2 * PowerPC floating point and SPE emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
24 #include "fpu/softfloat.h"
26 static inline float128
float128_snan_to_qnan(float128 x
)
30 r
.high
= x
.high
| 0x0000800000000000;
35 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
36 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
37 #define float16_snan_to_qnan(x) ((x) | 0x0200)
39 static inline bool fp_exceptions_enabled(CPUPPCState
*env
)
41 #ifdef CONFIG_USER_ONLY
44 return (env
->msr
& ((1U << MSR_FE0
) | (1U << MSR_FE1
))) != 0;
48 /*****************************************************************************/
49 /* Floating point operations helpers */
52 * This is the non-arithmatic conversion that happens e.g. on loads.
53 * In the Power ISA pseudocode, this is called DOUBLE.
55 uint64_t helper_todouble(uint32_t arg
)
57 uint32_t abs_arg
= arg
& 0x7fffffff;
60 if (likely(abs_arg
>= 0x00800000)) {
61 if (unlikely(extract32(arg
, 23, 8) == 0xff)) {
63 ret
= (uint64_t)extract32(arg
, 31, 1) << 63;
64 ret
|= (uint64_t)0x7ff << 52;
65 ret
|= (uint64_t)extract32(arg
, 0, 23) << 29;
67 /* Normalized operand. */
68 ret
= (uint64_t)extract32(arg
, 30, 2) << 62;
69 ret
|= ((extract32(arg
, 30, 1) ^ 1) * (uint64_t)7) << 59;
70 ret
|= (uint64_t)extract32(arg
, 0, 30) << 29;
73 /* Zero or Denormalized operand. */
74 ret
= (uint64_t)extract32(arg
, 31, 1) << 63;
75 if (unlikely(abs_arg
!= 0)) {
77 * Denormalized operand.
78 * Shift fraction so that the msb is in the implicit bit position.
79 * Thus, shift is in the range [1:23].
81 int shift
= clz32(abs_arg
) - 8;
83 * The first 3 terms compute the float64 exponent. We then bias
84 * this result by -1 so that we can swallow the implicit bit below.
86 int exp
= -126 - shift
+ 1023 - 1;
88 ret
|= (uint64_t)exp
<< 52;
89 ret
+= (uint64_t)abs_arg
<< (52 - 23 + shift
);
96 * This is the non-arithmatic conversion that happens e.g. on stores.
97 * In the Power ISA pseudocode, this is called SINGLE.
99 uint32_t helper_tosingle(uint64_t arg
)
101 int exp
= extract64(arg
, 52, 11);
104 if (likely(exp
> 896)) {
105 /* No denormalization required (includes Inf, NaN). */
106 ret
= extract64(arg
, 62, 2) << 30;
107 ret
|= extract64(arg
, 29, 30);
110 * Zero or Denormal result. If the exponent is in bounds for
111 * a single-precision denormal result, extract the proper
112 * bits. If the input is not zero, and the exponent is out of
113 * bounds, then the result is undefined; this underflows to
116 ret
= extract64(arg
, 63, 1) << 31;
117 if (unlikely(exp
>= 874)) {
118 /* Denormal result. */
119 ret
|= ((1ULL << 52) | extract64(arg
, 0, 52)) >> (896 + 30 - exp
);
125 static inline int ppc_float32_get_unbiased_exp(float32 f
)
127 return ((f
>> 23) & 0xFF) - 127;
130 static inline int ppc_float64_get_unbiased_exp(float64 f
)
132 return ((f
>> 52) & 0x7FF) - 1023;
135 /* Classify a floating-point number. */
146 #define COMPUTE_CLASS(tp) \
147 static int tp##_classify(tp arg) \
149 int ret = tp##_is_neg(arg) * is_neg; \
150 if (unlikely(tp##_is_any_nan(arg))) { \
151 float_status dummy = { }; /* snan_bit_is_one = 0 */ \
152 ret |= (tp##_is_signaling_nan(arg, &dummy) \
153 ? is_snan : is_qnan); \
154 } else if (unlikely(tp##_is_infinity(arg))) { \
156 } else if (tp##_is_zero(arg)) { \
158 } else if (tp##_is_zero_or_denormal(arg)) { \
159 ret |= is_denormal; \
166 COMPUTE_CLASS(float16
)
167 COMPUTE_CLASS(float32
)
168 COMPUTE_CLASS(float64
)
169 COMPUTE_CLASS(float128
)
171 static void set_fprf_from_class(CPUPPCState
*env
, int class)
173 static const uint8_t fprf
[6][2] = {
174 { 0x04, 0x08 }, /* normalized */
175 { 0x02, 0x12 }, /* zero */
176 { 0x14, 0x18 }, /* denormalized */
177 { 0x05, 0x09 }, /* infinity */
178 { 0x11, 0x11 }, /* qnan */
179 { 0x00, 0x00 }, /* snan -- flags are undefined */
181 bool isneg
= class & is_neg
;
183 env
->fpscr
&= ~FP_FPRF
;
184 env
->fpscr
|= fprf
[ctz32(class)][isneg
] << FPSCR_FPRF
;
187 #define COMPUTE_FPRF(tp) \
188 void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \
190 set_fprf_from_class(env, tp##_classify(arg)); \
193 COMPUTE_FPRF(float16
)
194 COMPUTE_FPRF(float32
)
195 COMPUTE_FPRF(float64
)
196 COMPUTE_FPRF(float128
)
198 /* Floating-point invalid operations exception */
199 static void finish_invalid_op_excp(CPUPPCState
*env
, int op
, uintptr_t retaddr
)
201 /* Update the floating-point invalid operation summary */
203 /* Update the floating-point exception summary */
206 /* Update the floating-point enabled exception summary */
207 env
->fpscr
|= FP_FEX
;
208 if (fp_exceptions_enabled(env
)) {
209 raise_exception_err_ra(env
, POWERPC_EXCP_PROGRAM
,
210 POWERPC_EXCP_FP
| op
, retaddr
);
215 static void finish_invalid_op_arith(CPUPPCState
*env
, int op
,
216 bool set_fpcc
, uintptr_t retaddr
)
218 env
->fpscr
&= ~(FP_FR
| FP_FI
);
221 env
->fpscr
&= ~FP_FPCC
;
222 env
->fpscr
|= (FP_C
| FP_FU
);
225 finish_invalid_op_excp(env
, op
, retaddr
);
229 static void float_invalid_op_vxsnan(CPUPPCState
*env
, uintptr_t retaddr
)
231 env
->fpscr
|= FP_VXSNAN
;
232 finish_invalid_op_excp(env
, POWERPC_EXCP_FP_VXSNAN
, retaddr
);
235 /* Magnitude subtraction of infinities */
236 static void float_invalid_op_vxisi(CPUPPCState
*env
, bool set_fpcc
,
239 env
->fpscr
|= FP_VXISI
;
240 finish_invalid_op_arith(env
, POWERPC_EXCP_FP_VXISI
, set_fpcc
, retaddr
);
243 /* Division of infinity by infinity */
244 static void float_invalid_op_vxidi(CPUPPCState
*env
, bool set_fpcc
,
247 env
->fpscr
|= FP_VXIDI
;
248 finish_invalid_op_arith(env
, POWERPC_EXCP_FP_VXIDI
, set_fpcc
, retaddr
);
251 /* Division of zero by zero */
252 static void float_invalid_op_vxzdz(CPUPPCState
*env
, bool set_fpcc
,
255 env
->fpscr
|= FP_VXZDZ
;
256 finish_invalid_op_arith(env
, POWERPC_EXCP_FP_VXZDZ
, set_fpcc
, retaddr
);
259 /* Multiplication of zero by infinity */
260 static void float_invalid_op_vximz(CPUPPCState
*env
, bool set_fpcc
,
263 env
->fpscr
|= FP_VXIMZ
;
264 finish_invalid_op_arith(env
, POWERPC_EXCP_FP_VXIMZ
, set_fpcc
, retaddr
);
267 /* Square root of a negative number */
268 static void float_invalid_op_vxsqrt(CPUPPCState
*env
, bool set_fpcc
,
271 env
->fpscr
|= FP_VXSQRT
;
272 finish_invalid_op_arith(env
, POWERPC_EXCP_FP_VXSQRT
, set_fpcc
, retaddr
);
275 /* Ordered comparison of NaN */
276 static void float_invalid_op_vxvc(CPUPPCState
*env
, bool set_fpcc
,
279 env
->fpscr
|= FP_VXVC
;
281 env
->fpscr
&= ~FP_FPCC
;
282 env
->fpscr
|= (FP_C
| FP_FU
);
284 /* Update the floating-point invalid operation summary */
286 /* Update the floating-point exception summary */
288 /* We must update the target FPR before raising the exception */
290 CPUState
*cs
= env_cpu(env
);
292 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
293 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_VXVC
;
294 /* Update the floating-point enabled exception summary */
295 env
->fpscr
|= FP_FEX
;
296 /* Exception is deferred */
300 /* Invalid conversion */
301 static void float_invalid_op_vxcvi(CPUPPCState
*env
, bool set_fpcc
,
304 env
->fpscr
|= FP_VXCVI
;
305 env
->fpscr
&= ~(FP_FR
| FP_FI
);
308 env
->fpscr
&= ~FP_FPCC
;
309 env
->fpscr
|= (FP_C
| FP_FU
);
312 finish_invalid_op_excp(env
, POWERPC_EXCP_FP_VXCVI
, retaddr
);
315 static inline void float_zero_divide_excp(CPUPPCState
*env
, uintptr_t raddr
)
318 env
->fpscr
&= ~(FP_FR
| FP_FI
);
319 /* Update the floating-point exception summary */
322 /* Update the floating-point enabled exception summary */
323 env
->fpscr
|= FP_FEX
;
324 if (fp_exceptions_enabled(env
)) {
325 raise_exception_err_ra(env
, POWERPC_EXCP_PROGRAM
,
326 POWERPC_EXCP_FP
| POWERPC_EXCP_FP_ZX
,
332 static inline void float_overflow_excp(CPUPPCState
*env
)
334 CPUState
*cs
= env_cpu(env
);
337 /* Update the floating-point exception summary */
340 /* XXX: should adjust the result */
341 /* Update the floating-point enabled exception summary */
342 env
->fpscr
|= FP_FEX
;
343 /* We must update the target FPR before raising the exception */
344 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
345 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_OX
;
352 static inline void float_underflow_excp(CPUPPCState
*env
)
354 CPUState
*cs
= env_cpu(env
);
357 /* Update the floating-point exception summary */
360 /* XXX: should adjust the result */
361 /* Update the floating-point enabled exception summary */
362 env
->fpscr
|= FP_FEX
;
363 /* We must update the target FPR before raising the exception */
364 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
365 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_UX
;
369 static inline void float_inexact_excp(CPUPPCState
*env
)
371 CPUState
*cs
= env_cpu(env
);
375 /* Update the floating-point exception summary */
378 /* Update the floating-point enabled exception summary */
379 env
->fpscr
|= FP_FEX
;
380 /* We must update the target FPR before raising the exception */
381 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
382 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_XX
;
386 static inline void fpscr_set_rounding_mode(CPUPPCState
*env
)
390 /* Set rounding mode */
393 /* Best approximation (round to nearest) */
394 rnd_type
= float_round_nearest_even
;
397 /* Smaller magnitude (round toward zero) */
398 rnd_type
= float_round_to_zero
;
401 /* Round toward +infinite */
402 rnd_type
= float_round_up
;
406 /* Round toward -infinite */
407 rnd_type
= float_round_down
;
410 set_float_rounding_mode(rnd_type
, &env
->fp_status
);
413 void helper_fpscr_clrbit(CPUPPCState
*env
, uint32_t bit
)
417 prev
= (env
->fpscr
>> bit
) & 1;
418 env
->fpscr
&= ~(1 << bit
);
423 fpscr_set_rounding_mode(env
);
435 /* Set VX bit to zero */
436 env
->fpscr
&= ~FP_VX
;
449 /* Set the FEX bit */
450 env
->fpscr
&= ~FP_FEX
;
459 void helper_fpscr_setbit(CPUPPCState
*env
, uint32_t bit
)
461 CPUState
*cs
= env_cpu(env
);
464 prev
= (env
->fpscr
>> bit
) & 1;
465 env
->fpscr
|= 1 << bit
;
516 env
->error_code
= POWERPC_EXCP_FP
;
518 env
->error_code
|= POWERPC_EXCP_FP_VXSNAN
;
521 env
->error_code
|= POWERPC_EXCP_FP_VXISI
;
524 env
->error_code
|= POWERPC_EXCP_FP_VXIDI
;
527 env
->error_code
|= POWERPC_EXCP_FP_VXZDZ
;
530 env
->error_code
|= POWERPC_EXCP_FP_VXIMZ
;
533 env
->error_code
|= POWERPC_EXCP_FP_VXVC
;
536 env
->error_code
|= POWERPC_EXCP_FP_VXSOFT
;
539 env
->error_code
|= POWERPC_EXCP_FP_VXSQRT
;
542 env
->error_code
|= POWERPC_EXCP_FP_VXCVI
;
550 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_OX
;
557 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_UX
;
564 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_ZX
;
571 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_XX
;
577 fpscr_set_rounding_mode(env
);
582 /* Update the floating-point enabled exception summary */
583 env
->fpscr
|= FP_FEX
;
584 /* We have to update Rc1 before raising the exception */
585 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
591 void helper_store_fpscr(CPUPPCState
*env
, uint64_t arg
, uint32_t mask
)
593 CPUState
*cs
= env_cpu(env
);
594 target_ulong prev
, new;
598 new = (target_ulong
)arg
;
599 new &= ~(FP_FEX
| FP_VX
);
600 new |= prev
& (FP_FEX
| FP_VX
);
601 for (i
= 0; i
< sizeof(target_ulong
) * 2; i
++) {
602 if (mask
& (1 << i
)) {
603 env
->fpscr
&= ~(0xFLL
<< (4 * i
));
604 env
->fpscr
|= new & (0xFLL
<< (4 * i
));
607 /* Update VX and FEX */
611 env
->fpscr
&= ~FP_VX
;
613 if ((fpscr_ex
& fpscr_eex
) != 0) {
614 env
->fpscr
|= FP_FEX
;
615 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
616 /* XXX: we should compute it properly */
617 env
->error_code
= POWERPC_EXCP_FP
;
619 env
->fpscr
&= ~FP_FEX
;
621 fpscr_set_rounding_mode(env
);
624 void store_fpscr(CPUPPCState
*env
, uint64_t arg
, uint32_t mask
)
626 helper_store_fpscr(env
, arg
, mask
);
629 static void do_float_check_status(CPUPPCState
*env
, uintptr_t raddr
)
631 CPUState
*cs
= env_cpu(env
);
632 int status
= get_float_exception_flags(&env
->fp_status
);
634 if (status
& float_flag_overflow
) {
635 float_overflow_excp(env
);
636 } else if (status
& float_flag_underflow
) {
637 float_underflow_excp(env
);
639 if (status
& float_flag_inexact
) {
640 float_inexact_excp(env
);
642 env
->fpscr
&= ~FP_FI
; /* clear the FPSCR[FI] bit */
645 if (cs
->exception_index
== POWERPC_EXCP_PROGRAM
&&
646 (env
->error_code
& POWERPC_EXCP_FP
)) {
647 /* Deferred floating-point exception after target FPR update */
648 if (fp_exceptions_enabled(env
)) {
649 raise_exception_err_ra(env
, cs
->exception_index
,
650 env
->error_code
, raddr
);
655 void helper_float_check_status(CPUPPCState
*env
)
657 do_float_check_status(env
, GETPC());
660 void helper_reset_fpstatus(CPUPPCState
*env
)
662 set_float_exception_flags(0, &env
->fp_status
);
665 static void float_invalid_op_addsub(CPUPPCState
*env
, bool set_fpcc
,
666 uintptr_t retaddr
, int classes
)
668 if ((classes
& ~is_neg
) == is_inf
) {
669 /* Magnitude subtraction of infinities */
670 float_invalid_op_vxisi(env
, set_fpcc
, retaddr
);
671 } else if (classes
& is_snan
) {
672 float_invalid_op_vxsnan(env
, retaddr
);
677 float64
helper_fadd(CPUPPCState
*env
, float64 arg1
, float64 arg2
)
679 float64 ret
= float64_add(arg1
, arg2
, &env
->fp_status
);
680 int status
= get_float_exception_flags(&env
->fp_status
);
682 if (unlikely(status
& float_flag_invalid
)) {
683 float_invalid_op_addsub(env
, 1, GETPC(),
684 float64_classify(arg1
) |
685 float64_classify(arg2
));
692 float64
helper_fsub(CPUPPCState
*env
, float64 arg1
, float64 arg2
)
694 float64 ret
= float64_sub(arg1
, arg2
, &env
->fp_status
);
695 int status
= get_float_exception_flags(&env
->fp_status
);
697 if (unlikely(status
& float_flag_invalid
)) {
698 float_invalid_op_addsub(env
, 1, GETPC(),
699 float64_classify(arg1
) |
700 float64_classify(arg2
));
706 static void float_invalid_op_mul(CPUPPCState
*env
, bool set_fprc
,
707 uintptr_t retaddr
, int classes
)
709 if ((classes
& (is_zero
| is_inf
)) == (is_zero
| is_inf
)) {
710 /* Multiplication of zero by infinity */
711 float_invalid_op_vximz(env
, set_fprc
, retaddr
);
712 } else if (classes
& is_snan
) {
713 float_invalid_op_vxsnan(env
, retaddr
);
718 float64
helper_fmul(CPUPPCState
*env
, float64 arg1
, float64 arg2
)
720 float64 ret
= float64_mul(arg1
, arg2
, &env
->fp_status
);
721 int status
= get_float_exception_flags(&env
->fp_status
);
723 if (unlikely(status
& float_flag_invalid
)) {
724 float_invalid_op_mul(env
, 1, GETPC(),
725 float64_classify(arg1
) |
726 float64_classify(arg2
));
732 static void float_invalid_op_div(CPUPPCState
*env
, bool set_fprc
,
733 uintptr_t retaddr
, int classes
)
736 if (classes
== is_inf
) {
737 /* Division of infinity by infinity */
738 float_invalid_op_vxidi(env
, set_fprc
, retaddr
);
739 } else if (classes
== is_zero
) {
740 /* Division of zero by zero */
741 float_invalid_op_vxzdz(env
, set_fprc
, retaddr
);
742 } else if (classes
& is_snan
) {
743 float_invalid_op_vxsnan(env
, retaddr
);
748 float64
helper_fdiv(CPUPPCState
*env
, float64 arg1
, float64 arg2
)
750 float64 ret
= float64_div(arg1
, arg2
, &env
->fp_status
);
751 int status
= get_float_exception_flags(&env
->fp_status
);
753 if (unlikely(status
)) {
754 if (status
& float_flag_invalid
) {
755 float_invalid_op_div(env
, 1, GETPC(),
756 float64_classify(arg1
) |
757 float64_classify(arg2
));
759 if (status
& float_flag_divbyzero
) {
760 float_zero_divide_excp(env
, GETPC());
767 static void float_invalid_cvt(CPUPPCState
*env
, bool set_fprc
,
768 uintptr_t retaddr
, int class1
)
770 float_invalid_op_vxcvi(env
, set_fprc
, retaddr
);
771 if (class1
& is_snan
) {
772 float_invalid_op_vxsnan(env
, retaddr
);
776 #define FPU_FCTI(op, cvt, nanval) \
777 uint64_t helper_##op(CPUPPCState *env, float64 arg) \
779 uint64_t ret = float64_to_##cvt(arg, &env->fp_status); \
780 int status = get_float_exception_flags(&env->fp_status); \
782 if (unlikely(status)) { \
783 if (status & float_flag_invalid) { \
784 float_invalid_cvt(env, 1, GETPC(), float64_classify(arg)); \
787 do_float_check_status(env, GETPC()); \
792 FPU_FCTI(fctiw
, int32
, 0x80000000U
)
793 FPU_FCTI(fctiwz
, int32_round_to_zero
, 0x80000000U
)
794 FPU_FCTI(fctiwu
, uint32
, 0x00000000U
)
795 FPU_FCTI(fctiwuz
, uint32_round_to_zero
, 0x00000000U
)
796 FPU_FCTI(fctid
, int64
, 0x8000000000000000ULL
)
797 FPU_FCTI(fctidz
, int64_round_to_zero
, 0x8000000000000000ULL
)
798 FPU_FCTI(fctidu
, uint64
, 0x0000000000000000ULL
)
799 FPU_FCTI(fctiduz
, uint64_round_to_zero
, 0x0000000000000000ULL
)
801 #define FPU_FCFI(op, cvtr, is_single) \
802 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
807 float32 tmp = cvtr(arg, &env->fp_status); \
808 farg.d = float32_to_float64(tmp, &env->fp_status); \
810 farg.d = cvtr(arg, &env->fp_status); \
812 do_float_check_status(env, GETPC()); \
816 FPU_FCFI(fcfid
, int64_to_float64
, 0)
817 FPU_FCFI(fcfids
, int64_to_float32
, 1)
818 FPU_FCFI(fcfidu
, uint64_to_float64
, 0)
819 FPU_FCFI(fcfidus
, uint64_to_float32
, 1)
821 static inline uint64_t do_fri(CPUPPCState
*env
, uint64_t arg
,
828 if (unlikely(float64_is_signaling_nan(farg
.d
, &env
->fp_status
))) {
830 float_invalid_op_vxsnan(env
, GETPC());
831 farg
.ll
= arg
| 0x0008000000000000ULL
;
833 int inexact
= get_float_exception_flags(&env
->fp_status
) &
835 set_float_rounding_mode(rounding_mode
, &env
->fp_status
);
836 farg
.ll
= float64_round_to_int(farg
.d
, &env
->fp_status
);
837 /* Restore rounding mode from FPSCR */
838 fpscr_set_rounding_mode(env
);
840 /* fri* does not set FPSCR[XX] */
842 env
->fp_status
.float_exception_flags
&= ~float_flag_inexact
;
845 do_float_check_status(env
, GETPC());
849 uint64_t helper_frin(CPUPPCState
*env
, uint64_t arg
)
851 return do_fri(env
, arg
, float_round_ties_away
);
854 uint64_t helper_friz(CPUPPCState
*env
, uint64_t arg
)
856 return do_fri(env
, arg
, float_round_to_zero
);
859 uint64_t helper_frip(CPUPPCState
*env
, uint64_t arg
)
861 return do_fri(env
, arg
, float_round_up
);
864 uint64_t helper_frim(CPUPPCState
*env
, uint64_t arg
)
866 return do_fri(env
, arg
, float_round_down
);
869 #define FPU_MADDSUB_UPDATE(NAME, TP) \
870 static void NAME(CPUPPCState *env, TP arg1, TP arg2, TP arg3, \
871 unsigned int madd_flags, uintptr_t retaddr) \
873 if (TP##_is_signaling_nan(arg1, &env->fp_status) || \
874 TP##_is_signaling_nan(arg2, &env->fp_status) || \
875 TP##_is_signaling_nan(arg3, &env->fp_status)) { \
876 /* sNaN operation */ \
877 float_invalid_op_vxsnan(env, retaddr); \
879 if ((TP##_is_infinity(arg1) && TP##_is_zero(arg2)) || \
880 (TP##_is_zero(arg1) && TP##_is_infinity(arg2))) { \
881 /* Multiplication of zero by infinity */ \
882 float_invalid_op_vximz(env, 1, retaddr); \
884 if ((TP##_is_infinity(arg1) || TP##_is_infinity(arg2)) && \
885 TP##_is_infinity(arg3)) { \
886 uint8_t aSign, bSign, cSign; \
888 aSign = TP##_is_neg(arg1); \
889 bSign = TP##_is_neg(arg2); \
890 cSign = TP##_is_neg(arg3); \
891 if (madd_flags & float_muladd_negate_c) { \
894 if (aSign ^ bSign ^ cSign) { \
895 float_invalid_op_vxisi(env, 1, retaddr); \
899 FPU_MADDSUB_UPDATE(float32_maddsub_update_excp
, float32
)
900 FPU_MADDSUB_UPDATE(float64_maddsub_update_excp
, float64
)
902 #define FPU_FMADD(op, madd_flags) \
903 uint64_t helper_##op(CPUPPCState *env, uint64_t arg1, \
904 uint64_t arg2, uint64_t arg3) \
907 float64 ret = float64_muladd(arg1, arg2, arg3, madd_flags, \
909 flags = get_float_exception_flags(&env->fp_status); \
911 if (flags & float_flag_invalid) { \
912 float64_maddsub_update_excp(env, arg1, arg2, arg3, \
913 madd_flags, GETPC()); \
915 do_float_check_status(env, GETPC()); \
921 #define MSUB_FLGS float_muladd_negate_c
922 #define NMADD_FLGS float_muladd_negate_result
923 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
925 FPU_FMADD(fmadd
, MADD_FLGS
)
926 FPU_FMADD(fnmadd
, NMADD_FLGS
)
927 FPU_FMADD(fmsub
, MSUB_FLGS
)
928 FPU_FMADD(fnmsub
, NMSUB_FLGS
)
931 uint64_t helper_frsp(CPUPPCState
*env
, uint64_t arg
)
938 if (unlikely(float64_is_signaling_nan(farg
.d
, &env
->fp_status
))) {
939 float_invalid_op_vxsnan(env
, GETPC());
941 f32
= float64_to_float32(farg
.d
, &env
->fp_status
);
942 farg
.d
= float32_to_float64(f32
, &env
->fp_status
);
948 float64
helper_fsqrt(CPUPPCState
*env
, float64 arg
)
950 float64 ret
= float64_sqrt(arg
, &env
->fp_status
);
951 int status
= get_float_exception_flags(&env
->fp_status
);
953 if (unlikely(status
& float_flag_invalid
)) {
954 if (unlikely(float64_is_any_nan(arg
))) {
955 if (unlikely(float64_is_signaling_nan(arg
, &env
->fp_status
))) {
956 /* sNaN square root */
957 float_invalid_op_vxsnan(env
, GETPC());
960 /* Square root of a negative nonzero number */
961 float_invalid_op_vxsqrt(env
, 1, GETPC());
969 float64
helper_fre(CPUPPCState
*env
, float64 arg
)
971 /* "Estimate" the reciprocal with actual division. */
972 float64 ret
= float64_div(float64_one
, arg
, &env
->fp_status
);
973 int status
= get_float_exception_flags(&env
->fp_status
);
975 if (unlikely(status
)) {
976 if (status
& float_flag_invalid
) {
977 if (float64_is_signaling_nan(arg
, &env
->fp_status
)) {
978 /* sNaN reciprocal */
979 float_invalid_op_vxsnan(env
, GETPC());
982 if (status
& float_flag_divbyzero
) {
983 float_zero_divide_excp(env
, GETPC());
984 /* For FPSCR.ZE == 0, the result is 1/2. */
985 ret
= float64_set_sign(float64_half
, float64_is_neg(arg
));
993 uint64_t helper_fres(CPUPPCState
*env
, uint64_t arg
)
1000 if (unlikely(float64_is_signaling_nan(farg
.d
, &env
->fp_status
))) {
1001 /* sNaN reciprocal */
1002 float_invalid_op_vxsnan(env
, GETPC());
1004 farg
.d
= float64_div(float64_one
, farg
.d
, &env
->fp_status
);
1005 f32
= float64_to_float32(farg
.d
, &env
->fp_status
);
1006 farg
.d
= float32_to_float64(f32
, &env
->fp_status
);
1011 /* frsqrte - frsqrte. */
1012 float64
helper_frsqrte(CPUPPCState
*env
, float64 arg
)
1014 /* "Estimate" the reciprocal with actual division. */
1015 float64 rets
= float64_sqrt(arg
, &env
->fp_status
);
1016 float64 retd
= float64_div(float64_one
, rets
, &env
->fp_status
);
1017 int status
= get_float_exception_flags(&env
->fp_status
);
1019 if (unlikely(status
)) {
1020 if (status
& float_flag_invalid
) {
1021 if (float64_is_signaling_nan(arg
, &env
->fp_status
)) {
1022 /* sNaN reciprocal */
1023 float_invalid_op_vxsnan(env
, GETPC());
1025 /* Square root of a negative nonzero number */
1026 float_invalid_op_vxsqrt(env
, 1, GETPC());
1029 if (status
& float_flag_divbyzero
) {
1030 /* Reciprocal of (square root of) zero. */
1031 float_zero_divide_excp(env
, GETPC());
1039 uint64_t helper_fsel(CPUPPCState
*env
, uint64_t arg1
, uint64_t arg2
,
1046 if ((!float64_is_neg(farg1
.d
) || float64_is_zero(farg1
.d
)) &&
1047 !float64_is_any_nan(farg1
.d
)) {
1054 uint32_t helper_ftdiv(uint64_t fra
, uint64_t frb
)
1059 if (unlikely(float64_is_infinity(fra
) ||
1060 float64_is_infinity(frb
) ||
1061 float64_is_zero(frb
))) {
1065 int e_a
= ppc_float64_get_unbiased_exp(fra
);
1066 int e_b
= ppc_float64_get_unbiased_exp(frb
);
1068 if (unlikely(float64_is_any_nan(fra
) ||
1069 float64_is_any_nan(frb
))) {
1071 } else if ((e_b
<= -1022) || (e_b
>= 1021)) {
1073 } else if (!float64_is_zero(fra
) &&
1074 (((e_a
- e_b
) >= 1023) ||
1075 ((e_a
- e_b
) <= -1021) ||
1080 if (unlikely(float64_is_zero_or_denormal(frb
))) {
1081 /* XB is not zero because of the above check and */
1082 /* so must be denormalized. */
1087 return 0x8 | (fg_flag
? 4 : 0) | (fe_flag
? 2 : 0);
1090 uint32_t helper_ftsqrt(uint64_t frb
)
1095 if (unlikely(float64_is_infinity(frb
) || float64_is_zero(frb
))) {
1099 int e_b
= ppc_float64_get_unbiased_exp(frb
);
1101 if (unlikely(float64_is_any_nan(frb
))) {
1103 } else if (unlikely(float64_is_zero(frb
))) {
1105 } else if (unlikely(float64_is_neg(frb
))) {
1107 } else if (!float64_is_zero(frb
) && (e_b
<= (-1022 + 52))) {
1111 if (unlikely(float64_is_zero_or_denormal(frb
))) {
1112 /* XB is not zero because of the above check and */
1113 /* therefore must be denormalized. */
1118 return 0x8 | (fg_flag
? 4 : 0) | (fe_flag
? 2 : 0);
1121 void helper_fcmpu(CPUPPCState
*env
, uint64_t arg1
, uint64_t arg2
,
1124 CPU_DoubleU farg1
, farg2
;
1130 if (unlikely(float64_is_any_nan(farg1
.d
) ||
1131 float64_is_any_nan(farg2
.d
))) {
1133 } else if (float64_lt(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
1135 } else if (!float64_le(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
1141 env
->fpscr
&= ~FP_FPCC
;
1142 env
->fpscr
|= ret
<< FPSCR_FPCC
;
1143 env
->crf
[crfD
] = ret
;
1144 if (unlikely(ret
== 0x01UL
1145 && (float64_is_signaling_nan(farg1
.d
, &env
->fp_status
) ||
1146 float64_is_signaling_nan(farg2
.d
, &env
->fp_status
)))) {
1147 /* sNaN comparison */
1148 float_invalid_op_vxsnan(env
, GETPC());
1152 void helper_fcmpo(CPUPPCState
*env
, uint64_t arg1
, uint64_t arg2
,
1155 CPU_DoubleU farg1
, farg2
;
1161 if (unlikely(float64_is_any_nan(farg1
.d
) ||
1162 float64_is_any_nan(farg2
.d
))) {
1164 } else if (float64_lt(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
1166 } else if (!float64_le(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
1172 env
->fpscr
&= ~FP_FPCC
;
1173 env
->fpscr
|= ret
<< FPSCR_FPCC
;
1174 env
->crf
[crfD
] = (uint32_t) ret
;
1175 if (unlikely(ret
== 0x01UL
)) {
1176 float_invalid_op_vxvc(env
, 1, GETPC());
1177 if (float64_is_signaling_nan(farg1
.d
, &env
->fp_status
) ||
1178 float64_is_signaling_nan(farg2
.d
, &env
->fp_status
)) {
1179 /* sNaN comparison */
1180 float_invalid_op_vxsnan(env
, GETPC());
1185 /* Single-precision floating-point conversions */
1186 static inline uint32_t efscfsi(CPUPPCState
*env
, uint32_t val
)
1190 u
.f
= int32_to_float32(val
, &env
->vec_status
);
1195 static inline uint32_t efscfui(CPUPPCState
*env
, uint32_t val
)
1199 u
.f
= uint32_to_float32(val
, &env
->vec_status
);
1204 static inline int32_t efsctsi(CPUPPCState
*env
, uint32_t val
)
1209 /* NaN are not treated the same way IEEE 754 does */
1210 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1214 return float32_to_int32(u
.f
, &env
->vec_status
);
1217 static inline uint32_t efsctui(CPUPPCState
*env
, uint32_t val
)
1222 /* NaN are not treated the same way IEEE 754 does */
1223 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1227 return float32_to_uint32(u
.f
, &env
->vec_status
);
1230 static inline uint32_t efsctsiz(CPUPPCState
*env
, uint32_t val
)
1235 /* NaN are not treated the same way IEEE 754 does */
1236 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1240 return float32_to_int32_round_to_zero(u
.f
, &env
->vec_status
);
1243 static inline uint32_t efsctuiz(CPUPPCState
*env
, uint32_t val
)
1248 /* NaN are not treated the same way IEEE 754 does */
1249 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1253 return float32_to_uint32_round_to_zero(u
.f
, &env
->vec_status
);
1256 static inline uint32_t efscfsf(CPUPPCState
*env
, uint32_t val
)
1261 u
.f
= int32_to_float32(val
, &env
->vec_status
);
1262 tmp
= int64_to_float32(1ULL << 32, &env
->vec_status
);
1263 u
.f
= float32_div(u
.f
, tmp
, &env
->vec_status
);
1268 static inline uint32_t efscfuf(CPUPPCState
*env
, uint32_t val
)
1273 u
.f
= uint32_to_float32(val
, &env
->vec_status
);
1274 tmp
= uint64_to_float32(1ULL << 32, &env
->vec_status
);
1275 u
.f
= float32_div(u
.f
, tmp
, &env
->vec_status
);
1280 static inline uint32_t efsctsf(CPUPPCState
*env
, uint32_t val
)
1286 /* NaN are not treated the same way IEEE 754 does */
1287 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1290 tmp
= uint64_to_float32(1ULL << 32, &env
->vec_status
);
1291 u
.f
= float32_mul(u
.f
, tmp
, &env
->vec_status
);
1293 return float32_to_int32(u
.f
, &env
->vec_status
);
1296 static inline uint32_t efsctuf(CPUPPCState
*env
, uint32_t val
)
1302 /* NaN are not treated the same way IEEE 754 does */
1303 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1306 tmp
= uint64_to_float32(1ULL << 32, &env
->vec_status
);
1307 u
.f
= float32_mul(u
.f
, tmp
, &env
->vec_status
);
1309 return float32_to_uint32(u
.f
, &env
->vec_status
);
1312 #define HELPER_SPE_SINGLE_CONV(name) \
1313 uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \
1315 return e##name(env, val); \
1318 HELPER_SPE_SINGLE_CONV(fscfsi
);
1320 HELPER_SPE_SINGLE_CONV(fscfui
);
1322 HELPER_SPE_SINGLE_CONV(fscfuf
);
1324 HELPER_SPE_SINGLE_CONV(fscfsf
);
1326 HELPER_SPE_SINGLE_CONV(fsctsi
);
1328 HELPER_SPE_SINGLE_CONV(fsctui
);
1330 HELPER_SPE_SINGLE_CONV(fsctsiz
);
1332 HELPER_SPE_SINGLE_CONV(fsctuiz
);
1334 HELPER_SPE_SINGLE_CONV(fsctsf
);
1336 HELPER_SPE_SINGLE_CONV(fsctuf
);
1338 #define HELPER_SPE_VECTOR_CONV(name) \
1339 uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \
1341 return ((uint64_t)e##name(env, val >> 32) << 32) | \
1342 (uint64_t)e##name(env, val); \
1345 HELPER_SPE_VECTOR_CONV(fscfsi
);
1347 HELPER_SPE_VECTOR_CONV(fscfui
);
1349 HELPER_SPE_VECTOR_CONV(fscfuf
);
1351 HELPER_SPE_VECTOR_CONV(fscfsf
);
1353 HELPER_SPE_VECTOR_CONV(fsctsi
);
1355 HELPER_SPE_VECTOR_CONV(fsctui
);
1357 HELPER_SPE_VECTOR_CONV(fsctsiz
);
1359 HELPER_SPE_VECTOR_CONV(fsctuiz
);
1361 HELPER_SPE_VECTOR_CONV(fsctsf
);
1363 HELPER_SPE_VECTOR_CONV(fsctuf
);
1365 /* Single-precision floating-point arithmetic */
1366 static inline uint32_t efsadd(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1372 u1
.f
= float32_add(u1
.f
, u2
.f
, &env
->vec_status
);
1376 static inline uint32_t efssub(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1382 u1
.f
= float32_sub(u1
.f
, u2
.f
, &env
->vec_status
);
1386 static inline uint32_t efsmul(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1392 u1
.f
= float32_mul(u1
.f
, u2
.f
, &env
->vec_status
);
1396 static inline uint32_t efsdiv(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1402 u1
.f
= float32_div(u1
.f
, u2
.f
, &env
->vec_status
);
1406 #define HELPER_SPE_SINGLE_ARITH(name) \
1407 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1409 return e##name(env, op1, op2); \
1412 HELPER_SPE_SINGLE_ARITH(fsadd
);
1414 HELPER_SPE_SINGLE_ARITH(fssub
);
1416 HELPER_SPE_SINGLE_ARITH(fsmul
);
1418 HELPER_SPE_SINGLE_ARITH(fsdiv
);
1420 #define HELPER_SPE_VECTOR_ARITH(name) \
1421 uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1423 return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \
1424 (uint64_t)e##name(env, op1, op2); \
1427 HELPER_SPE_VECTOR_ARITH(fsadd
);
1429 HELPER_SPE_VECTOR_ARITH(fssub
);
1431 HELPER_SPE_VECTOR_ARITH(fsmul
);
1433 HELPER_SPE_VECTOR_ARITH(fsdiv
);
1435 /* Single-precision floating-point comparisons */
1436 static inline uint32_t efscmplt(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1442 return float32_lt(u1
.f
, u2
.f
, &env
->vec_status
) ? 4 : 0;
1445 static inline uint32_t efscmpgt(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1451 return float32_le(u1
.f
, u2
.f
, &env
->vec_status
) ? 0 : 4;
1454 static inline uint32_t efscmpeq(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1460 return float32_eq(u1
.f
, u2
.f
, &env
->vec_status
) ? 4 : 0;
1463 static inline uint32_t efststlt(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1465 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1466 return efscmplt(env
, op1
, op2
);
1469 static inline uint32_t efststgt(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1471 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1472 return efscmpgt(env
, op1
, op2
);
1475 static inline uint32_t efststeq(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1477 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1478 return efscmpeq(env
, op1
, op2
);
1481 #define HELPER_SINGLE_SPE_CMP(name) \
1482 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1484 return e##name(env, op1, op2); \
1487 HELPER_SINGLE_SPE_CMP(fststlt
);
1489 HELPER_SINGLE_SPE_CMP(fststgt
);
1491 HELPER_SINGLE_SPE_CMP(fststeq
);
1493 HELPER_SINGLE_SPE_CMP(fscmplt
);
1495 HELPER_SINGLE_SPE_CMP(fscmpgt
);
1497 HELPER_SINGLE_SPE_CMP(fscmpeq
);
1499 static inline uint32_t evcmp_merge(int t0
, int t1
)
1501 return (t0
<< 3) | (t1
<< 2) | ((t0
| t1
) << 1) | (t0
& t1
);
1504 #define HELPER_VECTOR_SPE_CMP(name) \
1505 uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1507 return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \
1508 e##name(env, op1, op2)); \
1511 HELPER_VECTOR_SPE_CMP(fststlt
);
1513 HELPER_VECTOR_SPE_CMP(fststgt
);
1515 HELPER_VECTOR_SPE_CMP(fststeq
);
1517 HELPER_VECTOR_SPE_CMP(fscmplt
);
1519 HELPER_VECTOR_SPE_CMP(fscmpgt
);
1521 HELPER_VECTOR_SPE_CMP(fscmpeq
);
1523 /* Double-precision floating-point conversion */
1524 uint64_t helper_efdcfsi(CPUPPCState
*env
, uint32_t val
)
1528 u
.d
= int32_to_float64(val
, &env
->vec_status
);
1533 uint64_t helper_efdcfsid(CPUPPCState
*env
, uint64_t val
)
1537 u
.d
= int64_to_float64(val
, &env
->vec_status
);
1542 uint64_t helper_efdcfui(CPUPPCState
*env
, uint32_t val
)
1546 u
.d
= uint32_to_float64(val
, &env
->vec_status
);
1551 uint64_t helper_efdcfuid(CPUPPCState
*env
, uint64_t val
)
1555 u
.d
= uint64_to_float64(val
, &env
->vec_status
);
1560 uint32_t helper_efdctsi(CPUPPCState
*env
, uint64_t val
)
1565 /* NaN are not treated the same way IEEE 754 does */
1566 if (unlikely(float64_is_any_nan(u
.d
))) {
1570 return float64_to_int32(u
.d
, &env
->vec_status
);
1573 uint32_t helper_efdctui(CPUPPCState
*env
, uint64_t val
)
1578 /* NaN are not treated the same way IEEE 754 does */
1579 if (unlikely(float64_is_any_nan(u
.d
))) {
1583 return float64_to_uint32(u
.d
, &env
->vec_status
);
1586 uint32_t helper_efdctsiz(CPUPPCState
*env
, uint64_t val
)
1591 /* NaN are not treated the same way IEEE 754 does */
1592 if (unlikely(float64_is_any_nan(u
.d
))) {
1596 return float64_to_int32_round_to_zero(u
.d
, &env
->vec_status
);
1599 uint64_t helper_efdctsidz(CPUPPCState
*env
, uint64_t val
)
1604 /* NaN are not treated the same way IEEE 754 does */
1605 if (unlikely(float64_is_any_nan(u
.d
))) {
1609 return float64_to_int64_round_to_zero(u
.d
, &env
->vec_status
);
1612 uint32_t helper_efdctuiz(CPUPPCState
*env
, uint64_t val
)
1617 /* NaN are not treated the same way IEEE 754 does */
1618 if (unlikely(float64_is_any_nan(u
.d
))) {
1622 return float64_to_uint32_round_to_zero(u
.d
, &env
->vec_status
);
1625 uint64_t helper_efdctuidz(CPUPPCState
*env
, uint64_t val
)
1630 /* NaN are not treated the same way IEEE 754 does */
1631 if (unlikely(float64_is_any_nan(u
.d
))) {
1635 return float64_to_uint64_round_to_zero(u
.d
, &env
->vec_status
);
1638 uint64_t helper_efdcfsf(CPUPPCState
*env
, uint32_t val
)
1643 u
.d
= int32_to_float64(val
, &env
->vec_status
);
1644 tmp
= int64_to_float64(1ULL << 32, &env
->vec_status
);
1645 u
.d
= float64_div(u
.d
, tmp
, &env
->vec_status
);
1650 uint64_t helper_efdcfuf(CPUPPCState
*env
, uint32_t val
)
1655 u
.d
= uint32_to_float64(val
, &env
->vec_status
);
1656 tmp
= int64_to_float64(1ULL << 32, &env
->vec_status
);
1657 u
.d
= float64_div(u
.d
, tmp
, &env
->vec_status
);
1662 uint32_t helper_efdctsf(CPUPPCState
*env
, uint64_t val
)
1668 /* NaN are not treated the same way IEEE 754 does */
1669 if (unlikely(float64_is_any_nan(u
.d
))) {
1672 tmp
= uint64_to_float64(1ULL << 32, &env
->vec_status
);
1673 u
.d
= float64_mul(u
.d
, tmp
, &env
->vec_status
);
1675 return float64_to_int32(u
.d
, &env
->vec_status
);
1678 uint32_t helper_efdctuf(CPUPPCState
*env
, uint64_t val
)
1684 /* NaN are not treated the same way IEEE 754 does */
1685 if (unlikely(float64_is_any_nan(u
.d
))) {
1688 tmp
= uint64_to_float64(1ULL << 32, &env
->vec_status
);
1689 u
.d
= float64_mul(u
.d
, tmp
, &env
->vec_status
);
1691 return float64_to_uint32(u
.d
, &env
->vec_status
);
1694 uint32_t helper_efscfd(CPUPPCState
*env
, uint64_t val
)
1700 u2
.f
= float64_to_float32(u1
.d
, &env
->vec_status
);
1705 uint64_t helper_efdcfs(CPUPPCState
*env
, uint32_t val
)
1711 u2
.d
= float32_to_float64(u1
.f
, &env
->vec_status
);
1716 /* Double precision fixed-point arithmetic */
1717 uint64_t helper_efdadd(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1723 u1
.d
= float64_add(u1
.d
, u2
.d
, &env
->vec_status
);
1727 uint64_t helper_efdsub(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1733 u1
.d
= float64_sub(u1
.d
, u2
.d
, &env
->vec_status
);
1737 uint64_t helper_efdmul(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1743 u1
.d
= float64_mul(u1
.d
, u2
.d
, &env
->vec_status
);
1747 uint64_t helper_efddiv(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1753 u1
.d
= float64_div(u1
.d
, u2
.d
, &env
->vec_status
);
1757 /* Double precision floating point helpers */
1758 uint32_t helper_efdtstlt(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1764 return float64_lt(u1
.d
, u2
.d
, &env
->vec_status
) ? 4 : 0;
1767 uint32_t helper_efdtstgt(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1773 return float64_le(u1
.d
, u2
.d
, &env
->vec_status
) ? 0 : 4;
1776 uint32_t helper_efdtsteq(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1782 return float64_eq_quiet(u1
.d
, u2
.d
, &env
->vec_status
) ? 4 : 0;
1785 uint32_t helper_efdcmplt(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1787 /* XXX: TODO: test special values (NaN, infinites, ...) */
1788 return helper_efdtstlt(env
, op1
, op2
);
1791 uint32_t helper_efdcmpgt(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1793 /* XXX: TODO: test special values (NaN, infinites, ...) */
1794 return helper_efdtstgt(env
, op1
, op2
);
1797 uint32_t helper_efdcmpeq(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1799 /* XXX: TODO: test special values (NaN, infinites, ...) */
1800 return helper_efdtsteq(env
, op1
, op2
);
1803 #define float64_to_float64(x, env) x
1807 * VSX_ADD_SUB - VSX floating point add/subtract
1808 * name - instruction mnemonic
1809 * op - operation (add or sub)
1810 * nels - number of elements (1, 2 or 4)
1811 * tp - type (float32 or float64)
1812 * fld - vsr_t field (VsrD(*) or VsrW(*))
1815 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp) \
1816 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \
1817 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1819 ppc_vsr_t t = *xt; \
1822 helper_reset_fpstatus(env); \
1824 for (i = 0; i < nels; i++) { \
1825 float_status tstat = env->fp_status; \
1826 set_float_exception_flags(0, &tstat); \
1827 t.fld = tp##_##op(xa->fld, xb->fld, &tstat); \
1828 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1830 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1831 float_invalid_op_addsub(env, sfprf, GETPC(), \
1832 tp##_classify(xa->fld) | \
1833 tp##_classify(xb->fld)); \
1837 t.fld = helper_frsp(env, t.fld); \
1841 helper_compute_fprf_float64(env, t.fld); \
1845 do_float_check_status(env, GETPC()); \
1848 VSX_ADD_SUB(xsadddp
, add
, 1, float64
, VsrD(0), 1, 0)
1849 VSX_ADD_SUB(xsaddsp
, add
, 1, float64
, VsrD(0), 1, 1)
1850 VSX_ADD_SUB(xvadddp
, add
, 2, float64
, VsrD(i
), 0, 0)
1851 VSX_ADD_SUB(xvaddsp
, add
, 4, float32
, VsrW(i
), 0, 0)
1852 VSX_ADD_SUB(xssubdp
, sub
, 1, float64
, VsrD(0), 1, 0)
1853 VSX_ADD_SUB(xssubsp
, sub
, 1, float64
, VsrD(0), 1, 1)
1854 VSX_ADD_SUB(xvsubdp
, sub
, 2, float64
, VsrD(i
), 0, 0)
1855 VSX_ADD_SUB(xvsubsp
, sub
, 4, float32
, VsrW(i
), 0, 0)
1857 void helper_xsaddqp(CPUPPCState
*env
, uint32_t opcode
,
1858 ppc_vsr_t
*xt
, ppc_vsr_t
*xa
, ppc_vsr_t
*xb
)
1863 helper_reset_fpstatus(env
);
1865 tstat
= env
->fp_status
;
1866 if (unlikely(Rc(opcode
) != 0)) {
1867 tstat
.float_rounding_mode
= float_round_to_odd
;
1870 set_float_exception_flags(0, &tstat
);
1871 t
.f128
= float128_add(xa
->f128
, xb
->f128
, &tstat
);
1872 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
1874 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid
)) {
1875 float_invalid_op_addsub(env
, 1, GETPC(),
1876 float128_classify(xa
->f128
) |
1877 float128_classify(xb
->f128
));
1880 helper_compute_fprf_float128(env
, t
.f128
);
1883 do_float_check_status(env
, GETPC());
1887 * VSX_MUL - VSX floating point multiply
1888 * op - instruction mnemonic
1889 * nels - number of elements (1, 2 or 4)
1890 * tp - type (float32 or float64)
1891 * fld - vsr_t field (VsrD(*) or VsrW(*))
1894 #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp) \
1895 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
1896 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1898 ppc_vsr_t t = *xt; \
1901 helper_reset_fpstatus(env); \
1903 for (i = 0; i < nels; i++) { \
1904 float_status tstat = env->fp_status; \
1905 set_float_exception_flags(0, &tstat); \
1906 t.fld = tp##_mul(xa->fld, xb->fld, &tstat); \
1907 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1909 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1910 float_invalid_op_mul(env, sfprf, GETPC(), \
1911 tp##_classify(xa->fld) | \
1912 tp##_classify(xb->fld)); \
1916 t.fld = helper_frsp(env, t.fld); \
1920 helper_compute_fprf_float64(env, t.fld); \
1925 do_float_check_status(env, GETPC()); \
1928 VSX_MUL(xsmuldp
, 1, float64
, VsrD(0), 1, 0)
1929 VSX_MUL(xsmulsp
, 1, float64
, VsrD(0), 1, 1)
1930 VSX_MUL(xvmuldp
, 2, float64
, VsrD(i
), 0, 0)
1931 VSX_MUL(xvmulsp
, 4, float32
, VsrW(i
), 0, 0)
1933 void helper_xsmulqp(CPUPPCState
*env
, uint32_t opcode
,
1934 ppc_vsr_t
*xt
, ppc_vsr_t
*xa
, ppc_vsr_t
*xb
)
1939 helper_reset_fpstatus(env
);
1940 tstat
= env
->fp_status
;
1941 if (unlikely(Rc(opcode
) != 0)) {
1942 tstat
.float_rounding_mode
= float_round_to_odd
;
1945 set_float_exception_flags(0, &tstat
);
1946 t
.f128
= float128_mul(xa
->f128
, xb
->f128
, &tstat
);
1947 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
1949 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid
)) {
1950 float_invalid_op_mul(env
, 1, GETPC(),
1951 float128_classify(xa
->f128
) |
1952 float128_classify(xb
->f128
));
1954 helper_compute_fprf_float128(env
, t
.f128
);
1957 do_float_check_status(env
, GETPC());
1961 * VSX_DIV - VSX floating point divide
1962 * op - instruction mnemonic
1963 * nels - number of elements (1, 2 or 4)
1964 * tp - type (float32 or float64)
1965 * fld - vsr_t field (VsrD(*) or VsrW(*))
1968 #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp) \
1969 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
1970 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1972 ppc_vsr_t t = *xt; \
1975 helper_reset_fpstatus(env); \
1977 for (i = 0; i < nels; i++) { \
1978 float_status tstat = env->fp_status; \
1979 set_float_exception_flags(0, &tstat); \
1980 t.fld = tp##_div(xa->fld, xb->fld, &tstat); \
1981 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1983 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1984 float_invalid_op_div(env, sfprf, GETPC(), \
1985 tp##_classify(xa->fld) | \
1986 tp##_classify(xb->fld)); \
1988 if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) { \
1989 float_zero_divide_excp(env, GETPC()); \
1993 t.fld = helper_frsp(env, t.fld); \
1997 helper_compute_fprf_float64(env, t.fld); \
2002 do_float_check_status(env, GETPC()); \
2005 VSX_DIV(xsdivdp
, 1, float64
, VsrD(0), 1, 0)
2006 VSX_DIV(xsdivsp
, 1, float64
, VsrD(0), 1, 1)
2007 VSX_DIV(xvdivdp
, 2, float64
, VsrD(i
), 0, 0)
2008 VSX_DIV(xvdivsp
, 4, float32
, VsrW(i
), 0, 0)
2010 void helper_xsdivqp(CPUPPCState
*env
, uint32_t opcode
,
2011 ppc_vsr_t
*xt
, ppc_vsr_t
*xa
, ppc_vsr_t
*xb
)
2016 helper_reset_fpstatus(env
);
2017 tstat
= env
->fp_status
;
2018 if (unlikely(Rc(opcode
) != 0)) {
2019 tstat
.float_rounding_mode
= float_round_to_odd
;
2022 set_float_exception_flags(0, &tstat
);
2023 t
.f128
= float128_div(xa
->f128
, xb
->f128
, &tstat
);
2024 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
2026 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid
)) {
2027 float_invalid_op_div(env
, 1, GETPC(),
2028 float128_classify(xa
->f128
) |
2029 float128_classify(xb
->f128
));
2031 if (unlikely(tstat
.float_exception_flags
& float_flag_divbyzero
)) {
2032 float_zero_divide_excp(env
, GETPC());
2035 helper_compute_fprf_float128(env
, t
.f128
);
2037 do_float_check_status(env
, GETPC());
2041 * VSX_RE - VSX floating point reciprocal estimate
2042 * op - instruction mnemonic
2043 * nels - number of elements (1, 2 or 4)
2044 * tp - type (float32 or float64)
2045 * fld - vsr_t field (VsrD(*) or VsrW(*))
2048 #define VSX_RE(op, nels, tp, fld, sfprf, r2sp) \
2049 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2051 ppc_vsr_t t = *xt; \
2054 helper_reset_fpstatus(env); \
2056 for (i = 0; i < nels; i++) { \
2057 if (unlikely(tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \
2058 float_invalid_op_vxsnan(env, GETPC()); \
2060 t.fld = tp##_div(tp##_one, xb->fld, &env->fp_status); \
2063 t.fld = helper_frsp(env, t.fld); \
2067 helper_compute_fprf_float64(env, t.fld); \
2072 do_float_check_status(env, GETPC()); \
2075 VSX_RE(xsredp
, 1, float64
, VsrD(0), 1, 0)
2076 VSX_RE(xsresp
, 1, float64
, VsrD(0), 1, 1)
2077 VSX_RE(xvredp
, 2, float64
, VsrD(i
), 0, 0)
2078 VSX_RE(xvresp
, 4, float32
, VsrW(i
), 0, 0)
2081 * VSX_SQRT - VSX floating point square root
2082 * op - instruction mnemonic
2083 * nels - number of elements (1, 2 or 4)
2084 * tp - type (float32 or float64)
2085 * fld - vsr_t field (VsrD(*) or VsrW(*))
2088 #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp) \
2089 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2091 ppc_vsr_t t = *xt; \
2094 helper_reset_fpstatus(env); \
2096 for (i = 0; i < nels; i++) { \
2097 float_status tstat = env->fp_status; \
2098 set_float_exception_flags(0, &tstat); \
2099 t.fld = tp##_sqrt(xb->fld, &tstat); \
2100 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2102 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2103 if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) { \
2104 float_invalid_op_vxsqrt(env, sfprf, GETPC()); \
2105 } else if (tp##_is_signaling_nan(xb->fld, &tstat)) { \
2106 float_invalid_op_vxsnan(env, GETPC()); \
2111 t.fld = helper_frsp(env, t.fld); \
2115 helper_compute_fprf_float64(env, t.fld); \
2120 do_float_check_status(env, GETPC()); \
2123 VSX_SQRT(xssqrtdp
, 1, float64
, VsrD(0), 1, 0)
2124 VSX_SQRT(xssqrtsp
, 1, float64
, VsrD(0), 1, 1)
2125 VSX_SQRT(xvsqrtdp
, 2, float64
, VsrD(i
), 0, 0)
2126 VSX_SQRT(xvsqrtsp
, 4, float32
, VsrW(i
), 0, 0)
2129 *VSX_RSQRTE - VSX floating point reciprocal square root estimate
2130 * op - instruction mnemonic
2131 * nels - number of elements (1, 2 or 4)
2132 * tp - type (float32 or float64)
2133 * fld - vsr_t field (VsrD(*) or VsrW(*))
2136 #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp) \
2137 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2139 ppc_vsr_t t = *xt; \
2142 helper_reset_fpstatus(env); \
2144 for (i = 0; i < nels; i++) { \
2145 float_status tstat = env->fp_status; \
2146 set_float_exception_flags(0, &tstat); \
2147 t.fld = tp##_sqrt(xb->fld, &tstat); \
2148 t.fld = tp##_div(tp##_one, t.fld, &tstat); \
2149 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2151 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2152 if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) { \
2153 float_invalid_op_vxsqrt(env, sfprf, GETPC()); \
2154 } else if (tp##_is_signaling_nan(xb->fld, &tstat)) { \
2155 float_invalid_op_vxsnan(env, GETPC()); \
2160 t.fld = helper_frsp(env, t.fld); \
2164 helper_compute_fprf_float64(env, t.fld); \
2169 do_float_check_status(env, GETPC()); \
2172 VSX_RSQRTE(xsrsqrtedp
, 1, float64
, VsrD(0), 1, 0)
2173 VSX_RSQRTE(xsrsqrtesp
, 1, float64
, VsrD(0), 1, 1)
2174 VSX_RSQRTE(xvrsqrtedp
, 2, float64
, VsrD(i
), 0, 0)
2175 VSX_RSQRTE(xvrsqrtesp
, 4, float32
, VsrW(i
), 0, 0)
2178 * VSX_TDIV - VSX floating point test for divide
2179 * op - instruction mnemonic
2180 * nels - number of elements (1, 2 or 4)
2181 * tp - type (float32 or float64)
2182 * fld - vsr_t field (VsrD(*) or VsrW(*))
2183 * emin - minimum unbiased exponent
2184 * emax - maximum unbiased exponent
2185 * nbits - number of fraction bits
2187 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \
2188 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2189 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2195 for (i = 0; i < nels; i++) { \
2196 if (unlikely(tp##_is_infinity(xa->fld) || \
2197 tp##_is_infinity(xb->fld) || \
2198 tp##_is_zero(xb->fld))) { \
2202 int e_a = ppc_##tp##_get_unbiased_exp(xa->fld); \
2203 int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \
2205 if (unlikely(tp##_is_any_nan(xa->fld) || \
2206 tp##_is_any_nan(xb->fld))) { \
2208 } else if ((e_b <= emin) || (e_b >= (emax - 2))) { \
2210 } else if (!tp##_is_zero(xa->fld) && \
2211 (((e_a - e_b) >= emax) || \
2212 ((e_a - e_b) <= (emin + 1)) || \
2213 (e_a <= (emin + nbits)))) { \
2217 if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \
2219 * XB is not zero because of the above check and so \
2220 * must be denormalized. \
2227 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2230 VSX_TDIV(xstdivdp
, 1, float64
, VsrD(0), -1022, 1023, 52)
2231 VSX_TDIV(xvtdivdp
, 2, float64
, VsrD(i
), -1022, 1023, 52)
2232 VSX_TDIV(xvtdivsp
, 4, float32
, VsrW(i
), -126, 127, 23)
2235 * VSX_TSQRT - VSX floating point test for square root
2236 * op - instruction mnemonic
2237 * nels - number of elements (1, 2 or 4)
2238 * tp - type (float32 or float64)
2239 * fld - vsr_t field (VsrD(*) or VsrW(*))
2240 * emin - minimum unbiased exponent
2241 * emax - maximum unbiased exponent
2242 * nbits - number of fraction bits
2244 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \
2245 void helper_##op(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb) \
2251 for (i = 0; i < nels; i++) { \
2252 if (unlikely(tp##_is_infinity(xb->fld) || \
2253 tp##_is_zero(xb->fld))) { \
2257 int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \
2259 if (unlikely(tp##_is_any_nan(xb->fld))) { \
2261 } else if (unlikely(tp##_is_zero(xb->fld))) { \
2263 } else if (unlikely(tp##_is_neg(xb->fld))) { \
2265 } else if (!tp##_is_zero(xb->fld) && \
2266 (e_b <= (emin + nbits))) { \
2270 if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \
2272 * XB is not zero because of the above check and \
2273 * therefore must be denormalized. \
2280 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2283 VSX_TSQRT(xstsqrtdp
, 1, float64
, VsrD(0), -1022, 52)
2284 VSX_TSQRT(xvtsqrtdp
, 2, float64
, VsrD(i
), -1022, 52)
2285 VSX_TSQRT(xvtsqrtsp
, 4, float32
, VsrW(i
), -126, 23)
2288 * VSX_MADD - VSX floating point muliply/add variations
2289 * op - instruction mnemonic
2290 * nels - number of elements (1, 2 or 4)
2291 * tp - type (float32 or float64)
2292 * fld - vsr_t field (VsrD(*) or VsrW(*))
2293 * maddflgs - flags for the float*muladd routine that control the
2294 * various forms (madd, msub, nmadd, nmsub)
2297 #define VSX_MADD(op, nels, tp, fld, maddflgs, sfprf, r2sp) \
2298 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2299 ppc_vsr_t *xa, ppc_vsr_t *b, ppc_vsr_t *c) \
2301 ppc_vsr_t t = *xt; \
2304 helper_reset_fpstatus(env); \
2306 for (i = 0; i < nels; i++) { \
2307 float_status tstat = env->fp_status; \
2308 set_float_exception_flags(0, &tstat); \
2309 if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2311 * Avoid double rounding errors by rounding the intermediate \
2314 set_float_rounding_mode(float_round_to_zero, &tstat); \
2315 t.fld = tp##_muladd(xa->fld, b->fld, c->fld, \
2316 maddflgs, &tstat); \
2317 t.fld |= (get_float_exception_flags(&tstat) & \
2318 float_flag_inexact) != 0; \
2320 t.fld = tp##_muladd(xa->fld, b->fld, c->fld, \
2321 maddflgs, &tstat); \
2323 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2325 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2326 tp##_maddsub_update_excp(env, xa->fld, b->fld, \
2327 c->fld, maddflgs, GETPC()); \
2331 t.fld = helper_frsp(env, t.fld); \
2335 helper_compute_fprf_float64(env, t.fld); \
2339 do_float_check_status(env, GETPC()); \
2342 VSX_MADD(xsmadddp
, 1, float64
, VsrD(0), MADD_FLGS
, 1, 0)
2343 VSX_MADD(xsmsubdp
, 1, float64
, VsrD(0), MSUB_FLGS
, 1, 0)
2344 VSX_MADD(xsnmadddp
, 1, float64
, VsrD(0), NMADD_FLGS
, 1, 0)
2345 VSX_MADD(xsnmsubdp
, 1, float64
, VsrD(0), NMSUB_FLGS
, 1, 0)
2346 VSX_MADD(xsmaddsp
, 1, float64
, VsrD(0), MADD_FLGS
, 1, 1)
2347 VSX_MADD(xsmsubsp
, 1, float64
, VsrD(0), MSUB_FLGS
, 1, 1)
2348 VSX_MADD(xsnmaddsp
, 1, float64
, VsrD(0), NMADD_FLGS
, 1, 1)
2349 VSX_MADD(xsnmsubsp
, 1, float64
, VsrD(0), NMSUB_FLGS
, 1, 1)
2351 VSX_MADD(xvmadddp
, 2, float64
, VsrD(i
), MADD_FLGS
, 0, 0)
2352 VSX_MADD(xvmsubdp
, 2, float64
, VsrD(i
), MSUB_FLGS
, 0, 0)
2353 VSX_MADD(xvnmadddp
, 2, float64
, VsrD(i
), NMADD_FLGS
, 0, 0)
2354 VSX_MADD(xvnmsubdp
, 2, float64
, VsrD(i
), NMSUB_FLGS
, 0, 0)
2356 VSX_MADD(xvmaddsp
, 4, float32
, VsrW(i
), MADD_FLGS
, 0, 0)
2357 VSX_MADD(xvmsubsp
, 4, float32
, VsrW(i
), MSUB_FLGS
, 0, 0)
2358 VSX_MADD(xvnmaddsp
, 4, float32
, VsrW(i
), NMADD_FLGS
, 0, 0)
2359 VSX_MADD(xvnmsubsp
, 4, float32
, VsrW(i
), NMSUB_FLGS
, 0, 0)
2362 * VSX_SCALAR_CMP_DP - VSX scalar floating point compare double precision
2363 * op - instruction mnemonic
2364 * cmp - comparison operation
2365 * exp - expected result of comparison
2366 * svxvc - set VXVC bit
2368 #define VSX_SCALAR_CMP_DP(op, cmp, exp, svxvc) \
2369 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2370 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2372 ppc_vsr_t t = *xt; \
2373 bool vxsnan_flag = false, vxvc_flag = false, vex_flag = false; \
2375 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \
2376 float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2377 vxsnan_flag = true; \
2378 if (fpscr_ve == 0 && svxvc) { \
2381 } else if (svxvc) { \
2382 vxvc_flag = float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) || \
2383 float64_is_quiet_nan(xb->VsrD(0), &env->fp_status); \
2385 if (vxsnan_flag) { \
2386 float_invalid_op_vxsnan(env, GETPC()); \
2389 float_invalid_op_vxvc(env, 0, GETPC()); \
2391 vex_flag = fpscr_ve && (vxvc_flag || vxsnan_flag); \
2394 if (float64_##cmp(xb->VsrD(0), xa->VsrD(0), \
2395 &env->fp_status) == exp) { \
2404 do_float_check_status(env, GETPC()); \
2407 VSX_SCALAR_CMP_DP(xscmpeqdp
, eq
, 1, 0)
2408 VSX_SCALAR_CMP_DP(xscmpgedp
, le
, 1, 1)
2409 VSX_SCALAR_CMP_DP(xscmpgtdp
, lt
, 1, 1)
2410 VSX_SCALAR_CMP_DP(xscmpnedp
, eq
, 0, 0)
2412 void helper_xscmpexpdp(CPUPPCState
*env
, uint32_t opcode
,
2413 ppc_vsr_t
*xa
, ppc_vsr_t
*xb
)
2415 int64_t exp_a
, exp_b
;
2418 exp_a
= extract64(xa
->VsrD(0), 52, 11);
2419 exp_b
= extract64(xb
->VsrD(0), 52, 11);
2421 if (unlikely(float64_is_any_nan(xa
->VsrD(0)) ||
2422 float64_is_any_nan(xb
->VsrD(0)))) {
2425 if (exp_a
< exp_b
) {
2427 } else if (exp_a
> exp_b
) {
2434 env
->fpscr
&= ~FP_FPCC
;
2435 env
->fpscr
|= cc
<< FPSCR_FPCC
;
2436 env
->crf
[BF(opcode
)] = cc
;
2438 do_float_check_status(env
, GETPC());
2441 void helper_xscmpexpqp(CPUPPCState
*env
, uint32_t opcode
,
2442 ppc_vsr_t
*xa
, ppc_vsr_t
*xb
)
2444 int64_t exp_a
, exp_b
;
2447 exp_a
= extract64(xa
->VsrD(0), 48, 15);
2448 exp_b
= extract64(xb
->VsrD(0), 48, 15);
2450 if (unlikely(float128_is_any_nan(xa
->f128
) ||
2451 float128_is_any_nan(xb
->f128
))) {
2454 if (exp_a
< exp_b
) {
2456 } else if (exp_a
> exp_b
) {
2463 env
->fpscr
&= ~FP_FPCC
;
2464 env
->fpscr
|= cc
<< FPSCR_FPCC
;
2465 env
->crf
[BF(opcode
)] = cc
;
2467 do_float_check_status(env
, GETPC());
2470 #define VSX_SCALAR_CMP(op, ordered) \
2471 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2472 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2475 bool vxsnan_flag = false, vxvc_flag = false; \
2477 helper_reset_fpstatus(env); \
2479 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \
2480 float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2481 vxsnan_flag = true; \
2483 if (fpscr_ve == 0 && ordered) { \
2486 } else if (float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) || \
2487 float64_is_quiet_nan(xb->VsrD(0), &env->fp_status)) { \
2493 if (vxsnan_flag) { \
2494 float_invalid_op_vxsnan(env, GETPC()); \
2497 float_invalid_op_vxvc(env, 0, GETPC()); \
2500 if (float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) { \
2502 } else if (!float64_le(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) { \
2508 env->fpscr &= ~FP_FPCC; \
2509 env->fpscr |= cc << FPSCR_FPCC; \
2510 env->crf[BF(opcode)] = cc; \
2512 do_float_check_status(env, GETPC()); \
2515 VSX_SCALAR_CMP(xscmpodp
, 1)
2516 VSX_SCALAR_CMP(xscmpudp
, 0)
2518 #define VSX_SCALAR_CMPQ(op, ordered) \
2519 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2520 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2523 bool vxsnan_flag = false, vxvc_flag = false; \
2525 helper_reset_fpstatus(env); \
2527 if (float128_is_signaling_nan(xa->f128, &env->fp_status) || \
2528 float128_is_signaling_nan(xb->f128, &env->fp_status)) { \
2529 vxsnan_flag = true; \
2531 if (fpscr_ve == 0 && ordered) { \
2534 } else if (float128_is_quiet_nan(xa->f128, &env->fp_status) || \
2535 float128_is_quiet_nan(xb->f128, &env->fp_status)) { \
2541 if (vxsnan_flag) { \
2542 float_invalid_op_vxsnan(env, GETPC()); \
2545 float_invalid_op_vxvc(env, 0, GETPC()); \
2548 if (float128_lt(xa->f128, xb->f128, &env->fp_status)) { \
2550 } else if (!float128_le(xa->f128, xb->f128, &env->fp_status)) { \
2556 env->fpscr &= ~FP_FPCC; \
2557 env->fpscr |= cc << FPSCR_FPCC; \
2558 env->crf[BF(opcode)] = cc; \
2560 do_float_check_status(env, GETPC()); \
2563 VSX_SCALAR_CMPQ(xscmpoqp
, 1)
2564 VSX_SCALAR_CMPQ(xscmpuqp
, 0)
2567 * VSX_MAX_MIN - VSX floating point maximum/minimum
2568 * name - instruction mnemonic
2569 * op - operation (max or min)
2570 * nels - number of elements (1, 2 or 4)
2571 * tp - type (float32 or float64)
2572 * fld - vsr_t field (VsrD(*) or VsrW(*))
2574 #define VSX_MAX_MIN(name, op, nels, tp, fld) \
2575 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \
2576 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2578 ppc_vsr_t t = *xt; \
2581 for (i = 0; i < nels; i++) { \
2582 t.fld = tp##_##op(xa->fld, xb->fld, &env->fp_status); \
2583 if (unlikely(tp##_is_signaling_nan(xa->fld, &env->fp_status) || \
2584 tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \
2585 float_invalid_op_vxsnan(env, GETPC()); \
2590 do_float_check_status(env, GETPC()); \
2593 VSX_MAX_MIN(xsmaxdp
, maxnum
, 1, float64
, VsrD(0))
2594 VSX_MAX_MIN(xvmaxdp
, maxnum
, 2, float64
, VsrD(i
))
2595 VSX_MAX_MIN(xvmaxsp
, maxnum
, 4, float32
, VsrW(i
))
2596 VSX_MAX_MIN(xsmindp
, minnum
, 1, float64
, VsrD(0))
2597 VSX_MAX_MIN(xvmindp
, minnum
, 2, float64
, VsrD(i
))
2598 VSX_MAX_MIN(xvminsp
, minnum
, 4, float32
, VsrW(i
))
2600 #define VSX_MAX_MINC(name, max) \
2601 void helper_##name(CPUPPCState *env, uint32_t opcode, \
2602 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \
2604 ppc_vsr_t t = *xt; \
2605 bool vxsnan_flag = false, vex_flag = false; \
2607 if (unlikely(float64_is_any_nan(xa->VsrD(0)) || \
2608 float64_is_any_nan(xb->VsrD(0)))) { \
2609 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \
2610 float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2611 vxsnan_flag = true; \
2613 t.VsrD(0) = xb->VsrD(0); \
2614 } else if ((max && \
2615 !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \
2617 float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \
2618 t.VsrD(0) = xa->VsrD(0); \
2620 t.VsrD(0) = xb->VsrD(0); \
2623 vex_flag = fpscr_ve & vxsnan_flag; \
2624 if (vxsnan_flag) { \
2625 float_invalid_op_vxsnan(env, GETPC()); \
2632 VSX_MAX_MINC(xsmaxcdp, 1);
2633 VSX_MAX_MINC(xsmincdp
, 0);
2635 #define VSX_MAX_MINJ(name, max) \
2636 void helper_##name(CPUPPCState *env, uint32_t opcode, \
2637 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \
2639 ppc_vsr_t t = *xt; \
2640 bool vxsnan_flag = false, vex_flag = false; \
2642 if (unlikely(float64_is_any_nan(xa->VsrD(0)))) { \
2643 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status)) { \
2644 vxsnan_flag = true; \
2646 t.VsrD(0) = xa->VsrD(0); \
2647 } else if (unlikely(float64_is_any_nan(xb->VsrD(0)))) { \
2648 if (float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2649 vxsnan_flag = true; \
2651 t.VsrD(0) = xb->VsrD(0); \
2652 } else if (float64_is_zero(xa->VsrD(0)) && \
2653 float64_is_zero(xb->VsrD(0))) { \
2655 if (!float64_is_neg(xa->VsrD(0)) || \
2656 !float64_is_neg(xb->VsrD(0))) { \
2659 t.VsrD(0) = 0x8000000000000000ULL; \
2662 if (float64_is_neg(xa->VsrD(0)) || \
2663 float64_is_neg(xb->VsrD(0))) { \
2664 t.VsrD(0) = 0x8000000000000000ULL; \
2669 } else if ((max && \
2670 !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \
2672 float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \
2673 t.VsrD(0) = xa->VsrD(0); \
2675 t.VsrD(0) = xb->VsrD(0); \
2678 vex_flag = fpscr_ve & vxsnan_flag; \
2679 if (vxsnan_flag) { \
2680 float_invalid_op_vxsnan(env, GETPC()); \
2687 VSX_MAX_MINJ(xsmaxjdp, 1);
2688 VSX_MAX_MINJ(xsminjdp
, 0);
2691 * VSX_CMP - VSX floating point compare
2692 * op - instruction mnemonic
2693 * nels - number of elements (1, 2 or 4)
2694 * tp - type (float32 or float64)
2695 * fld - vsr_t field (VsrD(*) or VsrW(*))
2696 * cmp - comparison operation
2697 * svxvc - set VXVC bit
2698 * exp - expected result of comparison
2700 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp) \
2701 uint32_t helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2702 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2704 ppc_vsr_t t = *xt; \
2705 uint32_t crf6 = 0; \
2708 int all_false = 1; \
2710 for (i = 0; i < nels; i++) { \
2711 if (unlikely(tp##_is_any_nan(xa->fld) || \
2712 tp##_is_any_nan(xb->fld))) { \
2713 if (tp##_is_signaling_nan(xa->fld, &env->fp_status) || \
2714 tp##_is_signaling_nan(xb->fld, &env->fp_status)) { \
2715 float_invalid_op_vxsnan(env, GETPC()); \
2718 float_invalid_op_vxvc(env, 0, GETPC()); \
2723 if (tp##_##cmp(xb->fld, xa->fld, &env->fp_status) == exp) { \
2734 crf6 = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \
2738 VSX_CMP(xvcmpeqdp
, 2, float64
, VsrD(i
), eq
, 0, 1)
2739 VSX_CMP(xvcmpgedp
, 2, float64
, VsrD(i
), le
, 1, 1)
2740 VSX_CMP(xvcmpgtdp
, 2, float64
, VsrD(i
), lt
, 1, 1)
2741 VSX_CMP(xvcmpnedp
, 2, float64
, VsrD(i
), eq
, 0, 0)
2742 VSX_CMP(xvcmpeqsp
, 4, float32
, VsrW(i
), eq
, 0, 1)
2743 VSX_CMP(xvcmpgesp
, 4, float32
, VsrW(i
), le
, 1, 1)
2744 VSX_CMP(xvcmpgtsp
, 4, float32
, VsrW(i
), lt
, 1, 1)
2745 VSX_CMP(xvcmpnesp
, 4, float32
, VsrW(i
), eq
, 0, 0)
2748 * VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2749 * op - instruction mnemonic
2750 * nels - number of elements (1, 2 or 4)
2751 * stp - source type (float32 or float64)
2752 * ttp - target type (float32 or float64)
2753 * sfld - source vsr_t field
2754 * tfld - target vsr_t field (f32 or f64)
2757 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2758 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2760 ppc_vsr_t t = *xt; \
2763 for (i = 0; i < nels; i++) { \
2764 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
2765 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2766 &env->fp_status))) { \
2767 float_invalid_op_vxsnan(env, GETPC()); \
2768 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2771 helper_compute_fprf_##ttp(env, t.tfld); \
2776 do_float_check_status(env, GETPC()); \
2779 VSX_CVT_FP_TO_FP(xscvdpsp
, 1, float64
, float32
, VsrD(0), VsrW(0), 1)
2780 VSX_CVT_FP_TO_FP(xscvspdp
, 1, float32
, float64
, VsrW(0), VsrD(0), 1)
2781 VSX_CVT_FP_TO_FP(xvcvdpsp
, 2, float64
, float32
, VsrD(i
), VsrW(2 * i
), 0)
2782 VSX_CVT_FP_TO_FP(xvcvspdp
, 2, float32
, float64
, VsrW(2 * i
), VsrD(i
), 0)
2785 * VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion
2786 * op - instruction mnemonic
2787 * nels - number of elements (1, 2 or 4)
2788 * stp - source type (float32 or float64)
2789 * ttp - target type (float32 or float64)
2790 * sfld - source vsr_t field
2791 * tfld - target vsr_t field (f32 or f64)
2794 #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf) \
2795 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2796 ppc_vsr_t *xt, ppc_vsr_t *xb) \
2798 ppc_vsr_t t = *xt; \
2801 for (i = 0; i < nels; i++) { \
2802 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
2803 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2804 &env->fp_status))) { \
2805 float_invalid_op_vxsnan(env, GETPC()); \
2806 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2809 helper_compute_fprf_##ttp(env, t.tfld); \
2814 do_float_check_status(env, GETPC()); \
2817 VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp
, 1, float64
, float128
, VsrD(0), f128
, 1)
2820 * VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion
2821 * involving one half precision value
2822 * op - instruction mnemonic
2823 * nels - number of elements (1, 2 or 4)
2826 * sfld - source vsr_t field
2827 * tfld - target vsr_t field
2830 #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2831 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2833 ppc_vsr_t t = { }; \
2836 for (i = 0; i < nels; i++) { \
2837 t.tfld = stp##_to_##ttp(xb->sfld, 1, &env->fp_status); \
2838 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2839 &env->fp_status))) { \
2840 float_invalid_op_vxsnan(env, GETPC()); \
2841 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2844 helper_compute_fprf_##ttp(env, t.tfld); \
2849 do_float_check_status(env, GETPC()); \
2852 VSX_CVT_FP_TO_FP_HP(xscvdphp
, 1, float64
, float16
, VsrD(0), VsrH(3), 1)
2853 VSX_CVT_FP_TO_FP_HP(xscvhpdp
, 1, float16
, float64
, VsrH(3), VsrD(0), 1)
2854 VSX_CVT_FP_TO_FP_HP(xvcvsphp
, 4, float32
, float16
, VsrW(i
), VsrH(2 * i
+ 1), 0)
2855 VSX_CVT_FP_TO_FP_HP(xvcvhpsp
, 4, float16
, float32
, VsrH(2 * i
+ 1), VsrW(i
), 0)
2858 * xscvqpdp isn't using VSX_CVT_FP_TO_FP() because xscvqpdpo will be
2859 * added to this later.
2861 void helper_xscvqpdp(CPUPPCState
*env
, uint32_t opcode
,
2862 ppc_vsr_t
*xt
, ppc_vsr_t
*xb
)
2867 tstat
= env
->fp_status
;
2868 if (unlikely(Rc(opcode
) != 0)) {
2869 tstat
.float_rounding_mode
= float_round_to_odd
;
2872 t
.VsrD(0) = float128_to_float64(xb
->f128
, &tstat
);
2873 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
2874 if (unlikely(float128_is_signaling_nan(xb
->f128
, &tstat
))) {
2875 float_invalid_op_vxsnan(env
, GETPC());
2876 t
.VsrD(0) = float64_snan_to_qnan(t
.VsrD(0));
2878 helper_compute_fprf_float64(env
, t
.VsrD(0));
2881 do_float_check_status(env
, GETPC());
2884 uint64_t helper_xscvdpspn(CPUPPCState
*env
, uint64_t xb
)
2886 uint64_t result
, sign
, exp
, frac
;
2888 float_status tstat
= env
->fp_status
;
2889 set_float_exception_flags(0, &tstat
);
2891 sign
= extract64(xb
, 63, 1);
2892 exp
= extract64(xb
, 52, 11);
2893 frac
= extract64(xb
, 0, 52) | 0x10000000000000ULL
;
2895 if (unlikely(exp
== 0 && extract64(frac
, 0, 52) != 0)) {
2896 /* DP denormal operand. */
2897 /* Exponent override to DP min exp. */
2899 /* Implicit bit override to 0. */
2900 frac
= deposit64(frac
, 53, 1, 0);
2903 if (unlikely(exp
< 897 && frac
!= 0)) {
2904 /* SP tiny operand. */
2905 if (897 - exp
> 63) {
2908 /* Denormalize until exp = SP min exp. */
2909 frac
>>= (897 - exp
);
2911 /* Exponent override to SP min exp - 1. */
2915 result
= sign
<< 31;
2916 result
|= extract64(exp
, 10, 1) << 30;
2917 result
|= extract64(exp
, 0, 7) << 23;
2918 result
|= extract64(frac
, 29, 23);
2920 /* hardware replicates result to both words of the doubleword result. */
2921 return (result
<< 32) | result
;
2924 uint64_t helper_xscvspdpn(CPUPPCState
*env
, uint64_t xb
)
2926 float_status tstat
= env
->fp_status
;
2927 set_float_exception_flags(0, &tstat
);
2929 return float32_to_float64(xb
>> 32, &tstat
);
2933 * VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2934 * op - instruction mnemonic
2935 * nels - number of elements (1, 2 or 4)
2936 * stp - source type (float32 or float64)
2937 * ttp - target type (int32, uint32, int64 or uint64)
2938 * sfld - source vsr_t field
2939 * tfld - target vsr_t field
2940 * rnan - resulting NaN
2942 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan) \
2943 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2945 int all_flags = env->fp_status.float_exception_flags, flags; \
2946 ppc_vsr_t t = *xt; \
2949 for (i = 0; i < nels; i++) { \
2950 env->fp_status.float_exception_flags = 0; \
2951 t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \
2952 flags = env->fp_status.float_exception_flags; \
2953 if (unlikely(flags & float_flag_invalid)) { \
2954 float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb->sfld)); \
2957 all_flags |= flags; \
2961 env->fp_status.float_exception_flags = all_flags; \
2962 do_float_check_status(env, GETPC()); \
2965 VSX_CVT_FP_TO_INT(xscvdpsxds
, 1, float64
, int64
, VsrD(0), VsrD(0), \
2966 0x8000000000000000ULL
)
2967 VSX_CVT_FP_TO_INT(xscvdpsxws
, 1, float64
, int32
, VsrD(0), VsrW(1), \
2969 VSX_CVT_FP_TO_INT(xscvdpuxds
, 1, float64
, uint64
, VsrD(0), VsrD(0), 0ULL)
2970 VSX_CVT_FP_TO_INT(xscvdpuxws
, 1, float64
, uint32
, VsrD(0), VsrW(1), 0U)
2971 VSX_CVT_FP_TO_INT(xvcvdpsxds
, 2, float64
, int64
, VsrD(i
), VsrD(i
), \
2972 0x8000000000000000ULL
)
2973 VSX_CVT_FP_TO_INT(xvcvdpsxws
, 2, float64
, int32
, VsrD(i
), VsrW(2 * i
), \
2975 VSX_CVT_FP_TO_INT(xvcvdpuxds
, 2, float64
, uint64
, VsrD(i
), VsrD(i
), 0ULL)
2976 VSX_CVT_FP_TO_INT(xvcvdpuxws
, 2, float64
, uint32
, VsrD(i
), VsrW(2 * i
), 0U)
2977 VSX_CVT_FP_TO_INT(xvcvspsxds
, 2, float32
, int64
, VsrW(2 * i
), VsrD(i
), \
2978 0x8000000000000000ULL
)
2979 VSX_CVT_FP_TO_INT(xvcvspsxws
, 4, float32
, int32
, VsrW(i
), VsrW(i
), 0x80000000U
)
2980 VSX_CVT_FP_TO_INT(xvcvspuxds
, 2, float32
, uint64
, VsrW(2 * i
), VsrD(i
), 0ULL)
2981 VSX_CVT_FP_TO_INT(xvcvspuxws
, 4, float32
, uint32
, VsrW(i
), VsrW(i
), 0U)
2984 * VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion
2985 * op - instruction mnemonic
2986 * stp - source type (float32 or float64)
2987 * ttp - target type (int32, uint32, int64 or uint64)
2988 * sfld - source vsr_t field
2989 * tfld - target vsr_t field
2990 * rnan - resulting NaN
2992 #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan) \
2993 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2994 ppc_vsr_t *xt, ppc_vsr_t *xb) \
2996 ppc_vsr_t t = { }; \
2998 t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \
2999 if (env->fp_status.float_exception_flags & float_flag_invalid) { \
3000 float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb->sfld)); \
3005 do_float_check_status(env, GETPC()); \
3008 VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz
, float128
, int64
, f128
, VsrD(0), \
3009 0x8000000000000000ULL
)
3011 VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz
, float128
, int32
, f128
, VsrD(0), \
3012 0xffffffff80000000ULL
)
3013 VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz
, float128
, uint64
, f128
, VsrD(0), 0x0ULL
)
3014 VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz
, float128
, uint32
, f128
, VsrD(0), 0x0ULL
)
3017 * VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
3018 * op - instruction mnemonic
3019 * nels - number of elements (1, 2 or 4)
3020 * stp - source type (int32, uint32, int64 or uint64)
3021 * ttp - target type (float32 or float64)
3022 * sfld - source vsr_t field
3023 * tfld - target vsr_t field
3024 * jdef - definition of the j index (i or 2*i)
3027 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp) \
3028 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
3030 ppc_vsr_t t = *xt; \
3033 for (i = 0; i < nels; i++) { \
3034 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
3036 t.tfld = helper_frsp(env, t.tfld); \
3039 helper_compute_fprf_float64(env, t.tfld); \
3044 do_float_check_status(env, GETPC()); \
3047 VSX_CVT_INT_TO_FP(xscvsxddp
, 1, int64
, float64
, VsrD(0), VsrD(0), 1, 0)
3048 VSX_CVT_INT_TO_FP(xscvuxddp
, 1, uint64
, float64
, VsrD(0), VsrD(0), 1, 0)
3049 VSX_CVT_INT_TO_FP(xscvsxdsp
, 1, int64
, float64
, VsrD(0), VsrD(0), 1, 1)
3050 VSX_CVT_INT_TO_FP(xscvuxdsp
, 1, uint64
, float64
, VsrD(0), VsrD(0), 1, 1)
3051 VSX_CVT_INT_TO_FP(xvcvsxddp
, 2, int64
, float64
, VsrD(i
), VsrD(i
), 0, 0)
3052 VSX_CVT_INT_TO_FP(xvcvuxddp
, 2, uint64
, float64
, VsrD(i
), VsrD(i
), 0, 0)
3053 VSX_CVT_INT_TO_FP(xvcvsxwdp
, 2, int32
, float64
, VsrW(2 * i
), VsrD(i
), 0, 0)
3054 VSX_CVT_INT_TO_FP(xvcvuxwdp
, 2, uint64
, float64
, VsrW(2 * i
), VsrD(i
), 0, 0)
3055 VSX_CVT_INT_TO_FP(xvcvsxdsp
, 2, int64
, float32
, VsrD(i
), VsrW(2 * i
), 0, 0)
3056 VSX_CVT_INT_TO_FP(xvcvuxdsp
, 2, uint64
, float32
, VsrD(i
), VsrW(2 * i
), 0, 0)
3057 VSX_CVT_INT_TO_FP(xvcvsxwsp
, 4, int32
, float32
, VsrW(i
), VsrW(i
), 0, 0)
3058 VSX_CVT_INT_TO_FP(xvcvuxwsp
, 4, uint32
, float32
, VsrW(i
), VsrW(i
), 0, 0)
3061 * VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion
3062 * op - instruction mnemonic
3063 * stp - source type (int32, uint32, int64 or uint64)
3064 * ttp - target type (float32 or float64)
3065 * sfld - source vsr_t field
3066 * tfld - target vsr_t field
3068 #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld) \
3069 void helper_##op(CPUPPCState *env, uint32_t opcode, \
3070 ppc_vsr_t *xt, ppc_vsr_t *xb) \
3072 ppc_vsr_t t = *xt; \
3074 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
3075 helper_compute_fprf_##ttp(env, t.tfld); \
3078 do_float_check_status(env, GETPC()); \
3081 VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp
, int64
, float128
, VsrD(0), f128
)
3082 VSX_CVT_INT_TO_FP_VECTOR(xscvudqp
, uint64
, float128
, VsrD(0), f128
)
3085 * For "use current rounding mode", define a value that will not be
3086 * one of the existing rounding model enums.
3088 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
3089 float_round_up + float_round_to_zero)
3092 * VSX_ROUND - VSX floating point round
3093 * op - instruction mnemonic
3094 * nels - number of elements (1, 2 or 4)
3095 * tp - type (float32 or float64)
3096 * fld - vsr_t field (VsrD(*) or VsrW(*))
3097 * rmode - rounding mode
3100 #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf) \
3101 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
3103 ppc_vsr_t t = *xt; \
3106 if (rmode != FLOAT_ROUND_CURRENT) { \
3107 set_float_rounding_mode(rmode, &env->fp_status); \
3110 for (i = 0; i < nels; i++) { \
3111 if (unlikely(tp##_is_signaling_nan(xb->fld, \
3112 &env->fp_status))) { \
3113 float_invalid_op_vxsnan(env, GETPC()); \
3114 t.fld = tp##_snan_to_qnan(xb->fld); \
3116 t.fld = tp##_round_to_int(xb->fld, &env->fp_status); \
3119 helper_compute_fprf_float64(env, t.fld); \
3124 * If this is not a "use current rounding mode" instruction, \
3125 * then inhibit setting of the XX bit and restore rounding \
3128 if (rmode != FLOAT_ROUND_CURRENT) { \
3129 fpscr_set_rounding_mode(env); \
3130 env->fp_status.float_exception_flags &= ~float_flag_inexact; \
3134 do_float_check_status(env, GETPC()); \
3137 VSX_ROUND(xsrdpi
, 1, float64
, VsrD(0), float_round_ties_away
, 1)
3138 VSX_ROUND(xsrdpic
, 1, float64
, VsrD(0), FLOAT_ROUND_CURRENT
, 1)
3139 VSX_ROUND(xsrdpim
, 1, float64
, VsrD(0), float_round_down
, 1)
3140 VSX_ROUND(xsrdpip
, 1, float64
, VsrD(0), float_round_up
, 1)
3141 VSX_ROUND(xsrdpiz
, 1, float64
, VsrD(0), float_round_to_zero
, 1)
3143 VSX_ROUND(xvrdpi
, 2, float64
, VsrD(i
), float_round_ties_away
, 0)
3144 VSX_ROUND(xvrdpic
, 2, float64
, VsrD(i
), FLOAT_ROUND_CURRENT
, 0)
3145 VSX_ROUND(xvrdpim
, 2, float64
, VsrD(i
), float_round_down
, 0)
3146 VSX_ROUND(xvrdpip
, 2, float64
, VsrD(i
), float_round_up
, 0)
3147 VSX_ROUND(xvrdpiz
, 2, float64
, VsrD(i
), float_round_to_zero
, 0)
3149 VSX_ROUND(xvrspi
, 4, float32
, VsrW(i
), float_round_ties_away
, 0)
3150 VSX_ROUND(xvrspic
, 4, float32
, VsrW(i
), FLOAT_ROUND_CURRENT
, 0)
3151 VSX_ROUND(xvrspim
, 4, float32
, VsrW(i
), float_round_down
, 0)
3152 VSX_ROUND(xvrspip
, 4, float32
, VsrW(i
), float_round_up
, 0)
3153 VSX_ROUND(xvrspiz
, 4, float32
, VsrW(i
), float_round_to_zero
, 0)
3155 uint64_t helper_xsrsp(CPUPPCState
*env
, uint64_t xb
)
3157 helper_reset_fpstatus(env
);
3159 uint64_t xt
= helper_frsp(env
, xb
);
3161 helper_compute_fprf_float64(env
, xt
);
3162 do_float_check_status(env
, GETPC());
3166 #define VSX_XXPERM(op, indexed) \
3167 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
3168 ppc_vsr_t *xa, ppc_vsr_t *pcv) \
3170 ppc_vsr_t t = *xt; \
3173 for (i = 0; i < 16; i++) { \
3174 idx = pcv->VsrB(i) & 0x1F; \
3178 t.VsrB(i) = (idx <= 15) ? xa->VsrB(idx) \
3179 : xt->VsrB(idx - 16); \
3184 VSX_XXPERM(xxperm
, 0)
3185 VSX_XXPERM(xxpermr
, 1)
3187 void helper_xvxsigsp(CPUPPCState
*env
, ppc_vsr_t
*xt
, ppc_vsr_t
*xb
)
3190 uint32_t exp
, i
, fraction
;
3192 for (i
= 0; i
< 4; i
++) {
3193 exp
= (xb
->VsrW(i
) >> 23) & 0xFF;
3194 fraction
= xb
->VsrW(i
) & 0x7FFFFF;
3195 if (exp
!= 0 && exp
!= 255) {
3196 t
.VsrW(i
) = fraction
| 0x00800000;
3198 t
.VsrW(i
) = fraction
;
3205 * VSX_TEST_DC - VSX floating point test data class
3206 * op - instruction mnemonic
3207 * nels - number of elements (1, 2 or 4)
3208 * xbn - VSR register number
3209 * tp - type (float32 or float64)
3210 * fld - vsr_t field (VsrD(*) or VsrW(*))
3211 * tfld - target vsr_t field (VsrD(*) or VsrW(*))
3212 * fld_max - target field max
3213 * scrf - set result in CR and FPCC
3215 #define VSX_TEST_DC(op, nels, xbn, tp, fld, tfld, fld_max, scrf) \
3216 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3218 ppc_vsr_t *xt = &env->vsr[xT(opcode)]; \
3219 ppc_vsr_t *xb = &env->vsr[xbn]; \
3220 ppc_vsr_t t = { }; \
3221 uint32_t i, sign, dcmx; \
3222 uint32_t cc, match = 0; \
3225 dcmx = DCMX_XV(opcode); \
3228 dcmx = DCMX(opcode); \
3231 for (i = 0; i < nels; i++) { \
3232 sign = tp##_is_neg(xb->fld); \
3233 if (tp##_is_any_nan(xb->fld)) { \
3234 match = extract32(dcmx, 6, 1); \
3235 } else if (tp##_is_infinity(xb->fld)) { \
3236 match = extract32(dcmx, 4 + !sign, 1); \
3237 } else if (tp##_is_zero(xb->fld)) { \
3238 match = extract32(dcmx, 2 + !sign, 1); \
3239 } else if (tp##_is_zero_or_denormal(xb->fld)) { \
3240 match = extract32(dcmx, 0 + !sign, 1); \
3244 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT; \
3245 env->fpscr &= ~FP_FPCC; \
3246 env->fpscr |= cc << FPSCR_FPCC; \
3247 env->crf[BF(opcode)] = cc; \
3249 t.tfld = match ? fld_max : 0; \
3258 VSX_TEST_DC(xvtstdcdp
, 2, xB(opcode
), float64
, VsrD(i
), VsrD(i
), UINT64_MAX
, 0)
3259 VSX_TEST_DC(xvtstdcsp
, 4, xB(opcode
), float32
, VsrW(i
), VsrW(i
), UINT32_MAX
, 0)
3260 VSX_TEST_DC(xststdcdp
, 1, xB(opcode
), float64
, VsrD(0), VsrD(0), 0, 1)
3261 VSX_TEST_DC(xststdcqp
, 1, (rB(opcode
) + 32), float128
, f128
, VsrD(0), 0, 1)
3263 void helper_xststdcsp(CPUPPCState
*env
, uint32_t opcode
, ppc_vsr_t
*xb
)
3265 uint32_t dcmx
, sign
, exp
;
3266 uint32_t cc
, match
= 0, not_sp
= 0;
3268 dcmx
= DCMX(opcode
);
3269 exp
= (xb
->VsrD(0) >> 52) & 0x7FF;
3271 sign
= float64_is_neg(xb
->VsrD(0));
3272 if (float64_is_any_nan(xb
->VsrD(0))) {
3273 match
= extract32(dcmx
, 6, 1);
3274 } else if (float64_is_infinity(xb
->VsrD(0))) {
3275 match
= extract32(dcmx
, 4 + !sign
, 1);
3276 } else if (float64_is_zero(xb
->VsrD(0))) {
3277 match
= extract32(dcmx
, 2 + !sign
, 1);
3278 } else if (float64_is_zero_or_denormal(xb
->VsrD(0)) ||
3279 (exp
> 0 && exp
< 0x381)) {
3280 match
= extract32(dcmx
, 0 + !sign
, 1);
3283 not_sp
= !float64_eq(xb
->VsrD(0),
3285 float64_to_float32(xb
->VsrD(0), &env
->fp_status
),
3286 &env
->fp_status
), &env
->fp_status
);
3288 cc
= sign
<< CRF_LT_BIT
| match
<< CRF_EQ_BIT
| not_sp
<< CRF_SO_BIT
;
3289 env
->fpscr
&= ~FP_FPCC
;
3290 env
->fpscr
|= cc
<< FPSCR_FPCC
;
3291 env
->crf
[BF(opcode
)] = cc
;
3294 void helper_xsrqpi(CPUPPCState
*env
, uint32_t opcode
,
3295 ppc_vsr_t
*xt
, ppc_vsr_t
*xb
)
3298 uint8_t r
= Rrm(opcode
);
3299 uint8_t ex
= Rc(opcode
);
3300 uint8_t rmc
= RMC(opcode
);
3304 helper_reset_fpstatus(env
);
3306 if (r
== 0 && rmc
== 0) {
3307 rmode
= float_round_ties_away
;
3308 } else if (r
== 0 && rmc
== 0x3) {
3310 } else if (r
== 1) {
3313 rmode
= float_round_nearest_even
;
3316 rmode
= float_round_to_zero
;
3319 rmode
= float_round_up
;
3322 rmode
= float_round_down
;
3329 tstat
= env
->fp_status
;
3330 set_float_exception_flags(0, &tstat
);
3331 set_float_rounding_mode(rmode
, &tstat
);
3332 t
.f128
= float128_round_to_int(xb
->f128
, &tstat
);
3333 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
3335 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid
)) {
3336 if (float128_is_signaling_nan(xb
->f128
, &tstat
)) {
3337 float_invalid_op_vxsnan(env
, GETPC());
3338 t
.f128
= float128_snan_to_qnan(t
.f128
);
3342 if (ex
== 0 && (tstat
.float_exception_flags
& float_flag_inexact
)) {
3343 env
->fp_status
.float_exception_flags
&= ~float_flag_inexact
;
3346 helper_compute_fprf_float128(env
, t
.f128
);
3347 do_float_check_status(env
, GETPC());
3351 void helper_xsrqpxp(CPUPPCState
*env
, uint32_t opcode
,
3352 ppc_vsr_t
*xt
, ppc_vsr_t
*xb
)
3355 uint8_t r
= Rrm(opcode
);
3356 uint8_t rmc
= RMC(opcode
);
3361 helper_reset_fpstatus(env
);
3363 if (r
== 0 && rmc
== 0) {
3364 rmode
= float_round_ties_away
;
3365 } else if (r
== 0 && rmc
== 0x3) {
3367 } else if (r
== 1) {
3370 rmode
= float_round_nearest_even
;
3373 rmode
= float_round_to_zero
;
3376 rmode
= float_round_up
;
3379 rmode
= float_round_down
;
3386 tstat
= env
->fp_status
;
3387 set_float_exception_flags(0, &tstat
);
3388 set_float_rounding_mode(rmode
, &tstat
);
3389 round_res
= float128_to_floatx80(xb
->f128
, &tstat
);
3390 t
.f128
= floatx80_to_float128(round_res
, &tstat
);
3391 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
3393 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid
)) {
3394 if (float128_is_signaling_nan(xb
->f128
, &tstat
)) {
3395 float_invalid_op_vxsnan(env
, GETPC());
3396 t
.f128
= float128_snan_to_qnan(t
.f128
);
3400 helper_compute_fprf_float128(env
, t
.f128
);
3402 do_float_check_status(env
, GETPC());
3405 void helper_xssqrtqp(CPUPPCState
*env
, uint32_t opcode
,
3406 ppc_vsr_t
*xt
, ppc_vsr_t
*xb
)
3411 helper_reset_fpstatus(env
);
3413 tstat
= env
->fp_status
;
3414 if (unlikely(Rc(opcode
) != 0)) {
3415 tstat
.float_rounding_mode
= float_round_to_odd
;
3418 set_float_exception_flags(0, &tstat
);
3419 t
.f128
= float128_sqrt(xb
->f128
, &tstat
);
3420 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
3422 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid
)) {
3423 if (float128_is_signaling_nan(xb
->f128
, &tstat
)) {
3424 float_invalid_op_vxsnan(env
, GETPC());
3425 t
.f128
= float128_snan_to_qnan(xb
->f128
);
3426 } else if (float128_is_quiet_nan(xb
->f128
, &tstat
)) {
3428 } else if (float128_is_neg(xb
->f128
) && !float128_is_zero(xb
->f128
)) {
3429 float_invalid_op_vxsqrt(env
, 1, GETPC());
3430 t
.f128
= float128_default_nan(&env
->fp_status
);
3434 helper_compute_fprf_float128(env
, t
.f128
);
3436 do_float_check_status(env
, GETPC());
3439 void helper_xssubqp(CPUPPCState
*env
, uint32_t opcode
,
3440 ppc_vsr_t
*xt
, ppc_vsr_t
*xa
, ppc_vsr_t
*xb
)
3445 helper_reset_fpstatus(env
);
3447 tstat
= env
->fp_status
;
3448 if (unlikely(Rc(opcode
) != 0)) {
3449 tstat
.float_rounding_mode
= float_round_to_odd
;
3452 set_float_exception_flags(0, &tstat
);
3453 t
.f128
= float128_sub(xa
->f128
, xb
->f128
, &tstat
);
3454 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
3456 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid
)) {
3457 float_invalid_op_addsub(env
, 1, GETPC(),
3458 float128_classify(xa
->f128
) |
3459 float128_classify(xb
->f128
));
3462 helper_compute_fprf_float128(env
, t
.f128
);
3464 do_float_check_status(env
, GETPC());