target/arm: Add fp16 support to vfp_expand_imm
[qemu/ar7.git] / util / hbitmap.c
blob289778a55c970fa003f3aaa5e70c21fc1d1fab03
1 /*
2 * Hierarchical Bitmap Data Type
4 * Copyright Red Hat, Inc., 2012
6 * Author: Paolo Bonzini <pbonzini@redhat.com>
8 * This work is licensed under the terms of the GNU GPL, version 2 or
9 * later. See the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
13 #include "qemu/hbitmap.h"
14 #include "qemu/host-utils.h"
15 #include "trace.h"
16 #include "crypto/hash.h"
18 /* HBitmaps provides an array of bits. The bits are stored as usual in an
19 * array of unsigned longs, but HBitmap is also optimized to provide fast
20 * iteration over set bits; going from one bit to the next is O(logB n)
21 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
22 * that the number of levels is in fact fixed.
24 * In order to do this, it stacks multiple bitmaps with progressively coarser
25 * granularity; in all levels except the last, bit N is set iff the N-th
26 * unsigned long is nonzero in the immediately next level. When iteration
27 * completes on the last level it can examine the 2nd-last level to quickly
28 * skip entire words, and even do so recursively to skip blocks of 64 words or
29 * powers thereof (32 on 32-bit machines).
31 * Given an index in the bitmap, it can be split in group of bits like
32 * this (for the 64-bit case):
34 * bits 0-57 => word in the last bitmap | bits 58-63 => bit in the word
35 * bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
36 * bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
38 * So it is easy to move up simply by shifting the index right by
39 * log2(BITS_PER_LONG) bits. To move down, you shift the index left
40 * similarly, and add the word index within the group. Iteration uses
41 * ffs (find first set bit) to find the next word to examine; this
42 * operation can be done in constant time in most current architectures.
44 * Setting or clearing a range of m bits on all levels, the work to perform
45 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
47 * When iterating on a bitmap, each bit (on any level) is only visited
48 * once. Hence, The total cost of visiting a bitmap with m bits in it is
49 * the number of bits that are set in all bitmaps. Unless the bitmap is
50 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
51 * cost of advancing from one bit to the next is usually constant (worst case
52 * O(logB n) as in the non-amortized complexity).
55 struct HBitmap {
56 /* Number of total bits in the bottom level. */
57 uint64_t size;
59 /* Number of set bits in the bottom level. */
60 uint64_t count;
62 /* A scaling factor. Given a granularity of G, each bit in the bitmap will
63 * will actually represent a group of 2^G elements. Each operation on a
64 * range of bits first rounds the bits to determine which group they land
65 * in, and then affect the entire page; iteration will only visit the first
66 * bit of each group. Here is an example of operations in a size-16,
67 * granularity-1 HBitmap:
69 * initial state 00000000
70 * set(start=0, count=9) 11111000 (iter: 0, 2, 4, 6, 8)
71 * reset(start=1, count=3) 00111000 (iter: 4, 6, 8)
72 * set(start=9, count=2) 00111100 (iter: 4, 6, 8, 10)
73 * reset(start=5, count=5) 00000000
75 * From an implementation point of view, when setting or resetting bits,
76 * the bitmap will scale bit numbers right by this amount of bits. When
77 * iterating, the bitmap will scale bit numbers left by this amount of
78 * bits.
80 int granularity;
82 /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */
83 HBitmap *meta;
85 /* A number of progressively less coarse bitmaps (i.e. level 0 is the
86 * coarsest). Each bit in level N represents a word in level N+1 that
87 * has a set bit, except the last level where each bit represents the
88 * actual bitmap.
90 * Note that all bitmaps have the same number of levels. Even a 1-bit
91 * bitmap will still allocate HBITMAP_LEVELS arrays.
93 unsigned long *levels[HBITMAP_LEVELS];
95 /* The length of each levels[] array. */
96 uint64_t sizes[HBITMAP_LEVELS];
99 /* Advance hbi to the next nonzero word and return it. hbi->pos
100 * is updated. Returns zero if we reach the end of the bitmap.
102 unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
104 size_t pos = hbi->pos;
105 const HBitmap *hb = hbi->hb;
106 unsigned i = HBITMAP_LEVELS - 1;
108 unsigned long cur;
109 do {
110 i--;
111 pos >>= BITS_PER_LEVEL;
112 cur = hbi->cur[i] & hb->levels[i][pos];
113 } while (cur == 0);
115 /* Check for end of iteration. We always use fewer than BITS_PER_LONG
116 * bits in the level 0 bitmap; thus we can repurpose the most significant
117 * bit as a sentinel. The sentinel is set in hbitmap_alloc and ensures
118 * that the above loop ends even without an explicit check on i.
121 if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
122 return 0;
124 for (; i < HBITMAP_LEVELS - 1; i++) {
125 /* Shift back pos to the left, matching the right shifts above.
126 * The index of this word's least significant set bit provides
127 * the low-order bits.
129 assert(cur);
130 pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
131 hbi->cur[i] = cur & (cur - 1);
133 /* Set up next level for iteration. */
134 cur = hb->levels[i + 1][pos];
137 hbi->pos = pos;
138 trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
140 assert(cur);
141 return cur;
144 int64_t hbitmap_iter_next(HBitmapIter *hbi)
146 unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1] &
147 hbi->hb->levels[HBITMAP_LEVELS - 1][hbi->pos];
148 int64_t item;
150 if (cur == 0) {
151 cur = hbitmap_iter_skip_words(hbi);
152 if (cur == 0) {
153 return -1;
157 /* The next call will resume work from the next bit. */
158 hbi->cur[HBITMAP_LEVELS - 1] = cur & (cur - 1);
159 item = ((uint64_t)hbi->pos << BITS_PER_LEVEL) + ctzl(cur);
161 return item << hbi->granularity;
164 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
166 unsigned i, bit;
167 uint64_t pos;
169 hbi->hb = hb;
170 pos = first >> hb->granularity;
171 assert(pos < hb->size);
172 hbi->pos = pos >> BITS_PER_LEVEL;
173 hbi->granularity = hb->granularity;
175 for (i = HBITMAP_LEVELS; i-- > 0; ) {
176 bit = pos & (BITS_PER_LONG - 1);
177 pos >>= BITS_PER_LEVEL;
179 /* Drop bits representing items before first. */
180 hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
182 /* We have already added level i+1, so the lowest set bit has
183 * been processed. Clear it.
185 if (i != HBITMAP_LEVELS - 1) {
186 hbi->cur[i] &= ~(1UL << bit);
191 int64_t hbitmap_next_zero(const HBitmap *hb, uint64_t start)
193 size_t pos = (start >> hb->granularity) >> BITS_PER_LEVEL;
194 unsigned long *last_lev = hb->levels[HBITMAP_LEVELS - 1];
195 uint64_t sz = hb->sizes[HBITMAP_LEVELS - 1];
196 unsigned long cur = last_lev[pos];
197 unsigned start_bit_offset =
198 (start >> hb->granularity) & (BITS_PER_LONG - 1);
199 int64_t res;
201 cur |= (1UL << start_bit_offset) - 1;
202 assert((start >> hb->granularity) < hb->size);
204 if (cur == (unsigned long)-1) {
205 do {
206 pos++;
207 } while (pos < sz && last_lev[pos] == (unsigned long)-1);
209 if (pos >= sz) {
210 return -1;
213 cur = last_lev[pos];
216 res = (pos << BITS_PER_LEVEL) + ctol(cur);
217 if (res >= hb->size) {
218 return -1;
221 res = res << hb->granularity;
222 if (res < start) {
223 assert(((start - res) >> hb->granularity) == 0);
224 return start;
227 return res;
230 bool hbitmap_empty(const HBitmap *hb)
232 return hb->count == 0;
235 int hbitmap_granularity(const HBitmap *hb)
237 return hb->granularity;
240 uint64_t hbitmap_count(const HBitmap *hb)
242 return hb->count << hb->granularity;
245 /* Count the number of set bits between start and end, not accounting for
246 * the granularity. Also an example of how to use hbitmap_iter_next_word.
248 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
250 HBitmapIter hbi;
251 uint64_t count = 0;
252 uint64_t end = last + 1;
253 unsigned long cur;
254 size_t pos;
256 hbitmap_iter_init(&hbi, hb, start << hb->granularity);
257 for (;;) {
258 pos = hbitmap_iter_next_word(&hbi, &cur);
259 if (pos >= (end >> BITS_PER_LEVEL)) {
260 break;
262 count += ctpopl(cur);
265 if (pos == (end >> BITS_PER_LEVEL)) {
266 /* Drop bits representing the END-th and subsequent items. */
267 int bit = end & (BITS_PER_LONG - 1);
268 cur &= (1UL << bit) - 1;
269 count += ctpopl(cur);
272 return count;
275 /* Setting starts at the last layer and propagates up if an element
276 * changes.
278 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
280 unsigned long mask;
281 unsigned long old;
283 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
284 assert(start <= last);
286 mask = 2UL << (last & (BITS_PER_LONG - 1));
287 mask -= 1UL << (start & (BITS_PER_LONG - 1));
288 old = *elem;
289 *elem |= mask;
290 return old != *elem;
293 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
294 * Returns true if at least one bit is changed. */
295 static bool hb_set_between(HBitmap *hb, int level, uint64_t start,
296 uint64_t last)
298 size_t pos = start >> BITS_PER_LEVEL;
299 size_t lastpos = last >> BITS_PER_LEVEL;
300 bool changed = false;
301 size_t i;
303 i = pos;
304 if (i < lastpos) {
305 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
306 changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
307 for (;;) {
308 start = next;
309 next += BITS_PER_LONG;
310 if (++i == lastpos) {
311 break;
313 changed |= (hb->levels[level][i] == 0);
314 hb->levels[level][i] = ~0UL;
317 changed |= hb_set_elem(&hb->levels[level][i], start, last);
319 /* If there was any change in this layer, we may have to update
320 * the one above.
322 if (level > 0 && changed) {
323 hb_set_between(hb, level - 1, pos, lastpos);
325 return changed;
328 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
330 /* Compute range in the last layer. */
331 uint64_t first, n;
332 uint64_t last = start + count - 1;
334 trace_hbitmap_set(hb, start, count,
335 start >> hb->granularity, last >> hb->granularity);
337 first = start >> hb->granularity;
338 last >>= hb->granularity;
339 assert(last < hb->size);
340 n = last - first + 1;
342 hb->count += n - hb_count_between(hb, first, last);
343 if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) &&
344 hb->meta) {
345 hbitmap_set(hb->meta, start, count);
349 /* Resetting works the other way round: propagate up if the new
350 * value is zero.
352 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
354 unsigned long mask;
355 bool blanked;
357 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
358 assert(start <= last);
360 mask = 2UL << (last & (BITS_PER_LONG - 1));
361 mask -= 1UL << (start & (BITS_PER_LONG - 1));
362 blanked = *elem != 0 && ((*elem & ~mask) == 0);
363 *elem &= ~mask;
364 return blanked;
367 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
368 * Returns true if at least one bit is changed. */
369 static bool hb_reset_between(HBitmap *hb, int level, uint64_t start,
370 uint64_t last)
372 size_t pos = start >> BITS_PER_LEVEL;
373 size_t lastpos = last >> BITS_PER_LEVEL;
374 bool changed = false;
375 size_t i;
377 i = pos;
378 if (i < lastpos) {
379 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
381 /* Here we need a more complex test than when setting bits. Even if
382 * something was changed, we must not blank bits in the upper level
383 * unless the lower-level word became entirely zero. So, remove pos
384 * from the upper-level range if bits remain set.
386 if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
387 changed = true;
388 } else {
389 pos++;
392 for (;;) {
393 start = next;
394 next += BITS_PER_LONG;
395 if (++i == lastpos) {
396 break;
398 changed |= (hb->levels[level][i] != 0);
399 hb->levels[level][i] = 0UL;
403 /* Same as above, this time for lastpos. */
404 if (hb_reset_elem(&hb->levels[level][i], start, last)) {
405 changed = true;
406 } else {
407 lastpos--;
410 if (level > 0 && changed) {
411 hb_reset_between(hb, level - 1, pos, lastpos);
414 return changed;
418 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
420 /* Compute range in the last layer. */
421 uint64_t first;
422 uint64_t last = start + count - 1;
424 trace_hbitmap_reset(hb, start, count,
425 start >> hb->granularity, last >> hb->granularity);
427 first = start >> hb->granularity;
428 last >>= hb->granularity;
429 assert(last < hb->size);
431 hb->count -= hb_count_between(hb, first, last);
432 if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) &&
433 hb->meta) {
434 hbitmap_set(hb->meta, start, count);
438 void hbitmap_reset_all(HBitmap *hb)
440 unsigned int i;
442 /* Same as hbitmap_alloc() except for memset() instead of malloc() */
443 for (i = HBITMAP_LEVELS; --i >= 1; ) {
444 memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long));
447 hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1);
448 hb->count = 0;
451 bool hbitmap_is_serializable(const HBitmap *hb)
453 /* Every serialized chunk must be aligned to 64 bits so that endianness
454 * requirements can be fulfilled on both 64 bit and 32 bit hosts.
455 * We have hbitmap_serialization_align() which converts this
456 * alignment requirement from bitmap bits to items covered (e.g. sectors).
457 * That value is:
458 * 64 << hb->granularity
459 * Since this value must not exceed UINT64_MAX, hb->granularity must be
460 * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64).
462 * In order for hbitmap_serialization_align() to always return a
463 * meaningful value, bitmaps that are to be serialized must have a
464 * granularity of less than 58. */
466 return hb->granularity < 58;
469 bool hbitmap_get(const HBitmap *hb, uint64_t item)
471 /* Compute position and bit in the last layer. */
472 uint64_t pos = item >> hb->granularity;
473 unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
474 assert(pos < hb->size);
476 return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
479 uint64_t hbitmap_serialization_align(const HBitmap *hb)
481 assert(hbitmap_is_serializable(hb));
483 /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit
484 * hosts. */
485 return UINT64_C(64) << hb->granularity;
488 /* Start should be aligned to serialization granularity, chunk size should be
489 * aligned to serialization granularity too, except for last chunk.
491 static void serialization_chunk(const HBitmap *hb,
492 uint64_t start, uint64_t count,
493 unsigned long **first_el, uint64_t *el_count)
495 uint64_t last = start + count - 1;
496 uint64_t gran = hbitmap_serialization_align(hb);
498 assert((start & (gran - 1)) == 0);
499 assert((last >> hb->granularity) < hb->size);
500 if ((last >> hb->granularity) != hb->size - 1) {
501 assert((count & (gran - 1)) == 0);
504 start = (start >> hb->granularity) >> BITS_PER_LEVEL;
505 last = (last >> hb->granularity) >> BITS_PER_LEVEL;
507 *first_el = &hb->levels[HBITMAP_LEVELS - 1][start];
508 *el_count = last - start + 1;
511 uint64_t hbitmap_serialization_size(const HBitmap *hb,
512 uint64_t start, uint64_t count)
514 uint64_t el_count;
515 unsigned long *cur;
517 if (!count) {
518 return 0;
520 serialization_chunk(hb, start, count, &cur, &el_count);
522 return el_count * sizeof(unsigned long);
525 void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf,
526 uint64_t start, uint64_t count)
528 uint64_t el_count;
529 unsigned long *cur, *end;
531 if (!count) {
532 return;
534 serialization_chunk(hb, start, count, &cur, &el_count);
535 end = cur + el_count;
537 while (cur != end) {
538 unsigned long el =
539 (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur));
541 memcpy(buf, &el, sizeof(el));
542 buf += sizeof(el);
543 cur++;
547 void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf,
548 uint64_t start, uint64_t count,
549 bool finish)
551 uint64_t el_count;
552 unsigned long *cur, *end;
554 if (!count) {
555 return;
557 serialization_chunk(hb, start, count, &cur, &el_count);
558 end = cur + el_count;
560 while (cur != end) {
561 memcpy(cur, buf, sizeof(*cur));
563 if (BITS_PER_LONG == 32) {
564 le32_to_cpus((uint32_t *)cur);
565 } else {
566 le64_to_cpus((uint64_t *)cur);
569 buf += sizeof(unsigned long);
570 cur++;
572 if (finish) {
573 hbitmap_deserialize_finish(hb);
577 void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count,
578 bool finish)
580 uint64_t el_count;
581 unsigned long *first;
583 if (!count) {
584 return;
586 serialization_chunk(hb, start, count, &first, &el_count);
588 memset(first, 0, el_count * sizeof(unsigned long));
589 if (finish) {
590 hbitmap_deserialize_finish(hb);
594 void hbitmap_deserialize_ones(HBitmap *hb, uint64_t start, uint64_t count,
595 bool finish)
597 uint64_t el_count;
598 unsigned long *first;
600 if (!count) {
601 return;
603 serialization_chunk(hb, start, count, &first, &el_count);
605 memset(first, 0xff, el_count * sizeof(unsigned long));
606 if (finish) {
607 hbitmap_deserialize_finish(hb);
611 void hbitmap_deserialize_finish(HBitmap *bitmap)
613 int64_t i, size, prev_size;
614 int lev;
616 /* restore levels starting from penultimate to zero level, assuming
617 * that the last level is ok */
618 size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
619 for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) {
620 prev_size = size;
621 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
622 memset(bitmap->levels[lev], 0, size * sizeof(unsigned long));
624 for (i = 0; i < prev_size; ++i) {
625 if (bitmap->levels[lev + 1][i]) {
626 bitmap->levels[lev][i >> BITS_PER_LEVEL] |=
627 1UL << (i & (BITS_PER_LONG - 1));
632 bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
635 void hbitmap_free(HBitmap *hb)
637 unsigned i;
638 assert(!hb->meta);
639 for (i = HBITMAP_LEVELS; i-- > 0; ) {
640 g_free(hb->levels[i]);
642 g_free(hb);
645 HBitmap *hbitmap_alloc(uint64_t size, int granularity)
647 HBitmap *hb = g_new0(struct HBitmap, 1);
648 unsigned i;
650 assert(granularity >= 0 && granularity < 64);
651 size = (size + (1ULL << granularity) - 1) >> granularity;
652 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
654 hb->size = size;
655 hb->granularity = granularity;
656 for (i = HBITMAP_LEVELS; i-- > 0; ) {
657 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
658 hb->sizes[i] = size;
659 hb->levels[i] = g_new0(unsigned long, size);
662 /* We necessarily have free bits in level 0 due to the definition
663 * of HBITMAP_LEVELS, so use one for a sentinel. This speeds up
664 * hbitmap_iter_skip_words.
666 assert(size == 1);
667 hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
668 return hb;
671 void hbitmap_truncate(HBitmap *hb, uint64_t size)
673 bool shrink;
674 unsigned i;
675 uint64_t num_elements = size;
676 uint64_t old;
678 /* Size comes in as logical elements, adjust for granularity. */
679 size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity;
680 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
681 shrink = size < hb->size;
683 /* bit sizes are identical; nothing to do. */
684 if (size == hb->size) {
685 return;
688 /* If we're losing bits, let's clear those bits before we invalidate all of
689 * our invariants. This helps keep the bitcount consistent, and will prevent
690 * us from carrying around garbage bits beyond the end of the map.
692 if (shrink) {
693 /* Don't clear partial granularity groups;
694 * start at the first full one. */
695 uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity);
696 uint64_t fix_count = (hb->size << hb->granularity) - start;
698 assert(fix_count);
699 hbitmap_reset(hb, start, fix_count);
702 hb->size = size;
703 for (i = HBITMAP_LEVELS; i-- > 0; ) {
704 size = MAX(BITS_TO_LONGS(size), 1);
705 if (hb->sizes[i] == size) {
706 break;
708 old = hb->sizes[i];
709 hb->sizes[i] = size;
710 hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long));
711 if (!shrink) {
712 memset(&hb->levels[i][old], 0x00,
713 (size - old) * sizeof(*hb->levels[i]));
716 if (hb->meta) {
717 hbitmap_truncate(hb->meta, hb->size << hb->granularity);
723 * Given HBitmaps A and B, let A := A (BITOR) B.
724 * Bitmap B will not be modified.
726 * @return true if the merge was successful,
727 * false if it was not attempted.
729 bool hbitmap_merge(HBitmap *a, const HBitmap *b)
731 int i;
732 uint64_t j;
734 if ((a->size != b->size) || (a->granularity != b->granularity)) {
735 return false;
738 if (hbitmap_count(b) == 0) {
739 return true;
742 /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant.
743 * It may be possible to improve running times for sparsely populated maps
744 * by using hbitmap_iter_next, but this is suboptimal for dense maps.
746 for (i = HBITMAP_LEVELS - 1; i >= 0; i--) {
747 for (j = 0; j < a->sizes[i]; j++) {
748 a->levels[i][j] |= b->levels[i][j];
752 return true;
755 HBitmap *hbitmap_create_meta(HBitmap *hb, int chunk_size)
757 assert(!(chunk_size & (chunk_size - 1)));
758 assert(!hb->meta);
759 hb->meta = hbitmap_alloc(hb->size << hb->granularity,
760 hb->granularity + ctz32(chunk_size));
761 return hb->meta;
764 void hbitmap_free_meta(HBitmap *hb)
766 assert(hb->meta);
767 hbitmap_free(hb->meta);
768 hb->meta = NULL;
771 char *hbitmap_sha256(const HBitmap *bitmap, Error **errp)
773 size_t size = bitmap->sizes[HBITMAP_LEVELS - 1] * sizeof(unsigned long);
774 char *data = (char *)bitmap->levels[HBITMAP_LEVELS - 1];
775 char *hash = NULL;
776 qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256, data, size, &hash, errp);
778 return hash;