 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
668 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
669 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
671 if (env->spr_cb[SPR_PURR].oea_read) {
672 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
675 if (env->mmu_model & POWERPC_MMU_1TSEG) {
676 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
677 segs, sizeof(segs))));
680 /* Advertise VMX/VSX (vector extensions) if available
681 * 0 / no property == no vector extensions
682 * 1 == VMX / Altivec available
683 * 2 == VSX available */
684 if (env->insns_flags & PPC_ALTIVEC) {
685 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
687 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
690 /* Advertise DFP (Decimal Floating Point) if available
691 * 0 / no property == no DFP
692 * 1 == DFP available */
693 if (env->insns_flags2 & PPC2_DFP) {
694 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
697 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
698 sizeof(page_sizes_prop));
699 if (page_sizes_prop_size) {
700 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
701 page_sizes_prop, page_sizes_prop_size)));
704 /* Do the ibm,pa-features property, adjust it for ci-large-pages */
705 if (env->mmu_model == POWERPC_MMU_2_06) {
706 pa_features = pa_features_206;
707 pa_size = sizeof(pa_features_206);
708 } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
709 pa_features = pa_features_207;
710 pa_size = sizeof(pa_features_207);
712 if (env->ci_large_pages) {
713 pa_features[3] |= 0x20;
715 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
717 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
718 cs->cpu_index / vcpus_per_socket)));
720 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
721 pft_size_prop, sizeof(pft_size_prop))));
723 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
725 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
726 ppc_get_compat_smt_threads(cpu)));
729 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
731 CPUState *cs;
732 int cpus_offset;
733 char *nodename;
734 int smt = kvmppc_smt_threads();
736 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
737 _FDT(cpus_offset);
738 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
739 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
742 * We walk the CPUs in reverse order to ensure that CPU DT nodes
743 * created by fdt_add_subnode() end up in the right order in FDT
744 * for the guest kernel the enumerate the CPUs correctly.
746 CPU_FOREACH_REVERSE(cs) {
747 PowerPCCPU *cpu = POWERPC_CPU(cs);
748 int index = ppc_get_vcpu_dt_id(cpu);
749 DeviceClass *dc = DEVICE_GET_CLASS(cs);
750 int offset;
752 if ((index % smt) != 0) {
753 continue;
756 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
757 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
758 g_free(nodename);
759 _FDT(offset);
760 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
766 * Adds ibm,dynamic-reconfiguration-memory node.
767 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
768 * of this device tree node.
770 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
772 MachineState *machine = MACHINE(spapr);
773 int ret, i, offset;
774 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
775 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
776 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
777 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
778 memory_region_size(&spapr->hotplug_memory.mr)) /
779 lmb_size;
780 uint32_t *int_buf, *cur_index, buf_len;
781 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
784 * Don't create the node if there is no hotpluggable memory
786 if (machine->ram_size == machine->maxram_size) {
787 return 0;
791 * Allocate enough buffer size to fit in ibm,dynamic-memory
792 * or ibm,associativity-lookup-arrays
794 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
795 * sizeof(uint32_t);
796 cur_index = int_buf = g_malloc0(buf_len);
798 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
800 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
801 sizeof(prop_lmb_size));
802 if (ret < 0) {
803 goto out;
806 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
807 if (ret < 0) {
808 goto out;
811 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
812 if (ret < 0) {
813 goto out;
816 /* ibm,dynamic-memory */
817 int_buf[0] = cpu_to_be32(nr_lmbs);
818 cur_index++;
819 for (i = 0; i < nr_lmbs; i++) {
820 uint64_t addr = i * lmb_size;
821 uint32_t *dynamic_memory = cur_index;
823 if (i >= hotplug_lmb_start) {
824 sPAPRDRConnector *drc;
825 sPAPRDRConnectorClass *drck;
827 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
828 g_assert(drc);
829 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
831 dynamic_memory[0] = cpu_to_be32(addr >> 32);
832 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
833 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
834 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
835 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
836 if (memory_region_present(get_system_memory(), addr)) {
837 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
838 } else {
839 dynamic_memory[5] = cpu_to_be32(0);
841 } else {
843 * LMB information for RMA, boot time RAM and gap b/n RAM and
844 * hotplug memory region -- all these are marked as reserved
845 * and as having no valid DRC.
847 dynamic_memory[0] = cpu_to_be32(addr >> 32);
848 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
849 dynamic_memory[2] = cpu_to_be32(0);
850 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
851 dynamic_memory[4] = cpu_to_be32(-1);
852 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
853 SPAPR_LMB_FLAGS_DRC_INVALID);
856 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
858 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
859 if (ret < 0) {
860 goto out;
863 /* ibm,associativity-lookup-arrays */
864 cur_index = int_buf;
865 int_buf[0] = cpu_to_be32(nr_nodes);
866 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
867 cur_index += 2;
868 for (i = 0; i < nr_nodes; i++) {
869 uint32_t associativity[] = {
870 cpu_to_be32(0x0),
871 cpu_to_be32(0x0),
872 cpu_to_be32(0x0),
873 cpu_to_be32(i)
875 memcpy(cur_index, associativity, sizeof(associativity));
876 cur_index += 4;
878 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
879 (cur_index - int_buf) * sizeof(uint32_t));
880 out:
881 g_free(int_buf);
882 return ret;
885 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
886 target_ulong addr, target_ulong size,
887 bool cpu_update, bool memory_update)
889 void *fdt, *fdt_skel;
890 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
891 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
893 size -= sizeof(hdr);
895 /* Create sceleton */
896 fdt_skel = g_malloc0(size);
897 _FDT((fdt_create(fdt_skel, size)));
898 _FDT((fdt_begin_node(fdt_skel, "")));
899 _FDT((fdt_end_node(fdt_skel)));
900 _FDT((fdt_finish(fdt_skel)));
901 fdt = g_malloc0(size);
902 _FDT((fdt_open_into(fdt_skel, fdt, size)));
903 g_free(fdt_skel);
905 /* Fixup cpu nodes */
906 if (cpu_update) {
907 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
910 /* Generate ibm,dynamic-reconfiguration-memory node if required */
911 if (memory_update && smc->dr_lmb_enabled) {
912 _FDT((spapr_populate_drconf_memory(spapr, fdt)));
915 /* Pack resulting tree */
916 _FDT((fdt_pack(fdt)));
918 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
919 trace_spapr_cas_failed(size);
920 return -1;
923 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
924 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
925 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
926 g_free(fdt);
928 return 0;
931 static void spapr_finalize_fdt(sPAPRMachineState *spapr,
932 hwaddr fdt_addr,
933 hwaddr rtas_addr,
934 hwaddr rtas_size)
936 MachineState *machine = MACHINE(qdev_get_machine());
937 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
938 const char *boot_device = machine->boot_order;
939 int ret, i;
940 size_t cb = 0;
941 char *bootlist;
942 void *fdt;
943 sPAPRPHBState *phb;
945 fdt = g_malloc(FDT_MAX_SIZE);
947 /* open out the base tree into a temp buffer for the final tweaks */
948 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
950 ret = spapr_populate_memory(spapr, fdt);
951 if (ret < 0) {
952 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
953 exit(1);
956 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
957 if (ret < 0) {
958 fprintf(stderr, "couldn't setup vio devices in fdt\n");
959 exit(1);
962 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
963 ret = spapr_rng_populate_dt(fdt);
964 if (ret < 0) {
965 fprintf(stderr, "could not set up rng device in the fdt\n");
966 exit(1);
970 QLIST_FOREACH(phb, &spapr->phbs, list) {
971 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
972 if (ret < 0) {
973 error_report("couldn't setup PCI devices in fdt");
974 exit(1);
978 /* RTAS */
979 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
980 if (ret < 0) {
981 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
984 /* cpus */
985 spapr_populate_cpus_dt_node(fdt, spapr);
987 bootlist = get_boot_devices_list(&cb, true);
988 if (cb && bootlist) {
989 int offset = fdt_path_offset(fdt, "/chosen");
990 if (offset < 0) {
991 exit(1);
993 for (i = 0; i < cb; i++) {
994 if (bootlist[i] == '\n') {
995 bootlist[i] = ' ';
999 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
1002 if (boot_device && strlen(boot_device)) {
1003 int offset = fdt_path_offset(fdt, "/chosen");
1005 if (offset < 0) {
1006 exit(1);
1008 fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
1011 if (!spapr->has_graphics) {
1012 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
1015 if (smc->dr_lmb_enabled) {
1016 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1019 if (smc->dr_cpu_enabled) {
1020 int offset = fdt_path_offset(fdt, "/cpus");
1021 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1022 SPAPR_DR_CONNECTOR_TYPE_CPU);
1023 if (ret < 0) {
1024 error_report("Couldn't set up CPU DR device tree properties");
1025 exit(1);
1029 _FDT((fdt_pack(fdt)));
1031 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1032 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1033 fdt_totalsize(fdt), FDT_MAX_SIZE);
1034 exit(1);
1037 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1038 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1040 g_free(bootlist);
1041 g_free(fdt);
1044 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1046 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1049 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
1051 CPUPPCState *env = &cpu->env;
1053 if (msr_pr) {
1054 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1055 env->gpr[3] = H_PRIVILEGE;
1056 } else {
1057 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1061 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1062 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1063 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1064 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1065 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1068 * Get the fd to access the kernel htab, re-opening it if necessary
1070 static int get_htab_fd(sPAPRMachineState *spapr)
1072 if (spapr->htab_fd >= 0) {
1073 return spapr->htab_fd;
1076 spapr->htab_fd = kvmppc_get_htab_fd(false);
1077 if (spapr->htab_fd < 0) {
1078 error_report("Unable to open fd for reading hash table from KVM: %s",
1079 strerror(errno));
1082 return spapr->htab_fd;
1085 static void close_htab_fd(sPAPRMachineState *spapr)
1087 if (spapr->htab_fd >= 0) {
1088 close(spapr->htab_fd);
1090 spapr->htab_fd = -1;
1093 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1095 int shift;
1097 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1098 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1099 * that's much more than is needed for Linux guests */
1100 shift = ctz64(pow2ceil(ramsize)) - 7;
1101 shift = MAX(shift, 18); /* Minimum architected size */
1102 shift = MIN(shift, 46); /* Maximum architected size */
1103 return shift;
1106 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1107 Error **errp)
1109 long rc;
1111 /* Clean up any HPT info from a previous boot */
1112 g_free(spapr->htab);
1113 spapr->htab = NULL;
1114 spapr->htab_shift = 0;
1115 close_htab_fd(spapr);
1117 rc = kvmppc_reset_htab(shift);
1118 if (rc < 0) {
1119 /* kernel-side HPT needed, but couldn't allocate one */
1120 error_setg_errno(errp, errno,
1121 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1122 shift);
1123 /* This is almost certainly fatal, but if the caller really
1124 * wants to carry on with shift == 0, it's welcome to try */
1125 } else if (rc > 0) {
1126 /* kernel-side HPT allocated */
1127 if (rc != shift) {
1128 error_setg(errp,
1129 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1130 shift, rc);
1133 spapr->htab_shift = shift;
1134 spapr->htab = NULL;
1135 } else {
1136 /* kernel-side HPT not needed, allocate in userspace instead */
1137 size_t size = 1ULL << shift;
1138 int i;
1140 spapr->htab = qemu_memalign(size, size);
1141 if (!spapr->htab) {
1142 error_setg_errno(errp, errno,
1143 "Could not allocate HPT of order %d", shift);
1144 return;
1147 memset(spapr->htab, 0, size);
1148 spapr->htab_shift = shift;
1150 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1151 DIRTY_HPTE(HPTE(spapr->htab, i));
1156 static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1158 bool matched = false;
1160 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1161 matched = true;
1164 if (!matched) {
1165 error_report("Device %s is not supported by this machine yet.",
1166 qdev_fw_name(DEVICE(sbdev)));
1167 exit(1);
1170 return 0;
1173 static void ppc_spapr_reset(void)
1175 MachineState *machine = MACHINE(qdev_get_machine());
1176 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1177 PowerPCCPU *first_ppc_cpu;
1178 uint32_t rtas_limit;
1180 /* Check for unknown sysbus devices */
1181 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1183 /* Allocate and/or reset the hash page table */
1184 spapr_reallocate_hpt(spapr,
1185 spapr_hpt_shift_for_ramsize(machine->maxram_size),
1186 &error_fatal);
1188 /* Update the RMA size if necessary */
1189 if (spapr->vrma_adjust) {
1190 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1191 spapr->htab_shift);
1194 qemu_devices_reset();
1197 * We place the device tree and RTAS just below either the top of the RMA,
1198 * or just below 2GB, whichever is lowere, so that it can be
1199 * processed with 32-bit real mode code if necessary
1201 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1202 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1203 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1205 /* Load the fdt */
1206 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
1207 spapr->rtas_size);
1209 /* Copy RTAS over */
1210 cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
1211 spapr->rtas_size);
1213 /* Set up the entry state */
1214 first_ppc_cpu = POWERPC_CPU(first_cpu);
1215 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
1216 first_ppc_cpu->env.gpr[5] = 0;
1217 first_cpu->halted = 0;
1218 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1222 static void spapr_create_nvram(sPAPRMachineState *spapr)
1224 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1225 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1227 if (dinfo) {
1228 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1229 &error_fatal);
1232 qdev_init_nofail(dev);
1234 spapr->nvram = (struct sPAPRNVRAM *)dev;
1237 static void spapr_rtc_create(sPAPRMachineState *spapr)
1239 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1241 qdev_init_nofail(dev);
1242 spapr->rtc = dev;
1244 object_property_add_alias(qdev_get_machine(), "rtc-time",
1245 OBJECT(spapr->rtc), "date", NULL);
1248 /* Returns whether we want to use VGA or not */
1249 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1251 switch (vga_interface_type) {
1252 case VGA_NONE:
1253 return false;
1254 case VGA_DEVICE:
1255 return true;
1256 case VGA_STD:
1257 case VGA_VIRTIO:
1258 return pci_vga_init(pci_bus) != NULL;
1259 default:
1260 error_setg(errp,
1261 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1262 return false;
1266 static int spapr_post_load(void *opaque, int version_id)
1268 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1269 int err = 0;
1271 /* In earlier versions, there was no separate qdev for the PAPR
1272 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1273 * So when migrating from those versions, poke the incoming offset
1274 * value into the RTC device */
1275 if (version_id < 3) {
1276 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1279 return err;
1282 static bool version_before_3(void *opaque, int version_id)
1284 return version_id < 3;
1287 static const VMStateDescription vmstate_spapr = {
1288 .name = "spapr",
1289 .version_id = 3,
1290 .minimum_version_id = 1,
1291 .post_load = spapr_post_load,
1292 .fields = (VMStateField[]) {
1293 /* used to be @next_irq */
1294 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1296 /* RTC offset */
1297 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1299 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1300 VMSTATE_END_OF_LIST()
1304 static int htab_save_setup(QEMUFile *f, void *opaque)
1306 sPAPRMachineState *spapr = opaque;
1308 /* "Iteration" header */
1309 qemu_put_be32(f, spapr->htab_shift);
1311 if (spapr->htab) {
1312 spapr->htab_save_index = 0;
1313 spapr->htab_first_pass = true;
1314 } else {
1315 assert(kvm_enabled());
1319 return 0;
1322 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1323 int64_t max_ns)
1325 bool has_timeout = max_ns != -1;
1326 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1327 int index = spapr->htab_save_index;
1328 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1330 assert(spapr->htab_first_pass);
1332 do {
1333 int chunkstart;
1335 /* Consume invalid HPTEs */
1336 while ((index < htabslots)
1337 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1338 index++;
1339 CLEAN_HPTE(HPTE(spapr->htab, index));
1342 /* Consume valid HPTEs */
1343 chunkstart = index;
1344 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1345 && HPTE_VALID(HPTE(spapr->htab, index))) {
1346 index++;
1347 CLEAN_HPTE(HPTE(spapr->htab, index));
1350 if (index > chunkstart) {
1351 int n_valid = index - chunkstart;
1353 qemu_put_be32(f, chunkstart);
1354 qemu_put_be16(f, n_valid);
1355 qemu_put_be16(f, 0);
1356 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1357 HASH_PTE_SIZE_64 * n_valid);
1359 if (has_timeout &&
1360 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1361 break;
1364 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1366 if (index >= htabslots) {
1367 assert(index == htabslots);
1368 index = 0;
1369 spapr->htab_first_pass = false;
1371 spapr->htab_save_index = index;
1374 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1375 int64_t max_ns)
1377 bool final = max_ns < 0;
1378 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1379 int examined = 0, sent = 0;
1380 int index = spapr->htab_save_index;
1381 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1383 assert(!spapr->htab_first_pass);
1385 do {
1386 int chunkstart, invalidstart;
1388 /* Consume non-dirty HPTEs */
1389 while ((index < htabslots)
1390 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1391 index++;
1392 examined++;
1395 chunkstart = index;
1396 /* Consume valid dirty HPTEs */
1397 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1398 && HPTE_DIRTY(HPTE(spapr->htab, index))
1399 && HPTE_VALID(HPTE(spapr->htab, index))) {
1400 CLEAN_HPTE(HPTE(spapr->htab, index));
1401 index++;
1402 examined++;
1405 invalidstart = index;
1406 /* Consume invalid dirty HPTEs */
1407 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1408 && HPTE_DIRTY(HPTE(spapr->htab, index))
1409 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1410 CLEAN_HPTE(HPTE(spapr->htab, index));
1411 index++;
1412 examined++;
1415 if (index > chunkstart) {
1416 int n_valid = invalidstart - chunkstart;
1417 int n_invalid = index - invalidstart;
1419 qemu_put_be32(f, chunkstart);
1420 qemu_put_be16(f, n_valid);
1421 qemu_put_be16(f, n_invalid);
1422 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1423 HASH_PTE_SIZE_64 * n_valid);
1424 sent += index - chunkstart;
1426 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1427 break;
1431 if (examined >= htabslots) {
1432 break;
1435 if (index >= htabslots) {
1436 assert(index == htabslots);
1437 index = 0;
1439 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1441 if (index >= htabslots) {
1442 assert(index == htabslots);
1443 index = 0;
1446 spapr->htab_save_index = index;
1448 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1451 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1452 #define MAX_KVM_BUF_SIZE 2048
1454 static int htab_save_iterate(QEMUFile *f, void *opaque)
1456 sPAPRMachineState *spapr = opaque;
1457 int fd;
1458 int rc = 0;
1460 /* Iteration header */
1461 qemu_put_be32(f, 0);
1463 if (!spapr->htab) {
1464 assert(kvm_enabled());
1466 fd = get_htab_fd(spapr);
1467 if (fd < 0) {
1468 return fd;
1471 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1472 if (rc < 0) {
1473 return rc;
1475 } else if (spapr->htab_first_pass) {
1476 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1477 } else {
1478 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1481 /* End marker */
1482 qemu_put_be32(f, 0);
1483 qemu_put_be16(f, 0);
1484 qemu_put_be16(f, 0);
1486 return rc;
1489 static int htab_save_complete(QEMUFile *f, void *opaque)
1491 sPAPRMachineState *spapr = opaque;
1492 int fd;
1494 /* Iteration header */
1495 qemu_put_be32(f, 0);
1497 if (!spapr->htab) {
1498 int rc;
1500 assert(kvm_enabled());
1502 fd = get_htab_fd(spapr);
1503 if (fd < 0) {
1504 return fd;
1507 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1508 if (rc < 0) {
1509 return rc;
1511 close_htab_fd(spapr);
1512 } else {
1513 if (spapr->htab_first_pass) {
1514 htab_save_first_pass(f, spapr, -1);
1516 htab_save_later_pass(f, spapr, -1);
1519 /* End marker */
1520 qemu_put_be32(f, 0);
1521 qemu_put_be16(f, 0);
1522 qemu_put_be16(f, 0);
1524 return 0;
1527 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1529 sPAPRMachineState *spapr = opaque;
1530 uint32_t section_hdr;
1531 int fd = -1;
1533 if (version_id < 1 || version_id > 1) {
1534 error_report("htab_load() bad version");
1535 return -EINVAL;
1538 section_hdr = qemu_get_be32(f);
1540 if (section_hdr) {
1541 Error *local_err = NULL;
1543 /* First section gives the htab size */
1544 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1545 if (local_err) {
1546 error_report_err(local_err);
1547 return -EINVAL;
1549 return 0;
1552 if (!spapr->htab) {
1553 assert(kvm_enabled());
1555 fd = kvmppc_get_htab_fd(true);
1556 if (fd < 0) {
1557 error_report("Unable to open fd to restore KVM hash table: %s",
1558 strerror(errno));
1562 while (true) {
1563 uint32_t index;
1564 uint16_t n_valid, n_invalid;
1566 index = qemu_get_be32(f);
1567 n_valid = qemu_get_be16(f);
1568 n_invalid = qemu_get_be16(f);
1570 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1571 /* End of Stream */
1572 break;
1575 if ((index + n_valid + n_invalid) >
1576 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1577 /* Bad index in stream */
1578 error_report(
1579 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1580 index, n_valid, n_invalid, spapr->htab_shift);
1581 return -EINVAL;
1584 if (spapr->htab) {
1585 if (n_valid) {
1586 qemu_get_buffer(f, HPTE(spapr->htab, index),
1587 HASH_PTE_SIZE_64 * n_valid);
1589 if (n_invalid) {
1590 memset(HPTE(spapr->htab, index + n_valid), 0,
1591 HASH_PTE_SIZE_64 * n_invalid);
1593 } else {
1594 int rc;
1596 assert(fd >= 0);
1598 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1599 if (rc < 0) {
1600 return rc;
1605 if (!spapr->htab) {
1606 assert(fd >= 0);
1607 close(fd);
1610 return 0;
1613 static SaveVMHandlers savevm_htab_handlers = {
1614 .save_live_setup = htab_save_setup,
1615 .save_live_iterate = htab_save_iterate,
1616 .save_live_complete_precopy = htab_save_complete,
1617 .load_state = htab_load,
1620 static void spapr_boot_set(void *opaque, const char *boot_device,
1621 Error **errp)
1623 MachineState *machine = MACHINE(qdev_get_machine());
1624 machine->boot_order = g_strdup(boot_device);
1628 * Reset routine for LMB DR devices.
1630 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1631 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1632 * when it walks all its children devices. LMB devices reset occurs
1633 * as part of spapr_ppc_reset().
1635 static void spapr_drc_reset(void *opaque)
1637 sPAPRDRConnector *drc = opaque;
1638 DeviceState *d = DEVICE(drc);
1640 if (d) {
1641 device_reset(d);
1645 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1647 MachineState *machine = MACHINE(spapr);
1648 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1649 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1650 int i;
1652 for (i = 0; i < nr_lmbs; i++) {
1653 sPAPRDRConnector *drc;
1654 uint64_t addr;
1656 addr = i * lmb_size + spapr->hotplug_memory.base;
1657 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1658 addr/lmb_size);
1659 qemu_register_reset(spapr_drc_reset, drc);
1664 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1665 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1666 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1668 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1670 int i;
1672 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1673 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1674 " is not aligned to %llu MiB",
1675 machine->ram_size,
1676 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1677 return;
1680 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1681 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1682 " is not aligned to %llu MiB",
1683 machine->ram_size,
1684 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1685 return;
1688 for (i = 0; i < nb_numa_nodes; i++) {
1689 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1690 error_setg(errp,
1691 "Node %d memory size 0x%" PRIx64
1692 " is not aligned to %llu MiB",
1693 i, numa_info[i].node_mem,
1694 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1695 return;
1700 /* pSeries LPAR / sPAPR hardware init */
1701 static void ppc_spapr_init(MachineState *machine)
1703 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1704 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1705 const char *kernel_filename = machine->kernel_filename;
1706 const char *kernel_cmdline = machine->kernel_cmdline;
1707 const char *initrd_filename = machine->initrd_filename;
1708 PCIHostState *phb;
1709 int i;
1710 MemoryRegion *sysmem = get_system_memory();
1711 MemoryRegion *ram = g_new(MemoryRegion, 1);
1712 MemoryRegion *rma_region;
1713 void *rma = NULL;
1714 hwaddr rma_alloc_size;
1715 hwaddr node0_size = spapr_node0_size();
1716 uint32_t initrd_base = 0;
1717 long kernel_size = 0, initrd_size = 0;
1718 long load_limit, fw_size;
1719 bool kernel_le = false;
1720 char *filename;
1721 int smt = kvmppc_smt_threads();
1722 int spapr_cores = smp_cpus / smp_threads;
1723 int spapr_max_cores = max_cpus / smp_threads;
1725 if (smc->dr_cpu_enabled) {
1726 if (smp_cpus % smp_threads) {
1727 error_report("smp_cpus (%u) must be multiple of threads (%u)",
1728 smp_cpus, smp_threads);
1729 exit(1);
1731 if (max_cpus % smp_threads) {
1732 error_report("max_cpus (%u) must be multiple of threads (%u)",
1733 max_cpus, smp_threads);
1734 exit(1);
1738 msi_nonbroken = true;
1740 QLIST_INIT(&spapr->phbs);
1742 cpu_ppc_hypercall = emulate_spapr_hypercall;
1744 /* Allocate RMA if necessary */
1745 rma_alloc_size = kvmppc_alloc_rma(&rma);
1747 if (rma_alloc_size == -1) {
1748 error_report("Unable to create RMA");
1749 exit(1);
1752 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1753 spapr->rma_size = rma_alloc_size;
1754 } else {
1755 spapr->rma_size = node0_size;
1757 /* With KVM, we don't actually know whether KVM supports an
1758 * unbounded RMA (PR KVM) or is limited by the hash table size
1759 * (HV KVM using VRMA), so we always assume the latter
1761 * In that case, we also limit the initial allocations for RTAS
1762 * etc... to 256M since we have no way to know what the VRMA size
1763 * is going to be as it depends on the size of the hash table
1764 * isn't determined yet.
1766 if (kvm_enabled()) {
1767 spapr->vrma_adjust = 1;
1768 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1772 if (spapr->rma_size > node0_size) {
1773 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
1774 spapr->rma_size);
1775 exit(1);
1778 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1779 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1781 /* Set up Interrupt Controller before we create the VCPUs */
1782 spapr->icp = xics_system_init(machine,
1783 DIV_ROUND_UP(max_cpus * smt, smp_threads),
1784 XICS_IRQS, &error_fatal);
1786 if (smc->dr_lmb_enabled) {
1787 spapr_validate_node_memory(machine, &error_fatal);
1790 /* init CPUs */
1791 if (machine->cpu_model == NULL) {
1792 machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
1795 if (smc->dr_cpu_enabled) {
1796 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1798 spapr->cores = g_new0(Object *, spapr_max_cores);
1799 for (i = 0; i < spapr_max_cores; i++) {
1800 int core_dt_id = i * smt;
1801 sPAPRDRConnector *drc =
1802 spapr_dr_connector_new(OBJECT(spapr),
1803 SPAPR_DR_CONNECTOR_TYPE_CPU, core_dt_id);
1805 qemu_register_reset(spapr_drc_reset, drc);
1807 if (i < spapr_cores) {
1808 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1809 Object *core;
1811 if (!object_class_by_name(type)) {
1812 error_report("Unable to find sPAPR CPU Core definition");
1813 exit(1);
1816 core = object_new(type);
1817 object_property_set_int(core, smp_threads, "nr-threads",
1818 &error_fatal);
1819 object_property_set_int(core, core_dt_id, CPU_CORE_PROP_CORE_ID,
1820 &error_fatal);
1821 object_property_set_bool(core, true, "realized", &error_fatal);
1824 g_free(type);
1825 } else {
1826 for (i = 0; i < smp_cpus; i++) {
1827 PowerPCCPU *cpu = cpu_ppc_init(machine->cpu_model);
1828 if (cpu == NULL) {
1829 error_report("Unable to find PowerPC CPU definition");
1830 exit(1);
1832 spapr_cpu_init(spapr, cpu, &error_fatal);
1836 if (kvm_enabled()) {
1837 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1838 kvmppc_enable_logical_ci_hcalls();
1839 kvmppc_enable_set_mode_hcall();
1842 /* allocate RAM */
1843 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1844 machine->ram_size);
1845 memory_region_add_subregion(sysmem, 0, ram);
1847 if (rma_alloc_size && rma) {
1848 rma_region = g_new(MemoryRegion, 1);
1849 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1850 rma_alloc_size, rma);
1851 vmstate_register_ram_global(rma_region);
1852 memory_region_add_subregion(sysmem, 0, rma_region);
1855 /* initialize hotplug memory address space */
1856 if (machine->ram_size < machine->maxram_size) {
1857 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1859 * Limit the number of hotpluggable memory slots to half the number
1860 * slots that KVM supports, leaving the other half for PCI and other
1861 * devices. However ensure that number of slots doesn't drop below 32.
1863 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
1864 SPAPR_MAX_RAM_SLOTS;
1866 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
1867 max_memslots = SPAPR_MAX_RAM_SLOTS;
1869 if (machine->ram_slots > max_memslots) {
1870 error_report("Specified number of memory slots %"
1871 PRIu64" exceeds max supported %d",
1872 machine->ram_slots, max_memslots);
1873 exit(1);
1876 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1877 SPAPR_HOTPLUG_MEM_ALIGN);
1878 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1879 "hotplug-memory", hotplug_mem_size);
1880 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1881 &spapr->hotplug_memory.mr);
1884 if (smc->dr_lmb_enabled) {
1885 spapr_create_lmb_dr_connectors(spapr);
1888 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1889 if (!filename) {
1890 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1891 exit(1);
1893 spapr->rtas_size = get_image_size(filename);
1894 if (spapr->rtas_size < 0) {
1895 error_report("Could not get size of LPAR rtas '%s'", filename);
1896 exit(1);
1898 spapr->rtas_blob = g_malloc(spapr->rtas_size);
1899 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1900 error_report("Could not load LPAR rtas '%s'", filename);
1901 exit(1);
1903 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1904 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1905 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1906 exit(1);
1908 g_free(filename);
1910 /* Set up EPOW events infrastructure */
1911 spapr_events_init(spapr);
1913 /* Set up the RTC RTAS interfaces */
1914 spapr_rtc_create(spapr);
1916 /* Set up VIO bus */
1917 spapr->vio_bus = spapr_vio_bus_init();
1919 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1920 if (serial_hds[i]) {
1921 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1925 /* We always have at least the nvram device on VIO */
1926 spapr_create_nvram(spapr);
1928 /* Set up PCI */
1929 spapr_pci_rtas_init();
1931 phb = spapr_create_phb(spapr, 0);
1933 for (i = 0; i < nb_nics; i++) {
1934 NICInfo *nd = &nd_table[i];
1936 if (!nd->model) {
1937 nd->model = g_strdup("ibmveth");
1940 if (strcmp(nd->model, "ibmveth") == 0) {
1941 spapr_vlan_create(spapr->vio_bus, nd);
1942 } else {
1943 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1947 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1948 spapr_vscsi_create(spapr->vio_bus);
1951 /* Graphics */
1952 if (spapr_vga_init(phb->bus, &error_fatal)) {
1953 spapr->has_graphics = true;
1954 machine->usb |= defaults_enabled() && !machine->usb_disabled;
1957 if (machine->usb) {
1958 if (smc->use_ohci_by_default) {
1959 pci_create_simple(phb->bus, -1, "pci-ohci");
1960 } else {
1961 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
1964 if (spapr->has_graphics) {
1965 USBBus *usb_bus = usb_bus_find(-1);
1967 usb_create_simple(usb_bus, "usb-kbd");
1968 usb_create_simple(usb_bus, "usb-mouse");
1972 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1973 error_report(
1974 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
1975 MIN_RMA_SLOF);
1976 exit(1);
1979 if (kernel_filename) {
1980 uint64_t lowaddr = 0;
1982 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1983 NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE,
1984 0, 0);
1985 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1986 kernel_size = load_elf(kernel_filename,
1987 translate_kernel_address, NULL,
1988 NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE,
1989 0, 0);
1990 kernel_le = kernel_size > 0;
1992 if (kernel_size < 0) {
1993 error_report("error loading %s: %s",
1994 kernel_filename, load_elf_strerror(kernel_size));
1995 exit(1);
1998 /* load initrd */
1999 if (initrd_filename) {
2000 /* Try to locate the initrd in the gap between the kernel
2001 * and the firmware. Add a bit of space just in case
2003 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
2004 initrd_size = load_image_targphys(initrd_filename, initrd_base,
2005 load_limit - initrd_base);
2006 if (initrd_size < 0) {
2007 error_report("could not load initial ram disk '%s'",
2008 initrd_filename);
2009 exit(1);
2011 } else {
2012 initrd_base = 0;
2013 initrd_size = 0;
2017 if (bios_name == NULL) {
2018 bios_name = FW_FILE_NAME;
2020 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2021 if (!filename) {
2022 error_report("Could not find LPAR firmware '%s'", bios_name);
2023 exit(1);
2025 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2026 if (fw_size <= 0) {
2027 error_report("Could not load LPAR firmware '%s'", filename);
2028 exit(1);
2030 g_free(filename);
2032 /* FIXME: Should register things through the MachineState's qdev
2033 * interface, this is a legacy from the sPAPREnvironment structure
2034 * which predated MachineState but had a similar function */
2035 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2036 register_savevm_live(NULL, "spapr/htab", -1, 1,
2037 &savevm_htab_handlers, spapr);
2039 /* Prepare the device tree */
2040 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
2041 kernel_size, kernel_le,
2042 kernel_cmdline,
2043 spapr->check_exception_irq);
2044 assert(spapr->fdt_skel != NULL);
2046 /* used by RTAS */
2047 QTAILQ_INIT(&spapr->ccs_list);
2048 qemu_register_reset(spapr_ccs_reset_hook, spapr);
2050 qemu_register_boot_set(spapr_boot_set, spapr);
2053 static int spapr_kvm_type(const char *vm_type)
2055 if (!vm_type) {
2056 return 0;
2059 if (!strcmp(vm_type, "HV")) {
2060 return 1;
2063 if (!strcmp(vm_type, "PR")) {
2064 return 2;
2067 error_report("Unknown kvm-type specified '%s'", vm_type);
2068 exit(1);
2072 * Implementation of an interface to adjust firmware path
2073 * for the bootindex property handling.
2075 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2076 DeviceState *dev)
2078 #define CAST(type, obj, name) \
2079 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2080 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2081 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2083 if (d) {
2084 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2085 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2086 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2088 if (spapr) {
2090 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2091 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2092 * in the top 16 bits of the 64-bit LUN
2094 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2095 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2096 (uint64_t)id << 48);
2097 } else if (virtio) {
2099 * We use SRP luns of the form 01000000 | (target << 8) | lun
2100 * in the top 32 bits of the 64-bit LUN
2101 * Note: the quote above is from SLOF and it is wrong,
2102 * the actual binding is:
2103 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2105 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2106 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2107 (uint64_t)id << 32);
2108 } else if (usb) {
2110 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2111 * in the top 32 bits of the 64-bit LUN
2113 unsigned usb_port = atoi(usb->port->path);
2114 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2115 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2116 (uint64_t)id << 32);
2120 if (phb) {
2121 /* Replace "pci" with "pci@800000020000000" */
2122 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2125 return NULL;
2128 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2130 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2132 return g_strdup(spapr->kvm_type);
2135 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2137 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2139 g_free(spapr->kvm_type);
2140 spapr->kvm_type = g_strdup(value);
2143 static void spapr_machine_initfn(Object *obj)
2145 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2147 spapr->htab_fd = -1;
2148 object_property_add_str(obj, "kvm-type",
2149 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2150 object_property_set_description(obj, "kvm-type",
2151 "Specifies the KVM virtualization mode (HV, PR)",
2152 NULL);
2155 static void spapr_machine_finalizefn(Object *obj)
2157 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2159 g_free(spapr->kvm_type);
2162 static void ppc_cpu_do_nmi_on_cpu(void *arg)
2164 CPUState *cs = arg;
2166 cpu_synchronize_state(cs);
2167 ppc_cpu_do_system_reset(cs);
2170 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2172 CPUState *cs;
2174 CPU_FOREACH(cs) {
2175 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
2179 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
2180 uint32_t node, Error **errp)
2182 sPAPRDRConnector *drc;
2183 sPAPRDRConnectorClass *drck;
2184 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2185 int i, fdt_offset, fdt_size;
2186 void *fdt;
2188 for (i = 0; i < nr_lmbs; i++) {
2189 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2190 addr/SPAPR_MEMORY_BLOCK_SIZE);
2191 g_assert(drc);
2193 fdt = create_device_tree(&fdt_size);
2194 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2195 SPAPR_MEMORY_BLOCK_SIZE);
2197 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2198 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2199 addr += SPAPR_MEMORY_BLOCK_SIZE;
2201 /* send hotplug notification to the
2202 * guest only in case of hotplugged memory
2204 if (dev->hotplugged) {
2205 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
2209 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2210 uint32_t node, Error **errp)
2212 Error *local_err = NULL;
2213 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2214 PCDIMMDevice *dimm = PC_DIMM(dev);
2215 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2216 MemoryRegion *mr = ddc->get_memory_region(dimm);
2217 uint64_t align = memory_region_get_alignment(mr);
2218 uint64_t size = memory_region_size(mr);
2219 uint64_t addr;
2221 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2222 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2223 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2224 goto out;
2227 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2228 if (local_err) {
2229 goto out;
2232 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2233 if (local_err) {
2234 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2235 goto out;
2238 spapr_add_lmbs(dev, addr, size, node, &error_abort);
2240 out:
2241 error_propagate(errp, local_err);
2244 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2245 sPAPRMachineState *spapr)
2247 PowerPCCPU *cpu = POWERPC_CPU(cs);
2248 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2249 int id = ppc_get_vcpu_dt_id(cpu);
2250 void *fdt;
2251 int offset, fdt_size;
2252 char *nodename;
2254 fdt = create_device_tree(&fdt_size);
2255 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2256 offset = fdt_add_subnode(fdt, 0, nodename);
2258 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2259 g_free(nodename);
2261 *fdt_offset = offset;
2262 return fdt;
2265 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2266 DeviceState *dev, Error **errp)
2268 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2270 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2271 int node;
2273 if (!smc->dr_lmb_enabled) {
2274 error_setg(errp, "Memory hotplug not supported for this machine");
2275 return;
2277 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2278 if (*errp) {
2279 return;
2281 if (node < 0 || node >= MAX_NODES) {
2282 error_setg(errp, "Invaild node %d", node);
2283 return;
2287 * Currently PowerPC kernel doesn't allow hot-adding memory to
2288 * memory-less node, but instead will silently add the memory
2289 * to the first node that has some memory. This causes two
2290 * unexpected behaviours for the user.
2292 * - Memory gets hotplugged to a different node than what the user
2293 * specified.
2294 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2295 * to memory-less node, a reboot will set things accordingly
2296 * and the previously hotplugged memory now ends in the right node.
2297 * This appears as if some memory moved from one node to another.
2299 * So until kernel starts supporting memory hotplug to memory-less
2300 * nodes, just prevent such attempts upfront in QEMU.
2302 if (nb_numa_nodes && !numa_info[node].node_mem) {
2303 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2304 node);
2305 return;
2308 spapr_memory_plug(hotplug_dev, dev, node, errp);
2309 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2310 spapr_core_plug(hotplug_dev, dev, errp);
2314 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2315 DeviceState *dev, Error **errp)
2317 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2319 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2320 error_setg(errp, "Memory hot unplug not supported by sPAPR");
2321 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2322 if (!smc->dr_cpu_enabled) {
2323 error_setg(errp, "CPU hot unplug not supported on this machine");
2324 return;
2326 spapr_core_unplug(hotplug_dev, dev, errp);
2330 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2331 DeviceState *dev, Error **errp)
2333 if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2334 spapr_core_pre_plug(hotplug_dev, dev, errp);
2338 static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine,
2339 DeviceState *dev)
2341 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2342 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2343 return HOTPLUG_HANDLER(machine);
2345 return NULL;
2348 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2350 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2351 * socket means much for the paravirtualized PAPR platform) */
2352 return cpu_index / smp_threads / smp_cores;
2355 static HotpluggableCPUList *spapr_query_hotpluggable_cpus(MachineState *machine)
2357 int i;
2358 HotpluggableCPUList *head = NULL;
2359 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2360 int spapr_max_cores = max_cpus / smp_threads;
2361 int smt = kvmppc_smt_threads();
2363 for (i = 0; i < spapr_max_cores; i++) {
2364 HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1);
2365 HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1);
2366 CpuInstanceProperties *cpu_props = g_new0(typeof(*cpu_props), 1);
2368 cpu_item->type = spapr_get_cpu_core_type(machine->cpu_model);
2369 cpu_item->vcpus_count = smp_threads;
2370 cpu_props->has_core = true;
2371 cpu_props->core = i * smt;
2372 /* TODO: add 'has_node/node' here to describe
2373 to which node core belongs */
2375 cpu_item->props = cpu_props;
2376 if (spapr->cores[i]) {
2377 cpu_item->has_qom_path = true;
2378 cpu_item->qom_path = object_get_canonical_path(spapr->cores[i]);
2380 list_item->value = cpu_item;
2381 list_item->next = head;
2382 head = list_item;
2384 return head;
2387 static void spapr_machine_class_init(ObjectClass *oc, void *data)
2389 MachineClass *mc = MACHINE_CLASS(oc);
2390 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2391 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2392 NMIClass *nc = NMI_CLASS(oc);
2393 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2395 mc->desc = "pSeries Logical Partition (PAPR compliant)";
2398 * We set up the default / latest behaviour here. The class_init
2399 * functions for the specific versioned machine types can override
2400 * these details for backwards compatibility
2402 mc->init = ppc_spapr_init;
2403 mc->reset = ppc_spapr_reset;
2404 mc->block_default_type = IF_SCSI;
2405 mc->max_cpus = MAX_CPUMASK_BITS;
2406 mc->no_parallel = 1;
2407 mc->default_boot_order = "";
2408 mc->default_ram_size = 512 * M_BYTE;
2409 mc->kvm_type = spapr_kvm_type;
2410 mc->has_dynamic_sysbus = true;
2411 mc->pci_allow_0_address = true;
2412 mc->get_hotplug_handler = spapr_get_hotpug_handler;
2413 hc->pre_plug = spapr_machine_device_pre_plug;
2414 hc->plug = spapr_machine_device_plug;
2415 hc->unplug = spapr_machine_device_unplug;
2416 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2417 mc->query_hotpluggable_cpus = spapr_query_hotpluggable_cpus;
2419 smc->dr_lmb_enabled = true;
2420 smc->dr_cpu_enabled = true;
2421 fwc->get_dev_path = spapr_get_fw_dev_path;
2422 nc->nmi_monitor_handler = spapr_nmi;
2425 static const TypeInfo spapr_machine_info = {
2426 .name = TYPE_SPAPR_MACHINE,
2427 .parent = TYPE_MACHINE,
2428 .abstract = true,
2429 .instance_size = sizeof(sPAPRMachineState),
2430 .instance_init = spapr_machine_initfn,
2431 .instance_finalize = spapr_machine_finalizefn,
2432 .class_size = sizeof(sPAPRMachineClass),
2433 .class_init = spapr_machine_class_init,
2434 .interfaces = (InterfaceInfo[]) {
2435 { TYPE_FW_PATH_PROVIDER },
2436 { TYPE_NMI },
2437 { TYPE_HOTPLUG_HANDLER },
2442 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
2443 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2444 void *data) \
2446 MachineClass *mc = MACHINE_CLASS(oc); \
2447 spapr_machine_##suffix##_class_options(mc); \
2448 if (latest) { \
2449 mc->alias = "pseries"; \
2450 mc->is_default = 1; \
2453 static void spapr_machine_##suffix##_instance_init(Object *obj) \
2455 MachineState *machine = MACHINE(obj); \
2456 spapr_machine_##suffix##_instance_options(machine); \
2458 static const TypeInfo spapr_machine_##suffix##_info = { \
2459 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
2460 .parent = TYPE_SPAPR_MACHINE, \
2461 .class_init = spapr_machine_##suffix##_class_init, \
2462 .instance_init = spapr_machine_##suffix##_instance_init, \
2463 }; \
2464 static void spapr_machine_register_##suffix(void) \
2466 type_register(&spapr_machine_##suffix##_info); \
2468 type_init(spapr_machine_register_##suffix)
2471 * pseries-2.7
2473 static void spapr_machine_2_7_instance_options(MachineState *machine)
2477 static void spapr_machine_2_7_class_options(MachineClass *mc)
2479 /* Defaults for the latest behaviour inherited from the base class */
2482 DEFINE_SPAPR_MACHINE(2_7, "2.7", true);
2485 * pseries-2.6
2487 #define SPAPR_COMPAT_2_6 \
2488 HW_COMPAT_2_6
2490 static void spapr_machine_2_6_instance_options(MachineState *machine)
2494 static void spapr_machine_2_6_class_options(MachineClass *mc)
2496 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2498 spapr_machine_2_7_class_options(mc);
2499 smc->dr_cpu_enabled = false;
2500 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
2503 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
2506 * pseries-2.5
2508 #define SPAPR_COMPAT_2_5 \
2509 HW_COMPAT_2_5 \
2511 .driver = "spapr-vlan", \
2512 .property = "use-rx-buffer-pools", \
2513 .value = "off", \
2516 static void spapr_machine_2_5_instance_options(MachineState *machine)
2520 static void spapr_machine_2_5_class_options(MachineClass *mc)
2522 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2524 spapr_machine_2_6_class_options(mc);
2525 smc->use_ohci_by_default = true;
2526 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
2529 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
2532 * pseries-2.4
2534 #define SPAPR_COMPAT_2_4 \
2535 HW_COMPAT_2_4
2537 static void spapr_machine_2_4_instance_options(MachineState *machine)
2539 spapr_machine_2_5_instance_options(machine);
2542 static void spapr_machine_2_4_class_options(MachineClass *mc)
2544 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2546 spapr_machine_2_5_class_options(mc);
2547 smc->dr_lmb_enabled = false;
2548 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
2551 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
2554 * pseries-2.3
2556 #define SPAPR_COMPAT_2_3 \
2557 HW_COMPAT_2_3 \
2559 .driver = "spapr-pci-host-bridge",\
2560 .property = "dynamic-reconfiguration",\
2561 .value = "off",\
2564 static void spapr_machine_2_3_instance_options(MachineState *machine)
2566 spapr_machine_2_4_instance_options(machine);
2567 savevm_skip_section_footers();
2568 global_state_set_optional();
2569 savevm_skip_configuration();
2572 static void spapr_machine_2_3_class_options(MachineClass *mc)
2574 spapr_machine_2_4_class_options(mc);
2575 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
2577 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
2580 * pseries-2.2
2583 #define SPAPR_COMPAT_2_2 \
2584 HW_COMPAT_2_2 \
2586 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2587 .property = "mem_win_size",\
2588 .value = "0x20000000",\
2591 static void spapr_machine_2_2_instance_options(MachineState *machine)
2593 spapr_machine_2_3_instance_options(machine);
2594 machine->suppress_vmdesc = true;
2597 static void spapr_machine_2_2_class_options(MachineClass *mc)
2599 spapr_machine_2_3_class_options(mc);
2600 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
2602 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
2605 * pseries-2.1
2607 #define SPAPR_COMPAT_2_1 \
2608 HW_COMPAT_2_1
2610 static void spapr_machine_2_1_instance_options(MachineState *machine)
2612 spapr_machine_2_2_instance_options(machine);
2615 static void spapr_machine_2_1_class_options(MachineClass *mc)
2617 spapr_machine_2_2_class_options(mc);
2618 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
2620 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
2622 static void spapr_machine_register_types(void)
2624 type_register_static(&spapr_machine_info);
2627 type_init(spapr_machine_register_types)