Merge remote-tracking branch 'remotes/xtensa/tags/20181030-xtensa' into staging
[qemu/ar7.git] / include / exec / memory.h
blobd0c7f0d9e9fa55a4d33fab8b8f47ad8501135d55
1 /*
2 * Physical memory management API
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
14 #ifndef MEMORY_H
15 #define MEMORY_H
17 #ifndef CONFIG_USER_ONLY
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/ramlist.h"
23 #include "qemu/queue.h"
24 #include "qemu/int128.h"
25 #include "qemu/notify.h"
26 #include "qom/object.h"
27 #include "qemu/rcu.h"
28 #include "hw/qdev-core.h"
30 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32 #define MAX_PHYS_ADDR_SPACE_BITS 62
33 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35 #define TYPE_MEMORY_REGION "qemu:memory-region"
36 #define MEMORY_REGION(obj) \
37 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
40 #define IOMMU_MEMORY_REGION(obj) \
41 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
42 #define IOMMU_MEMORY_REGION_CLASS(klass) \
43 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
44 TYPE_IOMMU_MEMORY_REGION)
45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
46 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
47 TYPE_IOMMU_MEMORY_REGION)
49 typedef struct MemoryRegionOps MemoryRegionOps;
50 typedef struct MemoryRegionMmio MemoryRegionMmio;
52 struct MemoryRegionMmio {
53 CPUReadMemoryFunc *read[3];
54 CPUWriteMemoryFunc *write[3];
57 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
59 /* See address_space_translate: bit 0 is read, bit 1 is write. */
60 typedef enum {
61 IOMMU_NONE = 0,
62 IOMMU_RO = 1,
63 IOMMU_WO = 2,
64 IOMMU_RW = 3,
65 } IOMMUAccessFlags;
67 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
69 struct IOMMUTLBEntry {
70 AddressSpace *target_as;
71 hwaddr iova;
72 hwaddr translated_addr;
73 hwaddr addr_mask; /* 0xfff = 4k translation */
74 IOMMUAccessFlags perm;
78 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
79 * register with one or multiple IOMMU Notifier capability bit(s).
81 typedef enum {
82 IOMMU_NOTIFIER_NONE = 0,
83 /* Notify cache invalidations */
84 IOMMU_NOTIFIER_UNMAP = 0x1,
85 /* Notify entry changes (newly created entries) */
86 IOMMU_NOTIFIER_MAP = 0x2,
87 } IOMMUNotifierFlag;
89 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
91 struct IOMMUNotifier;
92 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
93 IOMMUTLBEntry *data);
95 struct IOMMUNotifier {
96 IOMMUNotify notify;
97 IOMMUNotifierFlag notifier_flags;
98 /* Notify for address space range start <= addr <= end */
99 hwaddr start;
100 hwaddr end;
101 int iommu_idx;
102 QLIST_ENTRY(IOMMUNotifier) node;
104 typedef struct IOMMUNotifier IOMMUNotifier;
106 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
107 #define RAM_PREALLOC (1 << 0)
109 /* RAM is mmap-ed with MAP_SHARED */
110 #define RAM_SHARED (1 << 1)
112 /* Only a portion of RAM (used_length) is actually used, and migrated.
113 * This used_length size can change across reboots.
115 #define RAM_RESIZEABLE (1 << 2)
117 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
118 * zero the page and wake waiting processes.
119 * (Set during postcopy)
121 #define RAM_UF_ZEROPAGE (1 << 3)
123 /* RAM can be migrated */
124 #define RAM_MIGRATABLE (1 << 4)
126 /* RAM is a persistent kind memory */
127 #define RAM_PMEM (1 << 5)
129 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
130 IOMMUNotifierFlag flags,
131 hwaddr start, hwaddr end,
132 int iommu_idx)
134 n->notify = fn;
135 n->notifier_flags = flags;
136 n->start = start;
137 n->end = end;
138 n->iommu_idx = iommu_idx;
142 * Memory region callbacks
144 struct MemoryRegionOps {
145 /* Read from the memory region. @addr is relative to @mr; @size is
146 * in bytes. */
147 uint64_t (*read)(void *opaque,
148 hwaddr addr,
149 unsigned size);
150 /* Write to the memory region. @addr is relative to @mr; @size is
151 * in bytes. */
152 void (*write)(void *opaque,
153 hwaddr addr,
154 uint64_t data,
155 unsigned size);
157 MemTxResult (*read_with_attrs)(void *opaque,
158 hwaddr addr,
159 uint64_t *data,
160 unsigned size,
161 MemTxAttrs attrs);
162 MemTxResult (*write_with_attrs)(void *opaque,
163 hwaddr addr,
164 uint64_t data,
165 unsigned size,
166 MemTxAttrs attrs);
168 enum device_endian endianness;
169 /* Guest-visible constraints: */
170 struct {
171 /* If nonzero, specify bounds on access sizes beyond which a machine
172 * check is thrown.
174 unsigned min_access_size;
175 unsigned max_access_size;
176 /* If true, unaligned accesses are supported. Otherwise unaligned
177 * accesses throw machine checks.
179 bool unaligned;
181 * If present, and returns #false, the transaction is not accepted
182 * by the device (and results in machine dependent behaviour such
183 * as a machine check exception).
185 bool (*accepts)(void *opaque, hwaddr addr,
186 unsigned size, bool is_write,
187 MemTxAttrs attrs);
188 } valid;
189 /* Internal implementation constraints: */
190 struct {
191 /* If nonzero, specifies the minimum size implemented. Smaller sizes
192 * will be rounded upwards and a partial result will be returned.
194 unsigned min_access_size;
195 /* If nonzero, specifies the maximum size implemented. Larger sizes
196 * will be done as a series of accesses with smaller sizes.
198 unsigned max_access_size;
199 /* If true, unaligned accesses are supported. Otherwise all accesses
200 * are converted to (possibly multiple) naturally aligned accesses.
202 bool unaligned;
203 } impl;
206 enum IOMMUMemoryRegionAttr {
207 IOMMU_ATTR_SPAPR_TCE_FD
211 * IOMMUMemoryRegionClass:
213 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
214 * and provide an implementation of at least the @translate method here
215 * to handle requests to the memory region. Other methods are optional.
217 * The IOMMU implementation must use the IOMMU notifier infrastructure
218 * to report whenever mappings are changed, by calling
219 * memory_region_notify_iommu() (or, if necessary, by calling
220 * memory_region_notify_one() for each registered notifier).
222 * Conceptually an IOMMU provides a mapping from input address
223 * to an output TLB entry. If the IOMMU is aware of memory transaction
224 * attributes and the output TLB entry depends on the transaction
225 * attributes, we represent this using IOMMU indexes. Each index
226 * selects a particular translation table that the IOMMU has:
227 * @attrs_to_index returns the IOMMU index for a set of transaction attributes
228 * @translate takes an input address and an IOMMU index
229 * and the mapping returned can only depend on the input address and the
230 * IOMMU index.
232 * Most IOMMUs don't care about the transaction attributes and support
233 * only a single IOMMU index. A more complex IOMMU might have one index
234 * for secure transactions and one for non-secure transactions.
236 typedef struct IOMMUMemoryRegionClass {
237 /* private */
238 struct DeviceClass parent_class;
241 * Return a TLB entry that contains a given address.
243 * The IOMMUAccessFlags indicated via @flag are optional and may
244 * be specified as IOMMU_NONE to indicate that the caller needs
245 * the full translation information for both reads and writes. If
246 * the access flags are specified then the IOMMU implementation
247 * may use this as an optimization, to stop doing a page table
248 * walk as soon as it knows that the requested permissions are not
249 * allowed. If IOMMU_NONE is passed then the IOMMU must do the
250 * full page table walk and report the permissions in the returned
251 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
252 * return different mappings for reads and writes.)
254 * The returned information remains valid while the caller is
255 * holding the big QEMU lock or is inside an RCU critical section;
256 * if the caller wishes to cache the mapping beyond that it must
257 * register an IOMMU notifier so it can invalidate its cached
258 * information when the IOMMU mapping changes.
260 * @iommu: the IOMMUMemoryRegion
261 * @hwaddr: address to be translated within the memory region
262 * @flag: requested access permissions
263 * @iommu_idx: IOMMU index for the translation
265 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
266 IOMMUAccessFlags flag, int iommu_idx);
267 /* Returns minimum supported page size in bytes.
268 * If this method is not provided then the minimum is assumed to
269 * be TARGET_PAGE_SIZE.
271 * @iommu: the IOMMUMemoryRegion
273 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
274 /* Called when IOMMU Notifier flag changes (ie when the set of
275 * events which IOMMU users are requesting notification for changes).
276 * Optional method -- need not be provided if the IOMMU does not
277 * need to know exactly which events must be notified.
279 * @iommu: the IOMMUMemoryRegion
280 * @old_flags: events which previously needed to be notified
281 * @new_flags: events which now need to be notified
283 void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
284 IOMMUNotifierFlag old_flags,
285 IOMMUNotifierFlag new_flags);
286 /* Called to handle memory_region_iommu_replay().
288 * The default implementation of memory_region_iommu_replay() is to
289 * call the IOMMU translate method for every page in the address space
290 * with flag == IOMMU_NONE and then call the notifier if translate
291 * returns a valid mapping. If this method is implemented then it
292 * overrides the default behaviour, and must provide the full semantics
293 * of memory_region_iommu_replay(), by calling @notifier for every
294 * translation present in the IOMMU.
296 * Optional method -- an IOMMU only needs to provide this method
297 * if the default is inefficient or produces undesirable side effects.
299 * Note: this is not related to record-and-replay functionality.
301 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
303 /* Get IOMMU misc attributes. This is an optional method that
304 * can be used to allow users of the IOMMU to get implementation-specific
305 * information. The IOMMU implements this method to handle calls
306 * by IOMMU users to memory_region_iommu_get_attr() by filling in
307 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
308 * the IOMMU supports. If the method is unimplemented then
309 * memory_region_iommu_get_attr() will always return -EINVAL.
311 * @iommu: the IOMMUMemoryRegion
312 * @attr: attribute being queried
313 * @data: memory to fill in with the attribute data
315 * Returns 0 on success, or a negative errno; in particular
316 * returns -EINVAL for unrecognized or unimplemented attribute types.
318 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
319 void *data);
321 /* Return the IOMMU index to use for a given set of transaction attributes.
323 * Optional method: if an IOMMU only supports a single IOMMU index then
324 * the default implementation of memory_region_iommu_attrs_to_index()
325 * will return 0.
327 * The indexes supported by an IOMMU must be contiguous, starting at 0.
329 * @iommu: the IOMMUMemoryRegion
330 * @attrs: memory transaction attributes
332 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
334 /* Return the number of IOMMU indexes this IOMMU supports.
336 * Optional method: if this method is not provided, then
337 * memory_region_iommu_num_indexes() will return 1, indicating that
338 * only a single IOMMU index is supported.
340 * @iommu: the IOMMUMemoryRegion
342 int (*num_indexes)(IOMMUMemoryRegion *iommu);
343 } IOMMUMemoryRegionClass;
345 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
346 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
348 struct MemoryRegion {
349 Object parent_obj;
351 /* All fields are private - violators will be prosecuted */
353 /* The following fields should fit in a cache line */
354 bool romd_mode;
355 bool ram;
356 bool subpage;
357 bool readonly; /* For RAM regions */
358 bool rom_device;
359 bool flush_coalesced_mmio;
360 bool global_locking;
361 uint8_t dirty_log_mask;
362 bool is_iommu;
363 RAMBlock *ram_block;
364 Object *owner;
366 const MemoryRegionOps *ops;
367 void *opaque;
368 MemoryRegion *container;
369 Int128 size;
370 hwaddr addr;
371 void (*destructor)(MemoryRegion *mr);
372 uint64_t align;
373 bool terminates;
374 bool ram_device;
375 bool enabled;
376 bool warning_printed; /* For reservations */
377 uint8_t vga_logging_count;
378 MemoryRegion *alias;
379 hwaddr alias_offset;
380 int32_t priority;
381 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
382 QTAILQ_ENTRY(MemoryRegion) subregions_link;
383 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
384 const char *name;
385 unsigned ioeventfd_nb;
386 MemoryRegionIoeventfd *ioeventfds;
389 struct IOMMUMemoryRegion {
390 MemoryRegion parent_obj;
392 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
393 IOMMUNotifierFlag iommu_notify_flags;
396 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
397 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
400 * MemoryListener: callbacks structure for updates to the physical memory map
402 * Allows a component to adjust to changes in the guest-visible memory map.
403 * Use with memory_listener_register() and memory_listener_unregister().
405 struct MemoryListener {
406 void (*begin)(MemoryListener *listener);
407 void (*commit)(MemoryListener *listener);
408 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
409 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
410 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
411 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
412 int old, int new);
413 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
414 int old, int new);
415 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
416 void (*log_global_start)(MemoryListener *listener);
417 void (*log_global_stop)(MemoryListener *listener);
418 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
419 bool match_data, uint64_t data, EventNotifier *e);
420 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
421 bool match_data, uint64_t data, EventNotifier *e);
422 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
423 hwaddr addr, hwaddr len);
424 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
425 hwaddr addr, hwaddr len);
426 /* Lower = earlier (during add), later (during del) */
427 unsigned priority;
428 AddressSpace *address_space;
429 QTAILQ_ENTRY(MemoryListener) link;
430 QTAILQ_ENTRY(MemoryListener) link_as;
434 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
436 struct AddressSpace {
437 /* All fields are private. */
438 struct rcu_head rcu;
439 char *name;
440 MemoryRegion *root;
442 /* Accessed via RCU. */
443 struct FlatView *current_map;
445 int ioeventfd_nb;
446 struct MemoryRegionIoeventfd *ioeventfds;
447 QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
448 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
451 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
452 typedef struct FlatRange FlatRange;
454 /* Flattened global view of current active memory hierarchy. Kept in sorted
455 * order.
457 struct FlatView {
458 struct rcu_head rcu;
459 unsigned ref;
460 FlatRange *ranges;
461 unsigned nr;
462 unsigned nr_allocated;
463 struct AddressSpaceDispatch *dispatch;
464 MemoryRegion *root;
467 static inline FlatView *address_space_to_flatview(AddressSpace *as)
469 return atomic_rcu_read(&as->current_map);
474 * MemoryRegionSection: describes a fragment of a #MemoryRegion
476 * @mr: the region, or %NULL if empty
477 * @fv: the flat view of the address space the region is mapped in
478 * @offset_within_region: the beginning of the section, relative to @mr's start
479 * @size: the size of the section; will not exceed @mr's boundaries
480 * @offset_within_address_space: the address of the first byte of the section
481 * relative to the region's address space
482 * @readonly: writes to this section are ignored
484 struct MemoryRegionSection {
485 MemoryRegion *mr;
486 FlatView *fv;
487 hwaddr offset_within_region;
488 Int128 size;
489 hwaddr offset_within_address_space;
490 bool readonly;
494 * memory_region_init: Initialize a memory region
496 * The region typically acts as a container for other memory regions. Use
497 * memory_region_add_subregion() to add subregions.
499 * @mr: the #MemoryRegion to be initialized
500 * @owner: the object that tracks the region's reference count
501 * @name: used for debugging; not visible to the user or ABI
502 * @size: size of the region; any subregions beyond this size will be clipped
504 void memory_region_init(MemoryRegion *mr,
505 struct Object *owner,
506 const char *name,
507 uint64_t size);
510 * memory_region_ref: Add 1 to a memory region's reference count
512 * Whenever memory regions are accessed outside the BQL, they need to be
513 * preserved against hot-unplug. MemoryRegions actually do not have their
514 * own reference count; they piggyback on a QOM object, their "owner".
515 * This function adds a reference to the owner.
517 * All MemoryRegions must have an owner if they can disappear, even if the
518 * device they belong to operates exclusively under the BQL. This is because
519 * the region could be returned at any time by memory_region_find, and this
520 * is usually under guest control.
522 * @mr: the #MemoryRegion
524 void memory_region_ref(MemoryRegion *mr);
527 * memory_region_unref: Remove 1 to a memory region's reference count
529 * Whenever memory regions are accessed outside the BQL, they need to be
530 * preserved against hot-unplug. MemoryRegions actually do not have their
531 * own reference count; they piggyback on a QOM object, their "owner".
532 * This function removes a reference to the owner and possibly destroys it.
534 * @mr: the #MemoryRegion
536 void memory_region_unref(MemoryRegion *mr);
539 * memory_region_init_io: Initialize an I/O memory region.
541 * Accesses into the region will cause the callbacks in @ops to be called.
542 * if @size is nonzero, subregions will be clipped to @size.
544 * @mr: the #MemoryRegion to be initialized.
545 * @owner: the object that tracks the region's reference count
546 * @ops: a structure containing read and write callbacks to be used when
547 * I/O is performed on the region.
548 * @opaque: passed to the read and write callbacks of the @ops structure.
549 * @name: used for debugging; not visible to the user or ABI
550 * @size: size of the region.
552 void memory_region_init_io(MemoryRegion *mr,
553 struct Object *owner,
554 const MemoryRegionOps *ops,
555 void *opaque,
556 const char *name,
557 uint64_t size);
560 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
561 * into the region will modify memory
562 * directly.
564 * @mr: the #MemoryRegion to be initialized.
565 * @owner: the object that tracks the region's reference count
566 * @name: Region name, becomes part of RAMBlock name used in migration stream
567 * must be unique within any device
568 * @size: size of the region.
569 * @errp: pointer to Error*, to store an error if it happens.
571 * Note that this function does not do anything to cause the data in the
572 * RAM memory region to be migrated; that is the responsibility of the caller.
574 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
575 struct Object *owner,
576 const char *name,
577 uint64_t size,
578 Error **errp);
581 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region.
582 * Accesses into the region will
583 * modify memory directly.
585 * @mr: the #MemoryRegion to be initialized.
586 * @owner: the object that tracks the region's reference count
587 * @name: Region name, becomes part of RAMBlock name used in migration stream
588 * must be unique within any device
589 * @size: size of the region.
590 * @share: allow remapping RAM to different addresses
591 * @errp: pointer to Error*, to store an error if it happens.
593 * Note that this function is similar to memory_region_init_ram_nomigrate.
594 * The only difference is part of the RAM region can be remapped.
596 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
597 struct Object *owner,
598 const char *name,
599 uint64_t size,
600 bool share,
601 Error **errp);
604 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
605 * RAM. Accesses into the region will
606 * modify memory directly. Only an initial
607 * portion of this RAM is actually used.
608 * The used size can change across reboots.
610 * @mr: the #MemoryRegion to be initialized.
611 * @owner: the object that tracks the region's reference count
612 * @name: Region name, becomes part of RAMBlock name used in migration stream
613 * must be unique within any device
614 * @size: used size of the region.
615 * @max_size: max size of the region.
616 * @resized: callback to notify owner about used size change.
617 * @errp: pointer to Error*, to store an error if it happens.
619 * Note that this function does not do anything to cause the data in the
620 * RAM memory region to be migrated; that is the responsibility of the caller.
622 void memory_region_init_resizeable_ram(MemoryRegion *mr,
623 struct Object *owner,
624 const char *name,
625 uint64_t size,
626 uint64_t max_size,
627 void (*resized)(const char*,
628 uint64_t length,
629 void *host),
630 Error **errp);
631 #ifdef CONFIG_POSIX
634 * memory_region_init_ram_from_file: Initialize RAM memory region with a
635 * mmap-ed backend.
637 * @mr: the #MemoryRegion to be initialized.
638 * @owner: the object that tracks the region's reference count
639 * @name: Region name, becomes part of RAMBlock name used in migration stream
640 * must be unique within any device
641 * @size: size of the region.
642 * @align: alignment of the region base address; if 0, the default alignment
643 * (getpagesize()) will be used.
644 * @ram_flags: Memory region features:
645 * - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag
646 * - RAM_PMEM: the memory is persistent memory
647 * Other bits are ignored now.
648 * @path: the path in which to allocate the RAM.
649 * @errp: pointer to Error*, to store an error if it happens.
651 * Note that this function does not do anything to cause the data in the
652 * RAM memory region to be migrated; that is the responsibility of the caller.
654 void memory_region_init_ram_from_file(MemoryRegion *mr,
655 struct Object *owner,
656 const char *name,
657 uint64_t size,
658 uint64_t align,
659 uint32_t ram_flags,
660 const char *path,
661 Error **errp);
664 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
665 * mmap-ed backend.
667 * @mr: the #MemoryRegion to be initialized.
668 * @owner: the object that tracks the region's reference count
669 * @name: the name of the region.
670 * @size: size of the region.
671 * @share: %true if memory must be mmaped with the MAP_SHARED flag
672 * @fd: the fd to mmap.
673 * @errp: pointer to Error*, to store an error if it happens.
675 * Note that this function does not do anything to cause the data in the
676 * RAM memory region to be migrated; that is the responsibility of the caller.
678 void memory_region_init_ram_from_fd(MemoryRegion *mr,
679 struct Object *owner,
680 const char *name,
681 uint64_t size,
682 bool share,
683 int fd,
684 Error **errp);
685 #endif
688 * memory_region_init_ram_ptr: Initialize RAM memory region from a
689 * user-provided pointer. Accesses into the
690 * region will modify memory directly.
692 * @mr: the #MemoryRegion to be initialized.
693 * @owner: the object that tracks the region's reference count
694 * @name: Region name, becomes part of RAMBlock name used in migration stream
695 * must be unique within any device
696 * @size: size of the region.
697 * @ptr: memory to be mapped; must contain at least @size bytes.
699 * Note that this function does not do anything to cause the data in the
700 * RAM memory region to be migrated; that is the responsibility of the caller.
702 void memory_region_init_ram_ptr(MemoryRegion *mr,
703 struct Object *owner,
704 const char *name,
705 uint64_t size,
706 void *ptr);
709 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
710 * a user-provided pointer.
712 * A RAM device represents a mapping to a physical device, such as to a PCI
713 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
714 * into the VM address space and access to the region will modify memory
715 * directly. However, the memory region should not be included in a memory
716 * dump (device may not be enabled/mapped at the time of the dump), and
717 * operations incompatible with manipulating MMIO should be avoided. Replaces
718 * skip_dump flag.
720 * @mr: the #MemoryRegion to be initialized.
721 * @owner: the object that tracks the region's reference count
722 * @name: the name of the region.
723 * @size: size of the region.
724 * @ptr: memory to be mapped; must contain at least @size bytes.
726 * Note that this function does not do anything to cause the data in the
727 * RAM memory region to be migrated; that is the responsibility of the caller.
728 * (For RAM device memory regions, migrating the contents rarely makes sense.)
730 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
731 struct Object *owner,
732 const char *name,
733 uint64_t size,
734 void *ptr);
737 * memory_region_init_alias: Initialize a memory region that aliases all or a
738 * part of another memory region.
740 * @mr: the #MemoryRegion to be initialized.
741 * @owner: the object that tracks the region's reference count
742 * @name: used for debugging; not visible to the user or ABI
743 * @orig: the region to be referenced; @mr will be equivalent to
744 * @orig between @offset and @offset + @size - 1.
745 * @offset: start of the section in @orig to be referenced.
746 * @size: size of the region.
748 void memory_region_init_alias(MemoryRegion *mr,
749 struct Object *owner,
750 const char *name,
751 MemoryRegion *orig,
752 hwaddr offset,
753 uint64_t size);
756 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
758 * This has the same effect as calling memory_region_init_ram_nomigrate()
759 * and then marking the resulting region read-only with
760 * memory_region_set_readonly().
762 * Note that this function does not do anything to cause the data in the
763 * RAM side of the memory region to be migrated; that is the responsibility
764 * of the caller.
766 * @mr: the #MemoryRegion to be initialized.
767 * @owner: the object that tracks the region's reference count
768 * @name: Region name, becomes part of RAMBlock name used in migration stream
769 * must be unique within any device
770 * @size: size of the region.
771 * @errp: pointer to Error*, to store an error if it happens.
773 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
774 struct Object *owner,
775 const char *name,
776 uint64_t size,
777 Error **errp);
780 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
781 * Writes are handled via callbacks.
783 * Note that this function does not do anything to cause the data in the
784 * RAM side of the memory region to be migrated; that is the responsibility
785 * of the caller.
787 * @mr: the #MemoryRegion to be initialized.
788 * @owner: the object that tracks the region's reference count
789 * @ops: callbacks for write access handling (must not be NULL).
790 * @opaque: passed to the read and write callbacks of the @ops structure.
791 * @name: Region name, becomes part of RAMBlock name used in migration stream
792 * must be unique within any device
793 * @size: size of the region.
794 * @errp: pointer to Error*, to store an error if it happens.
796 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
797 struct Object *owner,
798 const MemoryRegionOps *ops,
799 void *opaque,
800 const char *name,
801 uint64_t size,
802 Error **errp);
805 * memory_region_init_iommu: Initialize a memory region of a custom type
806 * that translates addresses
808 * An IOMMU region translates addresses and forwards accesses to a target
809 * memory region.
811 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
812 * @_iommu_mr should be a pointer to enough memory for an instance of
813 * that subclass, @instance_size is the size of that subclass, and
814 * @mrtypename is its name. This function will initialize @_iommu_mr as an
815 * instance of the subclass, and its methods will then be called to handle
816 * accesses to the memory region. See the documentation of
817 * #IOMMUMemoryRegionClass for further details.
819 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
820 * @instance_size: the IOMMUMemoryRegion subclass instance size
821 * @mrtypename: the type name of the #IOMMUMemoryRegion
822 * @owner: the object that tracks the region's reference count
823 * @name: used for debugging; not visible to the user or ABI
824 * @size: size of the region.
826 void memory_region_init_iommu(void *_iommu_mr,
827 size_t instance_size,
828 const char *mrtypename,
829 Object *owner,
830 const char *name,
831 uint64_t size);
834 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
835 * region will modify memory directly.
837 * @mr: the #MemoryRegion to be initialized
838 * @owner: the object that tracks the region's reference count (must be
839 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
840 * @name: name of the memory region
841 * @size: size of the region in bytes
842 * @errp: pointer to Error*, to store an error if it happens.
844 * This function allocates RAM for a board model or device, and
845 * arranges for it to be migrated (by calling vmstate_register_ram()
846 * if @owner is a DeviceState, or vmstate_register_ram_global() if
847 * @owner is NULL).
849 * TODO: Currently we restrict @owner to being either NULL (for
850 * global RAM regions with no owner) or devices, so that we can
851 * give the RAM block a unique name for migration purposes.
852 * We should lift this restriction and allow arbitrary Objects.
853 * If you pass a non-NULL non-device @owner then we will assert.
855 void memory_region_init_ram(MemoryRegion *mr,
856 struct Object *owner,
857 const char *name,
858 uint64_t size,
859 Error **errp);
862 * memory_region_init_rom: Initialize a ROM memory region.
864 * This has the same effect as calling memory_region_init_ram()
865 * and then marking the resulting region read-only with
866 * memory_region_set_readonly(). This includes arranging for the
867 * contents to be migrated.
869 * TODO: Currently we restrict @owner to being either NULL (for
870 * global RAM regions with no owner) or devices, so that we can
871 * give the RAM block a unique name for migration purposes.
872 * We should lift this restriction and allow arbitrary Objects.
873 * If you pass a non-NULL non-device @owner then we will assert.
875 * @mr: the #MemoryRegion to be initialized.
876 * @owner: the object that tracks the region's reference count
877 * @name: Region name, becomes part of RAMBlock name used in migration stream
878 * must be unique within any device
879 * @size: size of the region.
880 * @errp: pointer to Error*, to store an error if it happens.
882 void memory_region_init_rom(MemoryRegion *mr,
883 struct Object *owner,
884 const char *name,
885 uint64_t size,
886 Error **errp);
889 * memory_region_init_rom_device: Initialize a ROM memory region.
890 * Writes are handled via callbacks.
892 * This function initializes a memory region backed by RAM for reads
893 * and callbacks for writes, and arranges for the RAM backing to
894 * be migrated (by calling vmstate_register_ram()
895 * if @owner is a DeviceState, or vmstate_register_ram_global() if
896 * @owner is NULL).
898 * TODO: Currently we restrict @owner to being either NULL (for
899 * global RAM regions with no owner) or devices, so that we can
900 * give the RAM block a unique name for migration purposes.
901 * We should lift this restriction and allow arbitrary Objects.
902 * If you pass a non-NULL non-device @owner then we will assert.
904 * @mr: the #MemoryRegion to be initialized.
905 * @owner: the object that tracks the region's reference count
906 * @ops: callbacks for write access handling (must not be NULL).
907 * @name: Region name, becomes part of RAMBlock name used in migration stream
908 * must be unique within any device
909 * @size: size of the region.
910 * @errp: pointer to Error*, to store an error if it happens.
912 void memory_region_init_rom_device(MemoryRegion *mr,
913 struct Object *owner,
914 const MemoryRegionOps *ops,
915 void *opaque,
916 const char *name,
917 uint64_t size,
918 Error **errp);
922 * memory_region_owner: get a memory region's owner.
924 * @mr: the memory region being queried.
926 struct Object *memory_region_owner(MemoryRegion *mr);
929 * memory_region_size: get a memory region's size.
931 * @mr: the memory region being queried.
933 uint64_t memory_region_size(MemoryRegion *mr);
936 * memory_region_is_ram: check whether a memory region is random access
938 * Returns %true if a memory region is random access.
940 * @mr: the memory region being queried
942 static inline bool memory_region_is_ram(MemoryRegion *mr)
944 return mr->ram;
948 * memory_region_is_ram_device: check whether a memory region is a ram device
950 * Returns %true if a memory region is a device backed ram region
952 * @mr: the memory region being queried
954 bool memory_region_is_ram_device(MemoryRegion *mr);
957 * memory_region_is_romd: check whether a memory region is in ROMD mode
959 * Returns %true if a memory region is a ROM device and currently set to allow
960 * direct reads.
962 * @mr: the memory region being queried
964 static inline bool memory_region_is_romd(MemoryRegion *mr)
966 return mr->rom_device && mr->romd_mode;
970 * memory_region_get_iommu: check whether a memory region is an iommu
972 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
973 * otherwise NULL.
975 * @mr: the memory region being queried
977 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
979 if (mr->alias) {
980 return memory_region_get_iommu(mr->alias);
982 if (mr->is_iommu) {
983 return (IOMMUMemoryRegion *) mr;
985 return NULL;
989 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
990 * if an iommu or NULL if not
992 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
993 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
995 * @mr: the memory region being queried
997 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
998 IOMMUMemoryRegion *iommu_mr)
1000 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1003 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1006 * memory_region_iommu_get_min_page_size: get minimum supported page size
1007 * for an iommu
1009 * Returns minimum supported page size for an iommu.
1011 * @iommu_mr: the memory region being queried
1013 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1016 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1018 * The notification type will be decided by entry.perm bits:
1020 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
1021 * - For MAP (newly added entry) notifies: set entry.perm to the
1022 * permission of the page (which is definitely !IOMMU_NONE).
1024 * Note: for any IOMMU implementation, an in-place mapping change
1025 * should be notified with an UNMAP followed by a MAP.
1027 * @iommu_mr: the memory region that was changed
1028 * @iommu_idx: the IOMMU index for the translation table which has changed
1029 * @entry: the new entry in the IOMMU translation table. The entry
1030 * replaces all old entries for the same virtual I/O address range.
1031 * Deleted entries have .@perm == 0.
1033 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1034 int iommu_idx,
1035 IOMMUTLBEntry entry);
1038 * memory_region_notify_one: notify a change in an IOMMU translation
1039 * entry to a single notifier
1041 * This works just like memory_region_notify_iommu(), but it only
1042 * notifies a specific notifier, not all of them.
1044 * @notifier: the notifier to be notified
1045 * @entry: the new entry in the IOMMU translation table. The entry
1046 * replaces all old entries for the same virtual I/O address range.
1047 * Deleted entries have .@perm == 0.
1049 void memory_region_notify_one(IOMMUNotifier *notifier,
1050 IOMMUTLBEntry *entry);
1053 * memory_region_register_iommu_notifier: register a notifier for changes to
1054 * IOMMU translation entries.
1056 * @mr: the memory region to observe
1057 * @n: the IOMMUNotifier to be added; the notify callback receives a
1058 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1059 * ceases to be valid on exit from the notifier.
1061 void memory_region_register_iommu_notifier(MemoryRegion *mr,
1062 IOMMUNotifier *n);
1065 * memory_region_iommu_replay: replay existing IOMMU translations to
1066 * a notifier with the minimum page granularity returned by
1067 * mr->iommu_ops->get_page_size().
1069 * Note: this is not related to record-and-replay functionality.
1071 * @iommu_mr: the memory region to observe
1072 * @n: the notifier to which to replay iommu mappings
1074 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1077 * memory_region_iommu_replay_all: replay existing IOMMU translations
1078 * to all the notifiers registered.
1080 * Note: this is not related to record-and-replay functionality.
1082 * @iommu_mr: the memory region to observe
1084 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr);
1087 * memory_region_unregister_iommu_notifier: unregister a notifier for
1088 * changes to IOMMU translation entries.
1090 * @mr: the memory region which was observed and for which notity_stopped()
1091 * needs to be called
1092 * @n: the notifier to be removed.
1094 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1095 IOMMUNotifier *n);
1098 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1099 * defined on the IOMMU.
1101 * Returns 0 on success, or a negative errno otherwise. In particular,
1102 * -EINVAL indicates that the IOMMU does not support the requested
1103 * attribute.
1105 * @iommu_mr: the memory region
1106 * @attr: the requested attribute
1107 * @data: a pointer to the requested attribute data
1109 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1110 enum IOMMUMemoryRegionAttr attr,
1111 void *data);
1114 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1115 * use for translations with the given memory transaction attributes.
1117 * @iommu_mr: the memory region
1118 * @attrs: the memory transaction attributes
1120 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1121 MemTxAttrs attrs);
1124 * memory_region_iommu_num_indexes: return the total number of IOMMU
1125 * indexes that this IOMMU supports.
1127 * @iommu_mr: the memory region
1129 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1132 * memory_region_name: get a memory region's name
1134 * Returns the string that was used to initialize the memory region.
1136 * @mr: the memory region being queried
1138 const char *memory_region_name(const MemoryRegion *mr);
1141 * memory_region_is_logging: return whether a memory region is logging writes
1143 * Returns %true if the memory region is logging writes for the given client
1145 * @mr: the memory region being queried
1146 * @client: the client being queried
1148 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1151 * memory_region_get_dirty_log_mask: return the clients for which a
1152 * memory region is logging writes.
1154 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1155 * are the bit indices.
1157 * @mr: the memory region being queried
1159 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1162 * memory_region_is_rom: check whether a memory region is ROM
1164 * Returns %true if a memory region is read-only memory.
1166 * @mr: the memory region being queried
1168 static inline bool memory_region_is_rom(MemoryRegion *mr)
1170 return mr->ram && mr->readonly;
1175 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1177 * Returns a file descriptor backing a file-based RAM memory region,
1178 * or -1 if the region is not a file-based RAM memory region.
1180 * @mr: the RAM or alias memory region being queried.
1182 int memory_region_get_fd(MemoryRegion *mr);
1185 * memory_region_from_host: Convert a pointer into a RAM memory region
1186 * and an offset within it.
1188 * Given a host pointer inside a RAM memory region (created with
1189 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1190 * the MemoryRegion and the offset within it.
1192 * Use with care; by the time this function returns, the returned pointer is
1193 * not protected by RCU anymore. If the caller is not within an RCU critical
1194 * section and does not hold the iothread lock, it must have other means of
1195 * protecting the pointer, such as a reference to the region that includes
1196 * the incoming ram_addr_t.
1198 * @ptr: the host pointer to be converted
1199 * @offset: the offset within memory region
1201 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1204 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1206 * Returns a host pointer to a RAM memory region (created with
1207 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1209 * Use with care; by the time this function returns, the returned pointer is
1210 * not protected by RCU anymore. If the caller is not within an RCU critical
1211 * section and does not hold the iothread lock, it must have other means of
1212 * protecting the pointer, such as a reference to the region that includes
1213 * the incoming ram_addr_t.
1215 * @mr: the memory region being queried.
1217 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1219 /* memory_region_ram_resize: Resize a RAM region.
1221 * Only legal before guest might have detected the memory size: e.g. on
1222 * incoming migration, or right after reset.
1224 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1225 * @newsize: the new size the region
1226 * @errp: pointer to Error*, to store an error if it happens.
1228 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1229 Error **errp);
1232 * memory_region_set_log: Turn dirty logging on or off for a region.
1234 * Turns dirty logging on or off for a specified client (display, migration).
1235 * Only meaningful for RAM regions.
1237 * @mr: the memory region being updated.
1238 * @log: whether dirty logging is to be enabled or disabled.
1239 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1241 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1244 * memory_region_get_dirty: Check whether a range of bytes is dirty
1245 * for a specified client.
1247 * Checks whether a range of bytes has been written to since the last
1248 * call to memory_region_reset_dirty() with the same @client. Dirty logging
1249 * must be enabled.
1251 * @mr: the memory region being queried.
1252 * @addr: the address (relative to the start of the region) being queried.
1253 * @size: the size of the range being queried.
1254 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1255 * %DIRTY_MEMORY_VGA.
1257 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1258 hwaddr size, unsigned client);
1261 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1263 * Marks a range of bytes as dirty, after it has been dirtied outside
1264 * guest code.
1266 * @mr: the memory region being dirtied.
1267 * @addr: the address (relative to the start of the region) being dirtied.
1268 * @size: size of the range being dirtied.
1270 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1271 hwaddr size);
1274 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1275 * bitmap and clear it.
1277 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1278 * returns the snapshot. The snapshot can then be used to query dirty
1279 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
1280 * querying the same page multiple times, which is especially useful for
1281 * display updates where the scanlines often are not page aligned.
1283 * The dirty bitmap region which gets copyed into the snapshot (and
1284 * cleared afterwards) can be larger than requested. The boundaries
1285 * are rounded up/down so complete bitmap longs (covering 64 pages on
1286 * 64bit hosts) can be copied over into the bitmap snapshot. Which
1287 * isn't a problem for display updates as the extra pages are outside
1288 * the visible area, and in case the visible area changes a full
1289 * display redraw is due anyway. Should other use cases for this
1290 * function emerge we might have to revisit this implementation
1291 * detail.
1293 * Use g_free to release DirtyBitmapSnapshot.
1295 * @mr: the memory region being queried.
1296 * @addr: the address (relative to the start of the region) being queried.
1297 * @size: the size of the range being queried.
1298 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1300 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1301 hwaddr addr,
1302 hwaddr size,
1303 unsigned client);
1306 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1307 * in the specified dirty bitmap snapshot.
1309 * @mr: the memory region being queried.
1310 * @snap: the dirty bitmap snapshot
1311 * @addr: the address (relative to the start of the region) being queried.
1312 * @size: the size of the range being queried.
1314 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1315 DirtyBitmapSnapshot *snap,
1316 hwaddr addr, hwaddr size);
1319 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1320 * client.
1322 * Marks a range of pages as no longer dirty.
1324 * @mr: the region being updated.
1325 * @addr: the start of the subrange being cleaned.
1326 * @size: the size of the subrange being cleaned.
1327 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1328 * %DIRTY_MEMORY_VGA.
1330 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1331 hwaddr size, unsigned client);
1334 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1336 * Allows a memory region to be marked as read-only (turning it into a ROM).
1337 * only useful on RAM regions.
1339 * @mr: the region being updated.
1340 * @readonly: whether rhe region is to be ROM or RAM.
1342 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1345 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1347 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1348 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
1349 * device is mapped to guest memory and satisfies read access directly.
1350 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1351 * Writes are always handled by the #MemoryRegion.write function.
1353 * @mr: the memory region to be updated
1354 * @romd_mode: %true to put the region into ROMD mode
1356 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1359 * memory_region_set_coalescing: Enable memory coalescing for the region.
1361 * Enabled writes to a region to be queued for later processing. MMIO ->write
1362 * callbacks may be delayed until a non-coalesced MMIO is issued.
1363 * Only useful for IO regions. Roughly similar to write-combining hardware.
1365 * @mr: the memory region to be write coalesced
1367 void memory_region_set_coalescing(MemoryRegion *mr);
1370 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1371 * a region.
1373 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1374 * Multiple calls can be issued coalesced disjoint ranges.
1376 * @mr: the memory region to be updated.
1377 * @offset: the start of the range within the region to be coalesced.
1378 * @size: the size of the subrange to be coalesced.
1380 void memory_region_add_coalescing(MemoryRegion *mr,
1381 hwaddr offset,
1382 uint64_t size);
1385 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1387 * Disables any coalescing caused by memory_region_set_coalescing() or
1388 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
1389 * hardware.
1391 * @mr: the memory region to be updated.
1393 void memory_region_clear_coalescing(MemoryRegion *mr);
1396 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1397 * accesses.
1399 * Ensure that pending coalesced MMIO request are flushed before the memory
1400 * region is accessed. This property is automatically enabled for all regions
1401 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1403 * @mr: the memory region to be updated.
1405 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1408 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1409 * accesses.
1411 * Clear the automatic coalesced MMIO flushing enabled via
1412 * memory_region_set_flush_coalesced. Note that this service has no effect on
1413 * memory regions that have MMIO coalescing enabled for themselves. For them,
1414 * automatic flushing will stop once coalescing is disabled.
1416 * @mr: the memory region to be updated.
1418 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1421 * memory_region_clear_global_locking: Declares that access processing does
1422 * not depend on the QEMU global lock.
1424 * By clearing this property, accesses to the memory region will be processed
1425 * outside of QEMU's global lock (unless the lock is held on when issuing the
1426 * access request). In this case, the device model implementing the access
1427 * handlers is responsible for synchronization of concurrency.
1429 * @mr: the memory region to be updated.
1431 void memory_region_clear_global_locking(MemoryRegion *mr);
1434 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1435 * is written to a location.
1437 * Marks a word in an IO region (initialized with memory_region_init_io())
1438 * as a trigger for an eventfd event. The I/O callback will not be called.
1439 * The caller must be prepared to handle failure (that is, take the required
1440 * action if the callback _is_ called).
1442 * @mr: the memory region being updated.
1443 * @addr: the address within @mr that is to be monitored
1444 * @size: the size of the access to trigger the eventfd
1445 * @match_data: whether to match against @data, instead of just @addr
1446 * @data: the data to match against the guest write
1447 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1449 void memory_region_add_eventfd(MemoryRegion *mr,
1450 hwaddr addr,
1451 unsigned size,
1452 bool match_data,
1453 uint64_t data,
1454 EventNotifier *e);
1457 * memory_region_del_eventfd: Cancel an eventfd.
1459 * Cancels an eventfd trigger requested by a previous
1460 * memory_region_add_eventfd() call.
1462 * @mr: the memory region being updated.
1463 * @addr: the address within @mr that is to be monitored
1464 * @size: the size of the access to trigger the eventfd
1465 * @match_data: whether to match against @data, instead of just @addr
1466 * @data: the data to match against the guest write
1467 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1469 void memory_region_del_eventfd(MemoryRegion *mr,
1470 hwaddr addr,
1471 unsigned size,
1472 bool match_data,
1473 uint64_t data,
1474 EventNotifier *e);
1477 * memory_region_add_subregion: Add a subregion to a container.
1479 * Adds a subregion at @offset. The subregion may not overlap with other
1480 * subregions (except for those explicitly marked as overlapping). A region
1481 * may only be added once as a subregion (unless removed with
1482 * memory_region_del_subregion()); use memory_region_init_alias() if you
1483 * want a region to be a subregion in multiple locations.
1485 * @mr: the region to contain the new subregion; must be a container
1486 * initialized with memory_region_init().
1487 * @offset: the offset relative to @mr where @subregion is added.
1488 * @subregion: the subregion to be added.
1490 void memory_region_add_subregion(MemoryRegion *mr,
1491 hwaddr offset,
1492 MemoryRegion *subregion);
1494 * memory_region_add_subregion_overlap: Add a subregion to a container
1495 * with overlap.
1497 * Adds a subregion at @offset. The subregion may overlap with other
1498 * subregions. Conflicts are resolved by having a higher @priority hide a
1499 * lower @priority. Subregions without priority are taken as @priority 0.
1500 * A region may only be added once as a subregion (unless removed with
1501 * memory_region_del_subregion()); use memory_region_init_alias() if you
1502 * want a region to be a subregion in multiple locations.
1504 * @mr: the region to contain the new subregion; must be a container
1505 * initialized with memory_region_init().
1506 * @offset: the offset relative to @mr where @subregion is added.
1507 * @subregion: the subregion to be added.
1508 * @priority: used for resolving overlaps; highest priority wins.
1510 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1511 hwaddr offset,
1512 MemoryRegion *subregion,
1513 int priority);
1516 * memory_region_get_ram_addr: Get the ram address associated with a memory
1517 * region
1519 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1521 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1523 * memory_region_del_subregion: Remove a subregion.
1525 * Removes a subregion from its container.
1527 * @mr: the container to be updated.
1528 * @subregion: the region being removed; must be a current subregion of @mr.
1530 void memory_region_del_subregion(MemoryRegion *mr,
1531 MemoryRegion *subregion);
1534 * memory_region_set_enabled: dynamically enable or disable a region
1536 * Enables or disables a memory region. A disabled memory region
1537 * ignores all accesses to itself and its subregions. It does not
1538 * obscure sibling subregions with lower priority - it simply behaves as
1539 * if it was removed from the hierarchy.
1541 * Regions default to being enabled.
1543 * @mr: the region to be updated
1544 * @enabled: whether to enable or disable the region
1546 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1549 * memory_region_set_address: dynamically update the address of a region
1551 * Dynamically updates the address of a region, relative to its container.
1552 * May be used on regions are currently part of a memory hierarchy.
1554 * @mr: the region to be updated
1555 * @addr: new address, relative to container region
1557 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1560 * memory_region_set_size: dynamically update the size of a region.
1562 * Dynamically updates the size of a region.
1564 * @mr: the region to be updated
1565 * @size: used size of the region.
1567 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1570 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1572 * Dynamically updates the offset into the target region that an alias points
1573 * to, as if the fourth argument to memory_region_init_alias() has changed.
1575 * @mr: the #MemoryRegion to be updated; should be an alias.
1576 * @offset: the new offset into the target memory region
1578 void memory_region_set_alias_offset(MemoryRegion *mr,
1579 hwaddr offset);
1582 * memory_region_present: checks if an address relative to a @container
1583 * translates into #MemoryRegion within @container
1585 * Answer whether a #MemoryRegion within @container covers the address
1586 * @addr.
1588 * @container: a #MemoryRegion within which @addr is a relative address
1589 * @addr: the area within @container to be searched
1591 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1594 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1595 * into any address space.
1597 * @mr: a #MemoryRegion which should be checked if it's mapped
1599 bool memory_region_is_mapped(MemoryRegion *mr);
1602 * memory_region_find: translate an address/size relative to a
1603 * MemoryRegion into a #MemoryRegionSection.
1605 * Locates the first #MemoryRegion within @mr that overlaps the range
1606 * given by @addr and @size.
1608 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1609 * It will have the following characteristics:
1610 * .@size = 0 iff no overlap was found
1611 * .@mr is non-%NULL iff an overlap was found
1613 * Remember that in the return value the @offset_within_region is
1614 * relative to the returned region (in the .@mr field), not to the
1615 * @mr argument.
1617 * Similarly, the .@offset_within_address_space is relative to the
1618 * address space that contains both regions, the passed and the
1619 * returned one. However, in the special case where the @mr argument
1620 * has no container (and thus is the root of the address space), the
1621 * following will hold:
1622 * .@offset_within_address_space >= @addr
1623 * .@offset_within_address_space + .@size <= @addr + @size
1625 * @mr: a MemoryRegion within which @addr is a relative address
1626 * @addr: start of the area within @as to be searched
1627 * @size: size of the area to be searched
1629 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1630 hwaddr addr, uint64_t size);
1633 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1635 * Synchronizes the dirty page log for all address spaces.
1637 void memory_global_dirty_log_sync(void);
1640 * memory_region_transaction_begin: Start a transaction.
1642 * During a transaction, changes will be accumulated and made visible
1643 * only when the transaction ends (is committed).
1645 void memory_region_transaction_begin(void);
1648 * memory_region_transaction_commit: Commit a transaction and make changes
1649 * visible to the guest.
1651 void memory_region_transaction_commit(void);
1654 * memory_listener_register: register callbacks to be called when memory
1655 * sections are mapped or unmapped into an address
1656 * space
1658 * @listener: an object containing the callbacks to be called
1659 * @filter: if non-%NULL, only regions in this address space will be observed
1661 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1664 * memory_listener_unregister: undo the effect of memory_listener_register()
1666 * @listener: an object containing the callbacks to be removed
1668 void memory_listener_unregister(MemoryListener *listener);
1671 * memory_global_dirty_log_start: begin dirty logging for all regions
1673 void memory_global_dirty_log_start(void);
1676 * memory_global_dirty_log_stop: end dirty logging for all regions
1678 void memory_global_dirty_log_stop(void);
1680 void mtree_info(fprintf_function mon_printf, void *f, bool flatview,
1681 bool dispatch_tree, bool owner);
1684 * memory_region_dispatch_read: perform a read directly to the specified
1685 * MemoryRegion.
1687 * @mr: #MemoryRegion to access
1688 * @addr: address within that region
1689 * @pval: pointer to uint64_t which the data is written to
1690 * @size: size of the access in bytes
1691 * @attrs: memory transaction attributes to use for the access
1693 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1694 hwaddr addr,
1695 uint64_t *pval,
1696 unsigned size,
1697 MemTxAttrs attrs);
1699 * memory_region_dispatch_write: perform a write directly to the specified
1700 * MemoryRegion.
1702 * @mr: #MemoryRegion to access
1703 * @addr: address within that region
1704 * @data: data to write
1705 * @size: size of the access in bytes
1706 * @attrs: memory transaction attributes to use for the access
1708 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1709 hwaddr addr,
1710 uint64_t data,
1711 unsigned size,
1712 MemTxAttrs attrs);
1715 * address_space_init: initializes an address space
1717 * @as: an uninitialized #AddressSpace
1718 * @root: a #MemoryRegion that routes addresses for the address space
1719 * @name: an address space name. The name is only used for debugging
1720 * output.
1722 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1725 * address_space_destroy: destroy an address space
1727 * Releases all resources associated with an address space. After an address space
1728 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1729 * as well.
1731 * @as: address space to be destroyed
1733 void address_space_destroy(AddressSpace *as);
1736 * address_space_rw: read from or write to an address space.
1738 * Return a MemTxResult indicating whether the operation succeeded
1739 * or failed (eg unassigned memory, device rejected the transaction,
1740 * IOMMU fault).
1742 * @as: #AddressSpace to be accessed
1743 * @addr: address within that address space
1744 * @attrs: memory transaction attributes
1745 * @buf: buffer with the data transferred
1746 * @len: the number of bytes to read or write
1747 * @is_write: indicates the transfer direction
1749 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1750 MemTxAttrs attrs, uint8_t *buf,
1751 int len, bool is_write);
1754 * address_space_write: write to address space.
1756 * Return a MemTxResult indicating whether the operation succeeded
1757 * or failed (eg unassigned memory, device rejected the transaction,
1758 * IOMMU fault).
1760 * @as: #AddressSpace to be accessed
1761 * @addr: address within that address space
1762 * @attrs: memory transaction attributes
1763 * @buf: buffer with the data transferred
1764 * @len: the number of bytes to write
1766 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1767 MemTxAttrs attrs,
1768 const uint8_t *buf, int len);
1770 /* address_space_ld*: load from an address space
1771 * address_space_st*: store to an address space
1773 * These functions perform a load or store of the byte, word,
1774 * longword or quad to the specified address within the AddressSpace.
1775 * The _le suffixed functions treat the data as little endian;
1776 * _be indicates big endian; no suffix indicates "same endianness
1777 * as guest CPU".
1779 * The "guest CPU endianness" accessors are deprecated for use outside
1780 * target-* code; devices should be CPU-agnostic and use either the LE
1781 * or the BE accessors.
1783 * @as #AddressSpace to be accessed
1784 * @addr: address within that address space
1785 * @val: data value, for stores
1786 * @attrs: memory transaction attributes
1787 * @result: location to write the success/failure of the transaction;
1788 * if NULL, this information is discarded
1791 #define SUFFIX
1792 #define ARG1 as
1793 #define ARG1_DECL AddressSpace *as
1794 #include "exec/memory_ldst.inc.h"
1796 #define SUFFIX
1797 #define ARG1 as
1798 #define ARG1_DECL AddressSpace *as
1799 #include "exec/memory_ldst_phys.inc.h"
1801 struct MemoryRegionCache {
1802 void *ptr;
1803 hwaddr xlat;
1804 hwaddr len;
1805 FlatView *fv;
1806 MemoryRegionSection mrs;
1807 bool is_write;
1810 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
1813 /* address_space_ld*_cached: load from a cached #MemoryRegion
1814 * address_space_st*_cached: store into a cached #MemoryRegion
1816 * These functions perform a load or store of the byte, word,
1817 * longword or quad to the specified address. The address is
1818 * a physical address in the AddressSpace, but it must lie within
1819 * a #MemoryRegion that was mapped with address_space_cache_init.
1821 * The _le suffixed functions treat the data as little endian;
1822 * _be indicates big endian; no suffix indicates "same endianness
1823 * as guest CPU".
1825 * The "guest CPU endianness" accessors are deprecated for use outside
1826 * target-* code; devices should be CPU-agnostic and use either the LE
1827 * or the BE accessors.
1829 * @cache: previously initialized #MemoryRegionCache to be accessed
1830 * @addr: address within the address space
1831 * @val: data value, for stores
1832 * @attrs: memory transaction attributes
1833 * @result: location to write the success/failure of the transaction;
1834 * if NULL, this information is discarded
1837 #define SUFFIX _cached_slow
1838 #define ARG1 cache
1839 #define ARG1_DECL MemoryRegionCache *cache
1840 #include "exec/memory_ldst.inc.h"
1842 /* Inline fast path for direct RAM access. */
1843 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
1844 hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
1846 assert(addr < cache->len);
1847 if (likely(cache->ptr)) {
1848 return ldub_p(cache->ptr + addr);
1849 } else {
1850 return address_space_ldub_cached_slow(cache, addr, attrs, result);
1854 static inline void address_space_stb_cached(MemoryRegionCache *cache,
1855 hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
1857 assert(addr < cache->len);
1858 if (likely(cache->ptr)) {
1859 stb_p(cache->ptr + addr, val);
1860 } else {
1861 address_space_stb_cached_slow(cache, addr, val, attrs, result);
1865 #define ENDIANNESS _le
1866 #include "exec/memory_ldst_cached.inc.h"
1868 #define ENDIANNESS _be
1869 #include "exec/memory_ldst_cached.inc.h"
1871 #define SUFFIX _cached
1872 #define ARG1 cache
1873 #define ARG1_DECL MemoryRegionCache *cache
1874 #include "exec/memory_ldst_phys.inc.h"
1876 /* address_space_cache_init: prepare for repeated access to a physical
1877 * memory region
1879 * @cache: #MemoryRegionCache to be filled
1880 * @as: #AddressSpace to be accessed
1881 * @addr: address within that address space
1882 * @len: length of buffer
1883 * @is_write: indicates the transfer direction
1885 * Will only work with RAM, and may map a subset of the requested range by
1886 * returning a value that is less than @len. On failure, return a negative
1887 * errno value.
1889 * Because it only works with RAM, this function can be used for
1890 * read-modify-write operations. In this case, is_write should be %true.
1892 * Note that addresses passed to the address_space_*_cached functions
1893 * are relative to @addr.
1895 int64_t address_space_cache_init(MemoryRegionCache *cache,
1896 AddressSpace *as,
1897 hwaddr addr,
1898 hwaddr len,
1899 bool is_write);
1902 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1904 * @cache: The #MemoryRegionCache to operate on.
1905 * @addr: The first physical address that was written, relative to the
1906 * address that was passed to @address_space_cache_init.
1907 * @access_len: The number of bytes that were written starting at @addr.
1909 void address_space_cache_invalidate(MemoryRegionCache *cache,
1910 hwaddr addr,
1911 hwaddr access_len);
1914 * address_space_cache_destroy: free a #MemoryRegionCache
1916 * @cache: The #MemoryRegionCache whose memory should be released.
1918 void address_space_cache_destroy(MemoryRegionCache *cache);
1920 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1921 * entry. Should be called from an RCU critical section.
1923 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1924 bool is_write, MemTxAttrs attrs);
1926 /* address_space_translate: translate an address range into an address space
1927 * into a MemoryRegion and an address range into that section. Should be
1928 * called from an RCU critical section, to avoid that the last reference
1929 * to the returned region disappears after address_space_translate returns.
1931 * @fv: #FlatView to be accessed
1932 * @addr: address within that address space
1933 * @xlat: pointer to address within the returned memory region section's
1934 * #MemoryRegion.
1935 * @len: pointer to length
1936 * @is_write: indicates the transfer direction
1937 * @attrs: memory attributes
1939 MemoryRegion *flatview_translate(FlatView *fv,
1940 hwaddr addr, hwaddr *xlat,
1941 hwaddr *len, bool is_write,
1942 MemTxAttrs attrs);
1944 static inline MemoryRegion *address_space_translate(AddressSpace *as,
1945 hwaddr addr, hwaddr *xlat,
1946 hwaddr *len, bool is_write,
1947 MemTxAttrs attrs)
1949 return flatview_translate(address_space_to_flatview(as),
1950 addr, xlat, len, is_write, attrs);
1953 /* address_space_access_valid: check for validity of accessing an address
1954 * space range
1956 * Check whether memory is assigned to the given address space range, and
1957 * access is permitted by any IOMMU regions that are active for the address
1958 * space.
1960 * For now, addr and len should be aligned to a page size. This limitation
1961 * will be lifted in the future.
1963 * @as: #AddressSpace to be accessed
1964 * @addr: address within that address space
1965 * @len: length of the area to be checked
1966 * @is_write: indicates the transfer direction
1967 * @attrs: memory attributes
1969 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len,
1970 bool is_write, MemTxAttrs attrs);
1972 /* address_space_map: map a physical memory region into a host virtual address
1974 * May map a subset of the requested range, given by and returned in @plen.
1975 * May return %NULL if resources needed to perform the mapping are exhausted.
1976 * Use only for reads OR writes - not for read-modify-write operations.
1977 * Use cpu_register_map_client() to know when retrying the map operation is
1978 * likely to succeed.
1980 * @as: #AddressSpace to be accessed
1981 * @addr: address within that address space
1982 * @plen: pointer to length of buffer; updated on return
1983 * @is_write: indicates the transfer direction
1984 * @attrs: memory attributes
1986 void *address_space_map(AddressSpace *as, hwaddr addr,
1987 hwaddr *plen, bool is_write, MemTxAttrs attrs);
1989 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1991 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1992 * the amount of memory that was actually read or written by the caller.
1994 * @as: #AddressSpace used
1995 * @buffer: host pointer as returned by address_space_map()
1996 * @len: buffer length as returned by address_space_map()
1997 * @access_len: amount of data actually transferred
1998 * @is_write: indicates the transfer direction
2000 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2001 int is_write, hwaddr access_len);
2004 /* Internal functions, part of the implementation of address_space_read. */
2005 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2006 MemTxAttrs attrs, uint8_t *buf, int len);
2007 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2008 MemTxAttrs attrs, uint8_t *buf,
2009 int len, hwaddr addr1, hwaddr l,
2010 MemoryRegion *mr);
2011 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2013 /* Internal functions, part of the implementation of address_space_read_cached
2014 * and address_space_write_cached. */
2015 void address_space_read_cached_slow(MemoryRegionCache *cache,
2016 hwaddr addr, void *buf, int len);
2017 void address_space_write_cached_slow(MemoryRegionCache *cache,
2018 hwaddr addr, const void *buf, int len);
2020 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2022 if (is_write) {
2023 return memory_region_is_ram(mr) &&
2024 !mr->readonly && !memory_region_is_ram_device(mr);
2025 } else {
2026 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2027 memory_region_is_romd(mr);
2032 * address_space_read: read from an address space.
2034 * Return a MemTxResult indicating whether the operation succeeded
2035 * or failed (eg unassigned memory, device rejected the transaction,
2036 * IOMMU fault). Called within RCU critical section.
2038 * @as: #AddressSpace to be accessed
2039 * @addr: address within that address space
2040 * @attrs: memory transaction attributes
2041 * @buf: buffer with the data transferred
2043 static inline __attribute__((__always_inline__))
2044 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2045 MemTxAttrs attrs, uint8_t *buf,
2046 int len)
2048 MemTxResult result = MEMTX_OK;
2049 hwaddr l, addr1;
2050 void *ptr;
2051 MemoryRegion *mr;
2052 FlatView *fv;
2054 if (__builtin_constant_p(len)) {
2055 if (len) {
2056 rcu_read_lock();
2057 fv = address_space_to_flatview(as);
2058 l = len;
2059 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2060 if (len == l && memory_access_is_direct(mr, false)) {
2061 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2062 memcpy(buf, ptr, len);
2063 } else {
2064 result = flatview_read_continue(fv, addr, attrs, buf, len,
2065 addr1, l, mr);
2067 rcu_read_unlock();
2069 } else {
2070 result = address_space_read_full(as, addr, attrs, buf, len);
2072 return result;
2076 * address_space_read_cached: read from a cached RAM region
2078 * @cache: Cached region to be addressed
2079 * @addr: address relative to the base of the RAM region
2080 * @buf: buffer with the data transferred
2081 * @len: length of the data transferred
2083 static inline void
2084 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2085 void *buf, int len)
2087 assert(addr < cache->len && len <= cache->len - addr);
2088 if (likely(cache->ptr)) {
2089 memcpy(buf, cache->ptr + addr, len);
2090 } else {
2091 address_space_read_cached_slow(cache, addr, buf, len);
2096 * address_space_write_cached: write to a cached RAM region
2098 * @cache: Cached region to be addressed
2099 * @addr: address relative to the base of the RAM region
2100 * @buf: buffer with the data transferred
2101 * @len: length of the data transferred
2103 static inline void
2104 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2105 void *buf, int len)
2107 assert(addr < cache->len && len <= cache->len - addr);
2108 if (likely(cache->ptr)) {
2109 memcpy(cache->ptr + addr, buf, len);
2110 } else {
2111 address_space_write_cached_slow(cache, addr, buf, len);
2115 #endif
2117 #endif