hw/arm/virt: fix max-cpus check
[qemu/ar7.git] / hw / intc / arm_gic_common.c
blobac8cf42eb8d6e21f2e39852dffc5d7415e14a45e
1 /*
2 * ARM GIC support - common bits of emulated and KVM kernel model
4 * Copyright (c) 2012 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include "gic_internal.h"
23 #include "hw/arm/linux-boot-if.h"
25 static void gic_pre_save(void *opaque)
27 GICState *s = (GICState *)opaque;
28 ARMGICCommonClass *c = ARM_GIC_COMMON_GET_CLASS(s);
30 if (c->pre_save) {
31 c->pre_save(s);
35 static int gic_post_load(void *opaque, int version_id)
37 GICState *s = (GICState *)opaque;
38 ARMGICCommonClass *c = ARM_GIC_COMMON_GET_CLASS(s);
40 if (c->post_load) {
41 c->post_load(s);
43 return 0;
46 static const VMStateDescription vmstate_gic_irq_state = {
47 .name = "arm_gic_irq_state",
48 .version_id = 1,
49 .minimum_version_id = 1,
50 .fields = (VMStateField[]) {
51 VMSTATE_UINT8(enabled, gic_irq_state),
52 VMSTATE_UINT8(pending, gic_irq_state),
53 VMSTATE_UINT8(active, gic_irq_state),
54 VMSTATE_UINT8(level, gic_irq_state),
55 VMSTATE_BOOL(model, gic_irq_state),
56 VMSTATE_BOOL(edge_trigger, gic_irq_state),
57 VMSTATE_UINT8(group, gic_irq_state),
58 VMSTATE_END_OF_LIST()
62 static const VMStateDescription vmstate_gic = {
63 .name = "arm_gic",
64 .version_id = 12,
65 .minimum_version_id = 12,
66 .pre_save = gic_pre_save,
67 .post_load = gic_post_load,
68 .fields = (VMStateField[]) {
69 VMSTATE_UINT32(ctlr, GICState),
70 VMSTATE_UINT32_ARRAY(cpu_ctlr, GICState, GIC_NCPU),
71 VMSTATE_STRUCT_ARRAY(irq_state, GICState, GIC_MAXIRQ, 1,
72 vmstate_gic_irq_state, gic_irq_state),
73 VMSTATE_UINT8_ARRAY(irq_target, GICState, GIC_MAXIRQ),
74 VMSTATE_UINT8_2DARRAY(priority1, GICState, GIC_INTERNAL, GIC_NCPU),
75 VMSTATE_UINT8_ARRAY(priority2, GICState, GIC_MAXIRQ - GIC_INTERNAL),
76 VMSTATE_UINT8_2DARRAY(sgi_pending, GICState, GIC_NR_SGIS, GIC_NCPU),
77 VMSTATE_UINT16_ARRAY(priority_mask, GICState, GIC_NCPU),
78 VMSTATE_UINT16_ARRAY(running_priority, GICState, GIC_NCPU),
79 VMSTATE_UINT16_ARRAY(current_pending, GICState, GIC_NCPU),
80 VMSTATE_UINT8_ARRAY(bpr, GICState, GIC_NCPU),
81 VMSTATE_UINT8_ARRAY(abpr, GICState, GIC_NCPU),
82 VMSTATE_UINT32_2DARRAY(apr, GICState, GIC_NR_APRS, GIC_NCPU),
83 VMSTATE_UINT32_2DARRAY(nsapr, GICState, GIC_NR_APRS, GIC_NCPU),
84 VMSTATE_END_OF_LIST()
88 void gic_init_irqs_and_mmio(GICState *s, qemu_irq_handler handler,
89 const MemoryRegionOps *ops)
91 SysBusDevice *sbd = SYS_BUS_DEVICE(s);
92 int i = s->num_irq - GIC_INTERNAL;
94 /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
95 * GPIO array layout is thus:
96 * [0..N-1] SPIs
97 * [N..N+31] PPIs for CPU 0
98 * [N+32..N+63] PPIs for CPU 1
99 * ...
101 if (s->revision != REV_NVIC) {
102 i += (GIC_INTERNAL * s->num_cpu);
104 qdev_init_gpio_in(DEVICE(s), handler, i);
106 for (i = 0; i < s->num_cpu; i++) {
107 sysbus_init_irq(sbd, &s->parent_irq[i]);
109 for (i = 0; i < s->num_cpu; i++) {
110 sysbus_init_irq(sbd, &s->parent_fiq[i]);
113 /* Distributor */
114 memory_region_init_io(&s->iomem, OBJECT(s), ops, s, "gic_dist", 0x1000);
115 sysbus_init_mmio(sbd, &s->iomem);
117 if (s->revision != REV_NVIC) {
118 /* This is the main CPU interface "for this core". It is always
119 * present because it is required by both software emulation and KVM.
120 * NVIC is not handled here because its CPU interface is different,
121 * neither it can use KVM.
123 memory_region_init_io(&s->cpuiomem[0], OBJECT(s), ops ? &ops[1] : NULL,
124 s, "gic_cpu", s->revision == 2 ? 0x1000 : 0x100);
125 sysbus_init_mmio(sbd, &s->cpuiomem[0]);
129 static void arm_gic_common_realize(DeviceState *dev, Error **errp)
131 GICState *s = ARM_GIC_COMMON(dev);
132 int num_irq = s->num_irq;
134 if (s->num_cpu > GIC_NCPU) {
135 error_setg(errp, "requested %u CPUs exceeds GIC maximum %d",
136 s->num_cpu, GIC_NCPU);
137 return;
139 s->num_irq += GIC_BASE_IRQ;
140 if (s->num_irq > GIC_MAXIRQ) {
141 error_setg(errp,
142 "requested %u interrupt lines exceeds GIC maximum %d",
143 num_irq, GIC_MAXIRQ);
144 return;
146 /* ITLinesNumber is represented as (N / 32) - 1 (see
147 * gic_dist_readb) so this is an implementation imposed
148 * restriction, not an architectural one:
150 if (s->num_irq < 32 || (s->num_irq % 32)) {
151 error_setg(errp,
152 "%d interrupt lines unsupported: not divisible by 32",
153 num_irq);
154 return;
157 if (s->security_extn &&
158 (s->revision == REV_11MPCORE || s->revision == REV_NVIC)) {
159 error_setg(errp, "this GIC revision does not implement "
160 "the security extensions");
161 return;
165 static void arm_gic_common_reset(DeviceState *dev)
167 GICState *s = ARM_GIC_COMMON(dev);
168 int i, j;
169 int resetprio;
171 /* If we're resetting a TZ-aware GIC as if secure firmware
172 * had set it up ready to start a kernel in non-secure,
173 * we need to set interrupt priorities to a "zero for the
174 * NS view" value. This is particularly critical for the
175 * priority_mask[] values, because if they are zero then NS
176 * code cannot ever rewrite the priority to anything else.
178 if (s->security_extn && s->irq_reset_nonsecure) {
179 resetprio = 0x80;
180 } else {
181 resetprio = 0;
184 memset(s->irq_state, 0, GIC_MAXIRQ * sizeof(gic_irq_state));
185 for (i = 0 ; i < s->num_cpu; i++) {
186 if (s->revision == REV_11MPCORE) {
187 s->priority_mask[i] = 0xf0;
188 } else {
189 s->priority_mask[i] = resetprio;
191 s->current_pending[i] = 1023;
192 s->running_priority[i] = 0x100;
193 s->cpu_ctlr[i] = 0;
194 s->bpr[i] = GIC_MIN_BPR;
195 s->abpr[i] = GIC_MIN_ABPR;
196 for (j = 0; j < GIC_INTERNAL; j++) {
197 s->priority1[j][i] = resetprio;
199 for (j = 0; j < GIC_NR_SGIS; j++) {
200 s->sgi_pending[j][i] = 0;
203 for (i = 0; i < GIC_NR_SGIS; i++) {
204 GIC_SET_ENABLED(i, ALL_CPU_MASK);
205 GIC_SET_EDGE_TRIGGER(i);
208 for (i = 0; i < ARRAY_SIZE(s->priority2); i++) {
209 s->priority2[i] = resetprio;
212 for (i = 0; i < GIC_MAXIRQ; i++) {
213 /* For uniprocessor GICs all interrupts always target the sole CPU */
214 if (s->num_cpu == 1) {
215 s->irq_target[i] = 1;
216 } else {
217 s->irq_target[i] = 0;
220 if (s->security_extn && s->irq_reset_nonsecure) {
221 for (i = 0; i < GIC_MAXIRQ; i++) {
222 GIC_SET_GROUP(i, ALL_CPU_MASK);
226 s->ctlr = 0;
229 static void arm_gic_common_linux_init(ARMLinuxBootIf *obj,
230 bool secure_boot)
232 GICState *s = ARM_GIC_COMMON(obj);
234 if (s->security_extn && !secure_boot) {
235 /* We're directly booting a kernel into NonSecure. If this GIC
236 * implements the security extensions then we must configure it
237 * to have all the interrupts be NonSecure (this is a job that
238 * is done by the Secure boot firmware in real hardware, and in
239 * this mode QEMU is acting as a minimalist firmware-and-bootloader
240 * equivalent).
242 s->irq_reset_nonsecure = true;
246 static Property arm_gic_common_properties[] = {
247 DEFINE_PROP_UINT32("num-cpu", GICState, num_cpu, 1),
248 DEFINE_PROP_UINT32("num-irq", GICState, num_irq, 32),
249 /* Revision can be 1 or 2 for GIC architecture specification
250 * versions 1 or 2, or 0 to indicate the legacy 11MPCore GIC.
251 * (Internally, 0xffffffff also indicates "not a GIC but an NVIC".)
253 DEFINE_PROP_UINT32("revision", GICState, revision, 1),
254 /* True if the GIC should implement the security extensions */
255 DEFINE_PROP_BOOL("has-security-extensions", GICState, security_extn, 0),
256 DEFINE_PROP_END_OF_LIST(),
259 static void arm_gic_common_class_init(ObjectClass *klass, void *data)
261 DeviceClass *dc = DEVICE_CLASS(klass);
262 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass);
264 dc->reset = arm_gic_common_reset;
265 dc->realize = arm_gic_common_realize;
266 dc->props = arm_gic_common_properties;
267 dc->vmsd = &vmstate_gic;
268 albifc->arm_linux_init = arm_gic_common_linux_init;
271 static const TypeInfo arm_gic_common_type = {
272 .name = TYPE_ARM_GIC_COMMON,
273 .parent = TYPE_SYS_BUS_DEVICE,
274 .instance_size = sizeof(GICState),
275 .class_size = sizeof(ARMGICCommonClass),
276 .class_init = arm_gic_common_class_init,
277 .abstract = true,
278 .interfaces = (InterfaceInfo []) {
279 { TYPE_ARM_LINUX_BOOT_IF },
280 { },
284 static void register_types(void)
286 type_register_static(&arm_gic_common_type);
289 type_init(register_types)