net/eth: Read ip6_ext_hdr_routing buffer before accessing it
[qemu/ar7.git] / hw / timer / sse-counter.c
blob0384051f151149db2826c96eaf69d704bc229dd3
1 /*
2 * Arm SSE Subsystem System Counter
4 * Copyright (c) 2020 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
13 * This is a model of the "System counter" which is documented in
14 * the Arm SSE-123 Example Subsystem Technical Reference Manual:
15 * https://developer.arm.com/documentation/101370/latest/
17 * The system counter is a non-stop 64-bit up-counter. It provides
18 * this count value to other devices like the SSE system timer,
19 * which are driven by this system timestamp rather than directly
20 * from a clock. Internally to the counter the count is actually
21 * 88-bit precision (64.24 fixed point), with a programmable scale factor.
23 * The hardware has the optional feature that it supports dynamic
24 * clock switching, where two clock inputs are connected, and which
25 * one is used is selected via a CLKSEL input signal. Since the
26 * users of this device in QEMU don't use this feature, we only model
27 * the HWCLKSW=0 configuration.
29 #include "qemu/osdep.h"
30 #include "qemu/log.h"
31 #include "qemu/timer.h"
32 #include "qapi/error.h"
33 #include "trace.h"
34 #include "hw/timer/sse-counter.h"
35 #include "hw/sysbus.h"
36 #include "hw/irq.h"
37 #include "hw/registerfields.h"
38 #include "hw/clock.h"
39 #include "hw/qdev-clock.h"
40 #include "migration/vmstate.h"
42 /* Registers in the control frame */
43 REG32(CNTCR, 0x0)
44 FIELD(CNTCR, EN, 0, 1)
45 FIELD(CNTCR, HDBG, 1, 1)
46 FIELD(CNTCR, SCEN, 2, 1)
47 FIELD(CNTCR, INTRMASK, 3, 1)
48 FIELD(CNTCR, PSLVERRDIS, 4, 1)
49 FIELD(CNTCR, INTRCLR, 5, 1)
51 * Although CNTCR defines interrupt-related bits, the counter doesn't
52 * appear to actually have an interrupt output. So INTRCLR is
53 * effectively a RAZ/WI bit, as are the reserved bits [31:6].
55 #define CNTCR_VALID_MASK (R_CNTCR_EN_MASK | R_CNTCR_HDBG_MASK | \
56 R_CNTCR_SCEN_MASK | R_CNTCR_INTRMASK_MASK | \
57 R_CNTCR_PSLVERRDIS_MASK)
58 REG32(CNTSR, 0x4)
59 REG32(CNTCV_LO, 0x8)
60 REG32(CNTCV_HI, 0xc)
61 REG32(CNTSCR, 0x10) /* Aliased with CNTSCR0 */
62 REG32(CNTID, 0x1c)
63 FIELD(CNTID, CNTSC, 0, 4)
64 FIELD(CNTID, CNTCS, 16, 1)
65 FIELD(CNTID, CNTSELCLK, 17, 2)
66 FIELD(CNTID, CNTSCR_OVR, 19, 1)
67 REG32(CNTSCR0, 0xd0)
68 REG32(CNTSCR1, 0xd4)
70 /* Registers in the status frame */
71 REG32(STATUS_CNTCV_LO, 0x0)
72 REG32(STATUS_CNTCV_HI, 0x4)
74 /* Standard ID registers, present in both frames */
75 REG32(PID4, 0xFD0)
76 REG32(PID5, 0xFD4)
77 REG32(PID6, 0xFD8)
78 REG32(PID7, 0xFDC)
79 REG32(PID0, 0xFE0)
80 REG32(PID1, 0xFE4)
81 REG32(PID2, 0xFE8)
82 REG32(PID3, 0xFEC)
83 REG32(CID0, 0xFF0)
84 REG32(CID1, 0xFF4)
85 REG32(CID2, 0xFF8)
86 REG32(CID3, 0xFFC)
88 /* PID/CID values */
89 static const int control_id[] = {
90 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
91 0xba, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
92 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
95 static const int status_id[] = {
96 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
97 0xbb, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
98 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
101 static void sse_counter_notify_users(SSECounter *s)
104 * Notify users of the count timestamp that they may
105 * need to recalculate.
107 notifier_list_notify(&s->notifier_list, NULL);
110 static bool sse_counter_enabled(SSECounter *s)
112 return (s->cntcr & R_CNTCR_EN_MASK) != 0;
115 uint64_t sse_counter_tick_to_time(SSECounter *s, uint64_t tick)
117 if (!sse_counter_enabled(s)) {
118 return UINT64_MAX;
121 tick -= s->ticks_then;
123 if (s->cntcr & R_CNTCR_SCEN_MASK) {
124 /* Adjust the tick count to account for the scale factor */
125 tick = muldiv64(tick, 0x01000000, s->cntscr0);
128 return s->ns_then + clock_ticks_to_ns(s->clk, tick);
131 void sse_counter_register_consumer(SSECounter *s, Notifier *notifier)
134 * For the moment we assume that both we and the devices
135 * which consume us last for the life of the simulation,
136 * and so there is no mechanism for removing a notifier.
138 notifier_list_add(&s->notifier_list, notifier);
141 uint64_t sse_counter_for_timestamp(SSECounter *s, uint64_t now)
143 /* Return the CNTCV value for a particular timestamp (clock ns value). */
144 uint64_t ticks;
146 if (!sse_counter_enabled(s)) {
147 /* Counter is disabled and does not increment */
148 return s->ticks_then;
151 ticks = clock_ns_to_ticks(s->clk, now - s->ns_then);
152 if (s->cntcr & R_CNTCR_SCEN_MASK) {
154 * Scaling is enabled. The CNTSCR value is the amount added to
155 * the underlying 88-bit counter for every tick of the
156 * underlying clock; CNTCV is the top 64 bits of that full
157 * 88-bit value. Multiplying the tick count by CNTSCR tells us
158 * how much the full 88-bit counter has moved on; we then
159 * divide that by 0x01000000 to find out how much the 64-bit
160 * visible portion has advanced. muldiv64() gives us the
161 * necessary at-least-88-bit precision for the intermediate
162 * result.
164 ticks = muldiv64(ticks, s->cntscr0, 0x01000000);
166 return s->ticks_then + ticks;
169 static uint64_t sse_cntcv(SSECounter *s)
171 /* Return the CNTCV value for the current time */
172 return sse_counter_for_timestamp(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
175 static void sse_write_cntcv(SSECounter *s, uint32_t value, unsigned startbit)
178 * Write one 32-bit half of the counter value; startbit is the
179 * bit position of this half in the 64-bit word, either 0 or 32.
181 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
182 uint64_t cntcv = sse_counter_for_timestamp(s, now);
184 cntcv = deposit64(cntcv, startbit, 32, value);
185 s->ticks_then = cntcv;
186 s->ns_then = now;
187 sse_counter_notify_users(s);
190 static uint64_t sse_counter_control_read(void *opaque, hwaddr offset,
191 unsigned size)
193 SSECounter *s = SSE_COUNTER(opaque);
194 uint64_t r;
196 switch (offset) {
197 case A_CNTCR:
198 r = s->cntcr;
199 break;
200 case A_CNTSR:
202 * The only bit here is DBGH, indicating that the counter has been
203 * halted via the Halt-on-Debug signal. We don't implement halting
204 * debug, so the whole register always reads as zero.
206 r = 0;
207 break;
208 case A_CNTCV_LO:
209 r = extract64(sse_cntcv(s), 0, 32);
210 break;
211 case A_CNTCV_HI:
212 r = extract64(sse_cntcv(s), 32, 32);
213 break;
214 case A_CNTID:
216 * For our implementation:
217 * - CNTSCR can only be written when CNTCR.EN == 0
218 * - HWCLKSW=0, so selected clock is always CLK0
219 * - counter scaling is implemented
221 r = (1 << R_CNTID_CNTSELCLK_SHIFT) | (1 << R_CNTID_CNTSC_SHIFT);
222 break;
223 case A_CNTSCR:
224 case A_CNTSCR0:
225 r = s->cntscr0;
226 break;
227 case A_CNTSCR1:
228 /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
229 r = 0;
230 break;
231 case A_PID4 ... A_CID3:
232 r = control_id[(offset - A_PID4) / 4];
233 break;
234 default:
235 qemu_log_mask(LOG_GUEST_ERROR,
236 "SSE System Counter control frame read: bad offset 0x%x",
237 (unsigned)offset);
238 r = 0;
239 break;
242 trace_sse_counter_control_read(offset, r, size);
243 return r;
246 static void sse_counter_control_write(void *opaque, hwaddr offset,
247 uint64_t value, unsigned size)
249 SSECounter *s = SSE_COUNTER(opaque);
251 trace_sse_counter_control_write(offset, value, size);
253 switch (offset) {
254 case A_CNTCR:
256 * Although CNTCR defines interrupt-related bits, the counter doesn't
257 * appear to actually have an interrupt output. So INTRCLR is
258 * effectively a RAZ/WI bit, as are the reserved bits [31:6].
259 * The documentation does not explicitly say so, but we assume
260 * that changing the scale factor while the counter is enabled
261 * by toggling CNTCR.SCEN has the same behaviour (making the counter
262 * value UNKNOWN) as changing it by writing to CNTSCR, and so we
263 * don't need to try to recalculate for that case.
265 value &= CNTCR_VALID_MASK;
266 if ((value ^ s->cntcr) & R_CNTCR_EN_MASK) {
268 * Whether the counter is being enabled or disabled, the
269 * required action is the same: sync the (ns_then, ticks_then)
270 * tuple.
272 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
273 s->ticks_then = sse_counter_for_timestamp(s, now);
274 s->ns_then = now;
275 sse_counter_notify_users(s);
277 s->cntcr = value;
278 break;
279 case A_CNTCV_LO:
280 sse_write_cntcv(s, value, 0);
281 break;
282 case A_CNTCV_HI:
283 sse_write_cntcv(s, value, 32);
284 break;
285 case A_CNTSCR:
286 case A_CNTSCR0:
288 * If the scale registers are changed when the counter is enabled,
289 * the count value becomes UNKNOWN. So we don't try to recalculate
290 * anything here but only do it on a write to CNTCR.EN.
292 s->cntscr0 = value;
293 break;
294 case A_CNTSCR1:
295 /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
296 break;
297 case A_CNTSR:
298 case A_CNTID:
299 case A_PID4 ... A_CID3:
300 qemu_log_mask(LOG_GUEST_ERROR,
301 "SSE System Counter control frame: write to RO offset 0x%x\n",
302 (unsigned)offset);
303 break;
304 default:
305 qemu_log_mask(LOG_GUEST_ERROR,
306 "SSE System Counter control frame: write to bad offset 0x%x\n",
307 (unsigned)offset);
308 break;
312 static uint64_t sse_counter_status_read(void *opaque, hwaddr offset,
313 unsigned size)
315 SSECounter *s = SSE_COUNTER(opaque);
316 uint64_t r;
318 switch (offset) {
319 case A_STATUS_CNTCV_LO:
320 r = extract64(sse_cntcv(s), 0, 32);
321 break;
322 case A_STATUS_CNTCV_HI:
323 r = extract64(sse_cntcv(s), 32, 32);
324 break;
325 case A_PID4 ... A_CID3:
326 r = status_id[(offset - A_PID4) / 4];
327 break;
328 default:
329 qemu_log_mask(LOG_GUEST_ERROR,
330 "SSE System Counter status frame read: bad offset 0x%x",
331 (unsigned)offset);
332 r = 0;
333 break;
336 trace_sse_counter_status_read(offset, r, size);
337 return r;
340 static void sse_counter_status_write(void *opaque, hwaddr offset,
341 uint64_t value, unsigned size)
343 trace_sse_counter_status_write(offset, value, size);
345 switch (offset) {
346 case A_STATUS_CNTCV_LO:
347 case A_STATUS_CNTCV_HI:
348 case A_PID4 ... A_CID3:
349 qemu_log_mask(LOG_GUEST_ERROR,
350 "SSE System Counter status frame: write to RO offset 0x%x\n",
351 (unsigned)offset);
352 break;
353 default:
354 qemu_log_mask(LOG_GUEST_ERROR,
355 "SSE System Counter status frame: write to bad offset 0x%x\n",
356 (unsigned)offset);
357 break;
361 static const MemoryRegionOps sse_counter_control_ops = {
362 .read = sse_counter_control_read,
363 .write = sse_counter_control_write,
364 .endianness = DEVICE_LITTLE_ENDIAN,
365 .valid.min_access_size = 4,
366 .valid.max_access_size = 4,
369 static const MemoryRegionOps sse_counter_status_ops = {
370 .read = sse_counter_status_read,
371 .write = sse_counter_status_write,
372 .endianness = DEVICE_LITTLE_ENDIAN,
373 .valid.min_access_size = 4,
374 .valid.max_access_size = 4,
377 static void sse_counter_reset(DeviceState *dev)
379 SSECounter *s = SSE_COUNTER(dev);
381 trace_sse_counter_reset();
383 s->cntcr = 0;
384 s->cntscr0 = 0x01000000;
385 s->ns_then = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
386 s->ticks_then = 0;
389 static void sse_clk_callback(void *opaque, ClockEvent event)
391 SSECounter *s = SSE_COUNTER(opaque);
392 uint64_t now;
394 switch (event) {
395 case ClockPreUpdate:
397 * Before the clock period updates, set (ticks_then, ns_then)
398 * to the current time and tick count (as calculated with
399 * the old clock period).
401 if (sse_counter_enabled(s)) {
402 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
403 s->ticks_then = sse_counter_for_timestamp(s, now);
404 s->ns_then = now;
406 break;
407 case ClockUpdate:
408 sse_counter_notify_users(s);
409 break;
410 default:
411 break;
415 static void sse_counter_init(Object *obj)
417 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
418 SSECounter *s = SSE_COUNTER(obj);
420 notifier_list_init(&s->notifier_list);
422 s->clk = qdev_init_clock_in(DEVICE(obj), "CLK", sse_clk_callback, s,
423 ClockPreUpdate | ClockUpdate);
424 memory_region_init_io(&s->control_mr, obj, &sse_counter_control_ops,
425 s, "sse-counter-control", 0x1000);
426 memory_region_init_io(&s->status_mr, obj, &sse_counter_status_ops,
427 s, "sse-counter-status", 0x1000);
428 sysbus_init_mmio(sbd, &s->control_mr);
429 sysbus_init_mmio(sbd, &s->status_mr);
432 static void sse_counter_realize(DeviceState *dev, Error **errp)
434 SSECounter *s = SSE_COUNTER(dev);
436 if (!clock_has_source(s->clk)) {
437 error_setg(errp, "SSE system counter: CLK must be connected");
438 return;
442 static const VMStateDescription sse_counter_vmstate = {
443 .name = "sse-counter",
444 .version_id = 1,
445 .minimum_version_id = 1,
446 .fields = (VMStateField[]) {
447 VMSTATE_CLOCK(clk, SSECounter),
448 VMSTATE_END_OF_LIST()
452 static void sse_counter_class_init(ObjectClass *klass, void *data)
454 DeviceClass *dc = DEVICE_CLASS(klass);
456 dc->realize = sse_counter_realize;
457 dc->vmsd = &sse_counter_vmstate;
458 dc->reset = sse_counter_reset;
461 static const TypeInfo sse_counter_info = {
462 .name = TYPE_SSE_COUNTER,
463 .parent = TYPE_SYS_BUS_DEVICE,
464 .instance_size = sizeof(SSECounter),
465 .instance_init = sse_counter_init,
466 .class_init = sse_counter_class_init,
469 static void sse_counter_register_types(void)
471 type_register_static(&sse_counter_info);
474 type_init(sse_counter_register_types);