trace: recommend "log" backend for getting started with tracing
[qemu/ar7.git] / accel / kvm / kvm-all.c
blob3feb17d9651c27ec44a435b599c7ad63190ef8ae
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu/atomic.h"
22 #include "qemu/option.h"
23 #include "qemu/config-file.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/pci/msi.h"
27 #include "hw/pci/msix.h"
28 #include "hw/s390x/adapter.h"
29 #include "exec/gdbstub.h"
30 #include "sysemu/kvm_int.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "sysemu/sev.h"
43 #include "qapi/visitor.h"
44 #include "qapi/qapi-types-common.h"
45 #include "qapi/qapi-visit-common.h"
46 #include "sysemu/reset.h"
47 #include "qemu/guest-random.h"
48 #include "sysemu/hw_accel.h"
49 #include "kvm-cpus.h"
51 #include "hw/boards.h"
53 /* This check must be after config-host.h is included */
54 #ifdef CONFIG_EVENTFD
55 #include <sys/eventfd.h>
56 #endif
58 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
59 * need to use the real host PAGE_SIZE, as that's what KVM will use.
61 #ifdef PAGE_SIZE
62 #undef PAGE_SIZE
63 #endif
64 #define PAGE_SIZE qemu_real_host_page_size
66 //#define DEBUG_KVM
68 #ifdef DEBUG_KVM
69 #define DPRINTF(fmt, ...) \
70 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
71 #else
72 #define DPRINTF(fmt, ...) \
73 do { } while (0)
74 #endif
76 #define KVM_MSI_HASHTAB_SIZE 256
78 struct KVMParkedVcpu {
79 unsigned long vcpu_id;
80 int kvm_fd;
81 QLIST_ENTRY(KVMParkedVcpu) node;
84 struct KVMState
86 AccelState parent_obj;
88 int nr_slots;
89 int fd;
90 int vmfd;
91 int coalesced_mmio;
92 int coalesced_pio;
93 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
94 bool coalesced_flush_in_progress;
95 int vcpu_events;
96 int robust_singlestep;
97 int debugregs;
98 #ifdef KVM_CAP_SET_GUEST_DEBUG
99 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
100 #endif
101 int max_nested_state_len;
102 int many_ioeventfds;
103 int intx_set_mask;
104 int kvm_shadow_mem;
105 bool kernel_irqchip_allowed;
106 bool kernel_irqchip_required;
107 OnOffAuto kernel_irqchip_split;
108 bool sync_mmu;
109 uint64_t manual_dirty_log_protect;
110 /* The man page (and posix) say ioctl numbers are signed int, but
111 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
112 * unsigned, and treating them as signed here can break things */
113 unsigned irq_set_ioctl;
114 unsigned int sigmask_len;
115 GHashTable *gsimap;
116 #ifdef KVM_CAP_IRQ_ROUTING
117 struct kvm_irq_routing *irq_routes;
118 int nr_allocated_irq_routes;
119 unsigned long *used_gsi_bitmap;
120 unsigned int gsi_count;
121 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
122 #endif
123 KVMMemoryListener memory_listener;
124 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
126 /* memory encryption */
127 void *memcrypt_handle;
128 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len);
130 /* For "info mtree -f" to tell if an MR is registered in KVM */
131 int nr_as;
132 struct KVMAs {
133 KVMMemoryListener *ml;
134 AddressSpace *as;
135 } *as;
138 KVMState *kvm_state;
139 bool kvm_kernel_irqchip;
140 bool kvm_split_irqchip;
141 bool kvm_async_interrupts_allowed;
142 bool kvm_halt_in_kernel_allowed;
143 bool kvm_eventfds_allowed;
144 bool kvm_irqfds_allowed;
145 bool kvm_resamplefds_allowed;
146 bool kvm_msi_via_irqfd_allowed;
147 bool kvm_gsi_routing_allowed;
148 bool kvm_gsi_direct_mapping;
149 bool kvm_allowed;
150 bool kvm_readonly_mem_allowed;
151 bool kvm_vm_attributes_allowed;
152 bool kvm_direct_msi_allowed;
153 bool kvm_ioeventfd_any_length_allowed;
154 bool kvm_msi_use_devid;
155 static bool kvm_immediate_exit;
156 static hwaddr kvm_max_slot_size = ~0;
158 static const KVMCapabilityInfo kvm_required_capabilites[] = {
159 KVM_CAP_INFO(USER_MEMORY),
160 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
161 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
162 KVM_CAP_LAST_INFO
165 static NotifierList kvm_irqchip_change_notifiers =
166 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
168 struct KVMResampleFd {
169 int gsi;
170 EventNotifier *resample_event;
171 QLIST_ENTRY(KVMResampleFd) node;
173 typedef struct KVMResampleFd KVMResampleFd;
176 * Only used with split irqchip where we need to do the resample fd
177 * kick for the kernel from userspace.
179 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
180 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
182 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock)
183 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock)
185 static inline void kvm_resample_fd_remove(int gsi)
187 KVMResampleFd *rfd;
189 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
190 if (rfd->gsi == gsi) {
191 QLIST_REMOVE(rfd, node);
192 g_free(rfd);
193 break;
198 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
200 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
202 rfd->gsi = gsi;
203 rfd->resample_event = event;
205 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
208 void kvm_resample_fd_notify(int gsi)
210 KVMResampleFd *rfd;
212 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
213 if (rfd->gsi == gsi) {
214 event_notifier_set(rfd->resample_event);
215 trace_kvm_resample_fd_notify(gsi);
216 return;
221 int kvm_get_max_memslots(void)
223 KVMState *s = KVM_STATE(current_accel());
225 return s->nr_slots;
228 bool kvm_memcrypt_enabled(void)
230 if (kvm_state && kvm_state->memcrypt_handle) {
231 return true;
234 return false;
237 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len)
239 if (kvm_state->memcrypt_handle &&
240 kvm_state->memcrypt_encrypt_data) {
241 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle,
242 ptr, len);
245 return 1;
248 /* Called with KVMMemoryListener.slots_lock held */
249 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
251 KVMState *s = kvm_state;
252 int i;
254 for (i = 0; i < s->nr_slots; i++) {
255 if (kml->slots[i].memory_size == 0) {
256 return &kml->slots[i];
260 return NULL;
263 bool kvm_has_free_slot(MachineState *ms)
265 KVMState *s = KVM_STATE(ms->accelerator);
266 bool result;
267 KVMMemoryListener *kml = &s->memory_listener;
269 kvm_slots_lock(kml);
270 result = !!kvm_get_free_slot(kml);
271 kvm_slots_unlock(kml);
273 return result;
276 /* Called with KVMMemoryListener.slots_lock held */
277 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
279 KVMSlot *slot = kvm_get_free_slot(kml);
281 if (slot) {
282 return slot;
285 fprintf(stderr, "%s: no free slot available\n", __func__);
286 abort();
289 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
290 hwaddr start_addr,
291 hwaddr size)
293 KVMState *s = kvm_state;
294 int i;
296 for (i = 0; i < s->nr_slots; i++) {
297 KVMSlot *mem = &kml->slots[i];
299 if (start_addr == mem->start_addr && size == mem->memory_size) {
300 return mem;
304 return NULL;
308 * Calculate and align the start address and the size of the section.
309 * Return the size. If the size is 0, the aligned section is empty.
311 static hwaddr kvm_align_section(MemoryRegionSection *section,
312 hwaddr *start)
314 hwaddr size = int128_get64(section->size);
315 hwaddr delta, aligned;
317 /* kvm works in page size chunks, but the function may be called
318 with sub-page size and unaligned start address. Pad the start
319 address to next and truncate size to previous page boundary. */
320 aligned = ROUND_UP(section->offset_within_address_space,
321 qemu_real_host_page_size);
322 delta = aligned - section->offset_within_address_space;
323 *start = aligned;
324 if (delta > size) {
325 return 0;
328 return (size - delta) & qemu_real_host_page_mask;
331 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
332 hwaddr *phys_addr)
334 KVMMemoryListener *kml = &s->memory_listener;
335 int i, ret = 0;
337 kvm_slots_lock(kml);
338 for (i = 0; i < s->nr_slots; i++) {
339 KVMSlot *mem = &kml->slots[i];
341 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
342 *phys_addr = mem->start_addr + (ram - mem->ram);
343 ret = 1;
344 break;
347 kvm_slots_unlock(kml);
349 return ret;
352 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
354 KVMState *s = kvm_state;
355 struct kvm_userspace_memory_region mem;
356 int ret;
358 mem.slot = slot->slot | (kml->as_id << 16);
359 mem.guest_phys_addr = slot->start_addr;
360 mem.userspace_addr = (unsigned long)slot->ram;
361 mem.flags = slot->flags;
363 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
364 /* Set the slot size to 0 before setting the slot to the desired
365 * value. This is needed based on KVM commit 75d61fbc. */
366 mem.memory_size = 0;
367 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
368 if (ret < 0) {
369 goto err;
372 mem.memory_size = slot->memory_size;
373 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
374 slot->old_flags = mem.flags;
375 err:
376 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
377 mem.memory_size, mem.userspace_addr, ret);
378 if (ret < 0) {
379 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
380 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
381 __func__, mem.slot, slot->start_addr,
382 (uint64_t)mem.memory_size, strerror(errno));
384 return ret;
387 static int do_kvm_destroy_vcpu(CPUState *cpu)
389 KVMState *s = kvm_state;
390 long mmap_size;
391 struct KVMParkedVcpu *vcpu = NULL;
392 int ret = 0;
394 DPRINTF("kvm_destroy_vcpu\n");
396 ret = kvm_arch_destroy_vcpu(cpu);
397 if (ret < 0) {
398 goto err;
401 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
402 if (mmap_size < 0) {
403 ret = mmap_size;
404 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
405 goto err;
408 ret = munmap(cpu->kvm_run, mmap_size);
409 if (ret < 0) {
410 goto err;
413 vcpu = g_malloc0(sizeof(*vcpu));
414 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
415 vcpu->kvm_fd = cpu->kvm_fd;
416 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
417 err:
418 return ret;
421 void kvm_destroy_vcpu(CPUState *cpu)
423 if (do_kvm_destroy_vcpu(cpu) < 0) {
424 error_report("kvm_destroy_vcpu failed");
425 exit(EXIT_FAILURE);
429 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
431 struct KVMParkedVcpu *cpu;
433 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
434 if (cpu->vcpu_id == vcpu_id) {
435 int kvm_fd;
437 QLIST_REMOVE(cpu, node);
438 kvm_fd = cpu->kvm_fd;
439 g_free(cpu);
440 return kvm_fd;
444 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
447 int kvm_init_vcpu(CPUState *cpu, Error **errp)
449 KVMState *s = kvm_state;
450 long mmap_size;
451 int ret;
453 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
455 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
456 if (ret < 0) {
457 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
458 kvm_arch_vcpu_id(cpu));
459 goto err;
462 cpu->kvm_fd = ret;
463 cpu->kvm_state = s;
464 cpu->vcpu_dirty = true;
466 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
467 if (mmap_size < 0) {
468 ret = mmap_size;
469 error_setg_errno(errp, -mmap_size,
470 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
471 goto err;
474 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
475 cpu->kvm_fd, 0);
476 if (cpu->kvm_run == MAP_FAILED) {
477 ret = -errno;
478 error_setg_errno(errp, ret,
479 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
480 kvm_arch_vcpu_id(cpu));
481 goto err;
484 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
485 s->coalesced_mmio_ring =
486 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
489 ret = kvm_arch_init_vcpu(cpu);
490 if (ret < 0) {
491 error_setg_errno(errp, -ret,
492 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
493 kvm_arch_vcpu_id(cpu));
495 err:
496 return ret;
500 * dirty pages logging control
503 static int kvm_mem_flags(MemoryRegion *mr)
505 bool readonly = mr->readonly || memory_region_is_romd(mr);
506 int flags = 0;
508 if (memory_region_get_dirty_log_mask(mr) != 0) {
509 flags |= KVM_MEM_LOG_DIRTY_PAGES;
511 if (readonly && kvm_readonly_mem_allowed) {
512 flags |= KVM_MEM_READONLY;
514 return flags;
517 /* Called with KVMMemoryListener.slots_lock held */
518 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
519 MemoryRegion *mr)
521 mem->flags = kvm_mem_flags(mr);
523 /* If nothing changed effectively, no need to issue ioctl */
524 if (mem->flags == mem->old_flags) {
525 return 0;
528 return kvm_set_user_memory_region(kml, mem, false);
531 static int kvm_section_update_flags(KVMMemoryListener *kml,
532 MemoryRegionSection *section)
534 hwaddr start_addr, size, slot_size;
535 KVMSlot *mem;
536 int ret = 0;
538 size = kvm_align_section(section, &start_addr);
539 if (!size) {
540 return 0;
543 kvm_slots_lock(kml);
545 while (size && !ret) {
546 slot_size = MIN(kvm_max_slot_size, size);
547 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
548 if (!mem) {
549 /* We don't have a slot if we want to trap every access. */
550 goto out;
553 ret = kvm_slot_update_flags(kml, mem, section->mr);
554 start_addr += slot_size;
555 size -= slot_size;
558 out:
559 kvm_slots_unlock(kml);
560 return ret;
563 static void kvm_log_start(MemoryListener *listener,
564 MemoryRegionSection *section,
565 int old, int new)
567 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
568 int r;
570 if (old != 0) {
571 return;
574 r = kvm_section_update_flags(kml, section);
575 if (r < 0) {
576 abort();
580 static void kvm_log_stop(MemoryListener *listener,
581 MemoryRegionSection *section,
582 int old, int new)
584 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
585 int r;
587 if (new != 0) {
588 return;
591 r = kvm_section_update_flags(kml, section);
592 if (r < 0) {
593 abort();
597 /* get kvm's dirty pages bitmap and update qemu's */
598 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
599 unsigned long *bitmap)
601 ram_addr_t start = section->offset_within_region +
602 memory_region_get_ram_addr(section->mr);
603 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size;
605 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
606 return 0;
609 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
611 /* Allocate the dirty bitmap for a slot */
612 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem)
615 * XXX bad kernel interface alert
616 * For dirty bitmap, kernel allocates array of size aligned to
617 * bits-per-long. But for case when the kernel is 64bits and
618 * the userspace is 32bits, userspace can't align to the same
619 * bits-per-long, since sizeof(long) is different between kernel
620 * and user space. This way, userspace will provide buffer which
621 * may be 4 bytes less than the kernel will use, resulting in
622 * userspace memory corruption (which is not detectable by valgrind
623 * too, in most cases).
624 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
625 * a hope that sizeof(long) won't become >8 any time soon.
627 hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
628 /*HOST_LONG_BITS*/ 64) / 8;
629 mem->dirty_bmap = g_malloc0(bitmap_size);
633 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
635 * This function will first try to fetch dirty bitmap from the kernel,
636 * and then updates qemu's dirty bitmap.
638 * NOTE: caller must be with kml->slots_lock held.
640 * @kml: the KVM memory listener object
641 * @section: the memory section to sync the dirty bitmap with
643 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
644 MemoryRegionSection *section)
646 KVMState *s = kvm_state;
647 struct kvm_dirty_log d = {};
648 KVMSlot *mem;
649 hwaddr start_addr, size;
650 hwaddr slot_size, slot_offset = 0;
651 int ret = 0;
653 size = kvm_align_section(section, &start_addr);
654 while (size) {
655 MemoryRegionSection subsection = *section;
657 slot_size = MIN(kvm_max_slot_size, size);
658 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
659 if (!mem) {
660 /* We don't have a slot if we want to trap every access. */
661 goto out;
664 if (!mem->dirty_bmap) {
665 /* Allocate on the first log_sync, once and for all */
666 kvm_memslot_init_dirty_bitmap(mem);
669 d.dirty_bitmap = mem->dirty_bmap;
670 d.slot = mem->slot | (kml->as_id << 16);
671 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
672 DPRINTF("ioctl failed %d\n", errno);
673 ret = -1;
674 goto out;
677 subsection.offset_within_region += slot_offset;
678 subsection.size = int128_make64(slot_size);
679 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap);
681 slot_offset += slot_size;
682 start_addr += slot_size;
683 size -= slot_size;
685 out:
686 return ret;
689 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
690 #define KVM_CLEAR_LOG_SHIFT 6
691 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
692 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
694 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
695 uint64_t size)
697 KVMState *s = kvm_state;
698 uint64_t end, bmap_start, start_delta, bmap_npages;
699 struct kvm_clear_dirty_log d;
700 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
701 int ret;
704 * We need to extend either the start or the size or both to
705 * satisfy the KVM interface requirement. Firstly, do the start
706 * page alignment on 64 host pages
708 bmap_start = start & KVM_CLEAR_LOG_MASK;
709 start_delta = start - bmap_start;
710 bmap_start /= psize;
713 * The kernel interface has restriction on the size too, that either:
715 * (1) the size is 64 host pages aligned (just like the start), or
716 * (2) the size fills up until the end of the KVM memslot.
718 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
719 << KVM_CLEAR_LOG_SHIFT;
720 end = mem->memory_size / psize;
721 if (bmap_npages > end - bmap_start) {
722 bmap_npages = end - bmap_start;
724 start_delta /= psize;
727 * Prepare the bitmap to clear dirty bits. Here we must guarantee
728 * that we won't clear any unknown dirty bits otherwise we might
729 * accidentally clear some set bits which are not yet synced from
730 * the kernel into QEMU's bitmap, then we'll lose track of the
731 * guest modifications upon those pages (which can directly lead
732 * to guest data loss or panic after migration).
734 * Layout of the KVMSlot.dirty_bmap:
736 * |<-------- bmap_npages -----------..>|
737 * [1]
738 * start_delta size
739 * |----------------|-------------|------------------|------------|
740 * ^ ^ ^ ^
741 * | | | |
742 * start bmap_start (start) end
743 * of memslot of memslot
745 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
748 assert(bmap_start % BITS_PER_LONG == 0);
749 /* We should never do log_clear before log_sync */
750 assert(mem->dirty_bmap);
751 if (start_delta || bmap_npages - size / psize) {
752 /* Slow path - we need to manipulate a temp bitmap */
753 bmap_clear = bitmap_new(bmap_npages);
754 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
755 bmap_start, start_delta + size / psize);
757 * We need to fill the holes at start because that was not
758 * specified by the caller and we extended the bitmap only for
759 * 64 pages alignment
761 bitmap_clear(bmap_clear, 0, start_delta);
762 d.dirty_bitmap = bmap_clear;
763 } else {
765 * Fast path - both start and size align well with BITS_PER_LONG
766 * (or the end of memory slot)
768 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
771 d.first_page = bmap_start;
772 /* It should never overflow. If it happens, say something */
773 assert(bmap_npages <= UINT32_MAX);
774 d.num_pages = bmap_npages;
775 d.slot = mem->slot | (as_id << 16);
777 if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) {
778 ret = -errno;
779 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
780 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
781 __func__, d.slot, (uint64_t)d.first_page,
782 (uint32_t)d.num_pages, ret);
783 } else {
784 ret = 0;
785 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
789 * After we have updated the remote dirty bitmap, we update the
790 * cached bitmap as well for the memslot, then if another user
791 * clears the same region we know we shouldn't clear it again on
792 * the remote otherwise it's data loss as well.
794 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
795 size / psize);
796 /* This handles the NULL case well */
797 g_free(bmap_clear);
798 return ret;
803 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
805 * NOTE: this will be a no-op if we haven't enabled manual dirty log
806 * protection in the host kernel because in that case this operation
807 * will be done within log_sync().
809 * @kml: the kvm memory listener
810 * @section: the memory range to clear dirty bitmap
812 static int kvm_physical_log_clear(KVMMemoryListener *kml,
813 MemoryRegionSection *section)
815 KVMState *s = kvm_state;
816 uint64_t start, size, offset, count;
817 KVMSlot *mem;
818 int ret = 0, i;
820 if (!s->manual_dirty_log_protect) {
821 /* No need to do explicit clear */
822 return ret;
825 start = section->offset_within_address_space;
826 size = int128_get64(section->size);
828 if (!size) {
829 /* Nothing more we can do... */
830 return ret;
833 kvm_slots_lock(kml);
835 for (i = 0; i < s->nr_slots; i++) {
836 mem = &kml->slots[i];
837 /* Discard slots that are empty or do not overlap the section */
838 if (!mem->memory_size ||
839 mem->start_addr > start + size - 1 ||
840 start > mem->start_addr + mem->memory_size - 1) {
841 continue;
844 if (start >= mem->start_addr) {
845 /* The slot starts before section or is aligned to it. */
846 offset = start - mem->start_addr;
847 count = MIN(mem->memory_size - offset, size);
848 } else {
849 /* The slot starts after section. */
850 offset = 0;
851 count = MIN(mem->memory_size, size - (mem->start_addr - start));
853 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
854 if (ret < 0) {
855 break;
859 kvm_slots_unlock(kml);
861 return ret;
864 static void kvm_coalesce_mmio_region(MemoryListener *listener,
865 MemoryRegionSection *secion,
866 hwaddr start, hwaddr size)
868 KVMState *s = kvm_state;
870 if (s->coalesced_mmio) {
871 struct kvm_coalesced_mmio_zone zone;
873 zone.addr = start;
874 zone.size = size;
875 zone.pad = 0;
877 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
881 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
882 MemoryRegionSection *secion,
883 hwaddr start, hwaddr size)
885 KVMState *s = kvm_state;
887 if (s->coalesced_mmio) {
888 struct kvm_coalesced_mmio_zone zone;
890 zone.addr = start;
891 zone.size = size;
892 zone.pad = 0;
894 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
898 static void kvm_coalesce_pio_add(MemoryListener *listener,
899 MemoryRegionSection *section,
900 hwaddr start, hwaddr size)
902 KVMState *s = kvm_state;
904 if (s->coalesced_pio) {
905 struct kvm_coalesced_mmio_zone zone;
907 zone.addr = start;
908 zone.size = size;
909 zone.pio = 1;
911 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
915 static void kvm_coalesce_pio_del(MemoryListener *listener,
916 MemoryRegionSection *section,
917 hwaddr start, hwaddr size)
919 KVMState *s = kvm_state;
921 if (s->coalesced_pio) {
922 struct kvm_coalesced_mmio_zone zone;
924 zone.addr = start;
925 zone.size = size;
926 zone.pio = 1;
928 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
932 static MemoryListener kvm_coalesced_pio_listener = {
933 .coalesced_io_add = kvm_coalesce_pio_add,
934 .coalesced_io_del = kvm_coalesce_pio_del,
937 int kvm_check_extension(KVMState *s, unsigned int extension)
939 int ret;
941 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
942 if (ret < 0) {
943 ret = 0;
946 return ret;
949 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
951 int ret;
953 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
954 if (ret < 0) {
955 /* VM wide version not implemented, use global one instead */
956 ret = kvm_check_extension(s, extension);
959 return ret;
962 typedef struct HWPoisonPage {
963 ram_addr_t ram_addr;
964 QLIST_ENTRY(HWPoisonPage) list;
965 } HWPoisonPage;
967 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
968 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
970 static void kvm_unpoison_all(void *param)
972 HWPoisonPage *page, *next_page;
974 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
975 QLIST_REMOVE(page, list);
976 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
977 g_free(page);
981 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
983 HWPoisonPage *page;
985 QLIST_FOREACH(page, &hwpoison_page_list, list) {
986 if (page->ram_addr == ram_addr) {
987 return;
990 page = g_new(HWPoisonPage, 1);
991 page->ram_addr = ram_addr;
992 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
995 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
997 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
998 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
999 * endianness, but the memory core hands them in target endianness.
1000 * For example, PPC is always treated as big-endian even if running
1001 * on KVM and on PPC64LE. Correct here.
1003 switch (size) {
1004 case 2:
1005 val = bswap16(val);
1006 break;
1007 case 4:
1008 val = bswap32(val);
1009 break;
1011 #endif
1012 return val;
1015 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1016 bool assign, uint32_t size, bool datamatch)
1018 int ret;
1019 struct kvm_ioeventfd iofd = {
1020 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1021 .addr = addr,
1022 .len = size,
1023 .flags = 0,
1024 .fd = fd,
1027 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1028 datamatch);
1029 if (!kvm_enabled()) {
1030 return -ENOSYS;
1033 if (datamatch) {
1034 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1036 if (!assign) {
1037 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1040 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1042 if (ret < 0) {
1043 return -errno;
1046 return 0;
1049 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1050 bool assign, uint32_t size, bool datamatch)
1052 struct kvm_ioeventfd kick = {
1053 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1054 .addr = addr,
1055 .flags = KVM_IOEVENTFD_FLAG_PIO,
1056 .len = size,
1057 .fd = fd,
1059 int r;
1060 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1061 if (!kvm_enabled()) {
1062 return -ENOSYS;
1064 if (datamatch) {
1065 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1067 if (!assign) {
1068 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1070 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1071 if (r < 0) {
1072 return r;
1074 return 0;
1078 static int kvm_check_many_ioeventfds(void)
1080 /* Userspace can use ioeventfd for io notification. This requires a host
1081 * that supports eventfd(2) and an I/O thread; since eventfd does not
1082 * support SIGIO it cannot interrupt the vcpu.
1084 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
1085 * can avoid creating too many ioeventfds.
1087 #if defined(CONFIG_EVENTFD)
1088 int ioeventfds[7];
1089 int i, ret = 0;
1090 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1091 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1092 if (ioeventfds[i] < 0) {
1093 break;
1095 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1096 if (ret < 0) {
1097 close(ioeventfds[i]);
1098 break;
1102 /* Decide whether many devices are supported or not */
1103 ret = i == ARRAY_SIZE(ioeventfds);
1105 while (i-- > 0) {
1106 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1107 close(ioeventfds[i]);
1109 return ret;
1110 #else
1111 return 0;
1112 #endif
1115 static const KVMCapabilityInfo *
1116 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1118 while (list->name) {
1119 if (!kvm_check_extension(s, list->value)) {
1120 return list;
1122 list++;
1124 return NULL;
1127 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1129 g_assert(
1130 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
1132 kvm_max_slot_size = max_slot_size;
1135 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1136 MemoryRegionSection *section, bool add)
1138 KVMSlot *mem;
1139 int err;
1140 MemoryRegion *mr = section->mr;
1141 bool writeable = !mr->readonly && !mr->rom_device;
1142 hwaddr start_addr, size, slot_size;
1143 void *ram;
1145 if (!memory_region_is_ram(mr)) {
1146 if (writeable || !kvm_readonly_mem_allowed) {
1147 return;
1148 } else if (!mr->romd_mode) {
1149 /* If the memory device is not in romd_mode, then we actually want
1150 * to remove the kvm memory slot so all accesses will trap. */
1151 add = false;
1155 size = kvm_align_section(section, &start_addr);
1156 if (!size) {
1157 return;
1160 /* use aligned delta to align the ram address */
1161 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
1162 (start_addr - section->offset_within_address_space);
1164 kvm_slots_lock(kml);
1166 if (!add) {
1167 do {
1168 slot_size = MIN(kvm_max_slot_size, size);
1169 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1170 if (!mem) {
1171 goto out;
1173 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1174 kvm_physical_sync_dirty_bitmap(kml, section);
1177 /* unregister the slot */
1178 g_free(mem->dirty_bmap);
1179 mem->dirty_bmap = NULL;
1180 mem->memory_size = 0;
1181 mem->flags = 0;
1182 err = kvm_set_user_memory_region(kml, mem, false);
1183 if (err) {
1184 fprintf(stderr, "%s: error unregistering slot: %s\n",
1185 __func__, strerror(-err));
1186 abort();
1188 start_addr += slot_size;
1189 size -= slot_size;
1190 } while (size);
1191 goto out;
1194 /* register the new slot */
1195 do {
1196 slot_size = MIN(kvm_max_slot_size, size);
1197 mem = kvm_alloc_slot(kml);
1198 mem->memory_size = slot_size;
1199 mem->start_addr = start_addr;
1200 mem->ram = ram;
1201 mem->flags = kvm_mem_flags(mr);
1203 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1205 * Reallocate the bmap; it means it doesn't disappear in
1206 * middle of a migrate.
1208 kvm_memslot_init_dirty_bitmap(mem);
1210 err = kvm_set_user_memory_region(kml, mem, true);
1211 if (err) {
1212 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1213 strerror(-err));
1214 abort();
1216 start_addr += slot_size;
1217 ram += slot_size;
1218 size -= slot_size;
1219 } while (size);
1221 out:
1222 kvm_slots_unlock(kml);
1225 static void kvm_region_add(MemoryListener *listener,
1226 MemoryRegionSection *section)
1228 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1230 memory_region_ref(section->mr);
1231 kvm_set_phys_mem(kml, section, true);
1234 static void kvm_region_del(MemoryListener *listener,
1235 MemoryRegionSection *section)
1237 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1239 kvm_set_phys_mem(kml, section, false);
1240 memory_region_unref(section->mr);
1243 static void kvm_log_sync(MemoryListener *listener,
1244 MemoryRegionSection *section)
1246 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1247 int r;
1249 kvm_slots_lock(kml);
1250 r = kvm_physical_sync_dirty_bitmap(kml, section);
1251 kvm_slots_unlock(kml);
1252 if (r < 0) {
1253 abort();
1257 static void kvm_log_clear(MemoryListener *listener,
1258 MemoryRegionSection *section)
1260 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1261 int r;
1263 r = kvm_physical_log_clear(kml, section);
1264 if (r < 0) {
1265 error_report_once("%s: kvm log clear failed: mr=%s "
1266 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1267 section->mr->name, section->offset_within_region,
1268 int128_get64(section->size));
1269 abort();
1273 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1274 MemoryRegionSection *section,
1275 bool match_data, uint64_t data,
1276 EventNotifier *e)
1278 int fd = event_notifier_get_fd(e);
1279 int r;
1281 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1282 data, true, int128_get64(section->size),
1283 match_data);
1284 if (r < 0) {
1285 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1286 __func__, strerror(-r), -r);
1287 abort();
1291 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1292 MemoryRegionSection *section,
1293 bool match_data, uint64_t data,
1294 EventNotifier *e)
1296 int fd = event_notifier_get_fd(e);
1297 int r;
1299 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1300 data, false, int128_get64(section->size),
1301 match_data);
1302 if (r < 0) {
1303 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1304 __func__, strerror(-r), -r);
1305 abort();
1309 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1310 MemoryRegionSection *section,
1311 bool match_data, uint64_t data,
1312 EventNotifier *e)
1314 int fd = event_notifier_get_fd(e);
1315 int r;
1317 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1318 data, true, int128_get64(section->size),
1319 match_data);
1320 if (r < 0) {
1321 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1322 __func__, strerror(-r), -r);
1323 abort();
1327 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1328 MemoryRegionSection *section,
1329 bool match_data, uint64_t data,
1330 EventNotifier *e)
1333 int fd = event_notifier_get_fd(e);
1334 int r;
1336 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1337 data, false, int128_get64(section->size),
1338 match_data);
1339 if (r < 0) {
1340 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1341 __func__, strerror(-r), -r);
1342 abort();
1346 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1347 AddressSpace *as, int as_id)
1349 int i;
1351 qemu_mutex_init(&kml->slots_lock);
1352 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1353 kml->as_id = as_id;
1355 for (i = 0; i < s->nr_slots; i++) {
1356 kml->slots[i].slot = i;
1359 kml->listener.region_add = kvm_region_add;
1360 kml->listener.region_del = kvm_region_del;
1361 kml->listener.log_start = kvm_log_start;
1362 kml->listener.log_stop = kvm_log_stop;
1363 kml->listener.log_sync = kvm_log_sync;
1364 kml->listener.log_clear = kvm_log_clear;
1365 kml->listener.priority = 10;
1367 memory_listener_register(&kml->listener, as);
1369 for (i = 0; i < s->nr_as; ++i) {
1370 if (!s->as[i].as) {
1371 s->as[i].as = as;
1372 s->as[i].ml = kml;
1373 break;
1378 static MemoryListener kvm_io_listener = {
1379 .eventfd_add = kvm_io_ioeventfd_add,
1380 .eventfd_del = kvm_io_ioeventfd_del,
1381 .priority = 10,
1384 int kvm_set_irq(KVMState *s, int irq, int level)
1386 struct kvm_irq_level event;
1387 int ret;
1389 assert(kvm_async_interrupts_enabled());
1391 event.level = level;
1392 event.irq = irq;
1393 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1394 if (ret < 0) {
1395 perror("kvm_set_irq");
1396 abort();
1399 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1402 #ifdef KVM_CAP_IRQ_ROUTING
1403 typedef struct KVMMSIRoute {
1404 struct kvm_irq_routing_entry kroute;
1405 QTAILQ_ENTRY(KVMMSIRoute) entry;
1406 } KVMMSIRoute;
1408 static void set_gsi(KVMState *s, unsigned int gsi)
1410 set_bit(gsi, s->used_gsi_bitmap);
1413 static void clear_gsi(KVMState *s, unsigned int gsi)
1415 clear_bit(gsi, s->used_gsi_bitmap);
1418 void kvm_init_irq_routing(KVMState *s)
1420 int gsi_count, i;
1422 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1423 if (gsi_count > 0) {
1424 /* Round up so we can search ints using ffs */
1425 s->used_gsi_bitmap = bitmap_new(gsi_count);
1426 s->gsi_count = gsi_count;
1429 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1430 s->nr_allocated_irq_routes = 0;
1432 if (!kvm_direct_msi_allowed) {
1433 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1434 QTAILQ_INIT(&s->msi_hashtab[i]);
1438 kvm_arch_init_irq_routing(s);
1441 void kvm_irqchip_commit_routes(KVMState *s)
1443 int ret;
1445 if (kvm_gsi_direct_mapping()) {
1446 return;
1449 if (!kvm_gsi_routing_enabled()) {
1450 return;
1453 s->irq_routes->flags = 0;
1454 trace_kvm_irqchip_commit_routes();
1455 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1456 assert(ret == 0);
1459 static void kvm_add_routing_entry(KVMState *s,
1460 struct kvm_irq_routing_entry *entry)
1462 struct kvm_irq_routing_entry *new;
1463 int n, size;
1465 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1466 n = s->nr_allocated_irq_routes * 2;
1467 if (n < 64) {
1468 n = 64;
1470 size = sizeof(struct kvm_irq_routing);
1471 size += n * sizeof(*new);
1472 s->irq_routes = g_realloc(s->irq_routes, size);
1473 s->nr_allocated_irq_routes = n;
1475 n = s->irq_routes->nr++;
1476 new = &s->irq_routes->entries[n];
1478 *new = *entry;
1480 set_gsi(s, entry->gsi);
1483 static int kvm_update_routing_entry(KVMState *s,
1484 struct kvm_irq_routing_entry *new_entry)
1486 struct kvm_irq_routing_entry *entry;
1487 int n;
1489 for (n = 0; n < s->irq_routes->nr; n++) {
1490 entry = &s->irq_routes->entries[n];
1491 if (entry->gsi != new_entry->gsi) {
1492 continue;
1495 if(!memcmp(entry, new_entry, sizeof *entry)) {
1496 return 0;
1499 *entry = *new_entry;
1501 return 0;
1504 return -ESRCH;
1507 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1509 struct kvm_irq_routing_entry e = {};
1511 assert(pin < s->gsi_count);
1513 e.gsi = irq;
1514 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1515 e.flags = 0;
1516 e.u.irqchip.irqchip = irqchip;
1517 e.u.irqchip.pin = pin;
1518 kvm_add_routing_entry(s, &e);
1521 void kvm_irqchip_release_virq(KVMState *s, int virq)
1523 struct kvm_irq_routing_entry *e;
1524 int i;
1526 if (kvm_gsi_direct_mapping()) {
1527 return;
1530 for (i = 0; i < s->irq_routes->nr; i++) {
1531 e = &s->irq_routes->entries[i];
1532 if (e->gsi == virq) {
1533 s->irq_routes->nr--;
1534 *e = s->irq_routes->entries[s->irq_routes->nr];
1537 clear_gsi(s, virq);
1538 kvm_arch_release_virq_post(virq);
1539 trace_kvm_irqchip_release_virq(virq);
1542 void kvm_irqchip_add_change_notifier(Notifier *n)
1544 notifier_list_add(&kvm_irqchip_change_notifiers, n);
1547 void kvm_irqchip_remove_change_notifier(Notifier *n)
1549 notifier_remove(n);
1552 void kvm_irqchip_change_notify(void)
1554 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1557 static unsigned int kvm_hash_msi(uint32_t data)
1559 /* This is optimized for IA32 MSI layout. However, no other arch shall
1560 * repeat the mistake of not providing a direct MSI injection API. */
1561 return data & 0xff;
1564 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1566 KVMMSIRoute *route, *next;
1567 unsigned int hash;
1569 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1570 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1571 kvm_irqchip_release_virq(s, route->kroute.gsi);
1572 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1573 g_free(route);
1578 static int kvm_irqchip_get_virq(KVMState *s)
1580 int next_virq;
1583 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1584 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1585 * number can succeed even though a new route entry cannot be added.
1586 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1588 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1589 kvm_flush_dynamic_msi_routes(s);
1592 /* Return the lowest unused GSI in the bitmap */
1593 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1594 if (next_virq >= s->gsi_count) {
1595 return -ENOSPC;
1596 } else {
1597 return next_virq;
1601 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1603 unsigned int hash = kvm_hash_msi(msg.data);
1604 KVMMSIRoute *route;
1606 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1607 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1608 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1609 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1610 return route;
1613 return NULL;
1616 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1618 struct kvm_msi msi;
1619 KVMMSIRoute *route;
1621 if (kvm_direct_msi_allowed) {
1622 msi.address_lo = (uint32_t)msg.address;
1623 msi.address_hi = msg.address >> 32;
1624 msi.data = le32_to_cpu(msg.data);
1625 msi.flags = 0;
1626 memset(msi.pad, 0, sizeof(msi.pad));
1628 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1631 route = kvm_lookup_msi_route(s, msg);
1632 if (!route) {
1633 int virq;
1635 virq = kvm_irqchip_get_virq(s);
1636 if (virq < 0) {
1637 return virq;
1640 route = g_malloc0(sizeof(KVMMSIRoute));
1641 route->kroute.gsi = virq;
1642 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1643 route->kroute.flags = 0;
1644 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1645 route->kroute.u.msi.address_hi = msg.address >> 32;
1646 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1648 kvm_add_routing_entry(s, &route->kroute);
1649 kvm_irqchip_commit_routes(s);
1651 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1652 entry);
1655 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1657 return kvm_set_irq(s, route->kroute.gsi, 1);
1660 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1662 struct kvm_irq_routing_entry kroute = {};
1663 int virq;
1664 MSIMessage msg = {0, 0};
1666 if (pci_available && dev) {
1667 msg = pci_get_msi_message(dev, vector);
1670 if (kvm_gsi_direct_mapping()) {
1671 return kvm_arch_msi_data_to_gsi(msg.data);
1674 if (!kvm_gsi_routing_enabled()) {
1675 return -ENOSYS;
1678 virq = kvm_irqchip_get_virq(s);
1679 if (virq < 0) {
1680 return virq;
1683 kroute.gsi = virq;
1684 kroute.type = KVM_IRQ_ROUTING_MSI;
1685 kroute.flags = 0;
1686 kroute.u.msi.address_lo = (uint32_t)msg.address;
1687 kroute.u.msi.address_hi = msg.address >> 32;
1688 kroute.u.msi.data = le32_to_cpu(msg.data);
1689 if (pci_available && kvm_msi_devid_required()) {
1690 kroute.flags = KVM_MSI_VALID_DEVID;
1691 kroute.u.msi.devid = pci_requester_id(dev);
1693 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1694 kvm_irqchip_release_virq(s, virq);
1695 return -EINVAL;
1698 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1699 vector, virq);
1701 kvm_add_routing_entry(s, &kroute);
1702 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1703 kvm_irqchip_commit_routes(s);
1705 return virq;
1708 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1709 PCIDevice *dev)
1711 struct kvm_irq_routing_entry kroute = {};
1713 if (kvm_gsi_direct_mapping()) {
1714 return 0;
1717 if (!kvm_irqchip_in_kernel()) {
1718 return -ENOSYS;
1721 kroute.gsi = virq;
1722 kroute.type = KVM_IRQ_ROUTING_MSI;
1723 kroute.flags = 0;
1724 kroute.u.msi.address_lo = (uint32_t)msg.address;
1725 kroute.u.msi.address_hi = msg.address >> 32;
1726 kroute.u.msi.data = le32_to_cpu(msg.data);
1727 if (pci_available && kvm_msi_devid_required()) {
1728 kroute.flags = KVM_MSI_VALID_DEVID;
1729 kroute.u.msi.devid = pci_requester_id(dev);
1731 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1732 return -EINVAL;
1735 trace_kvm_irqchip_update_msi_route(virq);
1737 return kvm_update_routing_entry(s, &kroute);
1740 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1741 EventNotifier *resample, int virq,
1742 bool assign)
1744 int fd = event_notifier_get_fd(event);
1745 int rfd = resample ? event_notifier_get_fd(resample) : -1;
1747 struct kvm_irqfd irqfd = {
1748 .fd = fd,
1749 .gsi = virq,
1750 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1753 if (rfd != -1) {
1754 assert(assign);
1755 if (kvm_irqchip_is_split()) {
1757 * When the slow irqchip (e.g. IOAPIC) is in the
1758 * userspace, KVM kernel resamplefd will not work because
1759 * the EOI of the interrupt will be delivered to userspace
1760 * instead, so the KVM kernel resamplefd kick will be
1761 * skipped. The userspace here mimics what the kernel
1762 * provides with resamplefd, remember the resamplefd and
1763 * kick it when we receive EOI of this IRQ.
1765 * This is hackery because IOAPIC is mostly bypassed
1766 * (except EOI broadcasts) when irqfd is used. However
1767 * this can bring much performance back for split irqchip
1768 * with INTx IRQs (for VFIO, this gives 93% perf of the
1769 * full fast path, which is 46% perf boost comparing to
1770 * the INTx slow path).
1772 kvm_resample_fd_insert(virq, resample);
1773 } else {
1774 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1775 irqfd.resamplefd = rfd;
1777 } else if (!assign) {
1778 if (kvm_irqchip_is_split()) {
1779 kvm_resample_fd_remove(virq);
1783 if (!kvm_irqfds_enabled()) {
1784 return -ENOSYS;
1787 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1790 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1792 struct kvm_irq_routing_entry kroute = {};
1793 int virq;
1795 if (!kvm_gsi_routing_enabled()) {
1796 return -ENOSYS;
1799 virq = kvm_irqchip_get_virq(s);
1800 if (virq < 0) {
1801 return virq;
1804 kroute.gsi = virq;
1805 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1806 kroute.flags = 0;
1807 kroute.u.adapter.summary_addr = adapter->summary_addr;
1808 kroute.u.adapter.ind_addr = adapter->ind_addr;
1809 kroute.u.adapter.summary_offset = adapter->summary_offset;
1810 kroute.u.adapter.ind_offset = adapter->ind_offset;
1811 kroute.u.adapter.adapter_id = adapter->adapter_id;
1813 kvm_add_routing_entry(s, &kroute);
1815 return virq;
1818 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1820 struct kvm_irq_routing_entry kroute = {};
1821 int virq;
1823 if (!kvm_gsi_routing_enabled()) {
1824 return -ENOSYS;
1826 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1827 return -ENOSYS;
1829 virq = kvm_irqchip_get_virq(s);
1830 if (virq < 0) {
1831 return virq;
1834 kroute.gsi = virq;
1835 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1836 kroute.flags = 0;
1837 kroute.u.hv_sint.vcpu = vcpu;
1838 kroute.u.hv_sint.sint = sint;
1840 kvm_add_routing_entry(s, &kroute);
1841 kvm_irqchip_commit_routes(s);
1843 return virq;
1846 #else /* !KVM_CAP_IRQ_ROUTING */
1848 void kvm_init_irq_routing(KVMState *s)
1852 void kvm_irqchip_release_virq(KVMState *s, int virq)
1856 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1858 abort();
1861 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1863 return -ENOSYS;
1866 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1868 return -ENOSYS;
1871 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1873 return -ENOSYS;
1876 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1877 EventNotifier *resample, int virq,
1878 bool assign)
1880 abort();
1883 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1885 return -ENOSYS;
1887 #endif /* !KVM_CAP_IRQ_ROUTING */
1889 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1890 EventNotifier *rn, int virq)
1892 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
1895 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1896 int virq)
1898 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
1901 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1902 EventNotifier *rn, qemu_irq irq)
1904 gpointer key, gsi;
1905 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1907 if (!found) {
1908 return -ENXIO;
1910 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1913 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1914 qemu_irq irq)
1916 gpointer key, gsi;
1917 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1919 if (!found) {
1920 return -ENXIO;
1922 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1925 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1927 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1930 static void kvm_irqchip_create(KVMState *s)
1932 int ret;
1934 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
1935 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1937 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1938 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1939 if (ret < 0) {
1940 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1941 exit(1);
1943 } else {
1944 return;
1947 /* First probe and see if there's a arch-specific hook to create the
1948 * in-kernel irqchip for us */
1949 ret = kvm_arch_irqchip_create(s);
1950 if (ret == 0) {
1951 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
1952 perror("Split IRQ chip mode not supported.");
1953 exit(1);
1954 } else {
1955 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1958 if (ret < 0) {
1959 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1960 exit(1);
1963 kvm_kernel_irqchip = true;
1964 /* If we have an in-kernel IRQ chip then we must have asynchronous
1965 * interrupt delivery (though the reverse is not necessarily true)
1967 kvm_async_interrupts_allowed = true;
1968 kvm_halt_in_kernel_allowed = true;
1970 kvm_init_irq_routing(s);
1972 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1975 /* Find number of supported CPUs using the recommended
1976 * procedure from the kernel API documentation to cope with
1977 * older kernels that may be missing capabilities.
1979 static int kvm_recommended_vcpus(KVMState *s)
1981 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1982 return (ret) ? ret : 4;
1985 static int kvm_max_vcpus(KVMState *s)
1987 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1988 return (ret) ? ret : kvm_recommended_vcpus(s);
1991 static int kvm_max_vcpu_id(KVMState *s)
1993 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1994 return (ret) ? ret : kvm_max_vcpus(s);
1997 bool kvm_vcpu_id_is_valid(int vcpu_id)
1999 KVMState *s = KVM_STATE(current_accel());
2000 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2003 static int kvm_init(MachineState *ms)
2005 MachineClass *mc = MACHINE_GET_CLASS(ms);
2006 static const char upgrade_note[] =
2007 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2008 "(see http://sourceforge.net/projects/kvm).\n";
2009 struct {
2010 const char *name;
2011 int num;
2012 } num_cpus[] = {
2013 { "SMP", ms->smp.cpus },
2014 { "hotpluggable", ms->smp.max_cpus },
2015 { NULL, }
2016 }, *nc = num_cpus;
2017 int soft_vcpus_limit, hard_vcpus_limit;
2018 KVMState *s;
2019 const KVMCapabilityInfo *missing_cap;
2020 int ret;
2021 int type = 0;
2022 uint64_t dirty_log_manual_caps;
2024 s = KVM_STATE(ms->accelerator);
2027 * On systems where the kernel can support different base page
2028 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2029 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2030 * page size for the system though.
2032 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
2034 s->sigmask_len = 8;
2036 #ifdef KVM_CAP_SET_GUEST_DEBUG
2037 QTAILQ_INIT(&s->kvm_sw_breakpoints);
2038 #endif
2039 QLIST_INIT(&s->kvm_parked_vcpus);
2040 s->vmfd = -1;
2041 s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2042 if (s->fd == -1) {
2043 fprintf(stderr, "Could not access KVM kernel module: %m\n");
2044 ret = -errno;
2045 goto err;
2048 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2049 if (ret < KVM_API_VERSION) {
2050 if (ret >= 0) {
2051 ret = -EINVAL;
2053 fprintf(stderr, "kvm version too old\n");
2054 goto err;
2057 if (ret > KVM_API_VERSION) {
2058 ret = -EINVAL;
2059 fprintf(stderr, "kvm version not supported\n");
2060 goto err;
2063 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2064 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2066 /* If unspecified, use the default value */
2067 if (!s->nr_slots) {
2068 s->nr_slots = 32;
2071 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2072 if (s->nr_as <= 1) {
2073 s->nr_as = 1;
2075 s->as = g_new0(struct KVMAs, s->nr_as);
2077 if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2078 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2079 "kvm-type",
2080 &error_abort);
2081 type = mc->kvm_type(ms, kvm_type);
2084 do {
2085 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2086 } while (ret == -EINTR);
2088 if (ret < 0) {
2089 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2090 strerror(-ret));
2092 #ifdef TARGET_S390X
2093 if (ret == -EINVAL) {
2094 fprintf(stderr,
2095 "Host kernel setup problem detected. Please verify:\n");
2096 fprintf(stderr, "- for kernels supporting the switch_amode or"
2097 " user_mode parameters, whether\n");
2098 fprintf(stderr,
2099 " user space is running in primary address space\n");
2100 fprintf(stderr,
2101 "- for kernels supporting the vm.allocate_pgste sysctl, "
2102 "whether it is enabled\n");
2104 #endif
2105 goto err;
2108 s->vmfd = ret;
2110 /* check the vcpu limits */
2111 soft_vcpus_limit = kvm_recommended_vcpus(s);
2112 hard_vcpus_limit = kvm_max_vcpus(s);
2114 while (nc->name) {
2115 if (nc->num > soft_vcpus_limit) {
2116 warn_report("Number of %s cpus requested (%d) exceeds "
2117 "the recommended cpus supported by KVM (%d)",
2118 nc->name, nc->num, soft_vcpus_limit);
2120 if (nc->num > hard_vcpus_limit) {
2121 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2122 "the maximum cpus supported by KVM (%d)\n",
2123 nc->name, nc->num, hard_vcpus_limit);
2124 exit(1);
2127 nc++;
2130 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2131 if (!missing_cap) {
2132 missing_cap =
2133 kvm_check_extension_list(s, kvm_arch_required_capabilities);
2135 if (missing_cap) {
2136 ret = -EINVAL;
2137 fprintf(stderr, "kvm does not support %s\n%s",
2138 missing_cap->name, upgrade_note);
2139 goto err;
2142 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2143 s->coalesced_pio = s->coalesced_mmio &&
2144 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2146 dirty_log_manual_caps =
2147 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2148 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2149 KVM_DIRTY_LOG_INITIALLY_SET);
2150 s->manual_dirty_log_protect = dirty_log_manual_caps;
2151 if (dirty_log_manual_caps) {
2152 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2153 dirty_log_manual_caps);
2154 if (ret) {
2155 warn_report("Trying to enable capability %"PRIu64" of "
2156 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2157 "Falling back to the legacy mode. ",
2158 dirty_log_manual_caps);
2159 s->manual_dirty_log_protect = 0;
2163 #ifdef KVM_CAP_VCPU_EVENTS
2164 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2165 #endif
2167 s->robust_singlestep =
2168 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2170 #ifdef KVM_CAP_DEBUGREGS
2171 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2172 #endif
2174 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2176 #ifdef KVM_CAP_IRQ_ROUTING
2177 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2178 #endif
2180 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2182 s->irq_set_ioctl = KVM_IRQ_LINE;
2183 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2184 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2187 kvm_readonly_mem_allowed =
2188 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2190 kvm_eventfds_allowed =
2191 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2193 kvm_irqfds_allowed =
2194 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2196 kvm_resamplefds_allowed =
2197 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2199 kvm_vm_attributes_allowed =
2200 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2202 kvm_ioeventfd_any_length_allowed =
2203 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2205 kvm_state = s;
2208 * if memory encryption object is specified then initialize the memory
2209 * encryption context.
2211 if (ms->memory_encryption) {
2212 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption);
2213 if (!kvm_state->memcrypt_handle) {
2214 ret = -1;
2215 goto err;
2218 kvm_state->memcrypt_encrypt_data = sev_encrypt_data;
2221 ret = kvm_arch_init(ms, s);
2222 if (ret < 0) {
2223 goto err;
2226 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2227 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2230 qemu_register_reset(kvm_unpoison_all, NULL);
2232 if (s->kernel_irqchip_allowed) {
2233 kvm_irqchip_create(s);
2236 if (kvm_eventfds_allowed) {
2237 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2238 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2240 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2241 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2243 kvm_memory_listener_register(s, &s->memory_listener,
2244 &address_space_memory, 0);
2245 if (kvm_eventfds_allowed) {
2246 memory_listener_register(&kvm_io_listener,
2247 &address_space_io);
2249 memory_listener_register(&kvm_coalesced_pio_listener,
2250 &address_space_io);
2252 s->many_ioeventfds = kvm_check_many_ioeventfds();
2254 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2255 if (!s->sync_mmu) {
2256 ret = ram_block_discard_disable(true);
2257 assert(!ret);
2260 cpus_register_accel(&kvm_cpus);
2261 return 0;
2263 err:
2264 assert(ret < 0);
2265 if (s->vmfd >= 0) {
2266 close(s->vmfd);
2268 if (s->fd != -1) {
2269 close(s->fd);
2271 g_free(s->memory_listener.slots);
2273 return ret;
2276 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2278 s->sigmask_len = sigmask_len;
2281 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2282 int size, uint32_t count)
2284 int i;
2285 uint8_t *ptr = data;
2287 for (i = 0; i < count; i++) {
2288 address_space_rw(&address_space_io, port, attrs,
2289 ptr, size,
2290 direction == KVM_EXIT_IO_OUT);
2291 ptr += size;
2295 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2297 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2298 run->internal.suberror);
2300 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2301 int i;
2303 for (i = 0; i < run->internal.ndata; ++i) {
2304 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
2305 i, (uint64_t)run->internal.data[i]);
2308 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2309 fprintf(stderr, "emulation failure\n");
2310 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2311 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2312 return EXCP_INTERRUPT;
2315 /* FIXME: Should trigger a qmp message to let management know
2316 * something went wrong.
2318 return -1;
2321 void kvm_flush_coalesced_mmio_buffer(void)
2323 KVMState *s = kvm_state;
2325 if (s->coalesced_flush_in_progress) {
2326 return;
2329 s->coalesced_flush_in_progress = true;
2331 if (s->coalesced_mmio_ring) {
2332 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2333 while (ring->first != ring->last) {
2334 struct kvm_coalesced_mmio *ent;
2336 ent = &ring->coalesced_mmio[ring->first];
2338 if (ent->pio == 1) {
2339 address_space_write(&address_space_io, ent->phys_addr,
2340 MEMTXATTRS_UNSPECIFIED, ent->data,
2341 ent->len);
2342 } else {
2343 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2345 smp_wmb();
2346 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2350 s->coalesced_flush_in_progress = false;
2353 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2355 if (!cpu->vcpu_dirty) {
2356 kvm_arch_get_registers(cpu);
2357 cpu->vcpu_dirty = true;
2361 void kvm_cpu_synchronize_state(CPUState *cpu)
2363 if (!cpu->vcpu_dirty) {
2364 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2368 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2370 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2371 cpu->vcpu_dirty = false;
2374 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2376 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2379 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2381 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2382 cpu->vcpu_dirty = false;
2385 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2387 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2390 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2392 cpu->vcpu_dirty = true;
2395 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2397 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2400 #ifdef KVM_HAVE_MCE_INJECTION
2401 static __thread void *pending_sigbus_addr;
2402 static __thread int pending_sigbus_code;
2403 static __thread bool have_sigbus_pending;
2404 #endif
2406 static void kvm_cpu_kick(CPUState *cpu)
2408 qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2411 static void kvm_cpu_kick_self(void)
2413 if (kvm_immediate_exit) {
2414 kvm_cpu_kick(current_cpu);
2415 } else {
2416 qemu_cpu_kick_self();
2420 static void kvm_eat_signals(CPUState *cpu)
2422 struct timespec ts = { 0, 0 };
2423 siginfo_t siginfo;
2424 sigset_t waitset;
2425 sigset_t chkset;
2426 int r;
2428 if (kvm_immediate_exit) {
2429 qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2430 /* Write kvm_run->immediate_exit before the cpu->exit_request
2431 * write in kvm_cpu_exec.
2433 smp_wmb();
2434 return;
2437 sigemptyset(&waitset);
2438 sigaddset(&waitset, SIG_IPI);
2440 do {
2441 r = sigtimedwait(&waitset, &siginfo, &ts);
2442 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2443 perror("sigtimedwait");
2444 exit(1);
2447 r = sigpending(&chkset);
2448 if (r == -1) {
2449 perror("sigpending");
2450 exit(1);
2452 } while (sigismember(&chkset, SIG_IPI));
2455 int kvm_cpu_exec(CPUState *cpu)
2457 struct kvm_run *run = cpu->kvm_run;
2458 int ret, run_ret;
2460 DPRINTF("kvm_cpu_exec()\n");
2462 if (kvm_arch_process_async_events(cpu)) {
2463 qatomic_set(&cpu->exit_request, 0);
2464 return EXCP_HLT;
2467 qemu_mutex_unlock_iothread();
2468 cpu_exec_start(cpu);
2470 do {
2471 MemTxAttrs attrs;
2473 if (cpu->vcpu_dirty) {
2474 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2475 cpu->vcpu_dirty = false;
2478 kvm_arch_pre_run(cpu, run);
2479 if (qatomic_read(&cpu->exit_request)) {
2480 DPRINTF("interrupt exit requested\n");
2482 * KVM requires us to reenter the kernel after IO exits to complete
2483 * instruction emulation. This self-signal will ensure that we
2484 * leave ASAP again.
2486 kvm_cpu_kick_self();
2489 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2490 * Matching barrier in kvm_eat_signals.
2492 smp_rmb();
2494 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2496 attrs = kvm_arch_post_run(cpu, run);
2498 #ifdef KVM_HAVE_MCE_INJECTION
2499 if (unlikely(have_sigbus_pending)) {
2500 qemu_mutex_lock_iothread();
2501 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2502 pending_sigbus_addr);
2503 have_sigbus_pending = false;
2504 qemu_mutex_unlock_iothread();
2506 #endif
2508 if (run_ret < 0) {
2509 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2510 DPRINTF("io window exit\n");
2511 kvm_eat_signals(cpu);
2512 ret = EXCP_INTERRUPT;
2513 break;
2515 fprintf(stderr, "error: kvm run failed %s\n",
2516 strerror(-run_ret));
2517 #ifdef TARGET_PPC
2518 if (run_ret == -EBUSY) {
2519 fprintf(stderr,
2520 "This is probably because your SMT is enabled.\n"
2521 "VCPU can only run on primary threads with all "
2522 "secondary threads offline.\n");
2524 #endif
2525 ret = -1;
2526 break;
2529 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2530 switch (run->exit_reason) {
2531 case KVM_EXIT_IO:
2532 DPRINTF("handle_io\n");
2533 /* Called outside BQL */
2534 kvm_handle_io(run->io.port, attrs,
2535 (uint8_t *)run + run->io.data_offset,
2536 run->io.direction,
2537 run->io.size,
2538 run->io.count);
2539 ret = 0;
2540 break;
2541 case KVM_EXIT_MMIO:
2542 DPRINTF("handle_mmio\n");
2543 /* Called outside BQL */
2544 address_space_rw(&address_space_memory,
2545 run->mmio.phys_addr, attrs,
2546 run->mmio.data,
2547 run->mmio.len,
2548 run->mmio.is_write);
2549 ret = 0;
2550 break;
2551 case KVM_EXIT_IRQ_WINDOW_OPEN:
2552 DPRINTF("irq_window_open\n");
2553 ret = EXCP_INTERRUPT;
2554 break;
2555 case KVM_EXIT_SHUTDOWN:
2556 DPRINTF("shutdown\n");
2557 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2558 ret = EXCP_INTERRUPT;
2559 break;
2560 case KVM_EXIT_UNKNOWN:
2561 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2562 (uint64_t)run->hw.hardware_exit_reason);
2563 ret = -1;
2564 break;
2565 case KVM_EXIT_INTERNAL_ERROR:
2566 ret = kvm_handle_internal_error(cpu, run);
2567 break;
2568 case KVM_EXIT_SYSTEM_EVENT:
2569 switch (run->system_event.type) {
2570 case KVM_SYSTEM_EVENT_SHUTDOWN:
2571 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2572 ret = EXCP_INTERRUPT;
2573 break;
2574 case KVM_SYSTEM_EVENT_RESET:
2575 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2576 ret = EXCP_INTERRUPT;
2577 break;
2578 case KVM_SYSTEM_EVENT_CRASH:
2579 kvm_cpu_synchronize_state(cpu);
2580 qemu_mutex_lock_iothread();
2581 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2582 qemu_mutex_unlock_iothread();
2583 ret = 0;
2584 break;
2585 default:
2586 DPRINTF("kvm_arch_handle_exit\n");
2587 ret = kvm_arch_handle_exit(cpu, run);
2588 break;
2590 break;
2591 default:
2592 DPRINTF("kvm_arch_handle_exit\n");
2593 ret = kvm_arch_handle_exit(cpu, run);
2594 break;
2596 } while (ret == 0);
2598 cpu_exec_end(cpu);
2599 qemu_mutex_lock_iothread();
2601 if (ret < 0) {
2602 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2603 vm_stop(RUN_STATE_INTERNAL_ERROR);
2606 qatomic_set(&cpu->exit_request, 0);
2607 return ret;
2610 int kvm_ioctl(KVMState *s, int type, ...)
2612 int ret;
2613 void *arg;
2614 va_list ap;
2616 va_start(ap, type);
2617 arg = va_arg(ap, void *);
2618 va_end(ap);
2620 trace_kvm_ioctl(type, arg);
2621 ret = ioctl(s->fd, type, arg);
2622 if (ret == -1) {
2623 ret = -errno;
2625 return ret;
2628 int kvm_vm_ioctl(KVMState *s, int type, ...)
2630 int ret;
2631 void *arg;
2632 va_list ap;
2634 va_start(ap, type);
2635 arg = va_arg(ap, void *);
2636 va_end(ap);
2638 trace_kvm_vm_ioctl(type, arg);
2639 ret = ioctl(s->vmfd, type, arg);
2640 if (ret == -1) {
2641 ret = -errno;
2643 return ret;
2646 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2648 int ret;
2649 void *arg;
2650 va_list ap;
2652 va_start(ap, type);
2653 arg = va_arg(ap, void *);
2654 va_end(ap);
2656 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2657 ret = ioctl(cpu->kvm_fd, type, arg);
2658 if (ret == -1) {
2659 ret = -errno;
2661 return ret;
2664 int kvm_device_ioctl(int fd, int type, ...)
2666 int ret;
2667 void *arg;
2668 va_list ap;
2670 va_start(ap, type);
2671 arg = va_arg(ap, void *);
2672 va_end(ap);
2674 trace_kvm_device_ioctl(fd, type, arg);
2675 ret = ioctl(fd, type, arg);
2676 if (ret == -1) {
2677 ret = -errno;
2679 return ret;
2682 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2684 int ret;
2685 struct kvm_device_attr attribute = {
2686 .group = group,
2687 .attr = attr,
2690 if (!kvm_vm_attributes_allowed) {
2691 return 0;
2694 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2695 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2696 return ret ? 0 : 1;
2699 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2701 struct kvm_device_attr attribute = {
2702 .group = group,
2703 .attr = attr,
2704 .flags = 0,
2707 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2710 int kvm_device_access(int fd, int group, uint64_t attr,
2711 void *val, bool write, Error **errp)
2713 struct kvm_device_attr kvmattr;
2714 int err;
2716 kvmattr.flags = 0;
2717 kvmattr.group = group;
2718 kvmattr.attr = attr;
2719 kvmattr.addr = (uintptr_t)val;
2721 err = kvm_device_ioctl(fd,
2722 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2723 &kvmattr);
2724 if (err < 0) {
2725 error_setg_errno(errp, -err,
2726 "KVM_%s_DEVICE_ATTR failed: Group %d "
2727 "attr 0x%016" PRIx64,
2728 write ? "SET" : "GET", group, attr);
2730 return err;
2733 bool kvm_has_sync_mmu(void)
2735 return kvm_state->sync_mmu;
2738 int kvm_has_vcpu_events(void)
2740 return kvm_state->vcpu_events;
2743 int kvm_has_robust_singlestep(void)
2745 return kvm_state->robust_singlestep;
2748 int kvm_has_debugregs(void)
2750 return kvm_state->debugregs;
2753 int kvm_max_nested_state_length(void)
2755 return kvm_state->max_nested_state_len;
2758 int kvm_has_many_ioeventfds(void)
2760 if (!kvm_enabled()) {
2761 return 0;
2763 return kvm_state->many_ioeventfds;
2766 int kvm_has_gsi_routing(void)
2768 #ifdef KVM_CAP_IRQ_ROUTING
2769 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2770 #else
2771 return false;
2772 #endif
2775 int kvm_has_intx_set_mask(void)
2777 return kvm_state->intx_set_mask;
2780 bool kvm_arm_supports_user_irq(void)
2782 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2785 #ifdef KVM_CAP_SET_GUEST_DEBUG
2786 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2787 target_ulong pc)
2789 struct kvm_sw_breakpoint *bp;
2791 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2792 if (bp->pc == pc) {
2793 return bp;
2796 return NULL;
2799 int kvm_sw_breakpoints_active(CPUState *cpu)
2801 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2804 struct kvm_set_guest_debug_data {
2805 struct kvm_guest_debug dbg;
2806 int err;
2809 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2811 struct kvm_set_guest_debug_data *dbg_data =
2812 (struct kvm_set_guest_debug_data *) data.host_ptr;
2814 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2815 &dbg_data->dbg);
2818 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2820 struct kvm_set_guest_debug_data data;
2822 data.dbg.control = reinject_trap;
2824 if (cpu->singlestep_enabled) {
2825 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2827 kvm_arch_update_guest_debug(cpu, &data.dbg);
2829 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2830 RUN_ON_CPU_HOST_PTR(&data));
2831 return data.err;
2834 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2835 target_ulong len, int type)
2837 struct kvm_sw_breakpoint *bp;
2838 int err;
2840 if (type == GDB_BREAKPOINT_SW) {
2841 bp = kvm_find_sw_breakpoint(cpu, addr);
2842 if (bp) {
2843 bp->use_count++;
2844 return 0;
2847 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2848 bp->pc = addr;
2849 bp->use_count = 1;
2850 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2851 if (err) {
2852 g_free(bp);
2853 return err;
2856 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2857 } else {
2858 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2859 if (err) {
2860 return err;
2864 CPU_FOREACH(cpu) {
2865 err = kvm_update_guest_debug(cpu, 0);
2866 if (err) {
2867 return err;
2870 return 0;
2873 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2874 target_ulong len, int type)
2876 struct kvm_sw_breakpoint *bp;
2877 int err;
2879 if (type == GDB_BREAKPOINT_SW) {
2880 bp = kvm_find_sw_breakpoint(cpu, addr);
2881 if (!bp) {
2882 return -ENOENT;
2885 if (bp->use_count > 1) {
2886 bp->use_count--;
2887 return 0;
2890 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2891 if (err) {
2892 return err;
2895 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2896 g_free(bp);
2897 } else {
2898 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2899 if (err) {
2900 return err;
2904 CPU_FOREACH(cpu) {
2905 err = kvm_update_guest_debug(cpu, 0);
2906 if (err) {
2907 return err;
2910 return 0;
2913 void kvm_remove_all_breakpoints(CPUState *cpu)
2915 struct kvm_sw_breakpoint *bp, *next;
2916 KVMState *s = cpu->kvm_state;
2917 CPUState *tmpcpu;
2919 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2920 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2921 /* Try harder to find a CPU that currently sees the breakpoint. */
2922 CPU_FOREACH(tmpcpu) {
2923 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2924 break;
2928 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2929 g_free(bp);
2931 kvm_arch_remove_all_hw_breakpoints();
2933 CPU_FOREACH(cpu) {
2934 kvm_update_guest_debug(cpu, 0);
2938 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2940 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2942 return -EINVAL;
2945 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2946 target_ulong len, int type)
2948 return -EINVAL;
2951 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2952 target_ulong len, int type)
2954 return -EINVAL;
2957 void kvm_remove_all_breakpoints(CPUState *cpu)
2960 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2962 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2964 KVMState *s = kvm_state;
2965 struct kvm_signal_mask *sigmask;
2966 int r;
2968 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2970 sigmask->len = s->sigmask_len;
2971 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2972 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2973 g_free(sigmask);
2975 return r;
2978 static void kvm_ipi_signal(int sig)
2980 if (current_cpu) {
2981 assert(kvm_immediate_exit);
2982 kvm_cpu_kick(current_cpu);
2986 void kvm_init_cpu_signals(CPUState *cpu)
2988 int r;
2989 sigset_t set;
2990 struct sigaction sigact;
2992 memset(&sigact, 0, sizeof(sigact));
2993 sigact.sa_handler = kvm_ipi_signal;
2994 sigaction(SIG_IPI, &sigact, NULL);
2996 pthread_sigmask(SIG_BLOCK, NULL, &set);
2997 #if defined KVM_HAVE_MCE_INJECTION
2998 sigdelset(&set, SIGBUS);
2999 pthread_sigmask(SIG_SETMASK, &set, NULL);
3000 #endif
3001 sigdelset(&set, SIG_IPI);
3002 if (kvm_immediate_exit) {
3003 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3004 } else {
3005 r = kvm_set_signal_mask(cpu, &set);
3007 if (r) {
3008 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3009 exit(1);
3013 /* Called asynchronously in VCPU thread. */
3014 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3016 #ifdef KVM_HAVE_MCE_INJECTION
3017 if (have_sigbus_pending) {
3018 return 1;
3020 have_sigbus_pending = true;
3021 pending_sigbus_addr = addr;
3022 pending_sigbus_code = code;
3023 qatomic_set(&cpu->exit_request, 1);
3024 return 0;
3025 #else
3026 return 1;
3027 #endif
3030 /* Called synchronously (via signalfd) in main thread. */
3031 int kvm_on_sigbus(int code, void *addr)
3033 #ifdef KVM_HAVE_MCE_INJECTION
3034 /* Action required MCE kills the process if SIGBUS is blocked. Because
3035 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3036 * we can only get action optional here.
3038 assert(code != BUS_MCEERR_AR);
3039 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3040 return 0;
3041 #else
3042 return 1;
3043 #endif
3046 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3048 int ret;
3049 struct kvm_create_device create_dev;
3051 create_dev.type = type;
3052 create_dev.fd = -1;
3053 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3055 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3056 return -ENOTSUP;
3059 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3060 if (ret) {
3061 return ret;
3064 return test ? 0 : create_dev.fd;
3067 bool kvm_device_supported(int vmfd, uint64_t type)
3069 struct kvm_create_device create_dev = {
3070 .type = type,
3071 .fd = -1,
3072 .flags = KVM_CREATE_DEVICE_TEST,
3075 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3076 return false;
3079 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3082 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3084 struct kvm_one_reg reg;
3085 int r;
3087 reg.id = id;
3088 reg.addr = (uintptr_t) source;
3089 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3090 if (r) {
3091 trace_kvm_failed_reg_set(id, strerror(-r));
3093 return r;
3096 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3098 struct kvm_one_reg reg;
3099 int r;
3101 reg.id = id;
3102 reg.addr = (uintptr_t) target;
3103 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3104 if (r) {
3105 trace_kvm_failed_reg_get(id, strerror(-r));
3107 return r;
3110 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3111 hwaddr start_addr, hwaddr size)
3113 KVMState *kvm = KVM_STATE(ms->accelerator);
3114 int i;
3116 for (i = 0; i < kvm->nr_as; ++i) {
3117 if (kvm->as[i].as == as && kvm->as[i].ml) {
3118 size = MIN(kvm_max_slot_size, size);
3119 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3120 start_addr, size);
3124 return false;
3127 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3128 const char *name, void *opaque,
3129 Error **errp)
3131 KVMState *s = KVM_STATE(obj);
3132 int64_t value = s->kvm_shadow_mem;
3134 visit_type_int(v, name, &value, errp);
3137 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3138 const char *name, void *opaque,
3139 Error **errp)
3141 KVMState *s = KVM_STATE(obj);
3142 int64_t value;
3144 if (!visit_type_int(v, name, &value, errp)) {
3145 return;
3148 s->kvm_shadow_mem = value;
3151 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3152 const char *name, void *opaque,
3153 Error **errp)
3155 KVMState *s = KVM_STATE(obj);
3156 OnOffSplit mode;
3158 if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3159 return;
3161 switch (mode) {
3162 case ON_OFF_SPLIT_ON:
3163 s->kernel_irqchip_allowed = true;
3164 s->kernel_irqchip_required = true;
3165 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3166 break;
3167 case ON_OFF_SPLIT_OFF:
3168 s->kernel_irqchip_allowed = false;
3169 s->kernel_irqchip_required = false;
3170 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3171 break;
3172 case ON_OFF_SPLIT_SPLIT:
3173 s->kernel_irqchip_allowed = true;
3174 s->kernel_irqchip_required = true;
3175 s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3176 break;
3177 default:
3178 /* The value was checked in visit_type_OnOffSplit() above. If
3179 * we get here, then something is wrong in QEMU.
3181 abort();
3185 bool kvm_kernel_irqchip_allowed(void)
3187 return kvm_state->kernel_irqchip_allowed;
3190 bool kvm_kernel_irqchip_required(void)
3192 return kvm_state->kernel_irqchip_required;
3195 bool kvm_kernel_irqchip_split(void)
3197 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3200 static void kvm_accel_instance_init(Object *obj)
3202 KVMState *s = KVM_STATE(obj);
3204 s->kvm_shadow_mem = -1;
3205 s->kernel_irqchip_allowed = true;
3206 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3209 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3211 AccelClass *ac = ACCEL_CLASS(oc);
3212 ac->name = "KVM";
3213 ac->init_machine = kvm_init;
3214 ac->has_memory = kvm_accel_has_memory;
3215 ac->allowed = &kvm_allowed;
3217 object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3218 NULL, kvm_set_kernel_irqchip,
3219 NULL, NULL);
3220 object_class_property_set_description(oc, "kernel-irqchip",
3221 "Configure KVM in-kernel irqchip");
3223 object_class_property_add(oc, "kvm-shadow-mem", "int",
3224 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3225 NULL, NULL);
3226 object_class_property_set_description(oc, "kvm-shadow-mem",
3227 "KVM shadow MMU size");
3230 static const TypeInfo kvm_accel_type = {
3231 .name = TYPE_KVM_ACCEL,
3232 .parent = TYPE_ACCEL,
3233 .instance_init = kvm_accel_instance_init,
3234 .class_init = kvm_accel_class_init,
3235 .instance_size = sizeof(KVMState),
3238 static void kvm_type_init(void)
3240 type_register_static(&kvm_accel_type);
3243 type_init(kvm_type_init);