2 * Win32 implementation for mutex/cond/thread functions
4 * Copyright Red Hat, Inc. 2010
7 * Paolo Bonzini <pbonzini@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
13 #include "qemu/osdep.h"
14 #include "qemu-common.h"
15 #include "qemu/thread.h"
16 #include "qemu/notify.h"
19 static bool name_threads
;
21 void qemu_thread_naming(bool enable
)
23 /* But note we don't actually name them on Windows yet */
24 name_threads
= enable
;
26 fprintf(stderr
, "qemu: thread naming not supported on this host\n");
29 static void error_exit(int err
, const char *msg
)
33 FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM
| FORMAT_MESSAGE_ALLOCATE_BUFFER
,
34 NULL
, err
, 0, (LPTSTR
)&pstr
, 2, NULL
);
35 fprintf(stderr
, "qemu: %s: %s\n", msg
, pstr
);
40 void qemu_mutex_init(QemuMutex
*mutex
)
43 InitializeCriticalSection(&mutex
->lock
);
46 void qemu_mutex_destroy(QemuMutex
*mutex
)
48 assert(mutex
->owner
== 0);
49 DeleteCriticalSection(&mutex
->lock
);
52 void qemu_mutex_lock(QemuMutex
*mutex
)
54 EnterCriticalSection(&mutex
->lock
);
56 /* Win32 CRITICAL_SECTIONs are recursive. Assert that we're not
59 assert(mutex
->owner
== 0);
60 mutex
->owner
= GetCurrentThreadId();
63 int qemu_mutex_trylock(QemuMutex
*mutex
)
67 owned
= TryEnterCriticalSection(&mutex
->lock
);
69 assert(mutex
->owner
== 0);
70 mutex
->owner
= GetCurrentThreadId();
75 void qemu_mutex_unlock(QemuMutex
*mutex
)
77 assert(mutex
->owner
== GetCurrentThreadId());
79 LeaveCriticalSection(&mutex
->lock
);
82 void qemu_rec_mutex_init(QemuRecMutex
*mutex
)
84 InitializeCriticalSection(&mutex
->lock
);
87 void qemu_rec_mutex_destroy(QemuRecMutex
*mutex
)
89 DeleteCriticalSection(&mutex
->lock
);
92 void qemu_rec_mutex_lock(QemuRecMutex
*mutex
)
94 EnterCriticalSection(&mutex
->lock
);
97 int qemu_rec_mutex_trylock(QemuRecMutex
*mutex
)
99 return !TryEnterCriticalSection(&mutex
->lock
);
102 void qemu_rec_mutex_unlock(QemuRecMutex
*mutex
)
104 LeaveCriticalSection(&mutex
->lock
);
107 void qemu_cond_init(QemuCond
*cond
)
109 memset(cond
, 0, sizeof(*cond
));
111 cond
->sema
= CreateSemaphore(NULL
, 0, LONG_MAX
, NULL
);
113 error_exit(GetLastError(), __func__
);
115 cond
->continue_event
= CreateEvent(NULL
, /* security */
116 FALSE
, /* auto-reset */
117 FALSE
, /* not signaled */
119 if (!cond
->continue_event
) {
120 error_exit(GetLastError(), __func__
);
124 void qemu_cond_destroy(QemuCond
*cond
)
127 result
= CloseHandle(cond
->continue_event
);
129 error_exit(GetLastError(), __func__
);
131 cond
->continue_event
= 0;
132 result
= CloseHandle(cond
->sema
);
134 error_exit(GetLastError(), __func__
);
139 void qemu_cond_signal(QemuCond
*cond
)
144 * Signal only when there are waiters. cond->waiters is
145 * incremented by pthread_cond_wait under the external lock,
146 * so we are safe about that.
148 if (cond
->waiters
== 0) {
153 * Waiting threads decrement it outside the external lock, but
154 * only if another thread is executing pthread_cond_broadcast and
155 * has the mutex. So, it also cannot be decremented concurrently
156 * with this particular access.
158 cond
->target
= cond
->waiters
- 1;
159 result
= SignalObjectAndWait(cond
->sema
, cond
->continue_event
,
161 if (result
== WAIT_ABANDONED
|| result
== WAIT_FAILED
) {
162 error_exit(GetLastError(), __func__
);
166 void qemu_cond_broadcast(QemuCond
*cond
)
170 * As in pthread_cond_signal, access to cond->waiters and
171 * cond->target is locked via the external mutex.
173 if (cond
->waiters
== 0) {
178 result
= ReleaseSemaphore(cond
->sema
, cond
->waiters
, NULL
);
180 error_exit(GetLastError(), __func__
);
184 * At this point all waiters continue. Each one takes its
185 * slice of the semaphore. Now it's our turn to wait: Since
186 * the external mutex is held, no thread can leave cond_wait,
187 * yet. For this reason, we can be sure that no thread gets
188 * a chance to eat *more* than one slice. OTOH, it means
189 * that the last waiter must send us a wake-up.
191 WaitForSingleObject(cond
->continue_event
, INFINITE
);
194 void qemu_cond_wait(QemuCond
*cond
, QemuMutex
*mutex
)
197 * This access is protected under the mutex.
202 * Unlock external mutex and wait for signal.
203 * NOTE: we've held mutex locked long enough to increment
204 * waiters count above, so there's no problem with
205 * leaving mutex unlocked before we wait on semaphore.
207 qemu_mutex_unlock(mutex
);
208 WaitForSingleObject(cond
->sema
, INFINITE
);
210 /* Now waiters must rendez-vous with the signaling thread and
211 * let it continue. For cond_broadcast this has heavy contention
212 * and triggers thundering herd. So goes life.
214 * Decrease waiters count. The mutex is not taken, so we have
215 * to do this atomically.
217 * All waiters contend for the mutex at the end of this function
218 * until the signaling thread relinquishes it. To ensure
219 * each waiter consumes exactly one slice of the semaphore,
220 * the signaling thread stops until it is told by the last
221 * waiter that it can go on.
223 if (InterlockedDecrement(&cond
->waiters
) == cond
->target
) {
224 SetEvent(cond
->continue_event
);
227 qemu_mutex_lock(mutex
);
230 void qemu_sem_init(QemuSemaphore
*sem
, int init
)
233 sem
->sema
= CreateSemaphore(NULL
, init
, LONG_MAX
, NULL
);
236 void qemu_sem_destroy(QemuSemaphore
*sem
)
238 CloseHandle(sem
->sema
);
241 void qemu_sem_post(QemuSemaphore
*sem
)
243 ReleaseSemaphore(sem
->sema
, 1, NULL
);
246 int qemu_sem_timedwait(QemuSemaphore
*sem
, int ms
)
248 int rc
= WaitForSingleObject(sem
->sema
, ms
);
249 if (rc
== WAIT_OBJECT_0
) {
252 if (rc
!= WAIT_TIMEOUT
) {
253 error_exit(GetLastError(), __func__
);
258 void qemu_sem_wait(QemuSemaphore
*sem
)
260 if (WaitForSingleObject(sem
->sema
, INFINITE
) != WAIT_OBJECT_0
) {
261 error_exit(GetLastError(), __func__
);
265 /* Wrap a Win32 manual-reset event with a fast userspace path. The idea
266 * is to reset the Win32 event lazily, as part of a test-reset-test-wait
267 * sequence. Such a sequence is, indeed, how QemuEvents are used by
268 * RCU and other subsystems!
271 * - free->set, when setting the event
272 * - busy->set, when setting the event, followed by SetEvent
273 * - set->free, when resetting the event
274 * - free->busy, when waiting
276 * set->busy does not happen (it can be observed from the outside but
277 * it really is set->free->busy).
279 * busy->free provably cannot happen; to enforce it, the set->free transition
280 * is done with an OR, which becomes a no-op if the event has concurrently
281 * transitioned to free or busy (and is faster than cmpxchg).
288 void qemu_event_init(QemuEvent
*ev
, bool init
)
291 ev
->event
= CreateEvent(NULL
, TRUE
, TRUE
, NULL
);
292 ev
->value
= (init
? EV_SET
: EV_FREE
);
295 void qemu_event_destroy(QemuEvent
*ev
)
297 CloseHandle(ev
->event
);
300 void qemu_event_set(QemuEvent
*ev
)
302 /* qemu_event_set has release semantics, but because it *loads*
303 * ev->value we need a full memory barrier here.
306 if (atomic_read(&ev
->value
) != EV_SET
) {
307 if (atomic_xchg(&ev
->value
, EV_SET
) == EV_BUSY
) {
308 /* There were waiters, wake them up. */
314 void qemu_event_reset(QemuEvent
*ev
)
318 value
= atomic_read(&ev
->value
);
320 if (value
== EV_SET
) {
321 /* If there was a concurrent reset (or even reset+wait),
322 * do nothing. Otherwise change EV_SET->EV_FREE.
324 atomic_or(&ev
->value
, EV_FREE
);
328 void qemu_event_wait(QemuEvent
*ev
)
332 value
= atomic_read(&ev
->value
);
334 if (value
!= EV_SET
) {
335 if (value
== EV_FREE
) {
336 /* qemu_event_set is not yet going to call SetEvent, but we are
337 * going to do another check for EV_SET below when setting EV_BUSY.
338 * At that point it is safe to call WaitForSingleObject.
340 ResetEvent(ev
->event
);
342 /* Tell qemu_event_set that there are waiters. No need to retry
343 * because there cannot be a concurent busy->free transition.
344 * After the CAS, the event will be either set or busy.
346 if (atomic_cmpxchg(&ev
->value
, EV_FREE
, EV_BUSY
) == EV_SET
) {
352 if (value
== EV_BUSY
) {
353 WaitForSingleObject(ev
->event
, INFINITE
);
358 struct QemuThreadData
{
359 /* Passed to win32_start_routine. */
360 void *(*start_routine
)(void *);
365 /* Only used for joinable threads. */
371 static bool atexit_registered
;
372 static NotifierList main_thread_exit
;
374 static __thread QemuThreadData
*qemu_thread_data
;
376 static void run_main_thread_exit(void)
378 notifier_list_notify(&main_thread_exit
, NULL
);
381 void qemu_thread_atexit_add(Notifier
*notifier
)
383 if (!qemu_thread_data
) {
384 if (!atexit_registered
) {
385 atexit_registered
= true;
386 atexit(run_main_thread_exit
);
388 notifier_list_add(&main_thread_exit
, notifier
);
390 notifier_list_add(&qemu_thread_data
->exit
, notifier
);
394 void qemu_thread_atexit_remove(Notifier
*notifier
)
396 notifier_remove(notifier
);
399 static unsigned __stdcall
win32_start_routine(void *arg
)
401 QemuThreadData
*data
= (QemuThreadData
*) arg
;
402 void *(*start_routine
)(void *) = data
->start_routine
;
403 void *thread_arg
= data
->arg
;
405 qemu_thread_data
= data
;
406 qemu_thread_exit(start_routine(thread_arg
));
410 void qemu_thread_exit(void *arg
)
412 QemuThreadData
*data
= qemu_thread_data
;
414 notifier_list_notify(&data
->exit
, NULL
);
415 if (data
->mode
== QEMU_THREAD_JOINABLE
) {
417 EnterCriticalSection(&data
->cs
);
419 LeaveCriticalSection(&data
->cs
);
426 void *qemu_thread_join(QemuThread
*thread
)
428 QemuThreadData
*data
;
433 if (data
->mode
== QEMU_THREAD_DETACHED
) {
438 * Because multiple copies of the QemuThread can exist via
439 * qemu_thread_get_self, we need to store a value that cannot
440 * leak there. The simplest, non racy way is to store the TID,
441 * discard the handle that _beginthreadex gives back, and
442 * get another copy of the handle here.
444 handle
= qemu_thread_get_handle(thread
);
446 WaitForSingleObject(handle
, INFINITE
);
450 DeleteCriticalSection(&data
->cs
);
455 void qemu_thread_create(QemuThread
*thread
, const char *name
,
456 void *(*start_routine
)(void *),
460 struct QemuThreadData
*data
;
462 data
= g_malloc(sizeof *data
);
463 data
->start_routine
= start_routine
;
466 data
->exited
= false;
467 notifier_list_init(&data
->exit
);
469 if (data
->mode
!= QEMU_THREAD_DETACHED
) {
470 InitializeCriticalSection(&data
->cs
);
473 hThread
= (HANDLE
) _beginthreadex(NULL
, 0, win32_start_routine
,
474 data
, 0, &thread
->tid
);
476 error_exit(GetLastError(), __func__
);
478 CloseHandle(hThread
);
482 void qemu_thread_get_self(QemuThread
*thread
)
484 thread
->data
= qemu_thread_data
;
485 thread
->tid
= GetCurrentThreadId();
488 HANDLE
qemu_thread_get_handle(QemuThread
*thread
)
490 QemuThreadData
*data
;
494 if (data
->mode
== QEMU_THREAD_DETACHED
) {
498 EnterCriticalSection(&data
->cs
);
500 handle
= OpenThread(SYNCHRONIZE
| THREAD_SUSPEND_RESUME
|
501 THREAD_SET_CONTEXT
, FALSE
, thread
->tid
);
505 LeaveCriticalSection(&data
->cs
);
509 bool qemu_thread_is_self(QemuThread
*thread
)
511 return GetCurrentThreadId() == thread
->tid
;