hw/arm/virt: fix max-cpus check
[qemu/ar7.git] / slirp / slirp.c
blob0466d330dabcc7a9b1885ff175bc6e904b4a2378
1 /*
2 * libslirp glue
4 * Copyright (c) 2004-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "qemu/osdep.h"
25 #include "qemu-common.h"
26 #include "qemu/timer.h"
27 #include "qemu/error-report.h"
28 #include "sysemu/char.h"
29 #include "slirp.h"
30 #include "hw/hw.h"
32 /* host loopback address */
33 struct in_addr loopback_addr;
34 /* host loopback network mask */
35 unsigned long loopback_mask;
37 /* emulated hosts use the MAC addr 52:55:IP:IP:IP:IP */
38 static const uint8_t special_ethaddr[ETH_ALEN] = {
39 0x52, 0x55, 0x00, 0x00, 0x00, 0x00
42 u_int curtime;
44 static QTAILQ_HEAD(slirp_instances, Slirp) slirp_instances =
45 QTAILQ_HEAD_INITIALIZER(slirp_instances);
47 static struct in_addr dns_addr;
48 static u_int dns_addr_time;
50 #define TIMEOUT_FAST 2 /* milliseconds */
51 #define TIMEOUT_SLOW 499 /* milliseconds */
52 /* for the aging of certain requests like DNS */
53 #define TIMEOUT_DEFAULT 1000 /* milliseconds */
55 #ifdef _WIN32
57 int get_dns_addr(struct in_addr *pdns_addr)
59 FIXED_INFO *FixedInfo=NULL;
60 ULONG BufLen;
61 DWORD ret;
62 IP_ADDR_STRING *pIPAddr;
63 struct in_addr tmp_addr;
65 if (dns_addr.s_addr != 0 && (curtime - dns_addr_time) < TIMEOUT_DEFAULT) {
66 *pdns_addr = dns_addr;
67 return 0;
70 FixedInfo = (FIXED_INFO *)GlobalAlloc(GPTR, sizeof(FIXED_INFO));
71 BufLen = sizeof(FIXED_INFO);
73 if (ERROR_BUFFER_OVERFLOW == GetNetworkParams(FixedInfo, &BufLen)) {
74 if (FixedInfo) {
75 GlobalFree(FixedInfo);
76 FixedInfo = NULL;
78 FixedInfo = GlobalAlloc(GPTR, BufLen);
81 if ((ret = GetNetworkParams(FixedInfo, &BufLen)) != ERROR_SUCCESS) {
82 printf("GetNetworkParams failed. ret = %08x\n", (u_int)ret );
83 if (FixedInfo) {
84 GlobalFree(FixedInfo);
85 FixedInfo = NULL;
87 return -1;
90 pIPAddr = &(FixedInfo->DnsServerList);
91 inet_aton(pIPAddr->IpAddress.String, &tmp_addr);
92 *pdns_addr = tmp_addr;
93 dns_addr = tmp_addr;
94 dns_addr_time = curtime;
95 if (FixedInfo) {
96 GlobalFree(FixedInfo);
97 FixedInfo = NULL;
99 return 0;
102 static void winsock_cleanup(void)
104 WSACleanup();
107 #else
109 static struct stat dns_addr_stat;
111 int get_dns_addr(struct in_addr *pdns_addr)
113 char buff[512];
114 char buff2[257];
115 FILE *f;
116 int found = 0;
117 struct in_addr tmp_addr;
119 if (dns_addr.s_addr != 0) {
120 struct stat old_stat;
121 if ((curtime - dns_addr_time) < TIMEOUT_DEFAULT) {
122 *pdns_addr = dns_addr;
123 return 0;
125 old_stat = dns_addr_stat;
126 if (stat("/etc/resolv.conf", &dns_addr_stat) != 0)
127 return -1;
128 if ((dns_addr_stat.st_dev == old_stat.st_dev)
129 && (dns_addr_stat.st_ino == old_stat.st_ino)
130 && (dns_addr_stat.st_size == old_stat.st_size)
131 && (dns_addr_stat.st_mtime == old_stat.st_mtime)) {
132 *pdns_addr = dns_addr;
133 return 0;
137 f = fopen("/etc/resolv.conf", "r");
138 if (!f)
139 return -1;
141 #ifdef DEBUG
142 fprintf(stderr, "IP address of your DNS(s): ");
143 #endif
144 while (fgets(buff, 512, f) != NULL) {
145 if (sscanf(buff, "nameserver%*[ \t]%256s", buff2) == 1) {
146 if (!inet_aton(buff2, &tmp_addr))
147 continue;
148 /* If it's the first one, set it to dns_addr */
149 if (!found) {
150 *pdns_addr = tmp_addr;
151 dns_addr = tmp_addr;
152 dns_addr_time = curtime;
154 #ifdef DEBUG
155 else
156 fprintf(stderr, ", ");
157 #endif
158 if (++found > 3) {
159 #ifdef DEBUG
160 fprintf(stderr, "(more)");
161 #endif
162 break;
164 #ifdef DEBUG
165 else
166 fprintf(stderr, "%s", inet_ntoa(tmp_addr));
167 #endif
170 fclose(f);
171 if (!found)
172 return -1;
173 return 0;
176 #endif
178 static void slirp_init_once(void)
180 static int initialized;
181 #ifdef _WIN32
182 WSADATA Data;
183 #endif
185 if (initialized) {
186 return;
188 initialized = 1;
190 #ifdef _WIN32
191 WSAStartup(MAKEWORD(2,0), &Data);
192 atexit(winsock_cleanup);
193 #endif
195 loopback_addr.s_addr = htonl(INADDR_LOOPBACK);
196 loopback_mask = htonl(IN_CLASSA_NET);
199 static void slirp_state_save(QEMUFile *f, void *opaque);
200 static int slirp_state_load(QEMUFile *f, void *opaque, int version_id);
202 Slirp *slirp_init(int restricted, struct in_addr vnetwork,
203 struct in_addr vnetmask, struct in_addr vhost,
204 const char *vhostname, const char *tftp_path,
205 const char *bootfile, struct in_addr vdhcp_start,
206 struct in_addr vnameserver, const char **vdnssearch,
207 void *opaque)
209 Slirp *slirp = g_malloc0(sizeof(Slirp));
211 slirp_init_once();
213 slirp->restricted = restricted;
215 if_init(slirp);
216 ip_init(slirp);
218 /* Initialise mbufs *after* setting the MTU */
219 m_init(slirp);
221 slirp->vnetwork_addr = vnetwork;
222 slirp->vnetwork_mask = vnetmask;
223 slirp->vhost_addr = vhost;
224 if (vhostname) {
225 pstrcpy(slirp->client_hostname, sizeof(slirp->client_hostname),
226 vhostname);
228 slirp->tftp_prefix = g_strdup(tftp_path);
229 slirp->bootp_filename = g_strdup(bootfile);
230 slirp->vdhcp_startaddr = vdhcp_start;
231 slirp->vnameserver_addr = vnameserver;
233 if (vdnssearch) {
234 translate_dnssearch(slirp, vdnssearch);
237 slirp->opaque = opaque;
239 register_savevm(NULL, "slirp", 0, 4,
240 slirp_state_save, slirp_state_load, slirp);
242 QTAILQ_INSERT_TAIL(&slirp_instances, slirp, entry);
244 return slirp;
247 void slirp_cleanup(Slirp *slirp)
249 QTAILQ_REMOVE(&slirp_instances, slirp, entry);
251 unregister_savevm(NULL, "slirp", slirp);
253 ip_cleanup(slirp);
254 m_cleanup(slirp);
256 g_free(slirp->vdnssearch);
257 g_free(slirp->tftp_prefix);
258 g_free(slirp->bootp_filename);
259 g_free(slirp);
262 #define CONN_CANFSEND(so) (((so)->so_state & (SS_FCANTSENDMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
263 #define CONN_CANFRCV(so) (((so)->so_state & (SS_FCANTRCVMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
265 static void slirp_update_timeout(uint32_t *timeout)
267 Slirp *slirp;
268 uint32_t t;
270 if (*timeout <= TIMEOUT_FAST) {
271 return;
274 t = MIN(1000, *timeout);
276 /* If we have tcp timeout with slirp, then we will fill @timeout with
277 * more precise value.
279 QTAILQ_FOREACH(slirp, &slirp_instances, entry) {
280 if (slirp->time_fasttimo) {
281 *timeout = TIMEOUT_FAST;
282 return;
284 if (slirp->do_slowtimo) {
285 t = MIN(TIMEOUT_SLOW, t);
288 *timeout = t;
291 void slirp_pollfds_fill(GArray *pollfds, uint32_t *timeout)
293 Slirp *slirp;
294 struct socket *so, *so_next;
296 if (QTAILQ_EMPTY(&slirp_instances)) {
297 return;
301 * First, TCP sockets
304 QTAILQ_FOREACH(slirp, &slirp_instances, entry) {
306 * *_slowtimo needs calling if there are IP fragments
307 * in the fragment queue, or there are TCP connections active
309 slirp->do_slowtimo = ((slirp->tcb.so_next != &slirp->tcb) ||
310 (&slirp->ipq.ip_link != slirp->ipq.ip_link.next));
312 for (so = slirp->tcb.so_next; so != &slirp->tcb;
313 so = so_next) {
314 int events = 0;
316 so_next = so->so_next;
318 so->pollfds_idx = -1;
321 * See if we need a tcp_fasttimo
323 if (slirp->time_fasttimo == 0 &&
324 so->so_tcpcb->t_flags & TF_DELACK) {
325 slirp->time_fasttimo = curtime; /* Flag when want a fasttimo */
329 * NOFDREF can include still connecting to local-host,
330 * newly socreated() sockets etc. Don't want to select these.
332 if (so->so_state & SS_NOFDREF || so->s == -1) {
333 continue;
337 * Set for reading sockets which are accepting
339 if (so->so_state & SS_FACCEPTCONN) {
340 GPollFD pfd = {
341 .fd = so->s,
342 .events = G_IO_IN | G_IO_HUP | G_IO_ERR,
344 so->pollfds_idx = pollfds->len;
345 g_array_append_val(pollfds, pfd);
346 continue;
350 * Set for writing sockets which are connecting
352 if (so->so_state & SS_ISFCONNECTING) {
353 GPollFD pfd = {
354 .fd = so->s,
355 .events = G_IO_OUT | G_IO_ERR,
357 so->pollfds_idx = pollfds->len;
358 g_array_append_val(pollfds, pfd);
359 continue;
363 * Set for writing if we are connected, can send more, and
364 * we have something to send
366 if (CONN_CANFSEND(so) && so->so_rcv.sb_cc) {
367 events |= G_IO_OUT | G_IO_ERR;
371 * Set for reading (and urgent data) if we are connected, can
372 * receive more, and we have room for it XXX /2 ?
374 if (CONN_CANFRCV(so) &&
375 (so->so_snd.sb_cc < (so->so_snd.sb_datalen/2))) {
376 events |= G_IO_IN | G_IO_HUP | G_IO_ERR | G_IO_PRI;
379 if (events) {
380 GPollFD pfd = {
381 .fd = so->s,
382 .events = events,
384 so->pollfds_idx = pollfds->len;
385 g_array_append_val(pollfds, pfd);
390 * UDP sockets
392 for (so = slirp->udb.so_next; so != &slirp->udb;
393 so = so_next) {
394 so_next = so->so_next;
396 so->pollfds_idx = -1;
399 * See if it's timed out
401 if (so->so_expire) {
402 if (so->so_expire <= curtime) {
403 udp_detach(so);
404 continue;
405 } else {
406 slirp->do_slowtimo = true; /* Let socket expire */
411 * When UDP packets are received from over the
412 * link, they're sendto()'d straight away, so
413 * no need for setting for writing
414 * Limit the number of packets queued by this session
415 * to 4. Note that even though we try and limit this
416 * to 4 packets, the session could have more queued
417 * if the packets needed to be fragmented
418 * (XXX <= 4 ?)
420 if ((so->so_state & SS_ISFCONNECTED) && so->so_queued <= 4) {
421 GPollFD pfd = {
422 .fd = so->s,
423 .events = G_IO_IN | G_IO_HUP | G_IO_ERR,
425 so->pollfds_idx = pollfds->len;
426 g_array_append_val(pollfds, pfd);
431 * ICMP sockets
433 for (so = slirp->icmp.so_next; so != &slirp->icmp;
434 so = so_next) {
435 so_next = so->so_next;
437 so->pollfds_idx = -1;
440 * See if it's timed out
442 if (so->so_expire) {
443 if (so->so_expire <= curtime) {
444 icmp_detach(so);
445 continue;
446 } else {
447 slirp->do_slowtimo = true; /* Let socket expire */
451 if (so->so_state & SS_ISFCONNECTED) {
452 GPollFD pfd = {
453 .fd = so->s,
454 .events = G_IO_IN | G_IO_HUP | G_IO_ERR,
456 so->pollfds_idx = pollfds->len;
457 g_array_append_val(pollfds, pfd);
461 slirp_update_timeout(timeout);
464 void slirp_pollfds_poll(GArray *pollfds, int select_error)
466 Slirp *slirp;
467 struct socket *so, *so_next;
468 int ret;
470 if (QTAILQ_EMPTY(&slirp_instances)) {
471 return;
474 curtime = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
476 QTAILQ_FOREACH(slirp, &slirp_instances, entry) {
478 * See if anything has timed out
480 if (slirp->time_fasttimo &&
481 ((curtime - slirp->time_fasttimo) >= TIMEOUT_FAST)) {
482 tcp_fasttimo(slirp);
483 slirp->time_fasttimo = 0;
485 if (slirp->do_slowtimo &&
486 ((curtime - slirp->last_slowtimo) >= TIMEOUT_SLOW)) {
487 ip_slowtimo(slirp);
488 tcp_slowtimo(slirp);
489 slirp->last_slowtimo = curtime;
493 * Check sockets
495 if (!select_error) {
497 * Check TCP sockets
499 for (so = slirp->tcb.so_next; so != &slirp->tcb;
500 so = so_next) {
501 int revents;
503 so_next = so->so_next;
505 revents = 0;
506 if (so->pollfds_idx != -1) {
507 revents = g_array_index(pollfds, GPollFD,
508 so->pollfds_idx).revents;
511 if (so->so_state & SS_NOFDREF || so->s == -1) {
512 continue;
516 * Check for URG data
517 * This will soread as well, so no need to
518 * test for G_IO_IN below if this succeeds
520 if (revents & G_IO_PRI) {
521 sorecvoob(so);
524 * Check sockets for reading
526 else if (revents & (G_IO_IN | G_IO_HUP | G_IO_ERR)) {
528 * Check for incoming connections
530 if (so->so_state & SS_FACCEPTCONN) {
531 tcp_connect(so);
532 continue;
533 } /* else */
534 ret = soread(so);
536 /* Output it if we read something */
537 if (ret > 0) {
538 tcp_output(sototcpcb(so));
543 * Check sockets for writing
545 if (!(so->so_state & SS_NOFDREF) &&
546 (revents & (G_IO_OUT | G_IO_ERR))) {
548 * Check for non-blocking, still-connecting sockets
550 if (so->so_state & SS_ISFCONNECTING) {
551 /* Connected */
552 so->so_state &= ~SS_ISFCONNECTING;
554 ret = send(so->s, (const void *) &ret, 0, 0);
555 if (ret < 0) {
556 /* XXXXX Must fix, zero bytes is a NOP */
557 if (errno == EAGAIN || errno == EWOULDBLOCK ||
558 errno == EINPROGRESS || errno == ENOTCONN) {
559 continue;
562 /* else failed */
563 so->so_state &= SS_PERSISTENT_MASK;
564 so->so_state |= SS_NOFDREF;
566 /* else so->so_state &= ~SS_ISFCONNECTING; */
569 * Continue tcp_input
571 tcp_input((struct mbuf *)NULL, sizeof(struct ip), so);
572 /* continue; */
573 } else {
574 ret = sowrite(so);
577 * XXXXX If we wrote something (a lot), there
578 * could be a need for a window update.
579 * In the worst case, the remote will send
580 * a window probe to get things going again
585 * Probe a still-connecting, non-blocking socket
586 * to check if it's still alive
588 #ifdef PROBE_CONN
589 if (so->so_state & SS_ISFCONNECTING) {
590 ret = qemu_recv(so->s, &ret, 0, 0);
592 if (ret < 0) {
593 /* XXX */
594 if (errno == EAGAIN || errno == EWOULDBLOCK ||
595 errno == EINPROGRESS || errno == ENOTCONN) {
596 continue; /* Still connecting, continue */
599 /* else failed */
600 so->so_state &= SS_PERSISTENT_MASK;
601 so->so_state |= SS_NOFDREF;
603 /* tcp_input will take care of it */
604 } else {
605 ret = send(so->s, &ret, 0, 0);
606 if (ret < 0) {
607 /* XXX */
608 if (errno == EAGAIN || errno == EWOULDBLOCK ||
609 errno == EINPROGRESS || errno == ENOTCONN) {
610 continue;
612 /* else failed */
613 so->so_state &= SS_PERSISTENT_MASK;
614 so->so_state |= SS_NOFDREF;
615 } else {
616 so->so_state &= ~SS_ISFCONNECTING;
620 tcp_input((struct mbuf *)NULL, sizeof(struct ip), so);
621 } /* SS_ISFCONNECTING */
622 #endif
626 * Now UDP sockets.
627 * Incoming packets are sent straight away, they're not buffered.
628 * Incoming UDP data isn't buffered either.
630 for (so = slirp->udb.so_next; so != &slirp->udb;
631 so = so_next) {
632 int revents;
634 so_next = so->so_next;
636 revents = 0;
637 if (so->pollfds_idx != -1) {
638 revents = g_array_index(pollfds, GPollFD,
639 so->pollfds_idx).revents;
642 if (so->s != -1 &&
643 (revents & (G_IO_IN | G_IO_HUP | G_IO_ERR))) {
644 sorecvfrom(so);
649 * Check incoming ICMP relies.
651 for (so = slirp->icmp.so_next; so != &slirp->icmp;
652 so = so_next) {
653 int revents;
655 so_next = so->so_next;
657 revents = 0;
658 if (so->pollfds_idx != -1) {
659 revents = g_array_index(pollfds, GPollFD,
660 so->pollfds_idx).revents;
663 if (so->s != -1 &&
664 (revents & (G_IO_IN | G_IO_HUP | G_IO_ERR))) {
665 icmp_receive(so);
670 if_start(slirp);
674 static void arp_input(Slirp *slirp, const uint8_t *pkt, int pkt_len)
676 struct arphdr *ah = (struct arphdr *)(pkt + ETH_HLEN);
677 uint8_t arp_reply[max(ETH_HLEN + sizeof(struct arphdr), 64)];
678 struct ethhdr *reh = (struct ethhdr *)arp_reply;
679 struct arphdr *rah = (struct arphdr *)(arp_reply + ETH_HLEN);
680 int ar_op;
681 struct ex_list *ex_ptr;
683 ar_op = ntohs(ah->ar_op);
684 switch(ar_op) {
685 case ARPOP_REQUEST:
686 if (ah->ar_tip == ah->ar_sip) {
687 /* Gratuitous ARP */
688 arp_table_add(slirp, ah->ar_sip, ah->ar_sha);
689 return;
692 if ((ah->ar_tip & slirp->vnetwork_mask.s_addr) ==
693 slirp->vnetwork_addr.s_addr) {
694 if (ah->ar_tip == slirp->vnameserver_addr.s_addr ||
695 ah->ar_tip == slirp->vhost_addr.s_addr)
696 goto arp_ok;
697 for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) {
698 if (ex_ptr->ex_addr.s_addr == ah->ar_tip)
699 goto arp_ok;
701 return;
702 arp_ok:
703 memset(arp_reply, 0, sizeof(arp_reply));
705 arp_table_add(slirp, ah->ar_sip, ah->ar_sha);
707 /* ARP request for alias/dns mac address */
708 memcpy(reh->h_dest, pkt + ETH_ALEN, ETH_ALEN);
709 memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 4);
710 memcpy(&reh->h_source[2], &ah->ar_tip, 4);
711 reh->h_proto = htons(ETH_P_ARP);
713 rah->ar_hrd = htons(1);
714 rah->ar_pro = htons(ETH_P_IP);
715 rah->ar_hln = ETH_ALEN;
716 rah->ar_pln = 4;
717 rah->ar_op = htons(ARPOP_REPLY);
718 memcpy(rah->ar_sha, reh->h_source, ETH_ALEN);
719 rah->ar_sip = ah->ar_tip;
720 memcpy(rah->ar_tha, ah->ar_sha, ETH_ALEN);
721 rah->ar_tip = ah->ar_sip;
722 slirp_output(slirp->opaque, arp_reply, sizeof(arp_reply));
724 break;
725 case ARPOP_REPLY:
726 arp_table_add(slirp, ah->ar_sip, ah->ar_sha);
727 break;
728 default:
729 break;
733 void slirp_input(Slirp *slirp, const uint8_t *pkt, int pkt_len)
735 struct mbuf *m;
736 int proto;
738 if (pkt_len < ETH_HLEN)
739 return;
741 proto = ntohs(*(uint16_t *)(pkt + 12));
742 switch(proto) {
743 case ETH_P_ARP:
744 arp_input(slirp, pkt, pkt_len);
745 break;
746 case ETH_P_IP:
747 m = m_get(slirp);
748 if (!m)
749 return;
750 /* Note: we add to align the IP header */
751 if (M_FREEROOM(m) < pkt_len + 2) {
752 m_inc(m, pkt_len + 2);
754 m->m_len = pkt_len + 2;
755 memcpy(m->m_data + 2, pkt, pkt_len);
757 m->m_data += 2 + ETH_HLEN;
758 m->m_len -= 2 + ETH_HLEN;
760 ip_input(m);
761 break;
762 default:
763 break;
767 /* Prepare the IPv4 packet to be sent to the ethernet device. Returns 1 if no
768 * packet should be sent, 0 if the packet must be re-queued, 2 if the packet
769 * is ready to go.
771 static int if_encap4(Slirp *slirp, struct mbuf *ifm, struct ethhdr *eh,
772 uint8_t ethaddr[ETH_ALEN])
774 const struct ip *iph = (const struct ip *)ifm->m_data;
776 if (iph->ip_dst.s_addr == 0) {
777 /* 0.0.0.0 can not be a destination address, something went wrong,
778 * avoid making it worse */
779 return 1;
781 if (!arp_table_search(slirp, iph->ip_dst.s_addr, ethaddr)) {
782 uint8_t arp_req[ETH_HLEN + sizeof(struct arphdr)];
783 struct ethhdr *reh = (struct ethhdr *)arp_req;
784 struct arphdr *rah = (struct arphdr *)(arp_req + ETH_HLEN);
786 if (!ifm->resolution_requested) {
787 /* If the client addr is not known, send an ARP request */
788 memset(reh->h_dest, 0xff, ETH_ALEN);
789 memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 4);
790 memcpy(&reh->h_source[2], &slirp->vhost_addr, 4);
791 reh->h_proto = htons(ETH_P_ARP);
792 rah->ar_hrd = htons(1);
793 rah->ar_pro = htons(ETH_P_IP);
794 rah->ar_hln = ETH_ALEN;
795 rah->ar_pln = 4;
796 rah->ar_op = htons(ARPOP_REQUEST);
798 /* source hw addr */
799 memcpy(rah->ar_sha, special_ethaddr, ETH_ALEN - 4);
800 memcpy(&rah->ar_sha[2], &slirp->vhost_addr, 4);
802 /* source IP */
803 rah->ar_sip = slirp->vhost_addr.s_addr;
805 /* target hw addr (none) */
806 memset(rah->ar_tha, 0, ETH_ALEN);
808 /* target IP */
809 rah->ar_tip = iph->ip_dst.s_addr;
810 slirp->client_ipaddr = iph->ip_dst;
811 slirp_output(slirp->opaque, arp_req, sizeof(arp_req));
812 ifm->resolution_requested = true;
814 /* Expire request and drop outgoing packet after 1 second */
815 ifm->expiration_date = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + 1000000000ULL;
817 return 0;
818 } else {
819 memcpy(eh->h_source, special_ethaddr, ETH_ALEN - 4);
820 /* XXX: not correct */
821 memcpy(&eh->h_source[2], &slirp->vhost_addr, 4);
822 eh->h_proto = htons(ETH_P_IP);
824 /* Send this */
825 return 2;
829 /* Output the IP packet to the ethernet device. Returns 0 if the packet must be
830 * re-queued.
832 int if_encap(Slirp *slirp, struct mbuf *ifm)
834 uint8_t buf[1600];
835 struct ethhdr *eh = (struct ethhdr *)buf;
836 uint8_t ethaddr[ETH_ALEN];
837 const struct ip *iph = (const struct ip *)ifm->m_data;
838 int ret;
840 if (ifm->m_len + ETH_HLEN > sizeof(buf)) {
841 return 1;
844 switch (iph->ip_v) {
845 case IPVERSION:
846 ret = if_encap4(slirp, ifm, eh, ethaddr);
847 if (ret < 2) {
848 return ret;
850 break;
852 default:
853 /* Do not assert while we don't manage IP6VERSION */
854 /* assert(0); */
855 break;
858 memcpy(eh->h_dest, ethaddr, ETH_ALEN);
859 DEBUG_ARGS((dfd, " src = %02x:%02x:%02x:%02x:%02x:%02x\n",
860 eh->h_source[0], eh->h_source[1], eh->h_source[2],
861 eh->h_source[3], eh->h_source[4], eh->h_source[5]));
862 DEBUG_ARGS((dfd, " dst = %02x:%02x:%02x:%02x:%02x:%02x\n",
863 eh->h_dest[0], eh->h_dest[1], eh->h_dest[2],
864 eh->h_dest[3], eh->h_dest[4], eh->h_dest[5]));
865 memcpy(buf + sizeof(struct ethhdr), ifm->m_data, ifm->m_len);
866 slirp_output(slirp->opaque, buf, ifm->m_len + ETH_HLEN);
867 return 1;
870 /* Drop host forwarding rule, return 0 if found. */
871 int slirp_remove_hostfwd(Slirp *slirp, int is_udp, struct in_addr host_addr,
872 int host_port)
874 struct socket *so;
875 struct socket *head = (is_udp ? &slirp->udb : &slirp->tcb);
876 struct sockaddr_in addr;
877 int port = htons(host_port);
878 socklen_t addr_len;
880 for (so = head->so_next; so != head; so = so->so_next) {
881 addr_len = sizeof(addr);
882 if ((so->so_state & SS_HOSTFWD) &&
883 getsockname(so->s, (struct sockaddr *)&addr, &addr_len) == 0 &&
884 addr.sin_addr.s_addr == host_addr.s_addr &&
885 addr.sin_port == port) {
886 close(so->s);
887 sofree(so);
888 return 0;
892 return -1;
895 int slirp_add_hostfwd(Slirp *slirp, int is_udp, struct in_addr host_addr,
896 int host_port, struct in_addr guest_addr, int guest_port)
898 if (!guest_addr.s_addr) {
899 guest_addr = slirp->vdhcp_startaddr;
901 if (is_udp) {
902 if (!udp_listen(slirp, host_addr.s_addr, htons(host_port),
903 guest_addr.s_addr, htons(guest_port), SS_HOSTFWD))
904 return -1;
905 } else {
906 if (!tcp_listen(slirp, host_addr.s_addr, htons(host_port),
907 guest_addr.s_addr, htons(guest_port), SS_HOSTFWD))
908 return -1;
910 return 0;
913 int slirp_add_exec(Slirp *slirp, int do_pty, const void *args,
914 struct in_addr *guest_addr, int guest_port)
916 if (!guest_addr->s_addr) {
917 guest_addr->s_addr = slirp->vnetwork_addr.s_addr |
918 (htonl(0x0204) & ~slirp->vnetwork_mask.s_addr);
920 if ((guest_addr->s_addr & slirp->vnetwork_mask.s_addr) !=
921 slirp->vnetwork_addr.s_addr ||
922 guest_addr->s_addr == slirp->vhost_addr.s_addr ||
923 guest_addr->s_addr == slirp->vnameserver_addr.s_addr) {
924 return -1;
926 return add_exec(&slirp->exec_list, do_pty, (char *)args, *guest_addr,
927 htons(guest_port));
930 ssize_t slirp_send(struct socket *so, const void *buf, size_t len, int flags)
932 if (so->s == -1 && so->extra) {
933 qemu_chr_fe_write(so->extra, buf, len);
934 return len;
937 return send(so->s, buf, len, flags);
940 static struct socket *
941 slirp_find_ctl_socket(Slirp *slirp, struct in_addr guest_addr, int guest_port)
943 struct socket *so;
945 for (so = slirp->tcb.so_next; so != &slirp->tcb; so = so->so_next) {
946 if (so->so_faddr.s_addr == guest_addr.s_addr &&
947 htons(so->so_fport) == guest_port) {
948 return so;
951 return NULL;
954 size_t slirp_socket_can_recv(Slirp *slirp, struct in_addr guest_addr,
955 int guest_port)
957 struct iovec iov[2];
958 struct socket *so;
960 so = slirp_find_ctl_socket(slirp, guest_addr, guest_port);
962 if (!so || so->so_state & SS_NOFDREF) {
963 return 0;
966 if (!CONN_CANFRCV(so) || so->so_snd.sb_cc >= (so->so_snd.sb_datalen/2)) {
967 return 0;
970 return sopreprbuf(so, iov, NULL);
973 void slirp_socket_recv(Slirp *slirp, struct in_addr guest_addr, int guest_port,
974 const uint8_t *buf, int size)
976 int ret;
977 struct socket *so = slirp_find_ctl_socket(slirp, guest_addr, guest_port);
979 if (!so)
980 return;
982 ret = soreadbuf(so, (const char *)buf, size);
984 if (ret > 0)
985 tcp_output(sototcpcb(so));
988 static void slirp_tcp_save(QEMUFile *f, struct tcpcb *tp)
990 int i;
992 qemu_put_sbe16(f, tp->t_state);
993 for (i = 0; i < TCPT_NTIMERS; i++)
994 qemu_put_sbe16(f, tp->t_timer[i]);
995 qemu_put_sbe16(f, tp->t_rxtshift);
996 qemu_put_sbe16(f, tp->t_rxtcur);
997 qemu_put_sbe16(f, tp->t_dupacks);
998 qemu_put_be16(f, tp->t_maxseg);
999 qemu_put_sbyte(f, tp->t_force);
1000 qemu_put_be16(f, tp->t_flags);
1001 qemu_put_be32(f, tp->snd_una);
1002 qemu_put_be32(f, tp->snd_nxt);
1003 qemu_put_be32(f, tp->snd_up);
1004 qemu_put_be32(f, tp->snd_wl1);
1005 qemu_put_be32(f, tp->snd_wl2);
1006 qemu_put_be32(f, tp->iss);
1007 qemu_put_be32(f, tp->snd_wnd);
1008 qemu_put_be32(f, tp->rcv_wnd);
1009 qemu_put_be32(f, tp->rcv_nxt);
1010 qemu_put_be32(f, tp->rcv_up);
1011 qemu_put_be32(f, tp->irs);
1012 qemu_put_be32(f, tp->rcv_adv);
1013 qemu_put_be32(f, tp->snd_max);
1014 qemu_put_be32(f, tp->snd_cwnd);
1015 qemu_put_be32(f, tp->snd_ssthresh);
1016 qemu_put_sbe16(f, tp->t_idle);
1017 qemu_put_sbe16(f, tp->t_rtt);
1018 qemu_put_be32(f, tp->t_rtseq);
1019 qemu_put_sbe16(f, tp->t_srtt);
1020 qemu_put_sbe16(f, tp->t_rttvar);
1021 qemu_put_be16(f, tp->t_rttmin);
1022 qemu_put_be32(f, tp->max_sndwnd);
1023 qemu_put_byte(f, tp->t_oobflags);
1024 qemu_put_byte(f, tp->t_iobc);
1025 qemu_put_sbe16(f, tp->t_softerror);
1026 qemu_put_byte(f, tp->snd_scale);
1027 qemu_put_byte(f, tp->rcv_scale);
1028 qemu_put_byte(f, tp->request_r_scale);
1029 qemu_put_byte(f, tp->requested_s_scale);
1030 qemu_put_be32(f, tp->ts_recent);
1031 qemu_put_be32(f, tp->ts_recent_age);
1032 qemu_put_be32(f, tp->last_ack_sent);
1035 static void slirp_sbuf_save(QEMUFile *f, struct sbuf *sbuf)
1037 uint32_t off;
1039 qemu_put_be32(f, sbuf->sb_cc);
1040 qemu_put_be32(f, sbuf->sb_datalen);
1041 off = (uint32_t)(sbuf->sb_wptr - sbuf->sb_data);
1042 qemu_put_sbe32(f, off);
1043 off = (uint32_t)(sbuf->sb_rptr - sbuf->sb_data);
1044 qemu_put_sbe32(f, off);
1045 qemu_put_buffer(f, (unsigned char*)sbuf->sb_data, sbuf->sb_datalen);
1048 static void slirp_socket_save(QEMUFile *f, struct socket *so)
1050 qemu_put_be32(f, so->so_urgc);
1051 qemu_put_be16(f, so->so_ffamily);
1052 switch (so->so_ffamily) {
1053 case AF_INET:
1054 qemu_put_be32(f, so->so_faddr.s_addr);
1055 qemu_put_be16(f, so->so_fport);
1056 break;
1057 default:
1058 error_report(
1059 "so_ffamily unknown, unable to save so_faddr and so_fport\n");
1061 qemu_put_be16(f, so->so_lfamily);
1062 switch (so->so_lfamily) {
1063 case AF_INET:
1064 qemu_put_be32(f, so->so_laddr.s_addr);
1065 qemu_put_be16(f, so->so_lport);
1066 break;
1067 default:
1068 error_report(
1069 "so_ffamily unknown, unable to save so_laddr and so_lport\n");
1071 qemu_put_byte(f, so->so_iptos);
1072 qemu_put_byte(f, so->so_emu);
1073 qemu_put_byte(f, so->so_type);
1074 qemu_put_be32(f, so->so_state);
1075 slirp_sbuf_save(f, &so->so_rcv);
1076 slirp_sbuf_save(f, &so->so_snd);
1077 slirp_tcp_save(f, so->so_tcpcb);
1080 static void slirp_bootp_save(QEMUFile *f, Slirp *slirp)
1082 int i;
1084 for (i = 0; i < NB_BOOTP_CLIENTS; i++) {
1085 qemu_put_be16(f, slirp->bootp_clients[i].allocated);
1086 qemu_put_buffer(f, slirp->bootp_clients[i].macaddr, 6);
1090 static void slirp_state_save(QEMUFile *f, void *opaque)
1092 Slirp *slirp = opaque;
1093 struct ex_list *ex_ptr;
1095 for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next)
1096 if (ex_ptr->ex_pty == 3) {
1097 struct socket *so;
1098 so = slirp_find_ctl_socket(slirp, ex_ptr->ex_addr,
1099 ntohs(ex_ptr->ex_fport));
1100 if (!so)
1101 continue;
1103 qemu_put_byte(f, 42);
1104 slirp_socket_save(f, so);
1106 qemu_put_byte(f, 0);
1108 qemu_put_be16(f, slirp->ip_id);
1110 slirp_bootp_save(f, slirp);
1113 static void slirp_tcp_load(QEMUFile *f, struct tcpcb *tp)
1115 int i;
1117 tp->t_state = qemu_get_sbe16(f);
1118 for (i = 0; i < TCPT_NTIMERS; i++)
1119 tp->t_timer[i] = qemu_get_sbe16(f);
1120 tp->t_rxtshift = qemu_get_sbe16(f);
1121 tp->t_rxtcur = qemu_get_sbe16(f);
1122 tp->t_dupacks = qemu_get_sbe16(f);
1123 tp->t_maxseg = qemu_get_be16(f);
1124 tp->t_force = qemu_get_sbyte(f);
1125 tp->t_flags = qemu_get_be16(f);
1126 tp->snd_una = qemu_get_be32(f);
1127 tp->snd_nxt = qemu_get_be32(f);
1128 tp->snd_up = qemu_get_be32(f);
1129 tp->snd_wl1 = qemu_get_be32(f);
1130 tp->snd_wl2 = qemu_get_be32(f);
1131 tp->iss = qemu_get_be32(f);
1132 tp->snd_wnd = qemu_get_be32(f);
1133 tp->rcv_wnd = qemu_get_be32(f);
1134 tp->rcv_nxt = qemu_get_be32(f);
1135 tp->rcv_up = qemu_get_be32(f);
1136 tp->irs = qemu_get_be32(f);
1137 tp->rcv_adv = qemu_get_be32(f);
1138 tp->snd_max = qemu_get_be32(f);
1139 tp->snd_cwnd = qemu_get_be32(f);
1140 tp->snd_ssthresh = qemu_get_be32(f);
1141 tp->t_idle = qemu_get_sbe16(f);
1142 tp->t_rtt = qemu_get_sbe16(f);
1143 tp->t_rtseq = qemu_get_be32(f);
1144 tp->t_srtt = qemu_get_sbe16(f);
1145 tp->t_rttvar = qemu_get_sbe16(f);
1146 tp->t_rttmin = qemu_get_be16(f);
1147 tp->max_sndwnd = qemu_get_be32(f);
1148 tp->t_oobflags = qemu_get_byte(f);
1149 tp->t_iobc = qemu_get_byte(f);
1150 tp->t_softerror = qemu_get_sbe16(f);
1151 tp->snd_scale = qemu_get_byte(f);
1152 tp->rcv_scale = qemu_get_byte(f);
1153 tp->request_r_scale = qemu_get_byte(f);
1154 tp->requested_s_scale = qemu_get_byte(f);
1155 tp->ts_recent = qemu_get_be32(f);
1156 tp->ts_recent_age = qemu_get_be32(f);
1157 tp->last_ack_sent = qemu_get_be32(f);
1158 tcp_template(tp);
1161 static int slirp_sbuf_load(QEMUFile *f, struct sbuf *sbuf)
1163 uint32_t off, sb_cc, sb_datalen;
1165 sb_cc = qemu_get_be32(f);
1166 sb_datalen = qemu_get_be32(f);
1168 sbreserve(sbuf, sb_datalen);
1170 if (sbuf->sb_datalen != sb_datalen)
1171 return -ENOMEM;
1173 sbuf->sb_cc = sb_cc;
1175 off = qemu_get_sbe32(f);
1176 sbuf->sb_wptr = sbuf->sb_data + off;
1177 off = qemu_get_sbe32(f);
1178 sbuf->sb_rptr = sbuf->sb_data + off;
1179 qemu_get_buffer(f, (unsigned char*)sbuf->sb_data, sbuf->sb_datalen);
1181 return 0;
1184 static int slirp_socket_load(QEMUFile *f, struct socket *so)
1186 if (tcp_attach(so) < 0)
1187 return -ENOMEM;
1189 so->so_urgc = qemu_get_be32(f);
1190 so->so_ffamily = qemu_get_be16(f);
1191 switch (so->so_ffamily) {
1192 case AF_INET:
1193 so->so_faddr.s_addr = qemu_get_be32(f);
1194 so->so_fport = qemu_get_be16(f);
1195 break;
1196 default:
1197 error_report(
1198 "so_ffamily unknown, unable to restore so_faddr and so_lport\n");
1200 so->so_lfamily = qemu_get_be16(f);
1201 switch (so->so_lfamily) {
1202 case AF_INET:
1203 so->so_laddr.s_addr = qemu_get_be32(f);
1204 so->so_lport = qemu_get_be16(f);
1205 break;
1206 default:
1207 error_report(
1208 "so_ffamily unknown, unable to restore so_laddr and so_lport\n");
1210 so->so_iptos = qemu_get_byte(f);
1211 so->so_emu = qemu_get_byte(f);
1212 so->so_type = qemu_get_byte(f);
1213 so->so_state = qemu_get_be32(f);
1214 if (slirp_sbuf_load(f, &so->so_rcv) < 0)
1215 return -ENOMEM;
1216 if (slirp_sbuf_load(f, &so->so_snd) < 0)
1217 return -ENOMEM;
1218 slirp_tcp_load(f, so->so_tcpcb);
1220 return 0;
1223 static void slirp_bootp_load(QEMUFile *f, Slirp *slirp)
1225 int i;
1227 for (i = 0; i < NB_BOOTP_CLIENTS; i++) {
1228 slirp->bootp_clients[i].allocated = qemu_get_be16(f);
1229 qemu_get_buffer(f, slirp->bootp_clients[i].macaddr, 6);
1233 static int slirp_state_load(QEMUFile *f, void *opaque, int version_id)
1235 Slirp *slirp = opaque;
1236 struct ex_list *ex_ptr;
1238 while (qemu_get_byte(f)) {
1239 int ret;
1240 struct socket *so = socreate(slirp);
1242 if (!so)
1243 return -ENOMEM;
1245 ret = slirp_socket_load(f, so);
1247 if (ret < 0)
1248 return ret;
1250 if ((so->so_faddr.s_addr & slirp->vnetwork_mask.s_addr) !=
1251 slirp->vnetwork_addr.s_addr) {
1252 return -EINVAL;
1254 for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) {
1255 if (ex_ptr->ex_pty == 3 &&
1256 so->so_faddr.s_addr == ex_ptr->ex_addr.s_addr &&
1257 so->so_fport == ex_ptr->ex_fport) {
1258 break;
1261 if (!ex_ptr)
1262 return -EINVAL;
1264 so->extra = (void *)ex_ptr->ex_exec;
1267 if (version_id >= 2) {
1268 slirp->ip_id = qemu_get_be16(f);
1271 if (version_id >= 3) {
1272 slirp_bootp_load(f, slirp);
1275 return 0;