vmw_pvscsi: check page count while initialising descriptor rings
[qemu/ar7.git] / hw / mips / mips_malta.c
blobe90857ee0b40f998d400aceb6dc753d61a0f1e3c
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu-common.h"
27 #include "cpu.h"
28 #include "hw/hw.h"
29 #include "hw/i386/pc.h"
30 #include "hw/char/serial.h"
31 #include "hw/block/fdc.h"
32 #include "net/net.h"
33 #include "hw/boards.h"
34 #include "hw/i2c/smbus.h"
35 #include "sysemu/block-backend.h"
36 #include "hw/block/flash.h"
37 #include "hw/mips/mips.h"
38 #include "hw/mips/cpudevs.h"
39 #include "hw/pci/pci.h"
40 #include "sysemu/char.h"
41 #include "sysemu/sysemu.h"
42 #include "sysemu/arch_init.h"
43 #include "qemu/log.h"
44 #include "hw/mips/bios.h"
45 #include "hw/ide.h"
46 #include "hw/loader.h"
47 #include "elf.h"
48 #include "hw/timer/mc146818rtc.h"
49 #include "hw/timer/i8254.h"
50 #include "sysemu/block-backend.h"
51 #include "sysemu/blockdev.h"
52 #include "exec/address-spaces.h"
53 #include "hw/sysbus.h" /* SysBusDevice */
54 #include "qemu/host-utils.h"
55 #include "sysemu/qtest.h"
56 #include "qemu/error-report.h"
57 #include "hw/empty_slot.h"
58 #include "sysemu/kvm.h"
59 #include "exec/semihost.h"
60 #include "hw/mips/cps.h"
62 //#define DEBUG_BOARD_INIT
64 #define ENVP_ADDR 0x80002000l
65 #define ENVP_NB_ENTRIES 16
66 #define ENVP_ENTRY_SIZE 256
68 /* Hardware addresses */
69 #define FLASH_ADDRESS 0x1e000000ULL
70 #define FPGA_ADDRESS 0x1f000000ULL
71 #define RESET_ADDRESS 0x1fc00000ULL
73 #define FLASH_SIZE 0x400000
75 #define MAX_IDE_BUS 2
77 typedef struct {
78 MemoryRegion iomem;
79 MemoryRegion iomem_lo; /* 0 - 0x900 */
80 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
81 uint32_t leds;
82 uint32_t brk;
83 uint32_t gpout;
84 uint32_t i2cin;
85 uint32_t i2coe;
86 uint32_t i2cout;
87 uint32_t i2csel;
88 CharDriverState *display;
89 char display_text[9];
90 SerialState *uart;
91 } MaltaFPGAState;
93 #define TYPE_MIPS_MALTA "mips-malta"
94 #define MIPS_MALTA(obj) OBJECT_CHECK(MaltaState, (obj), TYPE_MIPS_MALTA)
96 typedef struct {
97 SysBusDevice parent_obj;
99 MIPSCPSState *cps;
100 qemu_irq *i8259;
101 } MaltaState;
103 static ISADevice *pit;
105 static struct _loaderparams {
106 int ram_size, ram_low_size;
107 const char *kernel_filename;
108 const char *kernel_cmdline;
109 const char *initrd_filename;
110 } loaderparams;
112 /* Malta FPGA */
113 static void malta_fpga_update_display(void *opaque)
115 char leds_text[9];
116 int i;
117 MaltaFPGAState *s = opaque;
119 for (i = 7 ; i >= 0 ; i--) {
120 if (s->leds & (1 << i))
121 leds_text[i] = '#';
122 else
123 leds_text[i] = ' ';
125 leds_text[8] = '\0';
127 qemu_chr_fe_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
128 qemu_chr_fe_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
132 * EEPROM 24C01 / 24C02 emulation.
134 * Emulation for serial EEPROMs:
135 * 24C01 - 1024 bit (128 x 8)
136 * 24C02 - 2048 bit (256 x 8)
138 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
141 //~ #define DEBUG
143 #if defined(DEBUG)
144 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
145 #else
146 # define logout(fmt, ...) ((void)0)
147 #endif
149 struct _eeprom24c0x_t {
150 uint8_t tick;
151 uint8_t address;
152 uint8_t command;
153 uint8_t ack;
154 uint8_t scl;
155 uint8_t sda;
156 uint8_t data;
157 //~ uint16_t size;
158 uint8_t contents[256];
161 typedef struct _eeprom24c0x_t eeprom24c0x_t;
163 static eeprom24c0x_t spd_eeprom = {
164 .contents = {
165 /* 00000000: */ 0x80,0x08,0xFF,0x0D,0x0A,0xFF,0x40,0x00,
166 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
167 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x00,0x00,
168 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0xFF,
169 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
170 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
171 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
172 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
173 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
174 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
175 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
176 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
177 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
178 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
179 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
180 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
184 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
186 enum { SDR = 0x4, DDR2 = 0x8 } type;
187 uint8_t *spd = spd_eeprom.contents;
188 uint8_t nbanks = 0;
189 uint16_t density = 0;
190 int i;
192 /* work in terms of MB */
193 ram_size >>= 20;
195 while ((ram_size >= 4) && (nbanks <= 2)) {
196 int sz_log2 = MIN(31 - clz32(ram_size), 14);
197 nbanks++;
198 density |= 1 << (sz_log2 - 2);
199 ram_size -= 1 << sz_log2;
202 /* split to 2 banks if possible */
203 if ((nbanks == 1) && (density > 1)) {
204 nbanks++;
205 density >>= 1;
208 if (density & 0xff00) {
209 density = (density & 0xe0) | ((density >> 8) & 0x1f);
210 type = DDR2;
211 } else if (!(density & 0x1f)) {
212 type = DDR2;
213 } else {
214 type = SDR;
217 if (ram_size) {
218 fprintf(stderr, "Warning: SPD cannot represent final %dMB"
219 " of SDRAM\n", (int)ram_size);
222 /* fill in SPD memory information */
223 spd[2] = type;
224 spd[5] = nbanks;
225 spd[31] = density;
227 /* checksum */
228 spd[63] = 0;
229 for (i = 0; i < 63; i++) {
230 spd[63] += spd[i];
233 /* copy for SMBUS */
234 memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
237 static void generate_eeprom_serial(uint8_t *eeprom)
239 int i, pos = 0;
240 uint8_t mac[6] = { 0x00 };
241 uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
243 /* version */
244 eeprom[pos++] = 0x01;
246 /* count */
247 eeprom[pos++] = 0x02;
249 /* MAC address */
250 eeprom[pos++] = 0x01; /* MAC */
251 eeprom[pos++] = 0x06; /* length */
252 memcpy(&eeprom[pos], mac, sizeof(mac));
253 pos += sizeof(mac);
255 /* serial number */
256 eeprom[pos++] = 0x02; /* serial */
257 eeprom[pos++] = 0x05; /* length */
258 memcpy(&eeprom[pos], sn, sizeof(sn));
259 pos += sizeof(sn);
261 /* checksum */
262 eeprom[pos] = 0;
263 for (i = 0; i < pos; i++) {
264 eeprom[pos] += eeprom[i];
268 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
270 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
271 eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
272 return eeprom->sda;
275 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
277 if (eeprom->scl && scl && (eeprom->sda != sda)) {
278 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
279 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
280 sda ? "stop" : "start");
281 if (!sda) {
282 eeprom->tick = 1;
283 eeprom->command = 0;
285 } else if (eeprom->tick == 0 && !eeprom->ack) {
286 /* Waiting for start. */
287 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
288 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
289 } else if (!eeprom->scl && scl) {
290 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
291 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
292 if (eeprom->ack) {
293 logout("\ti2c ack bit = 0\n");
294 sda = 0;
295 eeprom->ack = 0;
296 } else if (eeprom->sda == sda) {
297 uint8_t bit = (sda != 0);
298 logout("\ti2c bit = %d\n", bit);
299 if (eeprom->tick < 9) {
300 eeprom->command <<= 1;
301 eeprom->command += bit;
302 eeprom->tick++;
303 if (eeprom->tick == 9) {
304 logout("\tcommand 0x%04x, %s\n", eeprom->command,
305 bit ? "read" : "write");
306 eeprom->ack = 1;
308 } else if (eeprom->tick < 17) {
309 if (eeprom->command & 1) {
310 sda = ((eeprom->data & 0x80) != 0);
312 eeprom->address <<= 1;
313 eeprom->address += bit;
314 eeprom->tick++;
315 eeprom->data <<= 1;
316 if (eeprom->tick == 17) {
317 eeprom->data = eeprom->contents[eeprom->address];
318 logout("\taddress 0x%04x, data 0x%02x\n",
319 eeprom->address, eeprom->data);
320 eeprom->ack = 1;
321 eeprom->tick = 0;
323 } else if (eeprom->tick >= 17) {
324 sda = 0;
326 } else {
327 logout("\tsda changed with raising scl\n");
329 } else {
330 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
331 scl, eeprom->sda, sda);
333 eeprom->scl = scl;
334 eeprom->sda = sda;
337 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
338 unsigned size)
340 MaltaFPGAState *s = opaque;
341 uint32_t val = 0;
342 uint32_t saddr;
344 saddr = (addr & 0xfffff);
346 switch (saddr) {
348 /* SWITCH Register */
349 case 0x00200:
350 val = 0x00000000; /* All switches closed */
351 break;
353 /* STATUS Register */
354 case 0x00208:
355 #ifdef TARGET_WORDS_BIGENDIAN
356 val = 0x00000012;
357 #else
358 val = 0x00000010;
359 #endif
360 break;
362 /* JMPRS Register */
363 case 0x00210:
364 val = 0x00;
365 break;
367 /* LEDBAR Register */
368 case 0x00408:
369 val = s->leds;
370 break;
372 /* BRKRES Register */
373 case 0x00508:
374 val = s->brk;
375 break;
377 /* UART Registers are handled directly by the serial device */
379 /* GPOUT Register */
380 case 0x00a00:
381 val = s->gpout;
382 break;
384 /* XXX: implement a real I2C controller */
386 /* GPINP Register */
387 case 0x00a08:
388 /* IN = OUT until a real I2C control is implemented */
389 if (s->i2csel)
390 val = s->i2cout;
391 else
392 val = 0x00;
393 break;
395 /* I2CINP Register */
396 case 0x00b00:
397 val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
398 break;
400 /* I2COE Register */
401 case 0x00b08:
402 val = s->i2coe;
403 break;
405 /* I2COUT Register */
406 case 0x00b10:
407 val = s->i2cout;
408 break;
410 /* I2CSEL Register */
411 case 0x00b18:
412 val = s->i2csel;
413 break;
415 default:
416 #if 0
417 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
418 addr);
419 #endif
420 break;
422 return val;
425 static void malta_fpga_write(void *opaque, hwaddr addr,
426 uint64_t val, unsigned size)
428 MaltaFPGAState *s = opaque;
429 uint32_t saddr;
431 saddr = (addr & 0xfffff);
433 switch (saddr) {
435 /* SWITCH Register */
436 case 0x00200:
437 break;
439 /* JMPRS Register */
440 case 0x00210:
441 break;
443 /* LEDBAR Register */
444 case 0x00408:
445 s->leds = val & 0xff;
446 malta_fpga_update_display(s);
447 break;
449 /* ASCIIWORD Register */
450 case 0x00410:
451 snprintf(s->display_text, 9, "%08X", (uint32_t)val);
452 malta_fpga_update_display(s);
453 break;
455 /* ASCIIPOS0 to ASCIIPOS7 Registers */
456 case 0x00418:
457 case 0x00420:
458 case 0x00428:
459 case 0x00430:
460 case 0x00438:
461 case 0x00440:
462 case 0x00448:
463 case 0x00450:
464 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
465 malta_fpga_update_display(s);
466 break;
468 /* SOFTRES Register */
469 case 0x00500:
470 if (val == 0x42)
471 qemu_system_reset_request ();
472 break;
474 /* BRKRES Register */
475 case 0x00508:
476 s->brk = val & 0xff;
477 break;
479 /* UART Registers are handled directly by the serial device */
481 /* GPOUT Register */
482 case 0x00a00:
483 s->gpout = val & 0xff;
484 break;
486 /* I2COE Register */
487 case 0x00b08:
488 s->i2coe = val & 0x03;
489 break;
491 /* I2COUT Register */
492 case 0x00b10:
493 eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
494 s->i2cout = val;
495 break;
497 /* I2CSEL Register */
498 case 0x00b18:
499 s->i2csel = val & 0x01;
500 break;
502 default:
503 #if 0
504 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
505 addr);
506 #endif
507 break;
511 static const MemoryRegionOps malta_fpga_ops = {
512 .read = malta_fpga_read,
513 .write = malta_fpga_write,
514 .endianness = DEVICE_NATIVE_ENDIAN,
517 static void malta_fpga_reset(void *opaque)
519 MaltaFPGAState *s = opaque;
521 s->leds = 0x00;
522 s->brk = 0x0a;
523 s->gpout = 0x00;
524 s->i2cin = 0x3;
525 s->i2coe = 0x0;
526 s->i2cout = 0x3;
527 s->i2csel = 0x1;
529 s->display_text[8] = '\0';
530 snprintf(s->display_text, 9, " ");
533 static void malta_fpga_led_init(CharDriverState *chr)
535 qemu_chr_fe_printf(chr, "\e[HMalta LEDBAR\r\n");
536 qemu_chr_fe_printf(chr, "+--------+\r\n");
537 qemu_chr_fe_printf(chr, "+ +\r\n");
538 qemu_chr_fe_printf(chr, "+--------+\r\n");
539 qemu_chr_fe_printf(chr, "\n");
540 qemu_chr_fe_printf(chr, "Malta ASCII\r\n");
541 qemu_chr_fe_printf(chr, "+--------+\r\n");
542 qemu_chr_fe_printf(chr, "+ +\r\n");
543 qemu_chr_fe_printf(chr, "+--------+\r\n");
546 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
547 hwaddr base, qemu_irq uart_irq, CharDriverState *uart_chr)
549 MaltaFPGAState *s;
551 s = (MaltaFPGAState *)g_malloc0(sizeof(MaltaFPGAState));
553 memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
554 "malta-fpga", 0x100000);
555 memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
556 &s->iomem, 0, 0x900);
557 memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
558 &s->iomem, 0xa00, 0x10000-0xa00);
560 memory_region_add_subregion(address_space, base, &s->iomem_lo);
561 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
563 s->display = qemu_chr_new("fpga", "vc:320x200", malta_fpga_led_init);
565 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
566 230400, uart_chr, DEVICE_NATIVE_ENDIAN);
568 malta_fpga_reset(s);
569 qemu_register_reset(malta_fpga_reset, s);
571 return s;
574 /* Network support */
575 static void network_init(PCIBus *pci_bus)
577 int i;
579 for(i = 0; i < nb_nics; i++) {
580 NICInfo *nd = &nd_table[i];
581 const char *default_devaddr = NULL;
583 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
584 /* The malta board has a PCNet card using PCI SLOT 11 */
585 default_devaddr = "0b";
587 pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
591 /* ROM and pseudo bootloader
593 The following code implements a very very simple bootloader. It first
594 loads the registers a0 to a3 to the values expected by the OS, and
595 then jump at the kernel address.
597 The bootloader should pass the locations of the kernel arguments and
598 environment variables tables. Those tables contain the 32-bit address
599 of NULL terminated strings. The environment variables table should be
600 terminated by a NULL address.
602 For a simpler implementation, the number of kernel arguments is fixed
603 to two (the name of the kernel and the command line), and the two
604 tables are actually the same one.
606 The registers a0 to a3 should contain the following values:
607 a0 - number of kernel arguments
608 a1 - 32-bit address of the kernel arguments table
609 a2 - 32-bit address of the environment variables table
610 a3 - RAM size in bytes
613 static void write_bootloader(uint8_t *base, int64_t run_addr,
614 int64_t kernel_entry)
616 uint32_t *p;
618 /* Small bootloader */
619 p = (uint32_t *)base;
621 stl_p(p++, 0x08000000 | /* j 0x1fc00580 */
622 ((run_addr + 0x580) & 0x0fffffff) >> 2);
623 stl_p(p++, 0x00000000); /* nop */
625 /* YAMON service vector */
626 stl_p(base + 0x500, run_addr + 0x0580); /* start: */
627 stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */
628 stl_p(base + 0x520, run_addr + 0x0580); /* start: */
629 stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */
630 stl_p(base + 0x534, run_addr + 0x0808); /* print: */
631 stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */
632 stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */
633 stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */
634 stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */
635 stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */
636 stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */
637 stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */
638 stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */
641 /* Second part of the bootloader */
642 p = (uint32_t *) (base + 0x580);
644 if (semihosting_get_argc()) {
645 /* Preserve a0 content as arguments have been passed */
646 stl_p(p++, 0x00000000); /* nop */
647 } else {
648 stl_p(p++, 0x24040002); /* addiu a0, zero, 2 */
650 stl_p(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
651 stl_p(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
652 stl_p(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
653 stl_p(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
654 stl_p(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
655 stl_p(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
656 stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16)); /* lui a3, high(ram_low_size) */
657 stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff)); /* ori a3, a3, low(ram_low_size) */
659 /* Load BAR registers as done by YAMON */
660 stl_p(p++, 0x3c09b400); /* lui t1, 0xb400 */
662 #ifdef TARGET_WORDS_BIGENDIAN
663 stl_p(p++, 0x3c08df00); /* lui t0, 0xdf00 */
664 #else
665 stl_p(p++, 0x340800df); /* ori t0, r0, 0x00df */
666 #endif
667 stl_p(p++, 0xad280068); /* sw t0, 0x0068(t1) */
669 stl_p(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
671 #ifdef TARGET_WORDS_BIGENDIAN
672 stl_p(p++, 0x3c08c000); /* lui t0, 0xc000 */
673 #else
674 stl_p(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
675 #endif
676 stl_p(p++, 0xad280048); /* sw t0, 0x0048(t1) */
677 #ifdef TARGET_WORDS_BIGENDIAN
678 stl_p(p++, 0x3c084000); /* lui t0, 0x4000 */
679 #else
680 stl_p(p++, 0x34080040); /* ori t0, r0, 0x0040 */
681 #endif
682 stl_p(p++, 0xad280050); /* sw t0, 0x0050(t1) */
684 #ifdef TARGET_WORDS_BIGENDIAN
685 stl_p(p++, 0x3c088000); /* lui t0, 0x8000 */
686 #else
687 stl_p(p++, 0x34080080); /* ori t0, r0, 0x0080 */
688 #endif
689 stl_p(p++, 0xad280058); /* sw t0, 0x0058(t1) */
690 #ifdef TARGET_WORDS_BIGENDIAN
691 stl_p(p++, 0x3c083f00); /* lui t0, 0x3f00 */
692 #else
693 stl_p(p++, 0x3408003f); /* ori t0, r0, 0x003f */
694 #endif
695 stl_p(p++, 0xad280060); /* sw t0, 0x0060(t1) */
697 #ifdef TARGET_WORDS_BIGENDIAN
698 stl_p(p++, 0x3c08c100); /* lui t0, 0xc100 */
699 #else
700 stl_p(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
701 #endif
702 stl_p(p++, 0xad280080); /* sw t0, 0x0080(t1) */
703 #ifdef TARGET_WORDS_BIGENDIAN
704 stl_p(p++, 0x3c085e00); /* lui t0, 0x5e00 */
705 #else
706 stl_p(p++, 0x3408005e); /* ori t0, r0, 0x005e */
707 #endif
708 stl_p(p++, 0xad280088); /* sw t0, 0x0088(t1) */
710 /* Jump to kernel code */
711 stl_p(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
712 stl_p(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
713 stl_p(p++, 0x03e00009); /* jalr ra */
714 stl_p(p++, 0x00000000); /* nop */
716 /* YAMON subroutines */
717 p = (uint32_t *) (base + 0x800);
718 stl_p(p++, 0x03e00009); /* jalr ra */
719 stl_p(p++, 0x24020000); /* li v0,0 */
720 /* 808 YAMON print */
721 stl_p(p++, 0x03e06821); /* move t5,ra */
722 stl_p(p++, 0x00805821); /* move t3,a0 */
723 stl_p(p++, 0x00a05021); /* move t2,a1 */
724 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
725 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
726 stl_p(p++, 0x10800005); /* beqz a0,834 */
727 stl_p(p++, 0x00000000); /* nop */
728 stl_p(p++, 0x0ff0021c); /* jal 870 */
729 stl_p(p++, 0x00000000); /* nop */
730 stl_p(p++, 0x1000fff9); /* b 814 */
731 stl_p(p++, 0x00000000); /* nop */
732 stl_p(p++, 0x01a00009); /* jalr t5 */
733 stl_p(p++, 0x01602021); /* move a0,t3 */
734 /* 0x83c YAMON print_count */
735 stl_p(p++, 0x03e06821); /* move t5,ra */
736 stl_p(p++, 0x00805821); /* move t3,a0 */
737 stl_p(p++, 0x00a05021); /* move t2,a1 */
738 stl_p(p++, 0x00c06021); /* move t4,a2 */
739 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
740 stl_p(p++, 0x0ff0021c); /* jal 870 */
741 stl_p(p++, 0x00000000); /* nop */
742 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
743 stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */
744 stl_p(p++, 0x1580fffa); /* bnez t4,84c */
745 stl_p(p++, 0x00000000); /* nop */
746 stl_p(p++, 0x01a00009); /* jalr t5 */
747 stl_p(p++, 0x01602021); /* move a0,t3 */
748 /* 0x870 */
749 stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */
750 stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
751 stl_p(p++, 0x91090005); /* lbu t1,5(t0) */
752 stl_p(p++, 0x00000000); /* nop */
753 stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */
754 stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
755 stl_p(p++, 0x00000000); /* nop */
756 stl_p(p++, 0x03e00009); /* jalr ra */
757 stl_p(p++, 0xa1040000); /* sb a0,0(t0) */
761 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t* prom_buf, int index,
762 const char *string, ...)
764 va_list ap;
765 int32_t table_addr;
767 if (index >= ENVP_NB_ENTRIES)
768 return;
770 if (string == NULL) {
771 prom_buf[index] = 0;
772 return;
775 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
776 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
778 va_start(ap, string);
779 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
780 va_end(ap);
783 /* Kernel */
784 static int64_t load_kernel (void)
786 int64_t kernel_entry, kernel_high;
787 long initrd_size;
788 ram_addr_t initrd_offset;
789 int big_endian;
790 uint32_t *prom_buf;
791 long prom_size;
792 int prom_index = 0;
793 uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
795 #ifdef TARGET_WORDS_BIGENDIAN
796 big_endian = 1;
797 #else
798 big_endian = 0;
799 #endif
801 if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
802 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
803 big_endian, EM_MIPS, 1, 0) < 0) {
804 fprintf(stderr, "qemu: could not load kernel '%s'\n",
805 loaderparams.kernel_filename);
806 exit(1);
809 /* Sanity check where the kernel has been linked */
810 if (kvm_enabled()) {
811 if (kernel_entry & 0x80000000ll) {
812 error_report("KVM guest kernels must be linked in useg. "
813 "Did you forget to enable CONFIG_KVM_GUEST?");
814 exit(1);
817 xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
818 } else {
819 if (!(kernel_entry & 0x80000000ll)) {
820 error_report("KVM guest kernels aren't supported with TCG. "
821 "Did you unintentionally enable CONFIG_KVM_GUEST?");
822 exit(1);
825 xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
828 /* load initrd */
829 initrd_size = 0;
830 initrd_offset = 0;
831 if (loaderparams.initrd_filename) {
832 initrd_size = get_image_size (loaderparams.initrd_filename);
833 if (initrd_size > 0) {
834 initrd_offset = (kernel_high + ~INITRD_PAGE_MASK) & INITRD_PAGE_MASK;
835 if (initrd_offset + initrd_size > ram_size) {
836 fprintf(stderr,
837 "qemu: memory too small for initial ram disk '%s'\n",
838 loaderparams.initrd_filename);
839 exit(1);
841 initrd_size = load_image_targphys(loaderparams.initrd_filename,
842 initrd_offset,
843 ram_size - initrd_offset);
845 if (initrd_size == (target_ulong) -1) {
846 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
847 loaderparams.initrd_filename);
848 exit(1);
852 /* Setup prom parameters. */
853 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
854 prom_buf = g_malloc(prom_size);
856 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
857 if (initrd_size > 0) {
858 prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
859 xlate_to_kseg0(NULL, initrd_offset), initrd_size,
860 loaderparams.kernel_cmdline);
861 } else {
862 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
865 prom_set(prom_buf, prom_index++, "memsize");
866 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
868 prom_set(prom_buf, prom_index++, "ememsize");
869 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
871 prom_set(prom_buf, prom_index++, "modetty0");
872 prom_set(prom_buf, prom_index++, "38400n8r");
873 prom_set(prom_buf, prom_index++, NULL);
875 rom_add_blob_fixed("prom", prom_buf, prom_size,
876 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
878 g_free(prom_buf);
879 return kernel_entry;
882 static void malta_mips_config(MIPSCPU *cpu)
884 CPUMIPSState *env = &cpu->env;
885 CPUState *cs = CPU(cpu);
887 env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) |
888 ((smp_cpus * cs->nr_threads - 1) << CP0MVPC0_PTC);
891 static void main_cpu_reset(void *opaque)
893 MIPSCPU *cpu = opaque;
894 CPUMIPSState *env = &cpu->env;
896 cpu_reset(CPU(cpu));
898 /* The bootloader does not need to be rewritten as it is located in a
899 read only location. The kernel location and the arguments table
900 location does not change. */
901 if (loaderparams.kernel_filename) {
902 env->CP0_Status &= ~(1 << CP0St_ERL);
905 malta_mips_config(cpu);
907 if (kvm_enabled()) {
908 /* Start running from the bootloader we wrote to end of RAM */
909 env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
913 static void create_cpu_without_cps(const char *cpu_model,
914 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
916 CPUMIPSState *env;
917 MIPSCPU *cpu;
918 int i;
920 for (i = 0; i < smp_cpus; i++) {
921 cpu = cpu_mips_init(cpu_model);
922 if (cpu == NULL) {
923 fprintf(stderr, "Unable to find CPU definition\n");
924 exit(1);
927 /* Init internal devices */
928 cpu_mips_irq_init_cpu(cpu);
929 cpu_mips_clock_init(cpu);
930 qemu_register_reset(main_cpu_reset, cpu);
933 cpu = MIPS_CPU(first_cpu);
934 env = &cpu->env;
935 *i8259_irq = env->irq[2];
936 *cbus_irq = env->irq[4];
939 static void create_cps(MaltaState *s, const char *cpu_model,
940 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
942 Error *err = NULL;
943 s->cps = g_new0(MIPSCPSState, 1);
945 object_initialize(s->cps, sizeof(MIPSCPSState), TYPE_MIPS_CPS);
946 qdev_set_parent_bus(DEVICE(s->cps), sysbus_get_default());
948 object_property_set_str(OBJECT(s->cps), cpu_model, "cpu-model", &err);
949 object_property_set_int(OBJECT(s->cps), smp_cpus, "num-vp", &err);
950 object_property_set_bool(OBJECT(s->cps), true, "realized", &err);
951 if (err != NULL) {
952 error_report("%s", error_get_pretty(err));
953 exit(1);
956 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(s->cps), 0, 0, 1);
958 *i8259_irq = get_cps_irq(s->cps, 3);
959 *cbus_irq = NULL;
962 static void create_cpu(MaltaState *s, const char *cpu_model,
963 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
965 if (cpu_model == NULL) {
966 #ifdef TARGET_MIPS64
967 cpu_model = "20Kc";
968 #else
969 cpu_model = "24Kf";
970 #endif
973 if ((smp_cpus > 1) && cpu_supports_cps_smp(cpu_model)) {
974 create_cps(s, cpu_model, cbus_irq, i8259_irq);
975 } else {
976 create_cpu_without_cps(cpu_model, cbus_irq, i8259_irq);
980 static
981 void mips_malta_init(MachineState *machine)
983 ram_addr_t ram_size = machine->ram_size;
984 ram_addr_t ram_low_size;
985 const char *kernel_filename = machine->kernel_filename;
986 const char *kernel_cmdline = machine->kernel_cmdline;
987 const char *initrd_filename = machine->initrd_filename;
988 char *filename;
989 pflash_t *fl;
990 MemoryRegion *system_memory = get_system_memory();
991 MemoryRegion *ram_high = g_new(MemoryRegion, 1);
992 MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
993 MemoryRegion *ram_low_postio;
994 MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
995 target_long bios_size = FLASH_SIZE;
996 const size_t smbus_eeprom_size = 8 * 256;
997 uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
998 int64_t kernel_entry, bootloader_run_addr;
999 PCIBus *pci_bus;
1000 ISABus *isa_bus;
1001 qemu_irq *isa_irq;
1002 qemu_irq cbus_irq, i8259_irq;
1003 int piix4_devfn;
1004 I2CBus *smbus;
1005 int i;
1006 DriveInfo *dinfo;
1007 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
1008 DriveInfo *fd[MAX_FD];
1009 int fl_idx = 0;
1010 int fl_sectors = bios_size >> 16;
1011 int be;
1013 DeviceState *dev = qdev_create(NULL, TYPE_MIPS_MALTA);
1014 MaltaState *s = MIPS_MALTA(dev);
1016 /* The whole address space decoded by the GT-64120A doesn't generate
1017 exception when accessing invalid memory. Create an empty slot to
1018 emulate this feature. */
1019 empty_slot_init(0, 0x20000000);
1021 qdev_init_nofail(dev);
1023 /* Make sure the first 3 serial ports are associated with a device. */
1024 for(i = 0; i < 3; i++) {
1025 if (!serial_hds[i]) {
1026 char label[32];
1027 snprintf(label, sizeof(label), "serial%d", i);
1028 serial_hds[i] = qemu_chr_new(label, "null", NULL);
1032 /* create CPU */
1033 create_cpu(s, machine->cpu_model, &cbus_irq, &i8259_irq);
1035 /* allocate RAM */
1036 if (ram_size > (2048u << 20)) {
1037 fprintf(stderr,
1038 "qemu: Too much memory for this machine: %d MB, maximum 2048 MB\n",
1039 ((unsigned int)ram_size / (1 << 20)));
1040 exit(1);
1043 /* register RAM at high address where it is undisturbed by IO */
1044 memory_region_allocate_system_memory(ram_high, NULL, "mips_malta.ram",
1045 ram_size);
1046 memory_region_add_subregion(system_memory, 0x80000000, ram_high);
1048 /* alias for pre IO hole access */
1049 memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1050 ram_high, 0, MIN(ram_size, (256 << 20)));
1051 memory_region_add_subregion(system_memory, 0, ram_low_preio);
1053 /* alias for post IO hole access, if there is enough RAM */
1054 if (ram_size > (512 << 20)) {
1055 ram_low_postio = g_new(MemoryRegion, 1);
1056 memory_region_init_alias(ram_low_postio, NULL,
1057 "mips_malta_low_postio.ram",
1058 ram_high, 512 << 20,
1059 ram_size - (512 << 20));
1060 memory_region_add_subregion(system_memory, 512 << 20, ram_low_postio);
1063 /* generate SPD EEPROM data */
1064 generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1065 generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1067 #ifdef TARGET_WORDS_BIGENDIAN
1068 be = 1;
1069 #else
1070 be = 0;
1071 #endif
1072 /* FPGA */
1073 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1074 malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hds[2]);
1076 /* Load firmware in flash / BIOS. */
1077 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1078 #ifdef DEBUG_BOARD_INIT
1079 if (dinfo) {
1080 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
1081 "addr %08llx '%s' %x\n",
1082 fl_idx, bios_size, FLASH_ADDRESS,
1083 blk_name(dinfo->bdrv), fl_sectors);
1085 #endif
1086 fl = pflash_cfi01_register(FLASH_ADDRESS, NULL, "mips_malta.bios",
1087 BIOS_SIZE,
1088 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1089 65536, fl_sectors,
1090 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1091 bios = pflash_cfi01_get_memory(fl);
1092 fl_idx++;
1093 if (kernel_filename) {
1094 ram_low_size = MIN(ram_size, 256 << 20);
1095 /* For KVM we reserve 1MB of RAM for running bootloader */
1096 if (kvm_enabled()) {
1097 ram_low_size -= 0x100000;
1098 bootloader_run_addr = 0x40000000 + ram_low_size;
1099 } else {
1100 bootloader_run_addr = 0xbfc00000;
1103 /* Write a small bootloader to the flash location. */
1104 loaderparams.ram_size = ram_size;
1105 loaderparams.ram_low_size = ram_low_size;
1106 loaderparams.kernel_filename = kernel_filename;
1107 loaderparams.kernel_cmdline = kernel_cmdline;
1108 loaderparams.initrd_filename = initrd_filename;
1109 kernel_entry = load_kernel();
1111 write_bootloader(memory_region_get_ram_ptr(bios),
1112 bootloader_run_addr, kernel_entry);
1113 if (kvm_enabled()) {
1114 /* Write the bootloader code @ the end of RAM, 1MB reserved */
1115 write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
1116 ram_low_size,
1117 bootloader_run_addr, kernel_entry);
1119 } else {
1120 /* The flash region isn't executable from a KVM guest */
1121 if (kvm_enabled()) {
1122 error_report("KVM enabled but no -kernel argument was specified. "
1123 "Booting from flash is not supported with KVM.");
1124 exit(1);
1126 /* Load firmware from flash. */
1127 if (!dinfo) {
1128 /* Load a BIOS image. */
1129 if (bios_name == NULL) {
1130 bios_name = BIOS_FILENAME;
1132 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1133 if (filename) {
1134 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1135 BIOS_SIZE);
1136 g_free(filename);
1137 } else {
1138 bios_size = -1;
1140 if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1141 !kernel_filename && !qtest_enabled()) {
1142 error_report("Could not load MIPS bios '%s', and no "
1143 "-kernel argument was specified", bios_name);
1144 exit(1);
1147 /* In little endian mode the 32bit words in the bios are swapped,
1148 a neat trick which allows bi-endian firmware. */
1149 #ifndef TARGET_WORDS_BIGENDIAN
1151 uint32_t *end, *addr = rom_ptr(FLASH_ADDRESS);
1152 if (!addr) {
1153 addr = memory_region_get_ram_ptr(bios);
1155 end = (void *)addr + MIN(bios_size, 0x3e0000);
1156 while (addr < end) {
1157 bswap32s(addr);
1158 addr++;
1161 #endif
1165 * Map the BIOS at a 2nd physical location, as on the real board.
1166 * Copy it so that we can patch in the MIPS revision, which cannot be
1167 * handled by an overlapping region as the resulting ROM code subpage
1168 * regions are not executable.
1170 memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1171 &error_fatal);
1172 if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1173 FLASH_ADDRESS, BIOS_SIZE)) {
1174 memcpy(memory_region_get_ram_ptr(bios_copy),
1175 memory_region_get_ram_ptr(bios), BIOS_SIZE);
1177 memory_region_set_readonly(bios_copy, true);
1178 memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1180 /* Board ID = 0x420 (Malta Board with CoreLV) */
1181 stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1184 * We have a circular dependency problem: pci_bus depends on isa_irq,
1185 * isa_irq is provided by i8259, i8259 depends on ISA, ISA depends
1186 * on piix4, and piix4 depends on pci_bus. To stop the cycle we have
1187 * qemu_irq_proxy() adds an extra bit of indirection, allowing us
1188 * to resolve the isa_irq -> i8259 dependency after i8259 is initialized.
1190 isa_irq = qemu_irq_proxy(&s->i8259, 16);
1192 /* Northbridge */
1193 pci_bus = gt64120_register(isa_irq);
1195 /* Southbridge */
1196 ide_drive_get(hd, ARRAY_SIZE(hd));
1198 piix4_devfn = piix4_init(pci_bus, &isa_bus, 80);
1200 /* Interrupt controller */
1201 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
1202 s->i8259 = i8259_init(isa_bus, i8259_irq);
1204 isa_bus_irqs(isa_bus, s->i8259);
1205 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
1206 pci_create_simple(pci_bus, piix4_devfn + 2, "piix4-usb-uhci");
1207 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100,
1208 isa_get_irq(NULL, 9), NULL, 0, NULL);
1209 smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1210 g_free(smbus_eeprom_buf);
1211 pit = pit_init(isa_bus, 0x40, 0, NULL);
1212 DMA_init(isa_bus, 0);
1214 /* Super I/O */
1215 isa_create_simple(isa_bus, "i8042");
1217 rtc_init(isa_bus, 2000, NULL);
1218 serial_hds_isa_init(isa_bus, 2);
1219 parallel_hds_isa_init(isa_bus, 1);
1221 for(i = 0; i < MAX_FD; i++) {
1222 fd[i] = drive_get(IF_FLOPPY, 0, i);
1224 fdctrl_init_isa(isa_bus, fd);
1226 /* Network card */
1227 network_init(pci_bus);
1229 /* Optional PCI video card */
1230 pci_vga_init(pci_bus);
1233 static int mips_malta_sysbus_device_init(SysBusDevice *sysbusdev)
1235 return 0;
1238 static void mips_malta_class_init(ObjectClass *klass, void *data)
1240 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1242 k->init = mips_malta_sysbus_device_init;
1245 static const TypeInfo mips_malta_device = {
1246 .name = TYPE_MIPS_MALTA,
1247 .parent = TYPE_SYS_BUS_DEVICE,
1248 .instance_size = sizeof(MaltaState),
1249 .class_init = mips_malta_class_init,
1252 static void mips_malta_machine_init(MachineClass *mc)
1254 mc->desc = "MIPS Malta Core LV";
1255 mc->init = mips_malta_init;
1256 mc->max_cpus = 16;
1257 mc->is_default = 1;
1260 DEFINE_MACHINE("malta", mips_malta_machine_init)
1262 static void mips_malta_register_types(void)
1264 type_register_static(&mips_malta_device);
1267 type_init(mips_malta_register_types)