Merge tag 'for-upstream' of git://repo.or.cz/qemu/kevin into staging
[qemu/ar7.git] / target / arm / translate-vfp.c
blobbd5ae27d090d43cdbd860cdd8f1d16d9caddef86
1 /*
2 * ARM translation: AArch32 VFP instructions
4 * Copyright (c) 2003 Fabrice Bellard
5 * Copyright (c) 2005-2007 CodeSourcery
6 * Copyright (c) 2007 OpenedHand, Ltd.
7 * Copyright (c) 2019 Linaro, Ltd.
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include "qemu/osdep.h"
24 #include "tcg/tcg-op.h"
25 #include "tcg/tcg-op-gvec.h"
26 #include "exec/exec-all.h"
27 #include "exec/gen-icount.h"
28 #include "translate.h"
29 #include "translate-a32.h"
31 /* Include the generated VFP decoder */
32 #include "decode-vfp.c.inc"
33 #include "decode-vfp-uncond.c.inc"
35 static inline void vfp_load_reg64(TCGv_i64 var, int reg)
37 tcg_gen_ld_i64(var, cpu_env, vfp_reg_offset(true, reg));
40 static inline void vfp_store_reg64(TCGv_i64 var, int reg)
42 tcg_gen_st_i64(var, cpu_env, vfp_reg_offset(true, reg));
45 static inline void vfp_load_reg32(TCGv_i32 var, int reg)
47 tcg_gen_ld_i32(var, cpu_env, vfp_reg_offset(false, reg));
50 static inline void vfp_store_reg32(TCGv_i32 var, int reg)
52 tcg_gen_st_i32(var, cpu_env, vfp_reg_offset(false, reg));
56 * The imm8 encodes the sign bit, enough bits to represent an exponent in
57 * the range 01....1xx to 10....0xx, and the most significant 4 bits of
58 * the mantissa; see VFPExpandImm() in the v8 ARM ARM.
60 uint64_t vfp_expand_imm(int size, uint8_t imm8)
62 uint64_t imm;
64 switch (size) {
65 case MO_64:
66 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
67 (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
68 extract32(imm8, 0, 6);
69 imm <<= 48;
70 break;
71 case MO_32:
72 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
73 (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
74 (extract32(imm8, 0, 6) << 3);
75 imm <<= 16;
76 break;
77 case MO_16:
78 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
79 (extract32(imm8, 6, 1) ? 0x3000 : 0x4000) |
80 (extract32(imm8, 0, 6) << 6);
81 break;
82 default:
83 g_assert_not_reached();
85 return imm;
89 * Return the offset of a 16-bit half of the specified VFP single-precision
90 * register. If top is true, returns the top 16 bits; otherwise the bottom
91 * 16 bits.
93 static inline long vfp_f16_offset(unsigned reg, bool top)
95 long offs = vfp_reg_offset(false, reg);
96 #if HOST_BIG_ENDIAN
97 if (!top) {
98 offs += 2;
100 #else
101 if (top) {
102 offs += 2;
104 #endif
105 return offs;
109 * Generate code for M-profile lazy FP state preservation if needed;
110 * this corresponds to the pseudocode PreserveFPState() function.
112 static void gen_preserve_fp_state(DisasContext *s, bool skip_context_update)
114 if (s->v7m_lspact) {
116 * Lazy state saving affects external memory and also the NVIC,
117 * so we must mark it as an IO operation for icount (and cause
118 * this to be the last insn in the TB).
120 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
121 s->base.is_jmp = DISAS_UPDATE_EXIT;
122 gen_io_start();
124 gen_helper_v7m_preserve_fp_state(cpu_env);
126 * If the preserve_fp_state helper doesn't throw an exception
127 * then it will clear LSPACT; we don't need to repeat this for
128 * any further FP insns in this TB.
130 s->v7m_lspact = false;
132 * The helper might have zeroed VPR, so we do not know the
133 * correct value for the MVE_NO_PRED TB flag any more.
134 * If we're about to create a new fp context then that
135 * will precisely determine the MVE_NO_PRED value (see
136 * gen_update_fp_context()). Otherwise, we must:
137 * - set s->mve_no_pred to false, so this instruction
138 * is generated to use helper functions
139 * - end the TB now, without chaining to the next TB
141 if (skip_context_update || !s->v7m_new_fp_ctxt_needed) {
142 s->mve_no_pred = false;
143 s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
149 * Generate code for M-profile FP context handling: update the
150 * ownership of the FP context, and create a new context if
151 * necessary. This corresponds to the parts of the pseudocode
152 * ExecuteFPCheck() after the inital PreserveFPState() call.
154 static void gen_update_fp_context(DisasContext *s)
156 /* Update ownership of FP context: set FPCCR.S to match current state */
157 if (s->v8m_fpccr_s_wrong) {
158 TCGv_i32 tmp;
160 tmp = load_cpu_field(v7m.fpccr[M_REG_S]);
161 if (s->v8m_secure) {
162 tcg_gen_ori_i32(tmp, tmp, R_V7M_FPCCR_S_MASK);
163 } else {
164 tcg_gen_andi_i32(tmp, tmp, ~R_V7M_FPCCR_S_MASK);
166 store_cpu_field(tmp, v7m.fpccr[M_REG_S]);
167 /* Don't need to do this for any further FP insns in this TB */
168 s->v8m_fpccr_s_wrong = false;
171 if (s->v7m_new_fp_ctxt_needed) {
173 * Create new FP context by updating CONTROL.FPCA, CONTROL.SFPA,
174 * the FPSCR, and VPR.
176 TCGv_i32 control, fpscr;
177 uint32_t bits = R_V7M_CONTROL_FPCA_MASK;
179 fpscr = load_cpu_field(v7m.fpdscr[s->v8m_secure]);
180 gen_helper_vfp_set_fpscr(cpu_env, fpscr);
181 tcg_temp_free_i32(fpscr);
182 if (dc_isar_feature(aa32_mve, s)) {
183 store_cpu_field(tcg_constant_i32(0), v7m.vpr);
186 * We just updated the FPSCR and VPR. Some of this state is cached
187 * in the MVE_NO_PRED TB flag. We want to avoid having to end the
188 * TB here, which means we need the new value of the MVE_NO_PRED
189 * flag to be exactly known here and the same for all executions.
190 * Luckily FPDSCR.LTPSIZE is always constant 4 and the VPR is
191 * always set to 0, so the new MVE_NO_PRED flag is always 1
192 * if and only if we have MVE.
194 * (The other FPSCR state cached in TB flags is VECLEN and VECSTRIDE,
195 * but those do not exist for M-profile, so are not relevant here.)
197 s->mve_no_pred = dc_isar_feature(aa32_mve, s);
199 if (s->v8m_secure) {
200 bits |= R_V7M_CONTROL_SFPA_MASK;
202 control = load_cpu_field(v7m.control[M_REG_S]);
203 tcg_gen_ori_i32(control, control, bits);
204 store_cpu_field(control, v7m.control[M_REG_S]);
205 /* Don't need to do this for any further FP insns in this TB */
206 s->v7m_new_fp_ctxt_needed = false;
211 * Check that VFP access is enabled, A-profile specific version.
213 * If VFP is enabled, return true. If not, emit code to generate an
214 * appropriate exception and return false.
215 * The ignore_vfp_enabled argument specifies that we should ignore
216 * whether VFP is enabled via FPEXC.EN: this should be true for FMXR/FMRX
217 * accesses to FPSID, FPEXC, MVFR0, MVFR1, MVFR2, and false for all other insns.
219 static bool vfp_access_check_a(DisasContext *s, bool ignore_vfp_enabled)
221 if (s->fp_excp_el) {
223 * The full syndrome is only used for HSR when HCPTR traps:
224 * For v8, when TA==0, coproc is RES0.
225 * For v7, any use of a Floating-point instruction or access
226 * to a Floating-point Extension register that is trapped to
227 * Hyp mode because of a trap configured in the HCPTR sets
228 * this field to 0xA.
230 int coproc = arm_dc_feature(s, ARM_FEATURE_V8) ? 0 : 0xa;
231 uint32_t syn = syn_fp_access_trap(1, 0xe, false, coproc);
233 gen_exception_insn_el(s, s->pc_curr, EXCP_UDEF, syn, s->fp_excp_el);
234 return false;
238 * Note that rebuild_hflags_a32 has already accounted for being in EL0
239 * and the higher EL in A64 mode, etc. Unlike A64 mode, there do not
240 * appear to be any insns which touch VFP which are allowed.
242 if (s->sme_trap_nonstreaming) {
243 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
244 syn_smetrap(SME_ET_Streaming,
245 s->base.pc_next - s->pc_curr == 2));
246 return false;
249 if (!s->vfp_enabled && !ignore_vfp_enabled) {
250 assert(!arm_dc_feature(s, ARM_FEATURE_M));
251 unallocated_encoding(s);
252 return false;
254 return true;
258 * Check that VFP access is enabled, M-profile specific version.
260 * If VFP is enabled, do the necessary M-profile lazy-FP handling and then
261 * return true. If not, emit code to generate an appropriate exception and
262 * return false.
263 * skip_context_update is true to skip the "update FP context" part of this.
265 bool vfp_access_check_m(DisasContext *s, bool skip_context_update)
267 if (s->fp_excp_el) {
269 * M-profile mostly catches the "FPU disabled" case early, in
270 * disas_m_nocp(), but a few insns (eg LCTP, WLSTP, DLSTP)
271 * which do coprocessor-checks are outside the large ranges of
272 * the encoding space handled by the patterns in m-nocp.decode,
273 * and for them we may need to raise NOCP here.
275 gen_exception_insn_el(s, s->pc_curr, EXCP_NOCP,
276 syn_uncategorized(), s->fp_excp_el);
277 return false;
280 /* Handle M-profile lazy FP state mechanics */
282 /* Trigger lazy-state preservation if necessary */
283 gen_preserve_fp_state(s, skip_context_update);
285 if (!skip_context_update) {
286 /* Update ownership of FP context and create new FP context if needed */
287 gen_update_fp_context(s);
290 return true;
294 * The most usual kind of VFP access check, for everything except
295 * FMXR/FMRX to the always-available special registers.
297 bool vfp_access_check(DisasContext *s)
299 if (arm_dc_feature(s, ARM_FEATURE_M)) {
300 return vfp_access_check_m(s, false);
301 } else {
302 return vfp_access_check_a(s, false);
306 static bool trans_VSEL(DisasContext *s, arg_VSEL *a)
308 uint32_t rd, rn, rm;
309 int sz = a->sz;
311 if (!dc_isar_feature(aa32_vsel, s)) {
312 return false;
315 if (sz == 3 && !dc_isar_feature(aa32_fpdp_v2, s)) {
316 return false;
319 if (sz == 1 && !dc_isar_feature(aa32_fp16_arith, s)) {
320 return false;
323 /* UNDEF accesses to D16-D31 if they don't exist */
324 if (sz == 3 && !dc_isar_feature(aa32_simd_r32, s) &&
325 ((a->vm | a->vn | a->vd) & 0x10)) {
326 return false;
329 rd = a->vd;
330 rn = a->vn;
331 rm = a->vm;
333 if (!vfp_access_check(s)) {
334 return true;
337 if (sz == 3) {
338 TCGv_i64 frn, frm, dest;
339 TCGv_i64 tmp, zero, zf, nf, vf;
341 zero = tcg_constant_i64(0);
343 frn = tcg_temp_new_i64();
344 frm = tcg_temp_new_i64();
345 dest = tcg_temp_new_i64();
347 zf = tcg_temp_new_i64();
348 nf = tcg_temp_new_i64();
349 vf = tcg_temp_new_i64();
351 tcg_gen_extu_i32_i64(zf, cpu_ZF);
352 tcg_gen_ext_i32_i64(nf, cpu_NF);
353 tcg_gen_ext_i32_i64(vf, cpu_VF);
355 vfp_load_reg64(frn, rn);
356 vfp_load_reg64(frm, rm);
357 switch (a->cc) {
358 case 0: /* eq: Z */
359 tcg_gen_movcond_i64(TCG_COND_EQ, dest, zf, zero, frn, frm);
360 break;
361 case 1: /* vs: V */
362 tcg_gen_movcond_i64(TCG_COND_LT, dest, vf, zero, frn, frm);
363 break;
364 case 2: /* ge: N == V -> N ^ V == 0 */
365 tmp = tcg_temp_new_i64();
366 tcg_gen_xor_i64(tmp, vf, nf);
367 tcg_gen_movcond_i64(TCG_COND_GE, dest, tmp, zero, frn, frm);
368 tcg_temp_free_i64(tmp);
369 break;
370 case 3: /* gt: !Z && N == V */
371 tcg_gen_movcond_i64(TCG_COND_NE, dest, zf, zero, frn, frm);
372 tmp = tcg_temp_new_i64();
373 tcg_gen_xor_i64(tmp, vf, nf);
374 tcg_gen_movcond_i64(TCG_COND_GE, dest, tmp, zero, dest, frm);
375 tcg_temp_free_i64(tmp);
376 break;
378 vfp_store_reg64(dest, rd);
379 tcg_temp_free_i64(frn);
380 tcg_temp_free_i64(frm);
381 tcg_temp_free_i64(dest);
383 tcg_temp_free_i64(zf);
384 tcg_temp_free_i64(nf);
385 tcg_temp_free_i64(vf);
386 } else {
387 TCGv_i32 frn, frm, dest;
388 TCGv_i32 tmp, zero;
390 zero = tcg_constant_i32(0);
392 frn = tcg_temp_new_i32();
393 frm = tcg_temp_new_i32();
394 dest = tcg_temp_new_i32();
395 vfp_load_reg32(frn, rn);
396 vfp_load_reg32(frm, rm);
397 switch (a->cc) {
398 case 0: /* eq: Z */
399 tcg_gen_movcond_i32(TCG_COND_EQ, dest, cpu_ZF, zero, frn, frm);
400 break;
401 case 1: /* vs: V */
402 tcg_gen_movcond_i32(TCG_COND_LT, dest, cpu_VF, zero, frn, frm);
403 break;
404 case 2: /* ge: N == V -> N ^ V == 0 */
405 tmp = tcg_temp_new_i32();
406 tcg_gen_xor_i32(tmp, cpu_VF, cpu_NF);
407 tcg_gen_movcond_i32(TCG_COND_GE, dest, tmp, zero, frn, frm);
408 tcg_temp_free_i32(tmp);
409 break;
410 case 3: /* gt: !Z && N == V */
411 tcg_gen_movcond_i32(TCG_COND_NE, dest, cpu_ZF, zero, frn, frm);
412 tmp = tcg_temp_new_i32();
413 tcg_gen_xor_i32(tmp, cpu_VF, cpu_NF);
414 tcg_gen_movcond_i32(TCG_COND_GE, dest, tmp, zero, dest, frm);
415 tcg_temp_free_i32(tmp);
416 break;
418 /* For fp16 the top half is always zeroes */
419 if (sz == 1) {
420 tcg_gen_andi_i32(dest, dest, 0xffff);
422 vfp_store_reg32(dest, rd);
423 tcg_temp_free_i32(frn);
424 tcg_temp_free_i32(frm);
425 tcg_temp_free_i32(dest);
428 return true;
432 * Table for converting the most common AArch32 encoding of
433 * rounding mode to arm_fprounding order (which matches the
434 * common AArch64 order); see ARM ARM pseudocode FPDecodeRM().
436 static const uint8_t fp_decode_rm[] = {
437 FPROUNDING_TIEAWAY,
438 FPROUNDING_TIEEVEN,
439 FPROUNDING_POSINF,
440 FPROUNDING_NEGINF,
443 static bool trans_VRINT(DisasContext *s, arg_VRINT *a)
445 uint32_t rd, rm;
446 int sz = a->sz;
447 TCGv_ptr fpst;
448 TCGv_i32 tcg_rmode;
449 int rounding = fp_decode_rm[a->rm];
451 if (!dc_isar_feature(aa32_vrint, s)) {
452 return false;
455 if (sz == 3 && !dc_isar_feature(aa32_fpdp_v2, s)) {
456 return false;
459 if (sz == 1 && !dc_isar_feature(aa32_fp16_arith, s)) {
460 return false;
463 /* UNDEF accesses to D16-D31 if they don't exist */
464 if (sz == 3 && !dc_isar_feature(aa32_simd_r32, s) &&
465 ((a->vm | a->vd) & 0x10)) {
466 return false;
469 rd = a->vd;
470 rm = a->vm;
472 if (!vfp_access_check(s)) {
473 return true;
476 if (sz == 1) {
477 fpst = fpstatus_ptr(FPST_FPCR_F16);
478 } else {
479 fpst = fpstatus_ptr(FPST_FPCR);
482 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rounding));
483 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
485 if (sz == 3) {
486 TCGv_i64 tcg_op;
487 TCGv_i64 tcg_res;
488 tcg_op = tcg_temp_new_i64();
489 tcg_res = tcg_temp_new_i64();
490 vfp_load_reg64(tcg_op, rm);
491 gen_helper_rintd(tcg_res, tcg_op, fpst);
492 vfp_store_reg64(tcg_res, rd);
493 tcg_temp_free_i64(tcg_op);
494 tcg_temp_free_i64(tcg_res);
495 } else {
496 TCGv_i32 tcg_op;
497 TCGv_i32 tcg_res;
498 tcg_op = tcg_temp_new_i32();
499 tcg_res = tcg_temp_new_i32();
500 vfp_load_reg32(tcg_op, rm);
501 if (sz == 1) {
502 gen_helper_rinth(tcg_res, tcg_op, fpst);
503 } else {
504 gen_helper_rints(tcg_res, tcg_op, fpst);
506 vfp_store_reg32(tcg_res, rd);
507 tcg_temp_free_i32(tcg_op);
508 tcg_temp_free_i32(tcg_res);
511 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
512 tcg_temp_free_i32(tcg_rmode);
514 tcg_temp_free_ptr(fpst);
515 return true;
518 static bool trans_VCVT(DisasContext *s, arg_VCVT *a)
520 uint32_t rd, rm;
521 int sz = a->sz;
522 TCGv_ptr fpst;
523 TCGv_i32 tcg_rmode, tcg_shift;
524 int rounding = fp_decode_rm[a->rm];
525 bool is_signed = a->op;
527 if (!dc_isar_feature(aa32_vcvt_dr, s)) {
528 return false;
531 if (sz == 3 && !dc_isar_feature(aa32_fpdp_v2, s)) {
532 return false;
535 if (sz == 1 && !dc_isar_feature(aa32_fp16_arith, s)) {
536 return false;
539 /* UNDEF accesses to D16-D31 if they don't exist */
540 if (sz == 3 && !dc_isar_feature(aa32_simd_r32, s) && (a->vm & 0x10)) {
541 return false;
544 rd = a->vd;
545 rm = a->vm;
547 if (!vfp_access_check(s)) {
548 return true;
551 if (sz == 1) {
552 fpst = fpstatus_ptr(FPST_FPCR_F16);
553 } else {
554 fpst = fpstatus_ptr(FPST_FPCR);
557 tcg_shift = tcg_constant_i32(0);
559 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rounding));
560 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
562 if (sz == 3) {
563 TCGv_i64 tcg_double, tcg_res;
564 TCGv_i32 tcg_tmp;
565 tcg_double = tcg_temp_new_i64();
566 tcg_res = tcg_temp_new_i64();
567 tcg_tmp = tcg_temp_new_i32();
568 vfp_load_reg64(tcg_double, rm);
569 if (is_signed) {
570 gen_helper_vfp_tosld(tcg_res, tcg_double, tcg_shift, fpst);
571 } else {
572 gen_helper_vfp_tould(tcg_res, tcg_double, tcg_shift, fpst);
574 tcg_gen_extrl_i64_i32(tcg_tmp, tcg_res);
575 vfp_store_reg32(tcg_tmp, rd);
576 tcg_temp_free_i32(tcg_tmp);
577 tcg_temp_free_i64(tcg_res);
578 tcg_temp_free_i64(tcg_double);
579 } else {
580 TCGv_i32 tcg_single, tcg_res;
581 tcg_single = tcg_temp_new_i32();
582 tcg_res = tcg_temp_new_i32();
583 vfp_load_reg32(tcg_single, rm);
584 if (sz == 1) {
585 if (is_signed) {
586 gen_helper_vfp_toslh(tcg_res, tcg_single, tcg_shift, fpst);
587 } else {
588 gen_helper_vfp_toulh(tcg_res, tcg_single, tcg_shift, fpst);
590 } else {
591 if (is_signed) {
592 gen_helper_vfp_tosls(tcg_res, tcg_single, tcg_shift, fpst);
593 } else {
594 gen_helper_vfp_touls(tcg_res, tcg_single, tcg_shift, fpst);
597 vfp_store_reg32(tcg_res, rd);
598 tcg_temp_free_i32(tcg_res);
599 tcg_temp_free_i32(tcg_single);
602 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
603 tcg_temp_free_i32(tcg_rmode);
605 tcg_temp_free_ptr(fpst);
607 return true;
610 bool mve_skip_vmov(DisasContext *s, int vn, int index, int size)
613 * In a CPU with MVE, the VMOV (vector lane to general-purpose register)
614 * and VMOV (general-purpose register to vector lane) insns are not
615 * predicated, but they are subject to beatwise execution if they are
616 * not in an IT block.
618 * Since our implementation always executes all 4 beats in one tick,
619 * this means only that if PSR.ECI says we should not be executing
620 * the beat corresponding to the lane of the vector register being
621 * accessed then we should skip performing the move, and that we need
622 * to do the usual check for bad ECI state and advance of ECI state.
624 * Note that if PSR.ECI is non-zero then we cannot be in an IT block.
626 * Return true if this VMOV scalar <-> gpreg should be skipped because
627 * the MVE PSR.ECI state says we skip the beat where the store happens.
630 /* Calculate the byte offset into Qn which we're going to access */
631 int ofs = (index << size) + ((vn & 1) * 8);
633 if (!dc_isar_feature(aa32_mve, s)) {
634 return false;
637 switch (s->eci) {
638 case ECI_NONE:
639 return false;
640 case ECI_A0:
641 return ofs < 4;
642 case ECI_A0A1:
643 return ofs < 8;
644 case ECI_A0A1A2:
645 case ECI_A0A1A2B0:
646 return ofs < 12;
647 default:
648 g_assert_not_reached();
652 static bool trans_VMOV_to_gp(DisasContext *s, arg_VMOV_to_gp *a)
654 /* VMOV scalar to general purpose register */
655 TCGv_i32 tmp;
658 * SIZE == MO_32 is a VFP instruction; otherwise NEON. MVE has
659 * all sizes, whether the CPU has fp or not.
661 if (!dc_isar_feature(aa32_mve, s)) {
662 if (a->size == MO_32
663 ? !dc_isar_feature(aa32_fpsp_v2, s)
664 : !arm_dc_feature(s, ARM_FEATURE_NEON)) {
665 return false;
669 /* UNDEF accesses to D16-D31 if they don't exist */
670 if (!dc_isar_feature(aa32_simd_r32, s) && (a->vn & 0x10)) {
671 return false;
674 if (dc_isar_feature(aa32_mve, s)) {
675 if (!mve_eci_check(s)) {
676 return true;
680 if (!vfp_access_check(s)) {
681 return true;
684 if (!mve_skip_vmov(s, a->vn, a->index, a->size)) {
685 tmp = tcg_temp_new_i32();
686 read_neon_element32(tmp, a->vn, a->index,
687 a->size | (a->u ? 0 : MO_SIGN));
688 store_reg(s, a->rt, tmp);
691 if (dc_isar_feature(aa32_mve, s)) {
692 mve_update_and_store_eci(s);
694 return true;
697 static bool trans_VMOV_from_gp(DisasContext *s, arg_VMOV_from_gp *a)
699 /* VMOV general purpose register to scalar */
700 TCGv_i32 tmp;
703 * SIZE == MO_32 is a VFP instruction; otherwise NEON. MVE has
704 * all sizes, whether the CPU has fp or not.
706 if (!dc_isar_feature(aa32_mve, s)) {
707 if (a->size == MO_32
708 ? !dc_isar_feature(aa32_fpsp_v2, s)
709 : !arm_dc_feature(s, ARM_FEATURE_NEON)) {
710 return false;
714 /* UNDEF accesses to D16-D31 if they don't exist */
715 if (!dc_isar_feature(aa32_simd_r32, s) && (a->vn & 0x10)) {
716 return false;
719 if (dc_isar_feature(aa32_mve, s)) {
720 if (!mve_eci_check(s)) {
721 return true;
725 if (!vfp_access_check(s)) {
726 return true;
729 if (!mve_skip_vmov(s, a->vn, a->index, a->size)) {
730 tmp = load_reg(s, a->rt);
731 write_neon_element32(tmp, a->vn, a->index, a->size);
732 tcg_temp_free_i32(tmp);
735 if (dc_isar_feature(aa32_mve, s)) {
736 mve_update_and_store_eci(s);
738 return true;
741 static bool trans_VDUP(DisasContext *s, arg_VDUP *a)
743 /* VDUP (general purpose register) */
744 TCGv_i32 tmp;
745 int size, vec_size;
747 if (!arm_dc_feature(s, ARM_FEATURE_NEON)) {
748 return false;
751 /* UNDEF accesses to D16-D31 if they don't exist */
752 if (!dc_isar_feature(aa32_simd_r32, s) && (a->vn & 0x10)) {
753 return false;
756 if (a->b && a->e) {
757 return false;
760 if (a->q && (a->vn & 1)) {
761 return false;
764 vec_size = a->q ? 16 : 8;
765 if (a->b) {
766 size = 0;
767 } else if (a->e) {
768 size = 1;
769 } else {
770 size = 2;
773 if (!vfp_access_check(s)) {
774 return true;
777 tmp = load_reg(s, a->rt);
778 tcg_gen_gvec_dup_i32(size, neon_full_reg_offset(a->vn),
779 vec_size, vec_size, tmp);
780 tcg_temp_free_i32(tmp);
782 return true;
785 static bool trans_VMSR_VMRS(DisasContext *s, arg_VMSR_VMRS *a)
787 TCGv_i32 tmp;
788 bool ignore_vfp_enabled = false;
790 if (arm_dc_feature(s, ARM_FEATURE_M)) {
791 /* M profile version was already handled in m-nocp.decode */
792 return false;
795 if (!dc_isar_feature(aa32_fpsp_v2, s)) {
796 return false;
799 switch (a->reg) {
800 case ARM_VFP_FPSID:
802 * VFPv2 allows access to FPSID from userspace; VFPv3 restricts
803 * all ID registers to privileged access only.
805 if (IS_USER(s) && dc_isar_feature(aa32_fpsp_v3, s)) {
806 return false;
808 ignore_vfp_enabled = true;
809 break;
810 case ARM_VFP_MVFR0:
811 case ARM_VFP_MVFR1:
812 if (IS_USER(s) || !arm_dc_feature(s, ARM_FEATURE_MVFR)) {
813 return false;
815 ignore_vfp_enabled = true;
816 break;
817 case ARM_VFP_MVFR2:
818 if (IS_USER(s) || !arm_dc_feature(s, ARM_FEATURE_V8)) {
819 return false;
821 ignore_vfp_enabled = true;
822 break;
823 case ARM_VFP_FPSCR:
824 break;
825 case ARM_VFP_FPEXC:
826 if (IS_USER(s)) {
827 return false;
829 ignore_vfp_enabled = true;
830 break;
831 case ARM_VFP_FPINST:
832 case ARM_VFP_FPINST2:
833 /* Not present in VFPv3 */
834 if (IS_USER(s) || dc_isar_feature(aa32_fpsp_v3, s)) {
835 return false;
837 break;
838 default:
839 return false;
843 * Call vfp_access_check_a() directly, because we need to tell
844 * it to ignore FPEXC.EN for some register accesses.
846 if (!vfp_access_check_a(s, ignore_vfp_enabled)) {
847 return true;
850 if (a->l) {
851 /* VMRS, move VFP special register to gp register */
852 switch (a->reg) {
853 case ARM_VFP_MVFR0:
854 case ARM_VFP_MVFR1:
855 case ARM_VFP_MVFR2:
856 case ARM_VFP_FPSID:
857 if (s->current_el == 1) {
858 gen_set_condexec(s);
859 gen_set_pc_im(s, s->pc_curr);
860 gen_helper_check_hcr_el2_trap(cpu_env,
861 tcg_constant_i32(a->rt),
862 tcg_constant_i32(a->reg));
864 /* fall through */
865 case ARM_VFP_FPEXC:
866 case ARM_VFP_FPINST:
867 case ARM_VFP_FPINST2:
868 tmp = load_cpu_field(vfp.xregs[a->reg]);
869 break;
870 case ARM_VFP_FPSCR:
871 if (a->rt == 15) {
872 tmp = load_cpu_field(vfp.xregs[ARM_VFP_FPSCR]);
873 tcg_gen_andi_i32(tmp, tmp, FPCR_NZCV_MASK);
874 } else {
875 tmp = tcg_temp_new_i32();
876 gen_helper_vfp_get_fpscr(tmp, cpu_env);
878 break;
879 default:
880 g_assert_not_reached();
883 if (a->rt == 15) {
884 /* Set the 4 flag bits in the CPSR. */
885 gen_set_nzcv(tmp);
886 tcg_temp_free_i32(tmp);
887 } else {
888 store_reg(s, a->rt, tmp);
890 } else {
891 /* VMSR, move gp register to VFP special register */
892 switch (a->reg) {
893 case ARM_VFP_FPSID:
894 case ARM_VFP_MVFR0:
895 case ARM_VFP_MVFR1:
896 case ARM_VFP_MVFR2:
897 /* Writes are ignored. */
898 break;
899 case ARM_VFP_FPSCR:
900 tmp = load_reg(s, a->rt);
901 gen_helper_vfp_set_fpscr(cpu_env, tmp);
902 tcg_temp_free_i32(tmp);
903 gen_lookup_tb(s);
904 break;
905 case ARM_VFP_FPEXC:
907 * TODO: VFP subarchitecture support.
908 * For now, keep the EN bit only
910 tmp = load_reg(s, a->rt);
911 tcg_gen_andi_i32(tmp, tmp, 1 << 30);
912 store_cpu_field(tmp, vfp.xregs[a->reg]);
913 gen_lookup_tb(s);
914 break;
915 case ARM_VFP_FPINST:
916 case ARM_VFP_FPINST2:
917 tmp = load_reg(s, a->rt);
918 store_cpu_field(tmp, vfp.xregs[a->reg]);
919 break;
920 default:
921 g_assert_not_reached();
925 return true;
929 static bool trans_VMOV_half(DisasContext *s, arg_VMOV_single *a)
931 TCGv_i32 tmp;
933 if (!dc_isar_feature(aa32_fp16_arith, s)) {
934 return false;
937 if (a->rt == 15) {
938 /* UNPREDICTABLE; we choose to UNDEF */
939 return false;
942 if (!vfp_access_check(s)) {
943 return true;
946 if (a->l) {
947 /* VFP to general purpose register */
948 tmp = tcg_temp_new_i32();
949 vfp_load_reg32(tmp, a->vn);
950 tcg_gen_andi_i32(tmp, tmp, 0xffff);
951 store_reg(s, a->rt, tmp);
952 } else {
953 /* general purpose register to VFP */
954 tmp = load_reg(s, a->rt);
955 tcg_gen_andi_i32(tmp, tmp, 0xffff);
956 vfp_store_reg32(tmp, a->vn);
957 tcg_temp_free_i32(tmp);
960 return true;
963 static bool trans_VMOV_single(DisasContext *s, arg_VMOV_single *a)
965 TCGv_i32 tmp;
967 if (!dc_isar_feature(aa32_fpsp_v2, s) && !dc_isar_feature(aa32_mve, s)) {
968 return false;
971 if (!vfp_access_check(s)) {
972 return true;
975 if (a->l) {
976 /* VFP to general purpose register */
977 tmp = tcg_temp_new_i32();
978 vfp_load_reg32(tmp, a->vn);
979 if (a->rt == 15) {
980 /* Set the 4 flag bits in the CPSR. */
981 gen_set_nzcv(tmp);
982 tcg_temp_free_i32(tmp);
983 } else {
984 store_reg(s, a->rt, tmp);
986 } else {
987 /* general purpose register to VFP */
988 tmp = load_reg(s, a->rt);
989 vfp_store_reg32(tmp, a->vn);
990 tcg_temp_free_i32(tmp);
993 return true;
996 static bool trans_VMOV_64_sp(DisasContext *s, arg_VMOV_64_sp *a)
998 TCGv_i32 tmp;
1000 if (!dc_isar_feature(aa32_fpsp_v2, s) && !dc_isar_feature(aa32_mve, s)) {
1001 return false;
1005 * VMOV between two general-purpose registers and two single precision
1006 * floating point registers
1008 if (!vfp_access_check(s)) {
1009 return true;
1012 if (a->op) {
1013 /* fpreg to gpreg */
1014 tmp = tcg_temp_new_i32();
1015 vfp_load_reg32(tmp, a->vm);
1016 store_reg(s, a->rt, tmp);
1017 tmp = tcg_temp_new_i32();
1018 vfp_load_reg32(tmp, a->vm + 1);
1019 store_reg(s, a->rt2, tmp);
1020 } else {
1021 /* gpreg to fpreg */
1022 tmp = load_reg(s, a->rt);
1023 vfp_store_reg32(tmp, a->vm);
1024 tcg_temp_free_i32(tmp);
1025 tmp = load_reg(s, a->rt2);
1026 vfp_store_reg32(tmp, a->vm + 1);
1027 tcg_temp_free_i32(tmp);
1030 return true;
1033 static bool trans_VMOV_64_dp(DisasContext *s, arg_VMOV_64_dp *a)
1035 TCGv_i32 tmp;
1038 * VMOV between two general-purpose registers and one double precision
1039 * floating point register. Note that this does not require support
1040 * for double precision arithmetic.
1042 if (!dc_isar_feature(aa32_fpsp_v2, s) && !dc_isar_feature(aa32_mve, s)) {
1043 return false;
1046 /* UNDEF accesses to D16-D31 if they don't exist */
1047 if (!dc_isar_feature(aa32_simd_r32, s) && (a->vm & 0x10)) {
1048 return false;
1051 if (!vfp_access_check(s)) {
1052 return true;
1055 if (a->op) {
1056 /* fpreg to gpreg */
1057 tmp = tcg_temp_new_i32();
1058 vfp_load_reg32(tmp, a->vm * 2);
1059 store_reg(s, a->rt, tmp);
1060 tmp = tcg_temp_new_i32();
1061 vfp_load_reg32(tmp, a->vm * 2 + 1);
1062 store_reg(s, a->rt2, tmp);
1063 } else {
1064 /* gpreg to fpreg */
1065 tmp = load_reg(s, a->rt);
1066 vfp_store_reg32(tmp, a->vm * 2);
1067 tcg_temp_free_i32(tmp);
1068 tmp = load_reg(s, a->rt2);
1069 vfp_store_reg32(tmp, a->vm * 2 + 1);
1070 tcg_temp_free_i32(tmp);
1073 return true;
1076 static bool trans_VLDR_VSTR_hp(DisasContext *s, arg_VLDR_VSTR_sp *a)
1078 uint32_t offset;
1079 TCGv_i32 addr, tmp;
1081 if (!dc_isar_feature(aa32_fpsp_v2, s) && !dc_isar_feature(aa32_mve, s)) {
1082 return false;
1085 if (!vfp_access_check(s)) {
1086 return true;
1089 /* imm8 field is offset/2 for fp16, unlike fp32 and fp64 */
1090 offset = a->imm << 1;
1091 if (!a->u) {
1092 offset = -offset;
1095 /* For thumb, use of PC is UNPREDICTABLE. */
1096 addr = add_reg_for_lit(s, a->rn, offset);
1097 tmp = tcg_temp_new_i32();
1098 if (a->l) {
1099 gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), MO_UW | MO_ALIGN);
1100 vfp_store_reg32(tmp, a->vd);
1101 } else {
1102 vfp_load_reg32(tmp, a->vd);
1103 gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), MO_UW | MO_ALIGN);
1105 tcg_temp_free_i32(tmp);
1106 tcg_temp_free_i32(addr);
1108 return true;
1111 static bool trans_VLDR_VSTR_sp(DisasContext *s, arg_VLDR_VSTR_sp *a)
1113 uint32_t offset;
1114 TCGv_i32 addr, tmp;
1116 if (!dc_isar_feature(aa32_fpsp_v2, s) && !dc_isar_feature(aa32_mve, s)) {
1117 return false;
1120 if (!vfp_access_check(s)) {
1121 return true;
1124 offset = a->imm << 2;
1125 if (!a->u) {
1126 offset = -offset;
1129 /* For thumb, use of PC is UNPREDICTABLE. */
1130 addr = add_reg_for_lit(s, a->rn, offset);
1131 tmp = tcg_temp_new_i32();
1132 if (a->l) {
1133 gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), MO_UL | MO_ALIGN);
1134 vfp_store_reg32(tmp, a->vd);
1135 } else {
1136 vfp_load_reg32(tmp, a->vd);
1137 gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), MO_UL | MO_ALIGN);
1139 tcg_temp_free_i32(tmp);
1140 tcg_temp_free_i32(addr);
1142 return true;
1145 static bool trans_VLDR_VSTR_dp(DisasContext *s, arg_VLDR_VSTR_dp *a)
1147 uint32_t offset;
1148 TCGv_i32 addr;
1149 TCGv_i64 tmp;
1151 /* Note that this does not require support for double arithmetic. */
1152 if (!dc_isar_feature(aa32_fpsp_v2, s) && !dc_isar_feature(aa32_mve, s)) {
1153 return false;
1156 /* UNDEF accesses to D16-D31 if they don't exist */
1157 if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) {
1158 return false;
1161 if (!vfp_access_check(s)) {
1162 return true;
1165 offset = a->imm << 2;
1166 if (!a->u) {
1167 offset = -offset;
1170 /* For thumb, use of PC is UNPREDICTABLE. */
1171 addr = add_reg_for_lit(s, a->rn, offset);
1172 tmp = tcg_temp_new_i64();
1173 if (a->l) {
1174 gen_aa32_ld_i64(s, tmp, addr, get_mem_index(s), MO_UQ | MO_ALIGN_4);
1175 vfp_store_reg64(tmp, a->vd);
1176 } else {
1177 vfp_load_reg64(tmp, a->vd);
1178 gen_aa32_st_i64(s, tmp, addr, get_mem_index(s), MO_UQ | MO_ALIGN_4);
1180 tcg_temp_free_i64(tmp);
1181 tcg_temp_free_i32(addr);
1183 return true;
1186 static bool trans_VLDM_VSTM_sp(DisasContext *s, arg_VLDM_VSTM_sp *a)
1188 uint32_t offset;
1189 TCGv_i32 addr, tmp;
1190 int i, n;
1192 if (!dc_isar_feature(aa32_fpsp_v2, s) && !dc_isar_feature(aa32_mve, s)) {
1193 return false;
1196 n = a->imm;
1198 if (n == 0 || (a->vd + n) > 32) {
1200 * UNPREDICTABLE cases for bad immediates: we choose to
1201 * UNDEF to avoid generating huge numbers of TCG ops
1203 return false;
1205 if (a->rn == 15 && a->w) {
1206 /* writeback to PC is UNPREDICTABLE, we choose to UNDEF */
1207 return false;
1210 s->eci_handled = true;
1212 if (!vfp_access_check(s)) {
1213 return true;
1216 /* For thumb, use of PC is UNPREDICTABLE. */
1217 addr = add_reg_for_lit(s, a->rn, 0);
1218 if (a->p) {
1219 /* pre-decrement */
1220 tcg_gen_addi_i32(addr, addr, -(a->imm << 2));
1223 if (s->v8m_stackcheck && a->rn == 13 && a->w) {
1225 * Here 'addr' is the lowest address we will store to,
1226 * and is either the old SP (if post-increment) or
1227 * the new SP (if pre-decrement). For post-increment
1228 * where the old value is below the limit and the new
1229 * value is above, it is UNKNOWN whether the limit check
1230 * triggers; we choose to trigger.
1232 gen_helper_v8m_stackcheck(cpu_env, addr);
1235 offset = 4;
1236 tmp = tcg_temp_new_i32();
1237 for (i = 0; i < n; i++) {
1238 if (a->l) {
1239 /* load */
1240 gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), MO_UL | MO_ALIGN);
1241 vfp_store_reg32(tmp, a->vd + i);
1242 } else {
1243 /* store */
1244 vfp_load_reg32(tmp, a->vd + i);
1245 gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), MO_UL | MO_ALIGN);
1247 tcg_gen_addi_i32(addr, addr, offset);
1249 tcg_temp_free_i32(tmp);
1250 if (a->w) {
1251 /* writeback */
1252 if (a->p) {
1253 offset = -offset * n;
1254 tcg_gen_addi_i32(addr, addr, offset);
1256 store_reg(s, a->rn, addr);
1257 } else {
1258 tcg_temp_free_i32(addr);
1261 clear_eci_state(s);
1262 return true;
1265 static bool trans_VLDM_VSTM_dp(DisasContext *s, arg_VLDM_VSTM_dp *a)
1267 uint32_t offset;
1268 TCGv_i32 addr;
1269 TCGv_i64 tmp;
1270 int i, n;
1272 /* Note that this does not require support for double arithmetic. */
1273 if (!dc_isar_feature(aa32_fpsp_v2, s) && !dc_isar_feature(aa32_mve, s)) {
1274 return false;
1277 n = a->imm >> 1;
1279 if (n == 0 || (a->vd + n) > 32 || n > 16) {
1281 * UNPREDICTABLE cases for bad immediates: we choose to
1282 * UNDEF to avoid generating huge numbers of TCG ops
1284 return false;
1286 if (a->rn == 15 && a->w) {
1287 /* writeback to PC is UNPREDICTABLE, we choose to UNDEF */
1288 return false;
1291 /* UNDEF accesses to D16-D31 if they don't exist */
1292 if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd + n) > 16) {
1293 return false;
1296 s->eci_handled = true;
1298 if (!vfp_access_check(s)) {
1299 return true;
1302 /* For thumb, use of PC is UNPREDICTABLE. */
1303 addr = add_reg_for_lit(s, a->rn, 0);
1304 if (a->p) {
1305 /* pre-decrement */
1306 tcg_gen_addi_i32(addr, addr, -(a->imm << 2));
1309 if (s->v8m_stackcheck && a->rn == 13 && a->w) {
1311 * Here 'addr' is the lowest address we will store to,
1312 * and is either the old SP (if post-increment) or
1313 * the new SP (if pre-decrement). For post-increment
1314 * where the old value is below the limit and the new
1315 * value is above, it is UNKNOWN whether the limit check
1316 * triggers; we choose to trigger.
1318 gen_helper_v8m_stackcheck(cpu_env, addr);
1321 offset = 8;
1322 tmp = tcg_temp_new_i64();
1323 for (i = 0; i < n; i++) {
1324 if (a->l) {
1325 /* load */
1326 gen_aa32_ld_i64(s, tmp, addr, get_mem_index(s), MO_UQ | MO_ALIGN_4);
1327 vfp_store_reg64(tmp, a->vd + i);
1328 } else {
1329 /* store */
1330 vfp_load_reg64(tmp, a->vd + i);
1331 gen_aa32_st_i64(s, tmp, addr, get_mem_index(s), MO_UQ | MO_ALIGN_4);
1333 tcg_gen_addi_i32(addr, addr, offset);
1335 tcg_temp_free_i64(tmp);
1336 if (a->w) {
1337 /* writeback */
1338 if (a->p) {
1339 offset = -offset * n;
1340 } else if (a->imm & 1) {
1341 offset = 4;
1342 } else {
1343 offset = 0;
1346 if (offset != 0) {
1347 tcg_gen_addi_i32(addr, addr, offset);
1349 store_reg(s, a->rn, addr);
1350 } else {
1351 tcg_temp_free_i32(addr);
1354 clear_eci_state(s);
1355 return true;
1359 * Types for callbacks for do_vfp_3op_sp() and do_vfp_3op_dp().
1360 * The callback should emit code to write a value to vd. If
1361 * do_vfp_3op_{sp,dp}() was passed reads_vd then the TCGv vd
1362 * will contain the old value of the relevant VFP register;
1363 * otherwise it must be written to only.
1365 typedef void VFPGen3OpSPFn(TCGv_i32 vd,
1366 TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst);
1367 typedef void VFPGen3OpDPFn(TCGv_i64 vd,
1368 TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst);
1371 * Types for callbacks for do_vfp_2op_sp() and do_vfp_2op_dp().
1372 * The callback should emit code to write a value to vd (which
1373 * should be written to only).
1375 typedef void VFPGen2OpSPFn(TCGv_i32 vd, TCGv_i32 vm);
1376 typedef void VFPGen2OpDPFn(TCGv_i64 vd, TCGv_i64 vm);
1379 * Return true if the specified S reg is in a scalar bank
1380 * (ie if it is s0..s7)
1382 static inline bool vfp_sreg_is_scalar(int reg)
1384 return (reg & 0x18) == 0;
1388 * Return true if the specified D reg is in a scalar bank
1389 * (ie if it is d0..d3 or d16..d19)
1391 static inline bool vfp_dreg_is_scalar(int reg)
1393 return (reg & 0xc) == 0;
1397 * Advance the S reg number forwards by delta within its bank
1398 * (ie increment the low 3 bits but leave the rest the same)
1400 static inline int vfp_advance_sreg(int reg, int delta)
1402 return ((reg + delta) & 0x7) | (reg & ~0x7);
1406 * Advance the D reg number forwards by delta within its bank
1407 * (ie increment the low 2 bits but leave the rest the same)
1409 static inline int vfp_advance_dreg(int reg, int delta)
1411 return ((reg + delta) & 0x3) | (reg & ~0x3);
1415 * Perform a 3-operand VFP data processing instruction. fn is the
1416 * callback to do the actual operation; this function deals with the
1417 * code to handle looping around for VFP vector processing.
1419 static bool do_vfp_3op_sp(DisasContext *s, VFPGen3OpSPFn *fn,
1420 int vd, int vn, int vm, bool reads_vd)
1422 uint32_t delta_m = 0;
1423 uint32_t delta_d = 0;
1424 int veclen = s->vec_len;
1425 TCGv_i32 f0, f1, fd;
1426 TCGv_ptr fpst;
1428 if (!dc_isar_feature(aa32_fpsp_v2, s)) {
1429 return false;
1432 if (!dc_isar_feature(aa32_fpshvec, s) &&
1433 (veclen != 0 || s->vec_stride != 0)) {
1434 return false;
1437 if (!vfp_access_check(s)) {
1438 return true;
1441 if (veclen > 0) {
1442 /* Figure out what type of vector operation this is. */
1443 if (vfp_sreg_is_scalar(vd)) {
1444 /* scalar */
1445 veclen = 0;
1446 } else {
1447 delta_d = s->vec_stride + 1;
1449 if (vfp_sreg_is_scalar(vm)) {
1450 /* mixed scalar/vector */
1451 delta_m = 0;
1452 } else {
1453 /* vector */
1454 delta_m = delta_d;
1459 f0 = tcg_temp_new_i32();
1460 f1 = tcg_temp_new_i32();
1461 fd = tcg_temp_new_i32();
1462 fpst = fpstatus_ptr(FPST_FPCR);
1464 vfp_load_reg32(f0, vn);
1465 vfp_load_reg32(f1, vm);
1467 for (;;) {
1468 if (reads_vd) {
1469 vfp_load_reg32(fd, vd);
1471 fn(fd, f0, f1, fpst);
1472 vfp_store_reg32(fd, vd);
1474 if (veclen == 0) {
1475 break;
1478 /* Set up the operands for the next iteration */
1479 veclen--;
1480 vd = vfp_advance_sreg(vd, delta_d);
1481 vn = vfp_advance_sreg(vn, delta_d);
1482 vfp_load_reg32(f0, vn);
1483 if (delta_m) {
1484 vm = vfp_advance_sreg(vm, delta_m);
1485 vfp_load_reg32(f1, vm);
1489 tcg_temp_free_i32(f0);
1490 tcg_temp_free_i32(f1);
1491 tcg_temp_free_i32(fd);
1492 tcg_temp_free_ptr(fpst);
1494 return true;
1497 static bool do_vfp_3op_hp(DisasContext *s, VFPGen3OpSPFn *fn,
1498 int vd, int vn, int vm, bool reads_vd)
1501 * Do a half-precision operation. Functionally this is
1502 * the same as do_vfp_3op_sp(), except:
1503 * - it uses the FPST_FPCR_F16
1504 * - it doesn't need the VFP vector handling (fp16 is a
1505 * v8 feature, and in v8 VFP vectors don't exist)
1506 * - it does the aa32_fp16_arith feature test
1508 TCGv_i32 f0, f1, fd;
1509 TCGv_ptr fpst;
1511 if (!dc_isar_feature(aa32_fp16_arith, s)) {
1512 return false;
1515 if (s->vec_len != 0 || s->vec_stride != 0) {
1516 return false;
1519 if (!vfp_access_check(s)) {
1520 return true;
1523 f0 = tcg_temp_new_i32();
1524 f1 = tcg_temp_new_i32();
1525 fd = tcg_temp_new_i32();
1526 fpst = fpstatus_ptr(FPST_FPCR_F16);
1528 vfp_load_reg32(f0, vn);
1529 vfp_load_reg32(f1, vm);
1531 if (reads_vd) {
1532 vfp_load_reg32(fd, vd);
1534 fn(fd, f0, f1, fpst);
1535 vfp_store_reg32(fd, vd);
1537 tcg_temp_free_i32(f0);
1538 tcg_temp_free_i32(f1);
1539 tcg_temp_free_i32(fd);
1540 tcg_temp_free_ptr(fpst);
1542 return true;
1545 static bool do_vfp_3op_dp(DisasContext *s, VFPGen3OpDPFn *fn,
1546 int vd, int vn, int vm, bool reads_vd)
1548 uint32_t delta_m = 0;
1549 uint32_t delta_d = 0;
1550 int veclen = s->vec_len;
1551 TCGv_i64 f0, f1, fd;
1552 TCGv_ptr fpst;
1554 if (!dc_isar_feature(aa32_fpdp_v2, s)) {
1555 return false;
1558 /* UNDEF accesses to D16-D31 if they don't exist */
1559 if (!dc_isar_feature(aa32_simd_r32, s) && ((vd | vn | vm) & 0x10)) {
1560 return false;
1563 if (!dc_isar_feature(aa32_fpshvec, s) &&
1564 (veclen != 0 || s->vec_stride != 0)) {
1565 return false;
1568 if (!vfp_access_check(s)) {
1569 return true;
1572 if (veclen > 0) {
1573 /* Figure out what type of vector operation this is. */
1574 if (vfp_dreg_is_scalar(vd)) {
1575 /* scalar */
1576 veclen = 0;
1577 } else {
1578 delta_d = (s->vec_stride >> 1) + 1;
1580 if (vfp_dreg_is_scalar(vm)) {
1581 /* mixed scalar/vector */
1582 delta_m = 0;
1583 } else {
1584 /* vector */
1585 delta_m = delta_d;
1590 f0 = tcg_temp_new_i64();
1591 f1 = tcg_temp_new_i64();
1592 fd = tcg_temp_new_i64();
1593 fpst = fpstatus_ptr(FPST_FPCR);
1595 vfp_load_reg64(f0, vn);
1596 vfp_load_reg64(f1, vm);
1598 for (;;) {
1599 if (reads_vd) {
1600 vfp_load_reg64(fd, vd);
1602 fn(fd, f0, f1, fpst);
1603 vfp_store_reg64(fd, vd);
1605 if (veclen == 0) {
1606 break;
1608 /* Set up the operands for the next iteration */
1609 veclen--;
1610 vd = vfp_advance_dreg(vd, delta_d);
1611 vn = vfp_advance_dreg(vn, delta_d);
1612 vfp_load_reg64(f0, vn);
1613 if (delta_m) {
1614 vm = vfp_advance_dreg(vm, delta_m);
1615 vfp_load_reg64(f1, vm);
1619 tcg_temp_free_i64(f0);
1620 tcg_temp_free_i64(f1);
1621 tcg_temp_free_i64(fd);
1622 tcg_temp_free_ptr(fpst);
1624 return true;
1627 static bool do_vfp_2op_sp(DisasContext *s, VFPGen2OpSPFn *fn, int vd, int vm)
1629 uint32_t delta_m = 0;
1630 uint32_t delta_d = 0;
1631 int veclen = s->vec_len;
1632 TCGv_i32 f0, fd;
1634 /* Note that the caller must check the aa32_fpsp_v2 feature. */
1636 if (!dc_isar_feature(aa32_fpshvec, s) &&
1637 (veclen != 0 || s->vec_stride != 0)) {
1638 return false;
1641 if (!vfp_access_check(s)) {
1642 return true;
1645 if (veclen > 0) {
1646 /* Figure out what type of vector operation this is. */
1647 if (vfp_sreg_is_scalar(vd)) {
1648 /* scalar */
1649 veclen = 0;
1650 } else {
1651 delta_d = s->vec_stride + 1;
1653 if (vfp_sreg_is_scalar(vm)) {
1654 /* mixed scalar/vector */
1655 delta_m = 0;
1656 } else {
1657 /* vector */
1658 delta_m = delta_d;
1663 f0 = tcg_temp_new_i32();
1664 fd = tcg_temp_new_i32();
1666 vfp_load_reg32(f0, vm);
1668 for (;;) {
1669 fn(fd, f0);
1670 vfp_store_reg32(fd, vd);
1672 if (veclen == 0) {
1673 break;
1676 if (delta_m == 0) {
1677 /* single source one-many */
1678 while (veclen--) {
1679 vd = vfp_advance_sreg(vd, delta_d);
1680 vfp_store_reg32(fd, vd);
1682 break;
1685 /* Set up the operands for the next iteration */
1686 veclen--;
1687 vd = vfp_advance_sreg(vd, delta_d);
1688 vm = vfp_advance_sreg(vm, delta_m);
1689 vfp_load_reg32(f0, vm);
1692 tcg_temp_free_i32(f0);
1693 tcg_temp_free_i32(fd);
1695 return true;
1698 static bool do_vfp_2op_hp(DisasContext *s, VFPGen2OpSPFn *fn, int vd, int vm)
1701 * Do a half-precision operation. Functionally this is
1702 * the same as do_vfp_2op_sp(), except:
1703 * - it doesn't need the VFP vector handling (fp16 is a
1704 * v8 feature, and in v8 VFP vectors don't exist)
1705 * - it does the aa32_fp16_arith feature test
1707 TCGv_i32 f0;
1709 /* Note that the caller must check the aa32_fp16_arith feature */
1711 if (!dc_isar_feature(aa32_fp16_arith, s)) {
1712 return false;
1715 if (s->vec_len != 0 || s->vec_stride != 0) {
1716 return false;
1719 if (!vfp_access_check(s)) {
1720 return true;
1723 f0 = tcg_temp_new_i32();
1724 vfp_load_reg32(f0, vm);
1725 fn(f0, f0);
1726 vfp_store_reg32(f0, vd);
1727 tcg_temp_free_i32(f0);
1729 return true;
1732 static bool do_vfp_2op_dp(DisasContext *s, VFPGen2OpDPFn *fn, int vd, int vm)
1734 uint32_t delta_m = 0;
1735 uint32_t delta_d = 0;
1736 int veclen = s->vec_len;
1737 TCGv_i64 f0, fd;
1739 /* Note that the caller must check the aa32_fpdp_v2 feature. */
1741 /* UNDEF accesses to D16-D31 if they don't exist */
1742 if (!dc_isar_feature(aa32_simd_r32, s) && ((vd | vm) & 0x10)) {
1743 return false;
1746 if (!dc_isar_feature(aa32_fpshvec, s) &&
1747 (veclen != 0 || s->vec_stride != 0)) {
1748 return false;
1751 if (!vfp_access_check(s)) {
1752 return true;
1755 if (veclen > 0) {
1756 /* Figure out what type of vector operation this is. */
1757 if (vfp_dreg_is_scalar(vd)) {
1758 /* scalar */
1759 veclen = 0;
1760 } else {
1761 delta_d = (s->vec_stride >> 1) + 1;
1763 if (vfp_dreg_is_scalar(vm)) {
1764 /* mixed scalar/vector */
1765 delta_m = 0;
1766 } else {
1767 /* vector */
1768 delta_m = delta_d;
1773 f0 = tcg_temp_new_i64();
1774 fd = tcg_temp_new_i64();
1776 vfp_load_reg64(f0, vm);
1778 for (;;) {
1779 fn(fd, f0);
1780 vfp_store_reg64(fd, vd);
1782 if (veclen == 0) {
1783 break;
1786 if (delta_m == 0) {
1787 /* single source one-many */
1788 while (veclen--) {
1789 vd = vfp_advance_dreg(vd, delta_d);
1790 vfp_store_reg64(fd, vd);
1792 break;
1795 /* Set up the operands for the next iteration */
1796 veclen--;
1797 vd = vfp_advance_dreg(vd, delta_d);
1798 vd = vfp_advance_dreg(vm, delta_m);
1799 vfp_load_reg64(f0, vm);
1802 tcg_temp_free_i64(f0);
1803 tcg_temp_free_i64(fd);
1805 return true;
1808 static void gen_VMLA_hp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
1810 /* Note that order of inputs to the add matters for NaNs */
1811 TCGv_i32 tmp = tcg_temp_new_i32();
1813 gen_helper_vfp_mulh(tmp, vn, vm, fpst);
1814 gen_helper_vfp_addh(vd, vd, tmp, fpst);
1815 tcg_temp_free_i32(tmp);
1818 static bool trans_VMLA_hp(DisasContext *s, arg_VMLA_sp *a)
1820 return do_vfp_3op_hp(s, gen_VMLA_hp, a->vd, a->vn, a->vm, true);
1823 static void gen_VMLA_sp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
1825 /* Note that order of inputs to the add matters for NaNs */
1826 TCGv_i32 tmp = tcg_temp_new_i32();
1828 gen_helper_vfp_muls(tmp, vn, vm, fpst);
1829 gen_helper_vfp_adds(vd, vd, tmp, fpst);
1830 tcg_temp_free_i32(tmp);
1833 static bool trans_VMLA_sp(DisasContext *s, arg_VMLA_sp *a)
1835 return do_vfp_3op_sp(s, gen_VMLA_sp, a->vd, a->vn, a->vm, true);
1838 static void gen_VMLA_dp(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst)
1840 /* Note that order of inputs to the add matters for NaNs */
1841 TCGv_i64 tmp = tcg_temp_new_i64();
1843 gen_helper_vfp_muld(tmp, vn, vm, fpst);
1844 gen_helper_vfp_addd(vd, vd, tmp, fpst);
1845 tcg_temp_free_i64(tmp);
1848 static bool trans_VMLA_dp(DisasContext *s, arg_VMLA_dp *a)
1850 return do_vfp_3op_dp(s, gen_VMLA_dp, a->vd, a->vn, a->vm, true);
1853 static void gen_VMLS_hp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
1856 * VMLS: vd = vd + -(vn * vm)
1857 * Note that order of inputs to the add matters for NaNs.
1859 TCGv_i32 tmp = tcg_temp_new_i32();
1861 gen_helper_vfp_mulh(tmp, vn, vm, fpst);
1862 gen_helper_vfp_negh(tmp, tmp);
1863 gen_helper_vfp_addh(vd, vd, tmp, fpst);
1864 tcg_temp_free_i32(tmp);
1867 static bool trans_VMLS_hp(DisasContext *s, arg_VMLS_sp *a)
1869 return do_vfp_3op_hp(s, gen_VMLS_hp, a->vd, a->vn, a->vm, true);
1872 static void gen_VMLS_sp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
1875 * VMLS: vd = vd + -(vn * vm)
1876 * Note that order of inputs to the add matters for NaNs.
1878 TCGv_i32 tmp = tcg_temp_new_i32();
1880 gen_helper_vfp_muls(tmp, vn, vm, fpst);
1881 gen_helper_vfp_negs(tmp, tmp);
1882 gen_helper_vfp_adds(vd, vd, tmp, fpst);
1883 tcg_temp_free_i32(tmp);
1886 static bool trans_VMLS_sp(DisasContext *s, arg_VMLS_sp *a)
1888 return do_vfp_3op_sp(s, gen_VMLS_sp, a->vd, a->vn, a->vm, true);
1891 static void gen_VMLS_dp(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst)
1894 * VMLS: vd = vd + -(vn * vm)
1895 * Note that order of inputs to the add matters for NaNs.
1897 TCGv_i64 tmp = tcg_temp_new_i64();
1899 gen_helper_vfp_muld(tmp, vn, vm, fpst);
1900 gen_helper_vfp_negd(tmp, tmp);
1901 gen_helper_vfp_addd(vd, vd, tmp, fpst);
1902 tcg_temp_free_i64(tmp);
1905 static bool trans_VMLS_dp(DisasContext *s, arg_VMLS_dp *a)
1907 return do_vfp_3op_dp(s, gen_VMLS_dp, a->vd, a->vn, a->vm, true);
1910 static void gen_VNMLS_hp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
1913 * VNMLS: -fd + (fn * fm)
1914 * Note that it isn't valid to replace (-A + B) with (B - A) or similar
1915 * plausible looking simplifications because this will give wrong results
1916 * for NaNs.
1918 TCGv_i32 tmp = tcg_temp_new_i32();
1920 gen_helper_vfp_mulh(tmp, vn, vm, fpst);
1921 gen_helper_vfp_negh(vd, vd);
1922 gen_helper_vfp_addh(vd, vd, tmp, fpst);
1923 tcg_temp_free_i32(tmp);
1926 static bool trans_VNMLS_hp(DisasContext *s, arg_VNMLS_sp *a)
1928 return do_vfp_3op_hp(s, gen_VNMLS_hp, a->vd, a->vn, a->vm, true);
1931 static void gen_VNMLS_sp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
1934 * VNMLS: -fd + (fn * fm)
1935 * Note that it isn't valid to replace (-A + B) with (B - A) or similar
1936 * plausible looking simplifications because this will give wrong results
1937 * for NaNs.
1939 TCGv_i32 tmp = tcg_temp_new_i32();
1941 gen_helper_vfp_muls(tmp, vn, vm, fpst);
1942 gen_helper_vfp_negs(vd, vd);
1943 gen_helper_vfp_adds(vd, vd, tmp, fpst);
1944 tcg_temp_free_i32(tmp);
1947 static bool trans_VNMLS_sp(DisasContext *s, arg_VNMLS_sp *a)
1949 return do_vfp_3op_sp(s, gen_VNMLS_sp, a->vd, a->vn, a->vm, true);
1952 static void gen_VNMLS_dp(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst)
1955 * VNMLS: -fd + (fn * fm)
1956 * Note that it isn't valid to replace (-A + B) with (B - A) or similar
1957 * plausible looking simplifications because this will give wrong results
1958 * for NaNs.
1960 TCGv_i64 tmp = tcg_temp_new_i64();
1962 gen_helper_vfp_muld(tmp, vn, vm, fpst);
1963 gen_helper_vfp_negd(vd, vd);
1964 gen_helper_vfp_addd(vd, vd, tmp, fpst);
1965 tcg_temp_free_i64(tmp);
1968 static bool trans_VNMLS_dp(DisasContext *s, arg_VNMLS_dp *a)
1970 return do_vfp_3op_dp(s, gen_VNMLS_dp, a->vd, a->vn, a->vm, true);
1973 static void gen_VNMLA_hp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
1975 /* VNMLA: -fd + -(fn * fm) */
1976 TCGv_i32 tmp = tcg_temp_new_i32();
1978 gen_helper_vfp_mulh(tmp, vn, vm, fpst);
1979 gen_helper_vfp_negh(tmp, tmp);
1980 gen_helper_vfp_negh(vd, vd);
1981 gen_helper_vfp_addh(vd, vd, tmp, fpst);
1982 tcg_temp_free_i32(tmp);
1985 static bool trans_VNMLA_hp(DisasContext *s, arg_VNMLA_sp *a)
1987 return do_vfp_3op_hp(s, gen_VNMLA_hp, a->vd, a->vn, a->vm, true);
1990 static void gen_VNMLA_sp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
1992 /* VNMLA: -fd + -(fn * fm) */
1993 TCGv_i32 tmp = tcg_temp_new_i32();
1995 gen_helper_vfp_muls(tmp, vn, vm, fpst);
1996 gen_helper_vfp_negs(tmp, tmp);
1997 gen_helper_vfp_negs(vd, vd);
1998 gen_helper_vfp_adds(vd, vd, tmp, fpst);
1999 tcg_temp_free_i32(tmp);
2002 static bool trans_VNMLA_sp(DisasContext *s, arg_VNMLA_sp *a)
2004 return do_vfp_3op_sp(s, gen_VNMLA_sp, a->vd, a->vn, a->vm, true);
2007 static void gen_VNMLA_dp(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst)
2009 /* VNMLA: -fd + (fn * fm) */
2010 TCGv_i64 tmp = tcg_temp_new_i64();
2012 gen_helper_vfp_muld(tmp, vn, vm, fpst);
2013 gen_helper_vfp_negd(tmp, tmp);
2014 gen_helper_vfp_negd(vd, vd);
2015 gen_helper_vfp_addd(vd, vd, tmp, fpst);
2016 tcg_temp_free_i64(tmp);
2019 static bool trans_VNMLA_dp(DisasContext *s, arg_VNMLA_dp *a)
2021 return do_vfp_3op_dp(s, gen_VNMLA_dp, a->vd, a->vn, a->vm, true);
2024 static bool trans_VMUL_hp(DisasContext *s, arg_VMUL_sp *a)
2026 return do_vfp_3op_hp(s, gen_helper_vfp_mulh, a->vd, a->vn, a->vm, false);
2029 static bool trans_VMUL_sp(DisasContext *s, arg_VMUL_sp *a)
2031 return do_vfp_3op_sp(s, gen_helper_vfp_muls, a->vd, a->vn, a->vm, false);
2034 static bool trans_VMUL_dp(DisasContext *s, arg_VMUL_dp *a)
2036 return do_vfp_3op_dp(s, gen_helper_vfp_muld, a->vd, a->vn, a->vm, false);
2039 static void gen_VNMUL_hp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
2041 /* VNMUL: -(fn * fm) */
2042 gen_helper_vfp_mulh(vd, vn, vm, fpst);
2043 gen_helper_vfp_negh(vd, vd);
2046 static bool trans_VNMUL_hp(DisasContext *s, arg_VNMUL_sp *a)
2048 return do_vfp_3op_hp(s, gen_VNMUL_hp, a->vd, a->vn, a->vm, false);
2051 static void gen_VNMUL_sp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
2053 /* VNMUL: -(fn * fm) */
2054 gen_helper_vfp_muls(vd, vn, vm, fpst);
2055 gen_helper_vfp_negs(vd, vd);
2058 static bool trans_VNMUL_sp(DisasContext *s, arg_VNMUL_sp *a)
2060 return do_vfp_3op_sp(s, gen_VNMUL_sp, a->vd, a->vn, a->vm, false);
2063 static void gen_VNMUL_dp(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst)
2065 /* VNMUL: -(fn * fm) */
2066 gen_helper_vfp_muld(vd, vn, vm, fpst);
2067 gen_helper_vfp_negd(vd, vd);
2070 static bool trans_VNMUL_dp(DisasContext *s, arg_VNMUL_dp *a)
2072 return do_vfp_3op_dp(s, gen_VNMUL_dp, a->vd, a->vn, a->vm, false);
2075 static bool trans_VADD_hp(DisasContext *s, arg_VADD_sp *a)
2077 return do_vfp_3op_hp(s, gen_helper_vfp_addh, a->vd, a->vn, a->vm, false);
2080 static bool trans_VADD_sp(DisasContext *s, arg_VADD_sp *a)
2082 return do_vfp_3op_sp(s, gen_helper_vfp_adds, a->vd, a->vn, a->vm, false);
2085 static bool trans_VADD_dp(DisasContext *s, arg_VADD_dp *a)
2087 return do_vfp_3op_dp(s, gen_helper_vfp_addd, a->vd, a->vn, a->vm, false);
2090 static bool trans_VSUB_hp(DisasContext *s, arg_VSUB_sp *a)
2092 return do_vfp_3op_hp(s, gen_helper_vfp_subh, a->vd, a->vn, a->vm, false);
2095 static bool trans_VSUB_sp(DisasContext *s, arg_VSUB_sp *a)
2097 return do_vfp_3op_sp(s, gen_helper_vfp_subs, a->vd, a->vn, a->vm, false);
2100 static bool trans_VSUB_dp(DisasContext *s, arg_VSUB_dp *a)
2102 return do_vfp_3op_dp(s, gen_helper_vfp_subd, a->vd, a->vn, a->vm, false);
2105 static bool trans_VDIV_hp(DisasContext *s, arg_VDIV_sp *a)
2107 return do_vfp_3op_hp(s, gen_helper_vfp_divh, a->vd, a->vn, a->vm, false);
2110 static bool trans_VDIV_sp(DisasContext *s, arg_VDIV_sp *a)
2112 return do_vfp_3op_sp(s, gen_helper_vfp_divs, a->vd, a->vn, a->vm, false);
2115 static bool trans_VDIV_dp(DisasContext *s, arg_VDIV_dp *a)
2117 return do_vfp_3op_dp(s, gen_helper_vfp_divd, a->vd, a->vn, a->vm, false);
2120 static bool trans_VMINNM_hp(DisasContext *s, arg_VMINNM_sp *a)
2122 if (!dc_isar_feature(aa32_vminmaxnm, s)) {
2123 return false;
2125 return do_vfp_3op_hp(s, gen_helper_vfp_minnumh,
2126 a->vd, a->vn, a->vm, false);
2129 static bool trans_VMAXNM_hp(DisasContext *s, arg_VMAXNM_sp *a)
2131 if (!dc_isar_feature(aa32_vminmaxnm, s)) {
2132 return false;
2134 return do_vfp_3op_hp(s, gen_helper_vfp_maxnumh,
2135 a->vd, a->vn, a->vm, false);
2138 static bool trans_VMINNM_sp(DisasContext *s, arg_VMINNM_sp *a)
2140 if (!dc_isar_feature(aa32_vminmaxnm, s)) {
2141 return false;
2143 return do_vfp_3op_sp(s, gen_helper_vfp_minnums,
2144 a->vd, a->vn, a->vm, false);
2147 static bool trans_VMAXNM_sp(DisasContext *s, arg_VMAXNM_sp *a)
2149 if (!dc_isar_feature(aa32_vminmaxnm, s)) {
2150 return false;
2152 return do_vfp_3op_sp(s, gen_helper_vfp_maxnums,
2153 a->vd, a->vn, a->vm, false);
2156 static bool trans_VMINNM_dp(DisasContext *s, arg_VMINNM_dp *a)
2158 if (!dc_isar_feature(aa32_vminmaxnm, s)) {
2159 return false;
2161 return do_vfp_3op_dp(s, gen_helper_vfp_minnumd,
2162 a->vd, a->vn, a->vm, false);
2165 static bool trans_VMAXNM_dp(DisasContext *s, arg_VMAXNM_dp *a)
2167 if (!dc_isar_feature(aa32_vminmaxnm, s)) {
2168 return false;
2170 return do_vfp_3op_dp(s, gen_helper_vfp_maxnumd,
2171 a->vd, a->vn, a->vm, false);
2174 static bool do_vfm_hp(DisasContext *s, arg_VFMA_sp *a, bool neg_n, bool neg_d)
2177 * VFNMA : fd = muladd(-fd, fn, fm)
2178 * VFNMS : fd = muladd(-fd, -fn, fm)
2179 * VFMA : fd = muladd( fd, fn, fm)
2180 * VFMS : fd = muladd( fd, -fn, fm)
2182 * These are fused multiply-add, and must be done as one floating
2183 * point operation with no rounding between the multiplication and
2184 * addition steps. NB that doing the negations here as separate
2185 * steps is correct : an input NaN should come out with its sign
2186 * bit flipped if it is a negated-input.
2188 TCGv_ptr fpst;
2189 TCGv_i32 vn, vm, vd;
2192 * Present in VFPv4 only, and only with the FP16 extension.
2193 * Note that we can't rely on the SIMDFMAC check alone, because
2194 * in a Neon-no-VFP core that ID register field will be non-zero.
2196 if (!dc_isar_feature(aa32_fp16_arith, s) ||
2197 !dc_isar_feature(aa32_simdfmac, s) ||
2198 !dc_isar_feature(aa32_fpsp_v2, s)) {
2199 return false;
2202 if (s->vec_len != 0 || s->vec_stride != 0) {
2203 return false;
2206 if (!vfp_access_check(s)) {
2207 return true;
2210 vn = tcg_temp_new_i32();
2211 vm = tcg_temp_new_i32();
2212 vd = tcg_temp_new_i32();
2214 vfp_load_reg32(vn, a->vn);
2215 vfp_load_reg32(vm, a->vm);
2216 if (neg_n) {
2217 /* VFNMS, VFMS */
2218 gen_helper_vfp_negh(vn, vn);
2220 vfp_load_reg32(vd, a->vd);
2221 if (neg_d) {
2222 /* VFNMA, VFNMS */
2223 gen_helper_vfp_negh(vd, vd);
2225 fpst = fpstatus_ptr(FPST_FPCR_F16);
2226 gen_helper_vfp_muladdh(vd, vn, vm, vd, fpst);
2227 vfp_store_reg32(vd, a->vd);
2229 tcg_temp_free_ptr(fpst);
2230 tcg_temp_free_i32(vn);
2231 tcg_temp_free_i32(vm);
2232 tcg_temp_free_i32(vd);
2234 return true;
2237 static bool do_vfm_sp(DisasContext *s, arg_VFMA_sp *a, bool neg_n, bool neg_d)
2240 * VFNMA : fd = muladd(-fd, fn, fm)
2241 * VFNMS : fd = muladd(-fd, -fn, fm)
2242 * VFMA : fd = muladd( fd, fn, fm)
2243 * VFMS : fd = muladd( fd, -fn, fm)
2245 * These are fused multiply-add, and must be done as one floating
2246 * point operation with no rounding between the multiplication and
2247 * addition steps. NB that doing the negations here as separate
2248 * steps is correct : an input NaN should come out with its sign
2249 * bit flipped if it is a negated-input.
2251 TCGv_ptr fpst;
2252 TCGv_i32 vn, vm, vd;
2255 * Present in VFPv4 only.
2256 * Note that we can't rely on the SIMDFMAC check alone, because
2257 * in a Neon-no-VFP core that ID register field will be non-zero.
2259 if (!dc_isar_feature(aa32_simdfmac, s) ||
2260 !dc_isar_feature(aa32_fpsp_v2, s)) {
2261 return false;
2264 * In v7A, UNPREDICTABLE with non-zero vector length/stride; from
2265 * v8A, must UNDEF. We choose to UNDEF for both v7A and v8A.
2267 if (s->vec_len != 0 || s->vec_stride != 0) {
2268 return false;
2271 if (!vfp_access_check(s)) {
2272 return true;
2275 vn = tcg_temp_new_i32();
2276 vm = tcg_temp_new_i32();
2277 vd = tcg_temp_new_i32();
2279 vfp_load_reg32(vn, a->vn);
2280 vfp_load_reg32(vm, a->vm);
2281 if (neg_n) {
2282 /* VFNMS, VFMS */
2283 gen_helper_vfp_negs(vn, vn);
2285 vfp_load_reg32(vd, a->vd);
2286 if (neg_d) {
2287 /* VFNMA, VFNMS */
2288 gen_helper_vfp_negs(vd, vd);
2290 fpst = fpstatus_ptr(FPST_FPCR);
2291 gen_helper_vfp_muladds(vd, vn, vm, vd, fpst);
2292 vfp_store_reg32(vd, a->vd);
2294 tcg_temp_free_ptr(fpst);
2295 tcg_temp_free_i32(vn);
2296 tcg_temp_free_i32(vm);
2297 tcg_temp_free_i32(vd);
2299 return true;
2302 static bool do_vfm_dp(DisasContext *s, arg_VFMA_dp *a, bool neg_n, bool neg_d)
2305 * VFNMA : fd = muladd(-fd, fn, fm)
2306 * VFNMS : fd = muladd(-fd, -fn, fm)
2307 * VFMA : fd = muladd( fd, fn, fm)
2308 * VFMS : fd = muladd( fd, -fn, fm)
2310 * These are fused multiply-add, and must be done as one floating
2311 * point operation with no rounding between the multiplication and
2312 * addition steps. NB that doing the negations here as separate
2313 * steps is correct : an input NaN should come out with its sign
2314 * bit flipped if it is a negated-input.
2316 TCGv_ptr fpst;
2317 TCGv_i64 vn, vm, vd;
2320 * Present in VFPv4 only.
2321 * Note that we can't rely on the SIMDFMAC check alone, because
2322 * in a Neon-no-VFP core that ID register field will be non-zero.
2324 if (!dc_isar_feature(aa32_simdfmac, s) ||
2325 !dc_isar_feature(aa32_fpdp_v2, s)) {
2326 return false;
2329 * In v7A, UNPREDICTABLE with non-zero vector length/stride; from
2330 * v8A, must UNDEF. We choose to UNDEF for both v7A and v8A.
2332 if (s->vec_len != 0 || s->vec_stride != 0) {
2333 return false;
2336 /* UNDEF accesses to D16-D31 if they don't exist. */
2337 if (!dc_isar_feature(aa32_simd_r32, s) &&
2338 ((a->vd | a->vn | a->vm) & 0x10)) {
2339 return false;
2342 if (!vfp_access_check(s)) {
2343 return true;
2346 vn = tcg_temp_new_i64();
2347 vm = tcg_temp_new_i64();
2348 vd = tcg_temp_new_i64();
2350 vfp_load_reg64(vn, a->vn);
2351 vfp_load_reg64(vm, a->vm);
2352 if (neg_n) {
2353 /* VFNMS, VFMS */
2354 gen_helper_vfp_negd(vn, vn);
2356 vfp_load_reg64(vd, a->vd);
2357 if (neg_d) {
2358 /* VFNMA, VFNMS */
2359 gen_helper_vfp_negd(vd, vd);
2361 fpst = fpstatus_ptr(FPST_FPCR);
2362 gen_helper_vfp_muladdd(vd, vn, vm, vd, fpst);
2363 vfp_store_reg64(vd, a->vd);
2365 tcg_temp_free_ptr(fpst);
2366 tcg_temp_free_i64(vn);
2367 tcg_temp_free_i64(vm);
2368 tcg_temp_free_i64(vd);
2370 return true;
2373 #define MAKE_ONE_VFM_TRANS_FN(INSN, PREC, NEGN, NEGD) \
2374 static bool trans_##INSN##_##PREC(DisasContext *s, \
2375 arg_##INSN##_##PREC *a) \
2377 return do_vfm_##PREC(s, a, NEGN, NEGD); \
2380 #define MAKE_VFM_TRANS_FNS(PREC) \
2381 MAKE_ONE_VFM_TRANS_FN(VFMA, PREC, false, false) \
2382 MAKE_ONE_VFM_TRANS_FN(VFMS, PREC, true, false) \
2383 MAKE_ONE_VFM_TRANS_FN(VFNMA, PREC, false, true) \
2384 MAKE_ONE_VFM_TRANS_FN(VFNMS, PREC, true, true)
2386 MAKE_VFM_TRANS_FNS(hp)
2387 MAKE_VFM_TRANS_FNS(sp)
2388 MAKE_VFM_TRANS_FNS(dp)
2390 static bool trans_VMOV_imm_hp(DisasContext *s, arg_VMOV_imm_sp *a)
2392 if (!dc_isar_feature(aa32_fp16_arith, s)) {
2393 return false;
2396 if (s->vec_len != 0 || s->vec_stride != 0) {
2397 return false;
2400 if (!vfp_access_check(s)) {
2401 return true;
2404 vfp_store_reg32(tcg_constant_i32(vfp_expand_imm(MO_16, a->imm)), a->vd);
2405 return true;
2408 static bool trans_VMOV_imm_sp(DisasContext *s, arg_VMOV_imm_sp *a)
2410 uint32_t delta_d = 0;
2411 int veclen = s->vec_len;
2412 TCGv_i32 fd;
2413 uint32_t vd;
2415 vd = a->vd;
2417 if (!dc_isar_feature(aa32_fpsp_v3, s)) {
2418 return false;
2421 if (!dc_isar_feature(aa32_fpshvec, s) &&
2422 (veclen != 0 || s->vec_stride != 0)) {
2423 return false;
2426 if (!vfp_access_check(s)) {
2427 return true;
2430 if (veclen > 0) {
2431 /* Figure out what type of vector operation this is. */
2432 if (vfp_sreg_is_scalar(vd)) {
2433 /* scalar */
2434 veclen = 0;
2435 } else {
2436 delta_d = s->vec_stride + 1;
2440 fd = tcg_constant_i32(vfp_expand_imm(MO_32, a->imm));
2442 for (;;) {
2443 vfp_store_reg32(fd, vd);
2445 if (veclen == 0) {
2446 break;
2449 /* Set up the operands for the next iteration */
2450 veclen--;
2451 vd = vfp_advance_sreg(vd, delta_d);
2454 return true;
2457 static bool trans_VMOV_imm_dp(DisasContext *s, arg_VMOV_imm_dp *a)
2459 uint32_t delta_d = 0;
2460 int veclen = s->vec_len;
2461 TCGv_i64 fd;
2462 uint32_t vd;
2464 vd = a->vd;
2466 if (!dc_isar_feature(aa32_fpdp_v3, s)) {
2467 return false;
2470 /* UNDEF accesses to D16-D31 if they don't exist. */
2471 if (!dc_isar_feature(aa32_simd_r32, s) && (vd & 0x10)) {
2472 return false;
2475 if (!dc_isar_feature(aa32_fpshvec, s) &&
2476 (veclen != 0 || s->vec_stride != 0)) {
2477 return false;
2480 if (!vfp_access_check(s)) {
2481 return true;
2484 if (veclen > 0) {
2485 /* Figure out what type of vector operation this is. */
2486 if (vfp_dreg_is_scalar(vd)) {
2487 /* scalar */
2488 veclen = 0;
2489 } else {
2490 delta_d = (s->vec_stride >> 1) + 1;
2494 fd = tcg_constant_i64(vfp_expand_imm(MO_64, a->imm));
2496 for (;;) {
2497 vfp_store_reg64(fd, vd);
2499 if (veclen == 0) {
2500 break;
2503 /* Set up the operands for the next iteration */
2504 veclen--;
2505 vd = vfp_advance_dreg(vd, delta_d);
2508 return true;
2511 #define DO_VFP_2OP(INSN, PREC, FN, CHECK) \
2512 static bool trans_##INSN##_##PREC(DisasContext *s, \
2513 arg_##INSN##_##PREC *a) \
2515 if (!dc_isar_feature(CHECK, s)) { \
2516 return false; \
2518 return do_vfp_2op_##PREC(s, FN, a->vd, a->vm); \
2521 #define DO_VFP_VMOV(INSN, PREC, FN) \
2522 static bool trans_##INSN##_##PREC(DisasContext *s, \
2523 arg_##INSN##_##PREC *a) \
2525 if (!dc_isar_feature(aa32_fp##PREC##_v2, s) && \
2526 !dc_isar_feature(aa32_mve, s)) { \
2527 return false; \
2529 return do_vfp_2op_##PREC(s, FN, a->vd, a->vm); \
2532 DO_VFP_VMOV(VMOV_reg, sp, tcg_gen_mov_i32)
2533 DO_VFP_VMOV(VMOV_reg, dp, tcg_gen_mov_i64)
2535 DO_VFP_2OP(VABS, hp, gen_helper_vfp_absh, aa32_fp16_arith)
2536 DO_VFP_2OP(VABS, sp, gen_helper_vfp_abss, aa32_fpsp_v2)
2537 DO_VFP_2OP(VABS, dp, gen_helper_vfp_absd, aa32_fpdp_v2)
2539 DO_VFP_2OP(VNEG, hp, gen_helper_vfp_negh, aa32_fp16_arith)
2540 DO_VFP_2OP(VNEG, sp, gen_helper_vfp_negs, aa32_fpsp_v2)
2541 DO_VFP_2OP(VNEG, dp, gen_helper_vfp_negd, aa32_fpdp_v2)
2543 static void gen_VSQRT_hp(TCGv_i32 vd, TCGv_i32 vm)
2545 gen_helper_vfp_sqrth(vd, vm, cpu_env);
2548 static void gen_VSQRT_sp(TCGv_i32 vd, TCGv_i32 vm)
2550 gen_helper_vfp_sqrts(vd, vm, cpu_env);
2553 static void gen_VSQRT_dp(TCGv_i64 vd, TCGv_i64 vm)
2555 gen_helper_vfp_sqrtd(vd, vm, cpu_env);
2558 DO_VFP_2OP(VSQRT, hp, gen_VSQRT_hp, aa32_fp16_arith)
2559 DO_VFP_2OP(VSQRT, sp, gen_VSQRT_sp, aa32_fpsp_v2)
2560 DO_VFP_2OP(VSQRT, dp, gen_VSQRT_dp, aa32_fpdp_v2)
2562 static bool trans_VCMP_hp(DisasContext *s, arg_VCMP_sp *a)
2564 TCGv_i32 vd, vm;
2566 if (!dc_isar_feature(aa32_fp16_arith, s)) {
2567 return false;
2570 /* Vm/M bits must be zero for the Z variant */
2571 if (a->z && a->vm != 0) {
2572 return false;
2575 if (!vfp_access_check(s)) {
2576 return true;
2579 vd = tcg_temp_new_i32();
2580 vm = tcg_temp_new_i32();
2582 vfp_load_reg32(vd, a->vd);
2583 if (a->z) {
2584 tcg_gen_movi_i32(vm, 0);
2585 } else {
2586 vfp_load_reg32(vm, a->vm);
2589 if (a->e) {
2590 gen_helper_vfp_cmpeh(vd, vm, cpu_env);
2591 } else {
2592 gen_helper_vfp_cmph(vd, vm, cpu_env);
2595 tcg_temp_free_i32(vd);
2596 tcg_temp_free_i32(vm);
2598 return true;
2601 static bool trans_VCMP_sp(DisasContext *s, arg_VCMP_sp *a)
2603 TCGv_i32 vd, vm;
2605 if (!dc_isar_feature(aa32_fpsp_v2, s)) {
2606 return false;
2609 /* Vm/M bits must be zero for the Z variant */
2610 if (a->z && a->vm != 0) {
2611 return false;
2614 if (!vfp_access_check(s)) {
2615 return true;
2618 vd = tcg_temp_new_i32();
2619 vm = tcg_temp_new_i32();
2621 vfp_load_reg32(vd, a->vd);
2622 if (a->z) {
2623 tcg_gen_movi_i32(vm, 0);
2624 } else {
2625 vfp_load_reg32(vm, a->vm);
2628 if (a->e) {
2629 gen_helper_vfp_cmpes(vd, vm, cpu_env);
2630 } else {
2631 gen_helper_vfp_cmps(vd, vm, cpu_env);
2634 tcg_temp_free_i32(vd);
2635 tcg_temp_free_i32(vm);
2637 return true;
2640 static bool trans_VCMP_dp(DisasContext *s, arg_VCMP_dp *a)
2642 TCGv_i64 vd, vm;
2644 if (!dc_isar_feature(aa32_fpdp_v2, s)) {
2645 return false;
2648 /* Vm/M bits must be zero for the Z variant */
2649 if (a->z && a->vm != 0) {
2650 return false;
2653 /* UNDEF accesses to D16-D31 if they don't exist. */
2654 if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) {
2655 return false;
2658 if (!vfp_access_check(s)) {
2659 return true;
2662 vd = tcg_temp_new_i64();
2663 vm = tcg_temp_new_i64();
2665 vfp_load_reg64(vd, a->vd);
2666 if (a->z) {
2667 tcg_gen_movi_i64(vm, 0);
2668 } else {
2669 vfp_load_reg64(vm, a->vm);
2672 if (a->e) {
2673 gen_helper_vfp_cmped(vd, vm, cpu_env);
2674 } else {
2675 gen_helper_vfp_cmpd(vd, vm, cpu_env);
2678 tcg_temp_free_i64(vd);
2679 tcg_temp_free_i64(vm);
2681 return true;
2684 static bool trans_VCVT_f32_f16(DisasContext *s, arg_VCVT_f32_f16 *a)
2686 TCGv_ptr fpst;
2687 TCGv_i32 ahp_mode;
2688 TCGv_i32 tmp;
2690 if (!dc_isar_feature(aa32_fp16_spconv, s)) {
2691 return false;
2694 if (!vfp_access_check(s)) {
2695 return true;
2698 fpst = fpstatus_ptr(FPST_FPCR);
2699 ahp_mode = get_ahp_flag();
2700 tmp = tcg_temp_new_i32();
2701 /* The T bit tells us if we want the low or high 16 bits of Vm */
2702 tcg_gen_ld16u_i32(tmp, cpu_env, vfp_f16_offset(a->vm, a->t));
2703 gen_helper_vfp_fcvt_f16_to_f32(tmp, tmp, fpst, ahp_mode);
2704 vfp_store_reg32(tmp, a->vd);
2705 tcg_temp_free_i32(ahp_mode);
2706 tcg_temp_free_ptr(fpst);
2707 tcg_temp_free_i32(tmp);
2708 return true;
2711 static bool trans_VCVT_f64_f16(DisasContext *s, arg_VCVT_f64_f16 *a)
2713 TCGv_ptr fpst;
2714 TCGv_i32 ahp_mode;
2715 TCGv_i32 tmp;
2716 TCGv_i64 vd;
2718 if (!dc_isar_feature(aa32_fpdp_v2, s)) {
2719 return false;
2722 if (!dc_isar_feature(aa32_fp16_dpconv, s)) {
2723 return false;
2726 /* UNDEF accesses to D16-D31 if they don't exist. */
2727 if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) {
2728 return false;
2731 if (!vfp_access_check(s)) {
2732 return true;
2735 fpst = fpstatus_ptr(FPST_FPCR);
2736 ahp_mode = get_ahp_flag();
2737 tmp = tcg_temp_new_i32();
2738 /* The T bit tells us if we want the low or high 16 bits of Vm */
2739 tcg_gen_ld16u_i32(tmp, cpu_env, vfp_f16_offset(a->vm, a->t));
2740 vd = tcg_temp_new_i64();
2741 gen_helper_vfp_fcvt_f16_to_f64(vd, tmp, fpst, ahp_mode);
2742 vfp_store_reg64(vd, a->vd);
2743 tcg_temp_free_i32(ahp_mode);
2744 tcg_temp_free_ptr(fpst);
2745 tcg_temp_free_i32(tmp);
2746 tcg_temp_free_i64(vd);
2747 return true;
2750 static bool trans_VCVT_b16_f32(DisasContext *s, arg_VCVT_b16_f32 *a)
2752 TCGv_ptr fpst;
2753 TCGv_i32 tmp;
2755 if (!dc_isar_feature(aa32_bf16, s)) {
2756 return false;
2759 if (!vfp_access_check(s)) {
2760 return true;
2763 fpst = fpstatus_ptr(FPST_FPCR);
2764 tmp = tcg_temp_new_i32();
2766 vfp_load_reg32(tmp, a->vm);
2767 gen_helper_bfcvt(tmp, tmp, fpst);
2768 tcg_gen_st16_i32(tmp, cpu_env, vfp_f16_offset(a->vd, a->t));
2769 tcg_temp_free_ptr(fpst);
2770 tcg_temp_free_i32(tmp);
2771 return true;
2774 static bool trans_VCVT_f16_f32(DisasContext *s, arg_VCVT_f16_f32 *a)
2776 TCGv_ptr fpst;
2777 TCGv_i32 ahp_mode;
2778 TCGv_i32 tmp;
2780 if (!dc_isar_feature(aa32_fp16_spconv, s)) {
2781 return false;
2784 if (!vfp_access_check(s)) {
2785 return true;
2788 fpst = fpstatus_ptr(FPST_FPCR);
2789 ahp_mode = get_ahp_flag();
2790 tmp = tcg_temp_new_i32();
2792 vfp_load_reg32(tmp, a->vm);
2793 gen_helper_vfp_fcvt_f32_to_f16(tmp, tmp, fpst, ahp_mode);
2794 tcg_gen_st16_i32(tmp, cpu_env, vfp_f16_offset(a->vd, a->t));
2795 tcg_temp_free_i32(ahp_mode);
2796 tcg_temp_free_ptr(fpst);
2797 tcg_temp_free_i32(tmp);
2798 return true;
2801 static bool trans_VCVT_f16_f64(DisasContext *s, arg_VCVT_f16_f64 *a)
2803 TCGv_ptr fpst;
2804 TCGv_i32 ahp_mode;
2805 TCGv_i32 tmp;
2806 TCGv_i64 vm;
2808 if (!dc_isar_feature(aa32_fpdp_v2, s)) {
2809 return false;
2812 if (!dc_isar_feature(aa32_fp16_dpconv, s)) {
2813 return false;
2816 /* UNDEF accesses to D16-D31 if they don't exist. */
2817 if (!dc_isar_feature(aa32_simd_r32, s) && (a->vm & 0x10)) {
2818 return false;
2821 if (!vfp_access_check(s)) {
2822 return true;
2825 fpst = fpstatus_ptr(FPST_FPCR);
2826 ahp_mode = get_ahp_flag();
2827 tmp = tcg_temp_new_i32();
2828 vm = tcg_temp_new_i64();
2830 vfp_load_reg64(vm, a->vm);
2831 gen_helper_vfp_fcvt_f64_to_f16(tmp, vm, fpst, ahp_mode);
2832 tcg_temp_free_i64(vm);
2833 tcg_gen_st16_i32(tmp, cpu_env, vfp_f16_offset(a->vd, a->t));
2834 tcg_temp_free_i32(ahp_mode);
2835 tcg_temp_free_ptr(fpst);
2836 tcg_temp_free_i32(tmp);
2837 return true;
2840 static bool trans_VRINTR_hp(DisasContext *s, arg_VRINTR_sp *a)
2842 TCGv_ptr fpst;
2843 TCGv_i32 tmp;
2845 if (!dc_isar_feature(aa32_fp16_arith, s)) {
2846 return false;
2849 if (!vfp_access_check(s)) {
2850 return true;
2853 tmp = tcg_temp_new_i32();
2854 vfp_load_reg32(tmp, a->vm);
2855 fpst = fpstatus_ptr(FPST_FPCR_F16);
2856 gen_helper_rinth(tmp, tmp, fpst);
2857 vfp_store_reg32(tmp, a->vd);
2858 tcg_temp_free_ptr(fpst);
2859 tcg_temp_free_i32(tmp);
2860 return true;
2863 static bool trans_VRINTR_sp(DisasContext *s, arg_VRINTR_sp *a)
2865 TCGv_ptr fpst;
2866 TCGv_i32 tmp;
2868 if (!dc_isar_feature(aa32_vrint, s)) {
2869 return false;
2872 if (!vfp_access_check(s)) {
2873 return true;
2876 tmp = tcg_temp_new_i32();
2877 vfp_load_reg32(tmp, a->vm);
2878 fpst = fpstatus_ptr(FPST_FPCR);
2879 gen_helper_rints(tmp, tmp, fpst);
2880 vfp_store_reg32(tmp, a->vd);
2881 tcg_temp_free_ptr(fpst);
2882 tcg_temp_free_i32(tmp);
2883 return true;
2886 static bool trans_VRINTR_dp(DisasContext *s, arg_VRINTR_dp *a)
2888 TCGv_ptr fpst;
2889 TCGv_i64 tmp;
2891 if (!dc_isar_feature(aa32_fpdp_v2, s)) {
2892 return false;
2895 if (!dc_isar_feature(aa32_vrint, s)) {
2896 return false;
2899 /* UNDEF accesses to D16-D31 if they don't exist. */
2900 if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) {
2901 return false;
2904 if (!vfp_access_check(s)) {
2905 return true;
2908 tmp = tcg_temp_new_i64();
2909 vfp_load_reg64(tmp, a->vm);
2910 fpst = fpstatus_ptr(FPST_FPCR);
2911 gen_helper_rintd(tmp, tmp, fpst);
2912 vfp_store_reg64(tmp, a->vd);
2913 tcg_temp_free_ptr(fpst);
2914 tcg_temp_free_i64(tmp);
2915 return true;
2918 static bool trans_VRINTZ_hp(DisasContext *s, arg_VRINTZ_sp *a)
2920 TCGv_ptr fpst;
2921 TCGv_i32 tmp;
2922 TCGv_i32 tcg_rmode;
2924 if (!dc_isar_feature(aa32_fp16_arith, s)) {
2925 return false;
2928 if (!vfp_access_check(s)) {
2929 return true;
2932 tmp = tcg_temp_new_i32();
2933 vfp_load_reg32(tmp, a->vm);
2934 fpst = fpstatus_ptr(FPST_FPCR_F16);
2935 tcg_rmode = tcg_const_i32(float_round_to_zero);
2936 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
2937 gen_helper_rinth(tmp, tmp, fpst);
2938 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
2939 vfp_store_reg32(tmp, a->vd);
2940 tcg_temp_free_ptr(fpst);
2941 tcg_temp_free_i32(tcg_rmode);
2942 tcg_temp_free_i32(tmp);
2943 return true;
2946 static bool trans_VRINTZ_sp(DisasContext *s, arg_VRINTZ_sp *a)
2948 TCGv_ptr fpst;
2949 TCGv_i32 tmp;
2950 TCGv_i32 tcg_rmode;
2952 if (!dc_isar_feature(aa32_vrint, s)) {
2953 return false;
2956 if (!vfp_access_check(s)) {
2957 return true;
2960 tmp = tcg_temp_new_i32();
2961 vfp_load_reg32(tmp, a->vm);
2962 fpst = fpstatus_ptr(FPST_FPCR);
2963 tcg_rmode = tcg_const_i32(float_round_to_zero);
2964 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
2965 gen_helper_rints(tmp, tmp, fpst);
2966 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
2967 vfp_store_reg32(tmp, a->vd);
2968 tcg_temp_free_ptr(fpst);
2969 tcg_temp_free_i32(tcg_rmode);
2970 tcg_temp_free_i32(tmp);
2971 return true;
2974 static bool trans_VRINTZ_dp(DisasContext *s, arg_VRINTZ_dp *a)
2976 TCGv_ptr fpst;
2977 TCGv_i64 tmp;
2978 TCGv_i32 tcg_rmode;
2980 if (!dc_isar_feature(aa32_fpdp_v2, s)) {
2981 return false;
2984 if (!dc_isar_feature(aa32_vrint, s)) {
2985 return false;
2988 /* UNDEF accesses to D16-D31 if they don't exist. */
2989 if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) {
2990 return false;
2993 if (!vfp_access_check(s)) {
2994 return true;
2997 tmp = tcg_temp_new_i64();
2998 vfp_load_reg64(tmp, a->vm);
2999 fpst = fpstatus_ptr(FPST_FPCR);
3000 tcg_rmode = tcg_const_i32(float_round_to_zero);
3001 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
3002 gen_helper_rintd(tmp, tmp, fpst);
3003 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
3004 vfp_store_reg64(tmp, a->vd);
3005 tcg_temp_free_ptr(fpst);
3006 tcg_temp_free_i64(tmp);
3007 tcg_temp_free_i32(tcg_rmode);
3008 return true;
3011 static bool trans_VRINTX_hp(DisasContext *s, arg_VRINTX_sp *a)
3013 TCGv_ptr fpst;
3014 TCGv_i32 tmp;
3016 if (!dc_isar_feature(aa32_fp16_arith, s)) {
3017 return false;
3020 if (!vfp_access_check(s)) {
3021 return true;
3024 tmp = tcg_temp_new_i32();
3025 vfp_load_reg32(tmp, a->vm);
3026 fpst = fpstatus_ptr(FPST_FPCR_F16);
3027 gen_helper_rinth_exact(tmp, tmp, fpst);
3028 vfp_store_reg32(tmp, a->vd);
3029 tcg_temp_free_ptr(fpst);
3030 tcg_temp_free_i32(tmp);
3031 return true;
3034 static bool trans_VRINTX_sp(DisasContext *s, arg_VRINTX_sp *a)
3036 TCGv_ptr fpst;
3037 TCGv_i32 tmp;
3039 if (!dc_isar_feature(aa32_vrint, s)) {
3040 return false;
3043 if (!vfp_access_check(s)) {
3044 return true;
3047 tmp = tcg_temp_new_i32();
3048 vfp_load_reg32(tmp, a->vm);
3049 fpst = fpstatus_ptr(FPST_FPCR);
3050 gen_helper_rints_exact(tmp, tmp, fpst);
3051 vfp_store_reg32(tmp, a->vd);
3052 tcg_temp_free_ptr(fpst);
3053 tcg_temp_free_i32(tmp);
3054 return true;
3057 static bool trans_VRINTX_dp(DisasContext *s, arg_VRINTX_dp *a)
3059 TCGv_ptr fpst;
3060 TCGv_i64 tmp;
3062 if (!dc_isar_feature(aa32_fpdp_v2, s)) {
3063 return false;
3066 if (!dc_isar_feature(aa32_vrint, s)) {
3067 return false;
3070 /* UNDEF accesses to D16-D31 if they don't exist. */
3071 if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) {
3072 return false;
3075 if (!vfp_access_check(s)) {
3076 return true;
3079 tmp = tcg_temp_new_i64();
3080 vfp_load_reg64(tmp, a->vm);
3081 fpst = fpstatus_ptr(FPST_FPCR);
3082 gen_helper_rintd_exact(tmp, tmp, fpst);
3083 vfp_store_reg64(tmp, a->vd);
3084 tcg_temp_free_ptr(fpst);
3085 tcg_temp_free_i64(tmp);
3086 return true;
3089 static bool trans_VCVT_sp(DisasContext *s, arg_VCVT_sp *a)
3091 TCGv_i64 vd;
3092 TCGv_i32 vm;
3094 if (!dc_isar_feature(aa32_fpdp_v2, s)) {
3095 return false;
3098 /* UNDEF accesses to D16-D31 if they don't exist. */
3099 if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) {
3100 return false;
3103 if (!vfp_access_check(s)) {
3104 return true;
3107 vm = tcg_temp_new_i32();
3108 vd = tcg_temp_new_i64();
3109 vfp_load_reg32(vm, a->vm);
3110 gen_helper_vfp_fcvtds(vd, vm, cpu_env);
3111 vfp_store_reg64(vd, a->vd);
3112 tcg_temp_free_i32(vm);
3113 tcg_temp_free_i64(vd);
3114 return true;
3117 static bool trans_VCVT_dp(DisasContext *s, arg_VCVT_dp *a)
3119 TCGv_i64 vm;
3120 TCGv_i32 vd;
3122 if (!dc_isar_feature(aa32_fpdp_v2, s)) {
3123 return false;
3126 /* UNDEF accesses to D16-D31 if they don't exist. */
3127 if (!dc_isar_feature(aa32_simd_r32, s) && (a->vm & 0x10)) {
3128 return false;
3131 if (!vfp_access_check(s)) {
3132 return true;
3135 vd = tcg_temp_new_i32();
3136 vm = tcg_temp_new_i64();
3137 vfp_load_reg64(vm, a->vm);
3138 gen_helper_vfp_fcvtsd(vd, vm, cpu_env);
3139 vfp_store_reg32(vd, a->vd);
3140 tcg_temp_free_i32(vd);
3141 tcg_temp_free_i64(vm);
3142 return true;
3145 static bool trans_VCVT_int_hp(DisasContext *s, arg_VCVT_int_sp *a)
3147 TCGv_i32 vm;
3148 TCGv_ptr fpst;
3150 if (!dc_isar_feature(aa32_fp16_arith, s)) {
3151 return false;
3154 if (!vfp_access_check(s)) {
3155 return true;
3158 vm = tcg_temp_new_i32();
3159 vfp_load_reg32(vm, a->vm);
3160 fpst = fpstatus_ptr(FPST_FPCR_F16);
3161 if (a->s) {
3162 /* i32 -> f16 */
3163 gen_helper_vfp_sitoh(vm, vm, fpst);
3164 } else {
3165 /* u32 -> f16 */
3166 gen_helper_vfp_uitoh(vm, vm, fpst);
3168 vfp_store_reg32(vm, a->vd);
3169 tcg_temp_free_i32(vm);
3170 tcg_temp_free_ptr(fpst);
3171 return true;
3174 static bool trans_VCVT_int_sp(DisasContext *s, arg_VCVT_int_sp *a)
3176 TCGv_i32 vm;
3177 TCGv_ptr fpst;
3179 if (!dc_isar_feature(aa32_fpsp_v2, s)) {
3180 return false;
3183 if (!vfp_access_check(s)) {
3184 return true;
3187 vm = tcg_temp_new_i32();
3188 vfp_load_reg32(vm, a->vm);
3189 fpst = fpstatus_ptr(FPST_FPCR);
3190 if (a->s) {
3191 /* i32 -> f32 */
3192 gen_helper_vfp_sitos(vm, vm, fpst);
3193 } else {
3194 /* u32 -> f32 */
3195 gen_helper_vfp_uitos(vm, vm, fpst);
3197 vfp_store_reg32(vm, a->vd);
3198 tcg_temp_free_i32(vm);
3199 tcg_temp_free_ptr(fpst);
3200 return true;
3203 static bool trans_VCVT_int_dp(DisasContext *s, arg_VCVT_int_dp *a)
3205 TCGv_i32 vm;
3206 TCGv_i64 vd;
3207 TCGv_ptr fpst;
3209 if (!dc_isar_feature(aa32_fpdp_v2, s)) {
3210 return false;
3213 /* UNDEF accesses to D16-D31 if they don't exist. */
3214 if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) {
3215 return false;
3218 if (!vfp_access_check(s)) {
3219 return true;
3222 vm = tcg_temp_new_i32();
3223 vd = tcg_temp_new_i64();
3224 vfp_load_reg32(vm, a->vm);
3225 fpst = fpstatus_ptr(FPST_FPCR);
3226 if (a->s) {
3227 /* i32 -> f64 */
3228 gen_helper_vfp_sitod(vd, vm, fpst);
3229 } else {
3230 /* u32 -> f64 */
3231 gen_helper_vfp_uitod(vd, vm, fpst);
3233 vfp_store_reg64(vd, a->vd);
3234 tcg_temp_free_i32(vm);
3235 tcg_temp_free_i64(vd);
3236 tcg_temp_free_ptr(fpst);
3237 return true;
3240 static bool trans_VJCVT(DisasContext *s, arg_VJCVT *a)
3242 TCGv_i32 vd;
3243 TCGv_i64 vm;
3245 if (!dc_isar_feature(aa32_fpdp_v2, s)) {
3246 return false;
3249 if (!dc_isar_feature(aa32_jscvt, s)) {
3250 return false;
3253 /* UNDEF accesses to D16-D31 if they don't exist. */
3254 if (!dc_isar_feature(aa32_simd_r32, s) && (a->vm & 0x10)) {
3255 return false;
3258 if (!vfp_access_check(s)) {
3259 return true;
3262 vm = tcg_temp_new_i64();
3263 vd = tcg_temp_new_i32();
3264 vfp_load_reg64(vm, a->vm);
3265 gen_helper_vjcvt(vd, vm, cpu_env);
3266 vfp_store_reg32(vd, a->vd);
3267 tcg_temp_free_i64(vm);
3268 tcg_temp_free_i32(vd);
3269 return true;
3272 static bool trans_VCVT_fix_hp(DisasContext *s, arg_VCVT_fix_sp *a)
3274 TCGv_i32 vd, shift;
3275 TCGv_ptr fpst;
3276 int frac_bits;
3278 if (!dc_isar_feature(aa32_fp16_arith, s)) {
3279 return false;
3282 if (!vfp_access_check(s)) {
3283 return true;
3286 frac_bits = (a->opc & 1) ? (32 - a->imm) : (16 - a->imm);
3288 vd = tcg_temp_new_i32();
3289 vfp_load_reg32(vd, a->vd);
3291 fpst = fpstatus_ptr(FPST_FPCR_F16);
3292 shift = tcg_constant_i32(frac_bits);
3294 /* Switch on op:U:sx bits */
3295 switch (a->opc) {
3296 case 0:
3297 gen_helper_vfp_shtoh_round_to_nearest(vd, vd, shift, fpst);
3298 break;
3299 case 1:
3300 gen_helper_vfp_sltoh_round_to_nearest(vd, vd, shift, fpst);
3301 break;
3302 case 2:
3303 gen_helper_vfp_uhtoh_round_to_nearest(vd, vd, shift, fpst);
3304 break;
3305 case 3:
3306 gen_helper_vfp_ultoh_round_to_nearest(vd, vd, shift, fpst);
3307 break;
3308 case 4:
3309 gen_helper_vfp_toshh_round_to_zero(vd, vd, shift, fpst);
3310 break;
3311 case 5:
3312 gen_helper_vfp_toslh_round_to_zero(vd, vd, shift, fpst);
3313 break;
3314 case 6:
3315 gen_helper_vfp_touhh_round_to_zero(vd, vd, shift, fpst);
3316 break;
3317 case 7:
3318 gen_helper_vfp_toulh_round_to_zero(vd, vd, shift, fpst);
3319 break;
3320 default:
3321 g_assert_not_reached();
3324 vfp_store_reg32(vd, a->vd);
3325 tcg_temp_free_i32(vd);
3326 tcg_temp_free_ptr(fpst);
3327 return true;
3330 static bool trans_VCVT_fix_sp(DisasContext *s, arg_VCVT_fix_sp *a)
3332 TCGv_i32 vd, shift;
3333 TCGv_ptr fpst;
3334 int frac_bits;
3336 if (!dc_isar_feature(aa32_fpsp_v3, s)) {
3337 return false;
3340 if (!vfp_access_check(s)) {
3341 return true;
3344 frac_bits = (a->opc & 1) ? (32 - a->imm) : (16 - a->imm);
3346 vd = tcg_temp_new_i32();
3347 vfp_load_reg32(vd, a->vd);
3349 fpst = fpstatus_ptr(FPST_FPCR);
3350 shift = tcg_constant_i32(frac_bits);
3352 /* Switch on op:U:sx bits */
3353 switch (a->opc) {
3354 case 0:
3355 gen_helper_vfp_shtos_round_to_nearest(vd, vd, shift, fpst);
3356 break;
3357 case 1:
3358 gen_helper_vfp_sltos_round_to_nearest(vd, vd, shift, fpst);
3359 break;
3360 case 2:
3361 gen_helper_vfp_uhtos_round_to_nearest(vd, vd, shift, fpst);
3362 break;
3363 case 3:
3364 gen_helper_vfp_ultos_round_to_nearest(vd, vd, shift, fpst);
3365 break;
3366 case 4:
3367 gen_helper_vfp_toshs_round_to_zero(vd, vd, shift, fpst);
3368 break;
3369 case 5:
3370 gen_helper_vfp_tosls_round_to_zero(vd, vd, shift, fpst);
3371 break;
3372 case 6:
3373 gen_helper_vfp_touhs_round_to_zero(vd, vd, shift, fpst);
3374 break;
3375 case 7:
3376 gen_helper_vfp_touls_round_to_zero(vd, vd, shift, fpst);
3377 break;
3378 default:
3379 g_assert_not_reached();
3382 vfp_store_reg32(vd, a->vd);
3383 tcg_temp_free_i32(vd);
3384 tcg_temp_free_ptr(fpst);
3385 return true;
3388 static bool trans_VCVT_fix_dp(DisasContext *s, arg_VCVT_fix_dp *a)
3390 TCGv_i64 vd;
3391 TCGv_i32 shift;
3392 TCGv_ptr fpst;
3393 int frac_bits;
3395 if (!dc_isar_feature(aa32_fpdp_v3, s)) {
3396 return false;
3399 /* UNDEF accesses to D16-D31 if they don't exist. */
3400 if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) {
3401 return false;
3404 if (!vfp_access_check(s)) {
3405 return true;
3408 frac_bits = (a->opc & 1) ? (32 - a->imm) : (16 - a->imm);
3410 vd = tcg_temp_new_i64();
3411 vfp_load_reg64(vd, a->vd);
3413 fpst = fpstatus_ptr(FPST_FPCR);
3414 shift = tcg_constant_i32(frac_bits);
3416 /* Switch on op:U:sx bits */
3417 switch (a->opc) {
3418 case 0:
3419 gen_helper_vfp_shtod_round_to_nearest(vd, vd, shift, fpst);
3420 break;
3421 case 1:
3422 gen_helper_vfp_sltod_round_to_nearest(vd, vd, shift, fpst);
3423 break;
3424 case 2:
3425 gen_helper_vfp_uhtod_round_to_nearest(vd, vd, shift, fpst);
3426 break;
3427 case 3:
3428 gen_helper_vfp_ultod_round_to_nearest(vd, vd, shift, fpst);
3429 break;
3430 case 4:
3431 gen_helper_vfp_toshd_round_to_zero(vd, vd, shift, fpst);
3432 break;
3433 case 5:
3434 gen_helper_vfp_tosld_round_to_zero(vd, vd, shift, fpst);
3435 break;
3436 case 6:
3437 gen_helper_vfp_touhd_round_to_zero(vd, vd, shift, fpst);
3438 break;
3439 case 7:
3440 gen_helper_vfp_tould_round_to_zero(vd, vd, shift, fpst);
3441 break;
3442 default:
3443 g_assert_not_reached();
3446 vfp_store_reg64(vd, a->vd);
3447 tcg_temp_free_i64(vd);
3448 tcg_temp_free_ptr(fpst);
3449 return true;
3452 static bool trans_VCVT_hp_int(DisasContext *s, arg_VCVT_sp_int *a)
3454 TCGv_i32 vm;
3455 TCGv_ptr fpst;
3457 if (!dc_isar_feature(aa32_fp16_arith, s)) {
3458 return false;
3461 if (!vfp_access_check(s)) {
3462 return true;
3465 fpst = fpstatus_ptr(FPST_FPCR_F16);
3466 vm = tcg_temp_new_i32();
3467 vfp_load_reg32(vm, a->vm);
3469 if (a->s) {
3470 if (a->rz) {
3471 gen_helper_vfp_tosizh(vm, vm, fpst);
3472 } else {
3473 gen_helper_vfp_tosih(vm, vm, fpst);
3475 } else {
3476 if (a->rz) {
3477 gen_helper_vfp_touizh(vm, vm, fpst);
3478 } else {
3479 gen_helper_vfp_touih(vm, vm, fpst);
3482 vfp_store_reg32(vm, a->vd);
3483 tcg_temp_free_i32(vm);
3484 tcg_temp_free_ptr(fpst);
3485 return true;
3488 static bool trans_VCVT_sp_int(DisasContext *s, arg_VCVT_sp_int *a)
3490 TCGv_i32 vm;
3491 TCGv_ptr fpst;
3493 if (!dc_isar_feature(aa32_fpsp_v2, s)) {
3494 return false;
3497 if (!vfp_access_check(s)) {
3498 return true;
3501 fpst = fpstatus_ptr(FPST_FPCR);
3502 vm = tcg_temp_new_i32();
3503 vfp_load_reg32(vm, a->vm);
3505 if (a->s) {
3506 if (a->rz) {
3507 gen_helper_vfp_tosizs(vm, vm, fpst);
3508 } else {
3509 gen_helper_vfp_tosis(vm, vm, fpst);
3511 } else {
3512 if (a->rz) {
3513 gen_helper_vfp_touizs(vm, vm, fpst);
3514 } else {
3515 gen_helper_vfp_touis(vm, vm, fpst);
3518 vfp_store_reg32(vm, a->vd);
3519 tcg_temp_free_i32(vm);
3520 tcg_temp_free_ptr(fpst);
3521 return true;
3524 static bool trans_VCVT_dp_int(DisasContext *s, arg_VCVT_dp_int *a)
3526 TCGv_i32 vd;
3527 TCGv_i64 vm;
3528 TCGv_ptr fpst;
3530 if (!dc_isar_feature(aa32_fpdp_v2, s)) {
3531 return false;
3534 /* UNDEF accesses to D16-D31 if they don't exist. */
3535 if (!dc_isar_feature(aa32_simd_r32, s) && (a->vm & 0x10)) {
3536 return false;
3539 if (!vfp_access_check(s)) {
3540 return true;
3543 fpst = fpstatus_ptr(FPST_FPCR);
3544 vm = tcg_temp_new_i64();
3545 vd = tcg_temp_new_i32();
3546 vfp_load_reg64(vm, a->vm);
3548 if (a->s) {
3549 if (a->rz) {
3550 gen_helper_vfp_tosizd(vd, vm, fpst);
3551 } else {
3552 gen_helper_vfp_tosid(vd, vm, fpst);
3554 } else {
3555 if (a->rz) {
3556 gen_helper_vfp_touizd(vd, vm, fpst);
3557 } else {
3558 gen_helper_vfp_touid(vd, vm, fpst);
3561 vfp_store_reg32(vd, a->vd);
3562 tcg_temp_free_i32(vd);
3563 tcg_temp_free_i64(vm);
3564 tcg_temp_free_ptr(fpst);
3565 return true;
3568 static bool trans_VINS(DisasContext *s, arg_VINS *a)
3570 TCGv_i32 rd, rm;
3572 if (!dc_isar_feature(aa32_fp16_arith, s)) {
3573 return false;
3576 if (s->vec_len != 0 || s->vec_stride != 0) {
3577 return false;
3580 if (!vfp_access_check(s)) {
3581 return true;
3584 /* Insert low half of Vm into high half of Vd */
3585 rm = tcg_temp_new_i32();
3586 rd = tcg_temp_new_i32();
3587 vfp_load_reg32(rm, a->vm);
3588 vfp_load_reg32(rd, a->vd);
3589 tcg_gen_deposit_i32(rd, rd, rm, 16, 16);
3590 vfp_store_reg32(rd, a->vd);
3591 tcg_temp_free_i32(rm);
3592 tcg_temp_free_i32(rd);
3593 return true;
3596 static bool trans_VMOVX(DisasContext *s, arg_VINS *a)
3598 TCGv_i32 rm;
3600 if (!dc_isar_feature(aa32_fp16_arith, s)) {
3601 return false;
3604 if (s->vec_len != 0 || s->vec_stride != 0) {
3605 return false;
3608 if (!vfp_access_check(s)) {
3609 return true;
3612 /* Set Vd to high half of Vm */
3613 rm = tcg_temp_new_i32();
3614 vfp_load_reg32(rm, a->vm);
3615 tcg_gen_shri_i32(rm, rm, 16);
3616 vfp_store_reg32(rm, a->vd);
3617 tcg_temp_free_i32(rm);
3618 return true;