2 * Common CPU TLB handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
30 #include "qemu/error-report.h"
32 #include "exec/helper-proto.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace/trace-root.h"
40 #include "qemu/plugin-memory.h"
42 #include "tcg/tcg-ldst.h"
44 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
45 /* #define DEBUG_TLB */
46 /* #define DEBUG_TLB_LOG */
49 # define DEBUG_TLB_GATE 1
51 # define DEBUG_TLB_LOG_GATE 1
53 # define DEBUG_TLB_LOG_GATE 0
56 # define DEBUG_TLB_GATE 0
57 # define DEBUG_TLB_LOG_GATE 0
60 #define tlb_debug(fmt, ...) do { \
61 if (DEBUG_TLB_LOG_GATE) { \
62 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
64 } else if (DEBUG_TLB_GATE) { \
65 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
69 #define assert_cpu_is_self(cpu) do { \
70 if (DEBUG_TLB_GATE) { \
71 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
75 /* run_on_cpu_data.target_ptr should always be big enough for a
76 * target_ulong even on 32 bit builds */
77 QEMU_BUILD_BUG_ON(sizeof(target_ulong
) > sizeof(run_on_cpu_data
));
79 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
81 QEMU_BUILD_BUG_ON(NB_MMU_MODES
> 16);
82 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
84 static inline size_t tlb_n_entries(CPUTLBDescFast
*fast
)
86 return (fast
->mask
>> CPU_TLB_ENTRY_BITS
) + 1;
89 static inline size_t sizeof_tlb(CPUTLBDescFast
*fast
)
91 return fast
->mask
+ (1 << CPU_TLB_ENTRY_BITS
);
94 static void tlb_window_reset(CPUTLBDesc
*desc
, int64_t ns
,
97 desc
->window_begin_ns
= ns
;
98 desc
->window_max_entries
= max_entries
;
101 static void tb_jmp_cache_clear_page(CPUState
*cpu
, target_ulong page_addr
)
103 unsigned int i
, i0
= tb_jmp_cache_hash_page(page_addr
);
105 for (i
= 0; i
< TB_JMP_PAGE_SIZE
; i
++) {
106 qatomic_set(&cpu
->tb_jmp_cache
[i0
+ i
], NULL
);
110 static void tb_flush_jmp_cache(CPUState
*cpu
, target_ulong addr
)
112 /* Discard jump cache entries for any tb which might potentially
113 overlap the flushed page. */
114 tb_jmp_cache_clear_page(cpu
, addr
- TARGET_PAGE_SIZE
);
115 tb_jmp_cache_clear_page(cpu
, addr
);
119 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
120 * @desc: The CPUTLBDesc portion of the TLB
121 * @fast: The CPUTLBDescFast portion of the same TLB
123 * Called with tlb_lock_held.
125 * We have two main constraints when resizing a TLB: (1) we only resize it
126 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
127 * the array or unnecessarily flushing it), which means we do not control how
128 * frequently the resizing can occur; (2) we don't have access to the guest's
129 * future scheduling decisions, and therefore have to decide the magnitude of
130 * the resize based on past observations.
132 * In general, a memory-hungry process can benefit greatly from an appropriately
133 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
134 * we just have to make the TLB as large as possible; while an oversized TLB
135 * results in minimal TLB miss rates, it also takes longer to be flushed
136 * (flushes can be _very_ frequent), and the reduced locality can also hurt
139 * To achieve near-optimal performance for all kinds of workloads, we:
141 * 1. Aggressively increase the size of the TLB when the use rate of the
142 * TLB being flushed is high, since it is likely that in the near future this
143 * memory-hungry process will execute again, and its memory hungriness will
144 * probably be similar.
146 * 2. Slowly reduce the size of the TLB as the use rate declines over a
147 * reasonably large time window. The rationale is that if in such a time window
148 * we have not observed a high TLB use rate, it is likely that we won't observe
149 * it in the near future. In that case, once a time window expires we downsize
150 * the TLB to match the maximum use rate observed in the window.
152 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
153 * since in that range performance is likely near-optimal. Recall that the TLB
154 * is direct mapped, so we want the use rate to be low (or at least not too
155 * high), since otherwise we are likely to have a significant amount of
158 static void tlb_mmu_resize_locked(CPUTLBDesc
*desc
, CPUTLBDescFast
*fast
,
161 size_t old_size
= tlb_n_entries(fast
);
163 size_t new_size
= old_size
;
164 int64_t window_len_ms
= 100;
165 int64_t window_len_ns
= window_len_ms
* 1000 * 1000;
166 bool window_expired
= now
> desc
->window_begin_ns
+ window_len_ns
;
168 if (desc
->n_used_entries
> desc
->window_max_entries
) {
169 desc
->window_max_entries
= desc
->n_used_entries
;
171 rate
= desc
->window_max_entries
* 100 / old_size
;
174 new_size
= MIN(old_size
<< 1, 1 << CPU_TLB_DYN_MAX_BITS
);
175 } else if (rate
< 30 && window_expired
) {
176 size_t ceil
= pow2ceil(desc
->window_max_entries
);
177 size_t expected_rate
= desc
->window_max_entries
* 100 / ceil
;
180 * Avoid undersizing when the max number of entries seen is just below
181 * a pow2. For instance, if max_entries == 1025, the expected use rate
182 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
183 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
184 * later. Thus, make sure that the expected use rate remains below 70%.
185 * (and since we double the size, that means the lowest rate we'd
186 * expect to get is 35%, which is still in the 30-70% range where
187 * we consider that the size is appropriate.)
189 if (expected_rate
> 70) {
192 new_size
= MAX(ceil
, 1 << CPU_TLB_DYN_MIN_BITS
);
195 if (new_size
== old_size
) {
196 if (window_expired
) {
197 tlb_window_reset(desc
, now
, desc
->n_used_entries
);
205 tlb_window_reset(desc
, now
, 0);
206 /* desc->n_used_entries is cleared by the caller */
207 fast
->mask
= (new_size
- 1) << CPU_TLB_ENTRY_BITS
;
208 fast
->table
= g_try_new(CPUTLBEntry
, new_size
);
209 desc
->iotlb
= g_try_new(CPUIOTLBEntry
, new_size
);
212 * If the allocations fail, try smaller sizes. We just freed some
213 * memory, so going back to half of new_size has a good chance of working.
214 * Increased memory pressure elsewhere in the system might cause the
215 * allocations to fail though, so we progressively reduce the allocation
216 * size, aborting if we cannot even allocate the smallest TLB we support.
218 while (fast
->table
== NULL
|| desc
->iotlb
== NULL
) {
219 if (new_size
== (1 << CPU_TLB_DYN_MIN_BITS
)) {
220 error_report("%s: %s", __func__
, strerror(errno
));
223 new_size
= MAX(new_size
>> 1, 1 << CPU_TLB_DYN_MIN_BITS
);
224 fast
->mask
= (new_size
- 1) << CPU_TLB_ENTRY_BITS
;
228 fast
->table
= g_try_new(CPUTLBEntry
, new_size
);
229 desc
->iotlb
= g_try_new(CPUIOTLBEntry
, new_size
);
233 static void tlb_mmu_flush_locked(CPUTLBDesc
*desc
, CPUTLBDescFast
*fast
)
235 desc
->n_used_entries
= 0;
236 desc
->large_page_addr
= -1;
237 desc
->large_page_mask
= -1;
239 memset(fast
->table
, -1, sizeof_tlb(fast
));
240 memset(desc
->vtable
, -1, sizeof(desc
->vtable
));
243 static void tlb_flush_one_mmuidx_locked(CPUArchState
*env
, int mmu_idx
,
246 CPUTLBDesc
*desc
= &env_tlb(env
)->d
[mmu_idx
];
247 CPUTLBDescFast
*fast
= &env_tlb(env
)->f
[mmu_idx
];
249 tlb_mmu_resize_locked(desc
, fast
, now
);
250 tlb_mmu_flush_locked(desc
, fast
);
253 static void tlb_mmu_init(CPUTLBDesc
*desc
, CPUTLBDescFast
*fast
, int64_t now
)
255 size_t n_entries
= 1 << CPU_TLB_DYN_DEFAULT_BITS
;
257 tlb_window_reset(desc
, now
, 0);
258 desc
->n_used_entries
= 0;
259 fast
->mask
= (n_entries
- 1) << CPU_TLB_ENTRY_BITS
;
260 fast
->table
= g_new(CPUTLBEntry
, n_entries
);
261 desc
->iotlb
= g_new(CPUIOTLBEntry
, n_entries
);
262 tlb_mmu_flush_locked(desc
, fast
);
265 static inline void tlb_n_used_entries_inc(CPUArchState
*env
, uintptr_t mmu_idx
)
267 env_tlb(env
)->d
[mmu_idx
].n_used_entries
++;
270 static inline void tlb_n_used_entries_dec(CPUArchState
*env
, uintptr_t mmu_idx
)
272 env_tlb(env
)->d
[mmu_idx
].n_used_entries
--;
275 void tlb_init(CPUState
*cpu
)
277 CPUArchState
*env
= cpu
->env_ptr
;
278 int64_t now
= get_clock_realtime();
281 qemu_spin_init(&env_tlb(env
)->c
.lock
);
283 /* All tlbs are initialized flushed. */
284 env_tlb(env
)->c
.dirty
= 0;
286 for (i
= 0; i
< NB_MMU_MODES
; i
++) {
287 tlb_mmu_init(&env_tlb(env
)->d
[i
], &env_tlb(env
)->f
[i
], now
);
291 void tlb_destroy(CPUState
*cpu
)
293 CPUArchState
*env
= cpu
->env_ptr
;
296 qemu_spin_destroy(&env_tlb(env
)->c
.lock
);
297 for (i
= 0; i
< NB_MMU_MODES
; i
++) {
298 CPUTLBDesc
*desc
= &env_tlb(env
)->d
[i
];
299 CPUTLBDescFast
*fast
= &env_tlb(env
)->f
[i
];
306 /* flush_all_helper: run fn across all cpus
308 * If the wait flag is set then the src cpu's helper will be queued as
309 * "safe" work and the loop exited creating a synchronisation point
310 * where all queued work will be finished before execution starts
313 static void flush_all_helper(CPUState
*src
, run_on_cpu_func fn
,
320 async_run_on_cpu(cpu
, fn
, d
);
325 void tlb_flush_counts(size_t *pfull
, size_t *ppart
, size_t *pelide
)
328 size_t full
= 0, part
= 0, elide
= 0;
331 CPUArchState
*env
= cpu
->env_ptr
;
333 full
+= qatomic_read(&env_tlb(env
)->c
.full_flush_count
);
334 part
+= qatomic_read(&env_tlb(env
)->c
.part_flush_count
);
335 elide
+= qatomic_read(&env_tlb(env
)->c
.elide_flush_count
);
342 static void tlb_flush_by_mmuidx_async_work(CPUState
*cpu
, run_on_cpu_data data
)
344 CPUArchState
*env
= cpu
->env_ptr
;
345 uint16_t asked
= data
.host_int
;
346 uint16_t all_dirty
, work
, to_clean
;
347 int64_t now
= get_clock_realtime();
349 assert_cpu_is_self(cpu
);
351 tlb_debug("mmu_idx:0x%04" PRIx16
"\n", asked
);
353 qemu_spin_lock(&env_tlb(env
)->c
.lock
);
355 all_dirty
= env_tlb(env
)->c
.dirty
;
356 to_clean
= asked
& all_dirty
;
357 all_dirty
&= ~to_clean
;
358 env_tlb(env
)->c
.dirty
= all_dirty
;
360 for (work
= to_clean
; work
!= 0; work
&= work
- 1) {
361 int mmu_idx
= ctz32(work
);
362 tlb_flush_one_mmuidx_locked(env
, mmu_idx
, now
);
365 qemu_spin_unlock(&env_tlb(env
)->c
.lock
);
367 cpu_tb_jmp_cache_clear(cpu
);
369 if (to_clean
== ALL_MMUIDX_BITS
) {
370 qatomic_set(&env_tlb(env
)->c
.full_flush_count
,
371 env_tlb(env
)->c
.full_flush_count
+ 1);
373 qatomic_set(&env_tlb(env
)->c
.part_flush_count
,
374 env_tlb(env
)->c
.part_flush_count
+ ctpop16(to_clean
));
375 if (to_clean
!= asked
) {
376 qatomic_set(&env_tlb(env
)->c
.elide_flush_count
,
377 env_tlb(env
)->c
.elide_flush_count
+
378 ctpop16(asked
& ~to_clean
));
383 void tlb_flush_by_mmuidx(CPUState
*cpu
, uint16_t idxmap
)
385 tlb_debug("mmu_idx: 0x%" PRIx16
"\n", idxmap
);
387 if (cpu
->created
&& !qemu_cpu_is_self(cpu
)) {
388 async_run_on_cpu(cpu
, tlb_flush_by_mmuidx_async_work
,
389 RUN_ON_CPU_HOST_INT(idxmap
));
391 tlb_flush_by_mmuidx_async_work(cpu
, RUN_ON_CPU_HOST_INT(idxmap
));
395 void tlb_flush(CPUState
*cpu
)
397 tlb_flush_by_mmuidx(cpu
, ALL_MMUIDX_BITS
);
400 void tlb_flush_by_mmuidx_all_cpus(CPUState
*src_cpu
, uint16_t idxmap
)
402 const run_on_cpu_func fn
= tlb_flush_by_mmuidx_async_work
;
404 tlb_debug("mmu_idx: 0x%"PRIx16
"\n", idxmap
);
406 flush_all_helper(src_cpu
, fn
, RUN_ON_CPU_HOST_INT(idxmap
));
407 fn(src_cpu
, RUN_ON_CPU_HOST_INT(idxmap
));
410 void tlb_flush_all_cpus(CPUState
*src_cpu
)
412 tlb_flush_by_mmuidx_all_cpus(src_cpu
, ALL_MMUIDX_BITS
);
415 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState
*src_cpu
, uint16_t idxmap
)
417 const run_on_cpu_func fn
= tlb_flush_by_mmuidx_async_work
;
419 tlb_debug("mmu_idx: 0x%"PRIx16
"\n", idxmap
);
421 flush_all_helper(src_cpu
, fn
, RUN_ON_CPU_HOST_INT(idxmap
));
422 async_safe_run_on_cpu(src_cpu
, fn
, RUN_ON_CPU_HOST_INT(idxmap
));
425 void tlb_flush_all_cpus_synced(CPUState
*src_cpu
)
427 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu
, ALL_MMUIDX_BITS
);
430 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry
*tlb_entry
,
431 target_ulong page
, target_ulong mask
)
434 mask
&= TARGET_PAGE_MASK
| TLB_INVALID_MASK
;
436 return (page
== (tlb_entry
->addr_read
& mask
) ||
437 page
== (tlb_addr_write(tlb_entry
) & mask
) ||
438 page
== (tlb_entry
->addr_code
& mask
));
441 static inline bool tlb_hit_page_anyprot(CPUTLBEntry
*tlb_entry
,
444 return tlb_hit_page_mask_anyprot(tlb_entry
, page
, -1);
448 * tlb_entry_is_empty - return true if the entry is not in use
449 * @te: pointer to CPUTLBEntry
451 static inline bool tlb_entry_is_empty(const CPUTLBEntry
*te
)
453 return te
->addr_read
== -1 && te
->addr_write
== -1 && te
->addr_code
== -1;
456 /* Called with tlb_c.lock held */
457 static bool tlb_flush_entry_mask_locked(CPUTLBEntry
*tlb_entry
,
461 if (tlb_hit_page_mask_anyprot(tlb_entry
, page
, mask
)) {
462 memset(tlb_entry
, -1, sizeof(*tlb_entry
));
468 static inline bool tlb_flush_entry_locked(CPUTLBEntry
*tlb_entry
,
471 return tlb_flush_entry_mask_locked(tlb_entry
, page
, -1);
474 /* Called with tlb_c.lock held */
475 static void tlb_flush_vtlb_page_mask_locked(CPUArchState
*env
, int mmu_idx
,
479 CPUTLBDesc
*d
= &env_tlb(env
)->d
[mmu_idx
];
482 assert_cpu_is_self(env_cpu(env
));
483 for (k
= 0; k
< CPU_VTLB_SIZE
; k
++) {
484 if (tlb_flush_entry_mask_locked(&d
->vtable
[k
], page
, mask
)) {
485 tlb_n_used_entries_dec(env
, mmu_idx
);
490 static inline void tlb_flush_vtlb_page_locked(CPUArchState
*env
, int mmu_idx
,
493 tlb_flush_vtlb_page_mask_locked(env
, mmu_idx
, page
, -1);
496 static void tlb_flush_page_locked(CPUArchState
*env
, int midx
,
499 target_ulong lp_addr
= env_tlb(env
)->d
[midx
].large_page_addr
;
500 target_ulong lp_mask
= env_tlb(env
)->d
[midx
].large_page_mask
;
502 /* Check if we need to flush due to large pages. */
503 if ((page
& lp_mask
) == lp_addr
) {
504 tlb_debug("forcing full flush midx %d ("
505 TARGET_FMT_lx
"/" TARGET_FMT_lx
")\n",
506 midx
, lp_addr
, lp_mask
);
507 tlb_flush_one_mmuidx_locked(env
, midx
, get_clock_realtime());
509 if (tlb_flush_entry_locked(tlb_entry(env
, midx
, page
), page
)) {
510 tlb_n_used_entries_dec(env
, midx
);
512 tlb_flush_vtlb_page_locked(env
, midx
, page
);
517 * tlb_flush_page_by_mmuidx_async_0:
518 * @cpu: cpu on which to flush
519 * @addr: page of virtual address to flush
520 * @idxmap: set of mmu_idx to flush
522 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
523 * at @addr from the tlbs indicated by @idxmap from @cpu.
525 static void tlb_flush_page_by_mmuidx_async_0(CPUState
*cpu
,
529 CPUArchState
*env
= cpu
->env_ptr
;
532 assert_cpu_is_self(cpu
);
534 tlb_debug("page addr:" TARGET_FMT_lx
" mmu_map:0x%x\n", addr
, idxmap
);
536 qemu_spin_lock(&env_tlb(env
)->c
.lock
);
537 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
538 if ((idxmap
>> mmu_idx
) & 1) {
539 tlb_flush_page_locked(env
, mmu_idx
, addr
);
542 qemu_spin_unlock(&env_tlb(env
)->c
.lock
);
544 tb_flush_jmp_cache(cpu
, addr
);
548 * tlb_flush_page_by_mmuidx_async_1:
549 * @cpu: cpu on which to flush
550 * @data: encoded addr + idxmap
552 * Helper for tlb_flush_page_by_mmuidx and friends, called through
553 * async_run_on_cpu. The idxmap parameter is encoded in the page
554 * offset of the target_ptr field. This limits the set of mmu_idx
555 * that can be passed via this method.
557 static void tlb_flush_page_by_mmuidx_async_1(CPUState
*cpu
,
558 run_on_cpu_data data
)
560 target_ulong addr_and_idxmap
= (target_ulong
) data
.target_ptr
;
561 target_ulong addr
= addr_and_idxmap
& TARGET_PAGE_MASK
;
562 uint16_t idxmap
= addr_and_idxmap
& ~TARGET_PAGE_MASK
;
564 tlb_flush_page_by_mmuidx_async_0(cpu
, addr
, idxmap
);
570 } TLBFlushPageByMMUIdxData
;
573 * tlb_flush_page_by_mmuidx_async_2:
574 * @cpu: cpu on which to flush
575 * @data: allocated addr + idxmap
577 * Helper for tlb_flush_page_by_mmuidx and friends, called through
578 * async_run_on_cpu. The addr+idxmap parameters are stored in a
579 * TLBFlushPageByMMUIdxData structure that has been allocated
580 * specifically for this helper. Free the structure when done.
582 static void tlb_flush_page_by_mmuidx_async_2(CPUState
*cpu
,
583 run_on_cpu_data data
)
585 TLBFlushPageByMMUIdxData
*d
= data
.host_ptr
;
587 tlb_flush_page_by_mmuidx_async_0(cpu
, d
->addr
, d
->idxmap
);
591 void tlb_flush_page_by_mmuidx(CPUState
*cpu
, target_ulong addr
, uint16_t idxmap
)
593 tlb_debug("addr: "TARGET_FMT_lx
" mmu_idx:%" PRIx16
"\n", addr
, idxmap
);
595 /* This should already be page aligned */
596 addr
&= TARGET_PAGE_MASK
;
598 if (qemu_cpu_is_self(cpu
)) {
599 tlb_flush_page_by_mmuidx_async_0(cpu
, addr
, idxmap
);
600 } else if (idxmap
< TARGET_PAGE_SIZE
) {
602 * Most targets have only a few mmu_idx. In the case where
603 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
604 * allocating memory for this operation.
606 async_run_on_cpu(cpu
, tlb_flush_page_by_mmuidx_async_1
,
607 RUN_ON_CPU_TARGET_PTR(addr
| idxmap
));
609 TLBFlushPageByMMUIdxData
*d
= g_new(TLBFlushPageByMMUIdxData
, 1);
611 /* Otherwise allocate a structure, freed by the worker. */
614 async_run_on_cpu(cpu
, tlb_flush_page_by_mmuidx_async_2
,
615 RUN_ON_CPU_HOST_PTR(d
));
619 void tlb_flush_page(CPUState
*cpu
, target_ulong addr
)
621 tlb_flush_page_by_mmuidx(cpu
, addr
, ALL_MMUIDX_BITS
);
624 void tlb_flush_page_by_mmuidx_all_cpus(CPUState
*src_cpu
, target_ulong addr
,
627 tlb_debug("addr: "TARGET_FMT_lx
" mmu_idx:%"PRIx16
"\n", addr
, idxmap
);
629 /* This should already be page aligned */
630 addr
&= TARGET_PAGE_MASK
;
633 * Allocate memory to hold addr+idxmap only when needed.
634 * See tlb_flush_page_by_mmuidx for details.
636 if (idxmap
< TARGET_PAGE_SIZE
) {
637 flush_all_helper(src_cpu
, tlb_flush_page_by_mmuidx_async_1
,
638 RUN_ON_CPU_TARGET_PTR(addr
| idxmap
));
642 /* Allocate a separate data block for each destination cpu. */
643 CPU_FOREACH(dst_cpu
) {
644 if (dst_cpu
!= src_cpu
) {
645 TLBFlushPageByMMUIdxData
*d
646 = g_new(TLBFlushPageByMMUIdxData
, 1);
650 async_run_on_cpu(dst_cpu
, tlb_flush_page_by_mmuidx_async_2
,
651 RUN_ON_CPU_HOST_PTR(d
));
656 tlb_flush_page_by_mmuidx_async_0(src_cpu
, addr
, idxmap
);
659 void tlb_flush_page_all_cpus(CPUState
*src
, target_ulong addr
)
661 tlb_flush_page_by_mmuidx_all_cpus(src
, addr
, ALL_MMUIDX_BITS
);
664 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState
*src_cpu
,
668 tlb_debug("addr: "TARGET_FMT_lx
" mmu_idx:%"PRIx16
"\n", addr
, idxmap
);
670 /* This should already be page aligned */
671 addr
&= TARGET_PAGE_MASK
;
674 * Allocate memory to hold addr+idxmap only when needed.
675 * See tlb_flush_page_by_mmuidx for details.
677 if (idxmap
< TARGET_PAGE_SIZE
) {
678 flush_all_helper(src_cpu
, tlb_flush_page_by_mmuidx_async_1
,
679 RUN_ON_CPU_TARGET_PTR(addr
| idxmap
));
680 async_safe_run_on_cpu(src_cpu
, tlb_flush_page_by_mmuidx_async_1
,
681 RUN_ON_CPU_TARGET_PTR(addr
| idxmap
));
684 TLBFlushPageByMMUIdxData
*d
;
686 /* Allocate a separate data block for each destination cpu. */
687 CPU_FOREACH(dst_cpu
) {
688 if (dst_cpu
!= src_cpu
) {
689 d
= g_new(TLBFlushPageByMMUIdxData
, 1);
692 async_run_on_cpu(dst_cpu
, tlb_flush_page_by_mmuidx_async_2
,
693 RUN_ON_CPU_HOST_PTR(d
));
697 d
= g_new(TLBFlushPageByMMUIdxData
, 1);
700 async_safe_run_on_cpu(src_cpu
, tlb_flush_page_by_mmuidx_async_2
,
701 RUN_ON_CPU_HOST_PTR(d
));
705 void tlb_flush_page_all_cpus_synced(CPUState
*src
, target_ulong addr
)
707 tlb_flush_page_by_mmuidx_all_cpus_synced(src
, addr
, ALL_MMUIDX_BITS
);
710 static void tlb_flush_range_locked(CPUArchState
*env
, int midx
,
711 target_ulong addr
, target_ulong len
,
714 CPUTLBDesc
*d
= &env_tlb(env
)->d
[midx
];
715 CPUTLBDescFast
*f
= &env_tlb(env
)->f
[midx
];
716 target_ulong mask
= MAKE_64BIT_MASK(0, bits
);
719 * If @bits is smaller than the tlb size, there may be multiple entries
720 * within the TLB; otherwise all addresses that match under @mask hit
721 * the same TLB entry.
722 * TODO: Perhaps allow bits to be a few bits less than the size.
723 * For now, just flush the entire TLB.
725 * If @len is larger than the tlb size, then it will take longer to
726 * test all of the entries in the TLB than it will to flush it all.
728 if (mask
< f
->mask
|| len
> f
->mask
) {
729 tlb_debug("forcing full flush midx %d ("
730 TARGET_FMT_lx
"/" TARGET_FMT_lx
"+" TARGET_FMT_lx
")\n",
731 midx
, addr
, mask
, len
);
732 tlb_flush_one_mmuidx_locked(env
, midx
, get_clock_realtime());
737 * Check if we need to flush due to large pages.
738 * Because large_page_mask contains all 1's from the msb,
739 * we only need to test the end of the range.
741 if (((addr
+ len
- 1) & d
->large_page_mask
) == d
->large_page_addr
) {
742 tlb_debug("forcing full flush midx %d ("
743 TARGET_FMT_lx
"/" TARGET_FMT_lx
")\n",
744 midx
, d
->large_page_addr
, d
->large_page_mask
);
745 tlb_flush_one_mmuidx_locked(env
, midx
, get_clock_realtime());
749 for (target_ulong i
= 0; i
< len
; i
+= TARGET_PAGE_SIZE
) {
750 target_ulong page
= addr
+ i
;
751 CPUTLBEntry
*entry
= tlb_entry(env
, midx
, page
);
753 if (tlb_flush_entry_mask_locked(entry
, page
, mask
)) {
754 tlb_n_used_entries_dec(env
, midx
);
756 tlb_flush_vtlb_page_mask_locked(env
, midx
, page
, mask
);
767 static void tlb_flush_range_by_mmuidx_async_0(CPUState
*cpu
,
770 CPUArchState
*env
= cpu
->env_ptr
;
773 assert_cpu_is_self(cpu
);
775 tlb_debug("range:" TARGET_FMT_lx
"/%u+" TARGET_FMT_lx
" mmu_map:0x%x\n",
776 d
.addr
, d
.bits
, d
.len
, d
.idxmap
);
778 qemu_spin_lock(&env_tlb(env
)->c
.lock
);
779 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
780 if ((d
.idxmap
>> mmu_idx
) & 1) {
781 tlb_flush_range_locked(env
, mmu_idx
, d
.addr
, d
.len
, d
.bits
);
784 qemu_spin_unlock(&env_tlb(env
)->c
.lock
);
787 * If the length is larger than the jump cache size, then it will take
788 * longer to clear each entry individually than it will to clear it all.
790 if (d
.len
>= (TARGET_PAGE_SIZE
* TB_JMP_CACHE_SIZE
)) {
791 cpu_tb_jmp_cache_clear(cpu
);
795 for (target_ulong i
= 0; i
< d
.len
; i
+= TARGET_PAGE_SIZE
) {
796 tb_flush_jmp_cache(cpu
, d
.addr
+ i
);
800 static void tlb_flush_range_by_mmuidx_async_1(CPUState
*cpu
,
801 run_on_cpu_data data
)
803 TLBFlushRangeData
*d
= data
.host_ptr
;
804 tlb_flush_range_by_mmuidx_async_0(cpu
, *d
);
808 void tlb_flush_range_by_mmuidx(CPUState
*cpu
, target_ulong addr
,
809 target_ulong len
, uint16_t idxmap
,
815 * If all bits are significant, and len is small,
816 * this devolves to tlb_flush_page.
818 if (bits
>= TARGET_LONG_BITS
&& len
<= TARGET_PAGE_SIZE
) {
819 tlb_flush_page_by_mmuidx(cpu
, addr
, idxmap
);
822 /* If no page bits are significant, this devolves to tlb_flush. */
823 if (bits
< TARGET_PAGE_BITS
) {
824 tlb_flush_by_mmuidx(cpu
, idxmap
);
828 /* This should already be page aligned */
829 d
.addr
= addr
& TARGET_PAGE_MASK
;
834 if (qemu_cpu_is_self(cpu
)) {
835 tlb_flush_range_by_mmuidx_async_0(cpu
, d
);
837 /* Otherwise allocate a structure, freed by the worker. */
838 TLBFlushRangeData
*p
= g_memdup(&d
, sizeof(d
));
839 async_run_on_cpu(cpu
, tlb_flush_range_by_mmuidx_async_1
,
840 RUN_ON_CPU_HOST_PTR(p
));
844 void tlb_flush_page_bits_by_mmuidx(CPUState
*cpu
, target_ulong addr
,
845 uint16_t idxmap
, unsigned bits
)
847 tlb_flush_range_by_mmuidx(cpu
, addr
, TARGET_PAGE_SIZE
, idxmap
, bits
);
850 void tlb_flush_range_by_mmuidx_all_cpus(CPUState
*src_cpu
,
851 target_ulong addr
, target_ulong len
,
852 uint16_t idxmap
, unsigned bits
)
858 * If all bits are significant, and len is small,
859 * this devolves to tlb_flush_page.
861 if (bits
>= TARGET_LONG_BITS
&& len
<= TARGET_PAGE_SIZE
) {
862 tlb_flush_page_by_mmuidx_all_cpus(src_cpu
, addr
, idxmap
);
865 /* If no page bits are significant, this devolves to tlb_flush. */
866 if (bits
< TARGET_PAGE_BITS
) {
867 tlb_flush_by_mmuidx_all_cpus(src_cpu
, idxmap
);
871 /* This should already be page aligned */
872 d
.addr
= addr
& TARGET_PAGE_MASK
;
877 /* Allocate a separate data block for each destination cpu. */
878 CPU_FOREACH(dst_cpu
) {
879 if (dst_cpu
!= src_cpu
) {
880 TLBFlushRangeData
*p
= g_memdup(&d
, sizeof(d
));
881 async_run_on_cpu(dst_cpu
,
882 tlb_flush_range_by_mmuidx_async_1
,
883 RUN_ON_CPU_HOST_PTR(p
));
887 tlb_flush_range_by_mmuidx_async_0(src_cpu
, d
);
890 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState
*src_cpu
,
892 uint16_t idxmap
, unsigned bits
)
894 tlb_flush_range_by_mmuidx_all_cpus(src_cpu
, addr
, TARGET_PAGE_SIZE
,
898 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState
*src_cpu
,
904 TLBFlushRangeData d
, *p
;
908 * If all bits are significant, and len is small,
909 * this devolves to tlb_flush_page.
911 if (bits
>= TARGET_LONG_BITS
&& len
<= TARGET_PAGE_SIZE
) {
912 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu
, addr
, idxmap
);
915 /* If no page bits are significant, this devolves to tlb_flush. */
916 if (bits
< TARGET_PAGE_BITS
) {
917 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu
, idxmap
);
921 /* This should already be page aligned */
922 d
.addr
= addr
& TARGET_PAGE_MASK
;
927 /* Allocate a separate data block for each destination cpu. */
928 CPU_FOREACH(dst_cpu
) {
929 if (dst_cpu
!= src_cpu
) {
930 p
= g_memdup(&d
, sizeof(d
));
931 async_run_on_cpu(dst_cpu
, tlb_flush_range_by_mmuidx_async_1
,
932 RUN_ON_CPU_HOST_PTR(p
));
936 p
= g_memdup(&d
, sizeof(d
));
937 async_safe_run_on_cpu(src_cpu
, tlb_flush_range_by_mmuidx_async_1
,
938 RUN_ON_CPU_HOST_PTR(p
));
941 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState
*src_cpu
,
946 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu
, addr
, TARGET_PAGE_SIZE
,
950 /* update the TLBs so that writes to code in the virtual page 'addr'
952 void tlb_protect_code(ram_addr_t ram_addr
)
954 cpu_physical_memory_test_and_clear_dirty(ram_addr
, TARGET_PAGE_SIZE
,
958 /* update the TLB so that writes in physical page 'phys_addr' are no longer
959 tested for self modifying code */
960 void tlb_unprotect_code(ram_addr_t ram_addr
)
962 cpu_physical_memory_set_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
);
967 * Dirty write flag handling
969 * When the TCG code writes to a location it looks up the address in
970 * the TLB and uses that data to compute the final address. If any of
971 * the lower bits of the address are set then the slow path is forced.
972 * There are a number of reasons to do this but for normal RAM the
973 * most usual is detecting writes to code regions which may invalidate
976 * Other vCPUs might be reading their TLBs during guest execution, so we update
977 * te->addr_write with qatomic_set. We don't need to worry about this for
978 * oversized guests as MTTCG is disabled for them.
980 * Called with tlb_c.lock held.
982 static void tlb_reset_dirty_range_locked(CPUTLBEntry
*tlb_entry
,
983 uintptr_t start
, uintptr_t length
)
985 uintptr_t addr
= tlb_entry
->addr_write
;
987 if ((addr
& (TLB_INVALID_MASK
| TLB_MMIO
|
988 TLB_DISCARD_WRITE
| TLB_NOTDIRTY
)) == 0) {
989 addr
&= TARGET_PAGE_MASK
;
990 addr
+= tlb_entry
->addend
;
991 if ((addr
- start
) < length
) {
992 #if TCG_OVERSIZED_GUEST
993 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
995 qatomic_set(&tlb_entry
->addr_write
,
996 tlb_entry
->addr_write
| TLB_NOTDIRTY
);
1003 * Called with tlb_c.lock held.
1004 * Called only from the vCPU context, i.e. the TLB's owner thread.
1006 static inline void copy_tlb_helper_locked(CPUTLBEntry
*d
, const CPUTLBEntry
*s
)
1011 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1013 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1014 * thing actually updated is the target TLB entry ->addr_write flags.
1016 void tlb_reset_dirty(CPUState
*cpu
, ram_addr_t start1
, ram_addr_t length
)
1023 qemu_spin_lock(&env_tlb(env
)->c
.lock
);
1024 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1026 unsigned int n
= tlb_n_entries(&env_tlb(env
)->f
[mmu_idx
]);
1028 for (i
= 0; i
< n
; i
++) {
1029 tlb_reset_dirty_range_locked(&env_tlb(env
)->f
[mmu_idx
].table
[i
],
1033 for (i
= 0; i
< CPU_VTLB_SIZE
; i
++) {
1034 tlb_reset_dirty_range_locked(&env_tlb(env
)->d
[mmu_idx
].vtable
[i
],
1038 qemu_spin_unlock(&env_tlb(env
)->c
.lock
);
1041 /* Called with tlb_c.lock held */
1042 static inline void tlb_set_dirty1_locked(CPUTLBEntry
*tlb_entry
,
1045 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
)) {
1046 tlb_entry
->addr_write
= vaddr
;
1050 /* update the TLB corresponding to virtual page vaddr
1051 so that it is no longer dirty */
1052 void tlb_set_dirty(CPUState
*cpu
, target_ulong vaddr
)
1054 CPUArchState
*env
= cpu
->env_ptr
;
1057 assert_cpu_is_self(cpu
);
1059 vaddr
&= TARGET_PAGE_MASK
;
1060 qemu_spin_lock(&env_tlb(env
)->c
.lock
);
1061 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1062 tlb_set_dirty1_locked(tlb_entry(env
, mmu_idx
, vaddr
), vaddr
);
1065 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1067 for (k
= 0; k
< CPU_VTLB_SIZE
; k
++) {
1068 tlb_set_dirty1_locked(&env_tlb(env
)->d
[mmu_idx
].vtable
[k
], vaddr
);
1071 qemu_spin_unlock(&env_tlb(env
)->c
.lock
);
1074 /* Our TLB does not support large pages, so remember the area covered by
1075 large pages and trigger a full TLB flush if these are invalidated. */
1076 static void tlb_add_large_page(CPUArchState
*env
, int mmu_idx
,
1077 target_ulong vaddr
, target_ulong size
)
1079 target_ulong lp_addr
= env_tlb(env
)->d
[mmu_idx
].large_page_addr
;
1080 target_ulong lp_mask
= ~(size
- 1);
1082 if (lp_addr
== (target_ulong
)-1) {
1083 /* No previous large page. */
1086 /* Extend the existing region to include the new page.
1087 This is a compromise between unnecessary flushes and
1088 the cost of maintaining a full variable size TLB. */
1089 lp_mask
&= env_tlb(env
)->d
[mmu_idx
].large_page_mask
;
1090 while (((lp_addr
^ vaddr
) & lp_mask
) != 0) {
1094 env_tlb(env
)->d
[mmu_idx
].large_page_addr
= lp_addr
& lp_mask
;
1095 env_tlb(env
)->d
[mmu_idx
].large_page_mask
= lp_mask
;
1098 /* Add a new TLB entry. At most one entry for a given virtual address
1099 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1100 * supplied size is only used by tlb_flush_page.
1102 * Called from TCG-generated code, which is under an RCU read-side
1105 void tlb_set_page_with_attrs(CPUState
*cpu
, target_ulong vaddr
,
1106 hwaddr paddr
, MemTxAttrs attrs
, int prot
,
1107 int mmu_idx
, target_ulong size
)
1109 CPUArchState
*env
= cpu
->env_ptr
;
1110 CPUTLB
*tlb
= env_tlb(env
);
1111 CPUTLBDesc
*desc
= &tlb
->d
[mmu_idx
];
1112 MemoryRegionSection
*section
;
1114 target_ulong address
;
1115 target_ulong write_address
;
1117 CPUTLBEntry
*te
, tn
;
1118 hwaddr iotlb
, xlat
, sz
, paddr_page
;
1119 target_ulong vaddr_page
;
1120 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
1122 bool is_ram
, is_romd
;
1124 assert_cpu_is_self(cpu
);
1126 if (size
<= TARGET_PAGE_SIZE
) {
1127 sz
= TARGET_PAGE_SIZE
;
1129 tlb_add_large_page(env
, mmu_idx
, vaddr
, size
);
1132 vaddr_page
= vaddr
& TARGET_PAGE_MASK
;
1133 paddr_page
= paddr
& TARGET_PAGE_MASK
;
1135 section
= address_space_translate_for_iotlb(cpu
, asidx
, paddr_page
,
1136 &xlat
, &sz
, attrs
, &prot
);
1137 assert(sz
>= TARGET_PAGE_SIZE
);
1139 tlb_debug("vaddr=" TARGET_FMT_lx
" paddr=0x" TARGET_FMT_plx
1140 " prot=%x idx=%d\n",
1141 vaddr
, paddr
, prot
, mmu_idx
);
1143 address
= vaddr_page
;
1144 if (size
< TARGET_PAGE_SIZE
) {
1145 /* Repeat the MMU check and TLB fill on every access. */
1146 address
|= TLB_INVALID_MASK
;
1148 if (attrs
.byte_swap
) {
1149 address
|= TLB_BSWAP
;
1152 is_ram
= memory_region_is_ram(section
->mr
);
1153 is_romd
= memory_region_is_romd(section
->mr
);
1155 if (is_ram
|| is_romd
) {
1156 /* RAM and ROMD both have associated host memory. */
1157 addend
= (uintptr_t)memory_region_get_ram_ptr(section
->mr
) + xlat
;
1159 /* I/O does not; force the host address to NULL. */
1163 write_address
= address
;
1165 iotlb
= memory_region_get_ram_addr(section
->mr
) + xlat
;
1167 * Computing is_clean is expensive; avoid all that unless
1168 * the page is actually writable.
1170 if (prot
& PAGE_WRITE
) {
1171 if (section
->readonly
) {
1172 write_address
|= TLB_DISCARD_WRITE
;
1173 } else if (cpu_physical_memory_is_clean(iotlb
)) {
1174 write_address
|= TLB_NOTDIRTY
;
1179 iotlb
= memory_region_section_get_iotlb(cpu
, section
) + xlat
;
1181 * Writes to romd devices must go through MMIO to enable write.
1182 * Reads to romd devices go through the ram_ptr found above,
1183 * but of course reads to I/O must go through MMIO.
1185 write_address
|= TLB_MMIO
;
1187 address
= write_address
;
1191 wp_flags
= cpu_watchpoint_address_matches(cpu
, vaddr_page
,
1194 index
= tlb_index(env
, mmu_idx
, vaddr_page
);
1195 te
= tlb_entry(env
, mmu_idx
, vaddr_page
);
1198 * Hold the TLB lock for the rest of the function. We could acquire/release
1199 * the lock several times in the function, but it is faster to amortize the
1200 * acquisition cost by acquiring it just once. Note that this leads to
1201 * a longer critical section, but this is not a concern since the TLB lock
1202 * is unlikely to be contended.
1204 qemu_spin_lock(&tlb
->c
.lock
);
1206 /* Note that the tlb is no longer clean. */
1207 tlb
->c
.dirty
|= 1 << mmu_idx
;
1209 /* Make sure there's no cached translation for the new page. */
1210 tlb_flush_vtlb_page_locked(env
, mmu_idx
, vaddr_page
);
1213 * Only evict the old entry to the victim tlb if it's for a
1214 * different page; otherwise just overwrite the stale data.
1216 if (!tlb_hit_page_anyprot(te
, vaddr_page
) && !tlb_entry_is_empty(te
)) {
1217 unsigned vidx
= desc
->vindex
++ % CPU_VTLB_SIZE
;
1218 CPUTLBEntry
*tv
= &desc
->vtable
[vidx
];
1220 /* Evict the old entry into the victim tlb. */
1221 copy_tlb_helper_locked(tv
, te
);
1222 desc
->viotlb
[vidx
] = desc
->iotlb
[index
];
1223 tlb_n_used_entries_dec(env
, mmu_idx
);
1226 /* refill the tlb */
1228 * At this point iotlb contains a physical section number in the lower
1229 * TARGET_PAGE_BITS, and either
1230 * + the ram_addr_t of the page base of the target RAM (RAM)
1231 * + the offset within section->mr of the page base (I/O, ROMD)
1232 * We subtract the vaddr_page (which is page aligned and thus won't
1233 * disturb the low bits) to give an offset which can be added to the
1234 * (non-page-aligned) vaddr of the eventual memory access to get
1235 * the MemoryRegion offset for the access. Note that the vaddr we
1236 * subtract here is that of the page base, and not the same as the
1237 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1239 desc
->iotlb
[index
].addr
= iotlb
- vaddr_page
;
1240 desc
->iotlb
[index
].attrs
= attrs
;
1242 /* Now calculate the new entry */
1243 tn
.addend
= addend
- vaddr_page
;
1244 if (prot
& PAGE_READ
) {
1245 tn
.addr_read
= address
;
1246 if (wp_flags
& BP_MEM_READ
) {
1247 tn
.addr_read
|= TLB_WATCHPOINT
;
1253 if (prot
& PAGE_EXEC
) {
1254 tn
.addr_code
= address
;
1260 if (prot
& PAGE_WRITE
) {
1261 tn
.addr_write
= write_address
;
1262 if (prot
& PAGE_WRITE_INV
) {
1263 tn
.addr_write
|= TLB_INVALID_MASK
;
1265 if (wp_flags
& BP_MEM_WRITE
) {
1266 tn
.addr_write
|= TLB_WATCHPOINT
;
1270 copy_tlb_helper_locked(te
, &tn
);
1271 tlb_n_used_entries_inc(env
, mmu_idx
);
1272 qemu_spin_unlock(&tlb
->c
.lock
);
1275 /* Add a new TLB entry, but without specifying the memory
1276 * transaction attributes to be used.
1278 void tlb_set_page(CPUState
*cpu
, target_ulong vaddr
,
1279 hwaddr paddr
, int prot
,
1280 int mmu_idx
, target_ulong size
)
1282 tlb_set_page_with_attrs(cpu
, vaddr
, paddr
, MEMTXATTRS_UNSPECIFIED
,
1283 prot
, mmu_idx
, size
);
1286 static inline ram_addr_t
qemu_ram_addr_from_host_nofail(void *ptr
)
1288 ram_addr_t ram_addr
;
1290 ram_addr
= qemu_ram_addr_from_host(ptr
);
1291 if (ram_addr
== RAM_ADDR_INVALID
) {
1292 error_report("Bad ram pointer %p", ptr
);
1299 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1300 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1301 * be discarded and looked up again (e.g. via tlb_entry()).
1303 static void tlb_fill(CPUState
*cpu
, target_ulong addr
, int size
,
1304 MMUAccessType access_type
, int mmu_idx
, uintptr_t retaddr
)
1306 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
1310 * This is not a probe, so only valid return is success; failure
1311 * should result in exception + longjmp to the cpu loop.
1313 ok
= cc
->tcg_ops
->tlb_fill(cpu
, addr
, size
,
1314 access_type
, mmu_idx
, false, retaddr
);
1318 static inline void cpu_unaligned_access(CPUState
*cpu
, vaddr addr
,
1319 MMUAccessType access_type
,
1320 int mmu_idx
, uintptr_t retaddr
)
1322 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
1324 cc
->tcg_ops
->do_unaligned_access(cpu
, addr
, access_type
, mmu_idx
, retaddr
);
1327 static inline void cpu_transaction_failed(CPUState
*cpu
, hwaddr physaddr
,
1328 vaddr addr
, unsigned size
,
1329 MMUAccessType access_type
,
1330 int mmu_idx
, MemTxAttrs attrs
,
1331 MemTxResult response
,
1334 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
1336 if (!cpu
->ignore_memory_transaction_failures
&&
1337 cc
->tcg_ops
->do_transaction_failed
) {
1338 cc
->tcg_ops
->do_transaction_failed(cpu
, physaddr
, addr
, size
,
1339 access_type
, mmu_idx
, attrs
,
1344 static uint64_t io_readx(CPUArchState
*env
, CPUIOTLBEntry
*iotlbentry
,
1345 int mmu_idx
, target_ulong addr
, uintptr_t retaddr
,
1346 MMUAccessType access_type
, MemOp op
)
1348 CPUState
*cpu
= env_cpu(env
);
1350 MemoryRegionSection
*section
;
1353 bool locked
= false;
1356 section
= iotlb_to_section(cpu
, iotlbentry
->addr
, iotlbentry
->attrs
);
1358 mr_offset
= (iotlbentry
->addr
& TARGET_PAGE_MASK
) + addr
;
1359 cpu
->mem_io_pc
= retaddr
;
1360 if (!cpu
->can_do_io
) {
1361 cpu_io_recompile(cpu
, retaddr
);
1364 if (!qemu_mutex_iothread_locked()) {
1365 qemu_mutex_lock_iothread();
1368 r
= memory_region_dispatch_read(mr
, mr_offset
, &val
, op
, iotlbentry
->attrs
);
1369 if (r
!= MEMTX_OK
) {
1370 hwaddr physaddr
= mr_offset
+
1371 section
->offset_within_address_space
-
1372 section
->offset_within_region
;
1374 cpu_transaction_failed(cpu
, physaddr
, addr
, memop_size(op
), access_type
,
1375 mmu_idx
, iotlbentry
->attrs
, r
, retaddr
);
1378 qemu_mutex_unlock_iothread();
1385 * Save a potentially trashed IOTLB entry for later lookup by plugin.
1386 * This is read by tlb_plugin_lookup if the iotlb entry doesn't match
1387 * because of the side effect of io_writex changing memory layout.
1389 static void save_iotlb_data(CPUState
*cs
, hwaddr addr
,
1390 MemoryRegionSection
*section
, hwaddr mr_offset
)
1392 #ifdef CONFIG_PLUGIN
1393 SavedIOTLB
*saved
= &cs
->saved_iotlb
;
1395 saved
->section
= section
;
1396 saved
->mr_offset
= mr_offset
;
1400 static void io_writex(CPUArchState
*env
, CPUIOTLBEntry
*iotlbentry
,
1401 int mmu_idx
, uint64_t val
, target_ulong addr
,
1402 uintptr_t retaddr
, MemOp op
)
1404 CPUState
*cpu
= env_cpu(env
);
1406 MemoryRegionSection
*section
;
1408 bool locked
= false;
1411 section
= iotlb_to_section(cpu
, iotlbentry
->addr
, iotlbentry
->attrs
);
1413 mr_offset
= (iotlbentry
->addr
& TARGET_PAGE_MASK
) + addr
;
1414 if (!cpu
->can_do_io
) {
1415 cpu_io_recompile(cpu
, retaddr
);
1417 cpu
->mem_io_pc
= retaddr
;
1420 * The memory_region_dispatch may trigger a flush/resize
1421 * so for plugins we save the iotlb_data just in case.
1423 save_iotlb_data(cpu
, iotlbentry
->addr
, section
, mr_offset
);
1425 if (!qemu_mutex_iothread_locked()) {
1426 qemu_mutex_lock_iothread();
1429 r
= memory_region_dispatch_write(mr
, mr_offset
, val
, op
, iotlbentry
->attrs
);
1430 if (r
!= MEMTX_OK
) {
1431 hwaddr physaddr
= mr_offset
+
1432 section
->offset_within_address_space
-
1433 section
->offset_within_region
;
1435 cpu_transaction_failed(cpu
, physaddr
, addr
, memop_size(op
),
1436 MMU_DATA_STORE
, mmu_idx
, iotlbentry
->attrs
, r
,
1440 qemu_mutex_unlock_iothread();
1444 static inline target_ulong
tlb_read_ofs(CPUTLBEntry
*entry
, size_t ofs
)
1446 #if TCG_OVERSIZED_GUEST
1447 return *(target_ulong
*)((uintptr_t)entry
+ ofs
);
1449 /* ofs might correspond to .addr_write, so use qatomic_read */
1450 return qatomic_read((target_ulong
*)((uintptr_t)entry
+ ofs
));
1454 /* Return true if ADDR is present in the victim tlb, and has been copied
1455 back to the main tlb. */
1456 static bool victim_tlb_hit(CPUArchState
*env
, size_t mmu_idx
, size_t index
,
1457 size_t elt_ofs
, target_ulong page
)
1461 assert_cpu_is_self(env_cpu(env
));
1462 for (vidx
= 0; vidx
< CPU_VTLB_SIZE
; ++vidx
) {
1463 CPUTLBEntry
*vtlb
= &env_tlb(env
)->d
[mmu_idx
].vtable
[vidx
];
1466 /* elt_ofs might correspond to .addr_write, so use qatomic_read */
1467 #if TCG_OVERSIZED_GUEST
1468 cmp
= *(target_ulong
*)((uintptr_t)vtlb
+ elt_ofs
);
1470 cmp
= qatomic_read((target_ulong
*)((uintptr_t)vtlb
+ elt_ofs
));
1474 /* Found entry in victim tlb, swap tlb and iotlb. */
1475 CPUTLBEntry tmptlb
, *tlb
= &env_tlb(env
)->f
[mmu_idx
].table
[index
];
1477 qemu_spin_lock(&env_tlb(env
)->c
.lock
);
1478 copy_tlb_helper_locked(&tmptlb
, tlb
);
1479 copy_tlb_helper_locked(tlb
, vtlb
);
1480 copy_tlb_helper_locked(vtlb
, &tmptlb
);
1481 qemu_spin_unlock(&env_tlb(env
)->c
.lock
);
1483 CPUIOTLBEntry tmpio
, *io
= &env_tlb(env
)->d
[mmu_idx
].iotlb
[index
];
1484 CPUIOTLBEntry
*vio
= &env_tlb(env
)->d
[mmu_idx
].viotlb
[vidx
];
1485 tmpio
= *io
; *io
= *vio
; *vio
= tmpio
;
1492 /* Macro to call the above, with local variables from the use context. */
1493 #define VICTIM_TLB_HIT(TY, ADDR) \
1494 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
1495 (ADDR) & TARGET_PAGE_MASK)
1498 * Return a ram_addr_t for the virtual address for execution.
1500 * Return -1 if we can't translate and execute from an entire page
1501 * of RAM. This will force us to execute by loading and translating
1502 * one insn at a time, without caching.
1504 * NOTE: This function will trigger an exception if the page is
1507 tb_page_addr_t
get_page_addr_code_hostp(CPUArchState
*env
, target_ulong addr
,
1510 uintptr_t mmu_idx
= cpu_mmu_index(env
, true);
1511 uintptr_t index
= tlb_index(env
, mmu_idx
, addr
);
1512 CPUTLBEntry
*entry
= tlb_entry(env
, mmu_idx
, addr
);
1515 if (unlikely(!tlb_hit(entry
->addr_code
, addr
))) {
1516 if (!VICTIM_TLB_HIT(addr_code
, addr
)) {
1517 tlb_fill(env_cpu(env
), addr
, 0, MMU_INST_FETCH
, mmu_idx
, 0);
1518 index
= tlb_index(env
, mmu_idx
, addr
);
1519 entry
= tlb_entry(env
, mmu_idx
, addr
);
1521 if (unlikely(entry
->addr_code
& TLB_INVALID_MASK
)) {
1523 * The MMU protection covers a smaller range than a target
1524 * page, so we must redo the MMU check for every insn.
1529 assert(tlb_hit(entry
->addr_code
, addr
));
1532 if (unlikely(entry
->addr_code
& TLB_MMIO
)) {
1533 /* The region is not backed by RAM. */
1540 p
= (void *)((uintptr_t)addr
+ entry
->addend
);
1544 return qemu_ram_addr_from_host_nofail(p
);
1547 tb_page_addr_t
get_page_addr_code(CPUArchState
*env
, target_ulong addr
)
1549 return get_page_addr_code_hostp(env
, addr
, NULL
);
1552 static void notdirty_write(CPUState
*cpu
, vaddr mem_vaddr
, unsigned size
,
1553 CPUIOTLBEntry
*iotlbentry
, uintptr_t retaddr
)
1555 ram_addr_t ram_addr
= mem_vaddr
+ iotlbentry
->addr
;
1557 trace_memory_notdirty_write_access(mem_vaddr
, ram_addr
, size
);
1559 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
1560 struct page_collection
*pages
1561 = page_collection_lock(ram_addr
, ram_addr
+ size
);
1562 tb_invalidate_phys_page_fast(pages
, ram_addr
, size
, retaddr
);
1563 page_collection_unlock(pages
);
1567 * Set both VGA and migration bits for simplicity and to remove
1568 * the notdirty callback faster.
1570 cpu_physical_memory_set_dirty_range(ram_addr
, size
, DIRTY_CLIENTS_NOCODE
);
1572 /* We remove the notdirty callback only if the code has been flushed. */
1573 if (!cpu_physical_memory_is_clean(ram_addr
)) {
1574 trace_memory_notdirty_set_dirty(mem_vaddr
);
1575 tlb_set_dirty(cpu
, mem_vaddr
);
1579 static int probe_access_internal(CPUArchState
*env
, target_ulong addr
,
1580 int fault_size
, MMUAccessType access_type
,
1581 int mmu_idx
, bool nonfault
,
1582 void **phost
, uintptr_t retaddr
)
1584 uintptr_t index
= tlb_index(env
, mmu_idx
, addr
);
1585 CPUTLBEntry
*entry
= tlb_entry(env
, mmu_idx
, addr
);
1586 target_ulong tlb_addr
, page_addr
;
1590 switch (access_type
) {
1592 elt_ofs
= offsetof(CPUTLBEntry
, addr_read
);
1594 case MMU_DATA_STORE
:
1595 elt_ofs
= offsetof(CPUTLBEntry
, addr_write
);
1597 case MMU_INST_FETCH
:
1598 elt_ofs
= offsetof(CPUTLBEntry
, addr_code
);
1601 g_assert_not_reached();
1603 tlb_addr
= tlb_read_ofs(entry
, elt_ofs
);
1605 page_addr
= addr
& TARGET_PAGE_MASK
;
1606 if (!tlb_hit_page(tlb_addr
, page_addr
)) {
1607 if (!victim_tlb_hit(env
, mmu_idx
, index
, elt_ofs
, page_addr
)) {
1608 CPUState
*cs
= env_cpu(env
);
1609 CPUClass
*cc
= CPU_GET_CLASS(cs
);
1611 if (!cc
->tcg_ops
->tlb_fill(cs
, addr
, fault_size
, access_type
,
1612 mmu_idx
, nonfault
, retaddr
)) {
1613 /* Non-faulting page table read failed. */
1615 return TLB_INVALID_MASK
;
1618 /* TLB resize via tlb_fill may have moved the entry. */
1619 entry
= tlb_entry(env
, mmu_idx
, addr
);
1621 tlb_addr
= tlb_read_ofs(entry
, elt_ofs
);
1623 flags
= tlb_addr
& TLB_FLAGS_MASK
;
1625 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
1626 if (unlikely(flags
& ~(TLB_WATCHPOINT
| TLB_NOTDIRTY
))) {
1631 /* Everything else is RAM. */
1632 *phost
= (void *)((uintptr_t)addr
+ entry
->addend
);
1636 int probe_access_flags(CPUArchState
*env
, target_ulong addr
,
1637 MMUAccessType access_type
, int mmu_idx
,
1638 bool nonfault
, void **phost
, uintptr_t retaddr
)
1642 flags
= probe_access_internal(env
, addr
, 0, access_type
, mmu_idx
,
1643 nonfault
, phost
, retaddr
);
1645 /* Handle clean RAM pages. */
1646 if (unlikely(flags
& TLB_NOTDIRTY
)) {
1647 uintptr_t index
= tlb_index(env
, mmu_idx
, addr
);
1648 CPUIOTLBEntry
*iotlbentry
= &env_tlb(env
)->d
[mmu_idx
].iotlb
[index
];
1650 notdirty_write(env_cpu(env
), addr
, 1, iotlbentry
, retaddr
);
1651 flags
&= ~TLB_NOTDIRTY
;
1657 void *probe_access(CPUArchState
*env
, target_ulong addr
, int size
,
1658 MMUAccessType access_type
, int mmu_idx
, uintptr_t retaddr
)
1663 g_assert(-(addr
| TARGET_PAGE_MASK
) >= size
);
1665 flags
= probe_access_internal(env
, addr
, size
, access_type
, mmu_idx
,
1666 false, &host
, retaddr
);
1668 /* Per the interface, size == 0 merely faults the access. */
1673 if (unlikely(flags
& (TLB_NOTDIRTY
| TLB_WATCHPOINT
))) {
1674 uintptr_t index
= tlb_index(env
, mmu_idx
, addr
);
1675 CPUIOTLBEntry
*iotlbentry
= &env_tlb(env
)->d
[mmu_idx
].iotlb
[index
];
1677 /* Handle watchpoints. */
1678 if (flags
& TLB_WATCHPOINT
) {
1679 int wp_access
= (access_type
== MMU_DATA_STORE
1680 ? BP_MEM_WRITE
: BP_MEM_READ
);
1681 cpu_check_watchpoint(env_cpu(env
), addr
, size
,
1682 iotlbentry
->attrs
, wp_access
, retaddr
);
1685 /* Handle clean RAM pages. */
1686 if (flags
& TLB_NOTDIRTY
) {
1687 notdirty_write(env_cpu(env
), addr
, 1, iotlbentry
, retaddr
);
1694 void *tlb_vaddr_to_host(CPUArchState
*env
, abi_ptr addr
,
1695 MMUAccessType access_type
, int mmu_idx
)
1700 flags
= probe_access_internal(env
, addr
, 0, access_type
,
1701 mmu_idx
, true, &host
, 0);
1703 /* No combination of flags are expected by the caller. */
1704 return flags
? NULL
: host
;
1707 #ifdef CONFIG_PLUGIN
1709 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1710 * This should be a hot path as we will have just looked this path up
1711 * in the softmmu lookup code (or helper). We don't handle re-fills or
1712 * checking the victim table. This is purely informational.
1714 * This almost never fails as the memory access being instrumented
1715 * should have just filled the TLB. The one corner case is io_writex
1716 * which can cause TLB flushes and potential resizing of the TLBs
1717 * losing the information we need. In those cases we need to recover
1718 * data from a copy of the iotlbentry. As long as this always occurs
1719 * from the same thread (which a mem callback will be) this is safe.
1722 bool tlb_plugin_lookup(CPUState
*cpu
, target_ulong addr
, int mmu_idx
,
1723 bool is_store
, struct qemu_plugin_hwaddr
*data
)
1725 CPUArchState
*env
= cpu
->env_ptr
;
1726 CPUTLBEntry
*tlbe
= tlb_entry(env
, mmu_idx
, addr
);
1727 uintptr_t index
= tlb_index(env
, mmu_idx
, addr
);
1728 target_ulong tlb_addr
= is_store
? tlb_addr_write(tlbe
) : tlbe
->addr_read
;
1730 if (likely(tlb_hit(tlb_addr
, addr
))) {
1731 /* We must have an iotlb entry for MMIO */
1732 if (tlb_addr
& TLB_MMIO
) {
1733 CPUIOTLBEntry
*iotlbentry
;
1734 iotlbentry
= &env_tlb(env
)->d
[mmu_idx
].iotlb
[index
];
1736 data
->v
.io
.section
= iotlb_to_section(cpu
, iotlbentry
->addr
, iotlbentry
->attrs
);
1737 data
->v
.io
.offset
= (iotlbentry
->addr
& TARGET_PAGE_MASK
) + addr
;
1739 data
->is_io
= false;
1740 data
->v
.ram
.hostaddr
= (void *)((uintptr_t)addr
+ tlbe
->addend
);
1744 SavedIOTLB
*saved
= &cpu
->saved_iotlb
;
1746 data
->v
.io
.section
= saved
->section
;
1747 data
->v
.io
.offset
= saved
->mr_offset
;
1755 * Probe for an atomic operation. Do not allow unaligned operations,
1756 * or io operations to proceed. Return the host address.
1758 * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
1760 static void *atomic_mmu_lookup(CPUArchState
*env
, target_ulong addr
,
1761 MemOpIdx oi
, int size
, int prot
,
1764 uintptr_t mmu_idx
= get_mmuidx(oi
);
1765 MemOp mop
= get_memop(oi
);
1766 int a_bits
= get_alignment_bits(mop
);
1769 target_ulong tlb_addr
;
1772 tcg_debug_assert(mmu_idx
< NB_MMU_MODES
);
1774 /* Adjust the given return address. */
1775 retaddr
-= GETPC_ADJ
;
1777 /* Enforce guest required alignment. */
1778 if (unlikely(a_bits
> 0 && (addr
& ((1 << a_bits
) - 1)))) {
1779 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1780 cpu_unaligned_access(env_cpu(env
), addr
, MMU_DATA_STORE
,
1784 /* Enforce qemu required alignment. */
1785 if (unlikely(addr
& (size
- 1))) {
1786 /* We get here if guest alignment was not requested,
1787 or was not enforced by cpu_unaligned_access above.
1788 We might widen the access and emulate, but for now
1789 mark an exception and exit the cpu loop. */
1790 goto stop_the_world
;
1793 index
= tlb_index(env
, mmu_idx
, addr
);
1794 tlbe
= tlb_entry(env
, mmu_idx
, addr
);
1796 /* Check TLB entry and enforce page permissions. */
1797 if (prot
& PAGE_WRITE
) {
1798 tlb_addr
= tlb_addr_write(tlbe
);
1799 if (!tlb_hit(tlb_addr
, addr
)) {
1800 if (!VICTIM_TLB_HIT(addr_write
, addr
)) {
1801 tlb_fill(env_cpu(env
), addr
, size
,
1802 MMU_DATA_STORE
, mmu_idx
, retaddr
);
1803 index
= tlb_index(env
, mmu_idx
, addr
);
1804 tlbe
= tlb_entry(env
, mmu_idx
, addr
);
1806 tlb_addr
= tlb_addr_write(tlbe
) & ~TLB_INVALID_MASK
;
1809 /* Let the guest notice RMW on a write-only page. */
1810 if ((prot
& PAGE_READ
) &&
1811 unlikely(tlbe
->addr_read
!= (tlb_addr
& ~TLB_NOTDIRTY
))) {
1812 tlb_fill(env_cpu(env
), addr
, size
,
1813 MMU_DATA_LOAD
, mmu_idx
, retaddr
);
1815 * Since we don't support reads and writes to different addresses,
1816 * and we do have the proper page loaded for write, this shouldn't
1817 * ever return. But just in case, handle via stop-the-world.
1819 goto stop_the_world
;
1821 } else /* if (prot & PAGE_READ) */ {
1822 tlb_addr
= tlbe
->addr_read
;
1823 if (!tlb_hit(tlb_addr
, addr
)) {
1824 if (!VICTIM_TLB_HIT(addr_write
, addr
)) {
1825 tlb_fill(env_cpu(env
), addr
, size
,
1826 MMU_DATA_LOAD
, mmu_idx
, retaddr
);
1827 index
= tlb_index(env
, mmu_idx
, addr
);
1828 tlbe
= tlb_entry(env
, mmu_idx
, addr
);
1830 tlb_addr
= tlbe
->addr_read
& ~TLB_INVALID_MASK
;
1834 /* Notice an IO access or a needs-MMU-lookup access */
1835 if (unlikely(tlb_addr
& TLB_MMIO
)) {
1836 /* There's really nothing that can be done to
1837 support this apart from stop-the-world. */
1838 goto stop_the_world
;
1841 hostaddr
= (void *)((uintptr_t)addr
+ tlbe
->addend
);
1843 if (unlikely(tlb_addr
& TLB_NOTDIRTY
)) {
1844 notdirty_write(env_cpu(env
), addr
, size
,
1845 &env_tlb(env
)->d
[mmu_idx
].iotlb
[index
], retaddr
);
1851 cpu_loop_exit_atomic(env_cpu(env
), retaddr
);
1855 * Verify that we have passed the correct MemOp to the correct function.
1857 * In the case of the helper_*_mmu functions, we will have done this by
1858 * using the MemOp to look up the helper during code generation.
1860 * In the case of the cpu_*_mmu functions, this is up to the caller.
1861 * We could present one function to target code, and dispatch based on
1862 * the MemOp, but so far we have worked hard to avoid an indirect function
1863 * call along the memory path.
1865 static void validate_memop(MemOpIdx oi
, MemOp expected
)
1867 #ifdef CONFIG_DEBUG_TCG
1868 MemOp have
= get_memop(oi
) & (MO_SIZE
| MO_BSWAP
);
1869 assert(have
== expected
);
1876 * We support two different access types. SOFTMMU_CODE_ACCESS is
1877 * specifically for reading instructions from system memory. It is
1878 * called by the translation loop and in some helpers where the code
1879 * is disassembled. It shouldn't be called directly by guest code.
1882 typedef uint64_t FullLoadHelper(CPUArchState
*env
, target_ulong addr
,
1883 MemOpIdx oi
, uintptr_t retaddr
);
1885 static inline uint64_t QEMU_ALWAYS_INLINE
1886 load_memop(const void *haddr
, MemOp op
)
1890 return ldub_p(haddr
);
1892 return lduw_be_p(haddr
);
1894 return lduw_le_p(haddr
);
1896 return (uint32_t)ldl_be_p(haddr
);
1898 return (uint32_t)ldl_le_p(haddr
);
1900 return ldq_be_p(haddr
);
1902 return ldq_le_p(haddr
);
1904 qemu_build_not_reached();
1908 static inline uint64_t QEMU_ALWAYS_INLINE
1909 load_helper(CPUArchState
*env
, target_ulong addr
, MemOpIdx oi
,
1910 uintptr_t retaddr
, MemOp op
, bool code_read
,
1911 FullLoadHelper
*full_load
)
1913 const size_t tlb_off
= code_read
?
1914 offsetof(CPUTLBEntry
, addr_code
) : offsetof(CPUTLBEntry
, addr_read
);
1915 const MMUAccessType access_type
=
1916 code_read
? MMU_INST_FETCH
: MMU_DATA_LOAD
;
1917 const unsigned a_bits
= get_alignment_bits(get_memop(oi
));
1918 const size_t size
= memop_size(op
);
1919 uintptr_t mmu_idx
= get_mmuidx(oi
);
1922 target_ulong tlb_addr
;
1926 tcg_debug_assert(mmu_idx
< NB_MMU_MODES
);
1928 /* Handle CPU specific unaligned behaviour */
1929 if (addr
& ((1 << a_bits
) - 1)) {
1930 cpu_unaligned_access(env_cpu(env
), addr
, access_type
,
1934 index
= tlb_index(env
, mmu_idx
, addr
);
1935 entry
= tlb_entry(env
, mmu_idx
, addr
);
1936 tlb_addr
= code_read
? entry
->addr_code
: entry
->addr_read
;
1938 /* If the TLB entry is for a different page, reload and try again. */
1939 if (!tlb_hit(tlb_addr
, addr
)) {
1940 if (!victim_tlb_hit(env
, mmu_idx
, index
, tlb_off
,
1941 addr
& TARGET_PAGE_MASK
)) {
1942 tlb_fill(env_cpu(env
), addr
, size
,
1943 access_type
, mmu_idx
, retaddr
);
1944 index
= tlb_index(env
, mmu_idx
, addr
);
1945 entry
= tlb_entry(env
, mmu_idx
, addr
);
1947 tlb_addr
= code_read
? entry
->addr_code
: entry
->addr_read
;
1948 tlb_addr
&= ~TLB_INVALID_MASK
;
1951 /* Handle anything that isn't just a straight memory access. */
1952 if (unlikely(tlb_addr
& ~TARGET_PAGE_MASK
)) {
1953 CPUIOTLBEntry
*iotlbentry
;
1956 /* For anything that is unaligned, recurse through full_load. */
1957 if ((addr
& (size
- 1)) != 0) {
1958 goto do_unaligned_access
;
1961 iotlbentry
= &env_tlb(env
)->d
[mmu_idx
].iotlb
[index
];
1963 /* Handle watchpoints. */
1964 if (unlikely(tlb_addr
& TLB_WATCHPOINT
)) {
1965 /* On watchpoint hit, this will longjmp out. */
1966 cpu_check_watchpoint(env_cpu(env
), addr
, size
,
1967 iotlbentry
->attrs
, BP_MEM_READ
, retaddr
);
1970 need_swap
= size
> 1 && (tlb_addr
& TLB_BSWAP
);
1972 /* Handle I/O access. */
1973 if (likely(tlb_addr
& TLB_MMIO
)) {
1974 return io_readx(env
, iotlbentry
, mmu_idx
, addr
, retaddr
,
1975 access_type
, op
^ (need_swap
* MO_BSWAP
));
1978 haddr
= (void *)((uintptr_t)addr
+ entry
->addend
);
1981 * Keep these two load_memop separate to ensure that the compiler
1982 * is able to fold the entire function to a single instruction.
1983 * There is a build-time assert inside to remind you of this. ;-)
1985 if (unlikely(need_swap
)) {
1986 return load_memop(haddr
, op
^ MO_BSWAP
);
1988 return load_memop(haddr
, op
);
1991 /* Handle slow unaligned access (it spans two pages or IO). */
1993 && unlikely((addr
& ~TARGET_PAGE_MASK
) + size
- 1
1994 >= TARGET_PAGE_SIZE
)) {
1995 target_ulong addr1
, addr2
;
1998 do_unaligned_access
:
1999 addr1
= addr
& ~((target_ulong
)size
- 1);
2000 addr2
= addr1
+ size
;
2001 r1
= full_load(env
, addr1
, oi
, retaddr
);
2002 r2
= full_load(env
, addr2
, oi
, retaddr
);
2003 shift
= (addr
& (size
- 1)) * 8;
2005 if (memop_big_endian(op
)) {
2006 /* Big-endian combine. */
2007 res
= (r1
<< shift
) | (r2
>> ((size
* 8) - shift
));
2009 /* Little-endian combine. */
2010 res
= (r1
>> shift
) | (r2
<< ((size
* 8) - shift
));
2012 return res
& MAKE_64BIT_MASK(0, size
* 8);
2015 haddr
= (void *)((uintptr_t)addr
+ entry
->addend
);
2016 return load_memop(haddr
, op
);
2020 * For the benefit of TCG generated code, we want to avoid the
2021 * complication of ABI-specific return type promotion and always
2022 * return a value extended to the register size of the host. This is
2023 * tcg_target_long, except in the case of a 32-bit host and 64-bit
2024 * data, and for that we always have uint64_t.
2026 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
2029 static uint64_t full_ldub_mmu(CPUArchState
*env
, target_ulong addr
,
2030 MemOpIdx oi
, uintptr_t retaddr
)
2032 validate_memop(oi
, MO_UB
);
2033 return load_helper(env
, addr
, oi
, retaddr
, MO_UB
, false, full_ldub_mmu
);
2036 tcg_target_ulong
helper_ret_ldub_mmu(CPUArchState
*env
, target_ulong addr
,
2037 MemOpIdx oi
, uintptr_t retaddr
)
2039 return full_ldub_mmu(env
, addr
, oi
, retaddr
);
2042 static uint64_t full_le_lduw_mmu(CPUArchState
*env
, target_ulong addr
,
2043 MemOpIdx oi
, uintptr_t retaddr
)
2045 validate_memop(oi
, MO_LEUW
);
2046 return load_helper(env
, addr
, oi
, retaddr
, MO_LEUW
, false,
2050 tcg_target_ulong
helper_le_lduw_mmu(CPUArchState
*env
, target_ulong addr
,
2051 MemOpIdx oi
, uintptr_t retaddr
)
2053 return full_le_lduw_mmu(env
, addr
, oi
, retaddr
);
2056 static uint64_t full_be_lduw_mmu(CPUArchState
*env
, target_ulong addr
,
2057 MemOpIdx oi
, uintptr_t retaddr
)
2059 validate_memop(oi
, MO_BEUW
);
2060 return load_helper(env
, addr
, oi
, retaddr
, MO_BEUW
, false,
2064 tcg_target_ulong
helper_be_lduw_mmu(CPUArchState
*env
, target_ulong addr
,
2065 MemOpIdx oi
, uintptr_t retaddr
)
2067 return full_be_lduw_mmu(env
, addr
, oi
, retaddr
);
2070 static uint64_t full_le_ldul_mmu(CPUArchState
*env
, target_ulong addr
,
2071 MemOpIdx oi
, uintptr_t retaddr
)
2073 validate_memop(oi
, MO_LEUL
);
2074 return load_helper(env
, addr
, oi
, retaddr
, MO_LEUL
, false,
2078 tcg_target_ulong
helper_le_ldul_mmu(CPUArchState
*env
, target_ulong addr
,
2079 MemOpIdx oi
, uintptr_t retaddr
)
2081 return full_le_ldul_mmu(env
, addr
, oi
, retaddr
);
2084 static uint64_t full_be_ldul_mmu(CPUArchState
*env
, target_ulong addr
,
2085 MemOpIdx oi
, uintptr_t retaddr
)
2087 validate_memop(oi
, MO_BEUL
);
2088 return load_helper(env
, addr
, oi
, retaddr
, MO_BEUL
, false,
2092 tcg_target_ulong
helper_be_ldul_mmu(CPUArchState
*env
, target_ulong addr
,
2093 MemOpIdx oi
, uintptr_t retaddr
)
2095 return full_be_ldul_mmu(env
, addr
, oi
, retaddr
);
2098 uint64_t helper_le_ldq_mmu(CPUArchState
*env
, target_ulong addr
,
2099 MemOpIdx oi
, uintptr_t retaddr
)
2101 validate_memop(oi
, MO_LEUQ
);
2102 return load_helper(env
, addr
, oi
, retaddr
, MO_LEUQ
, false,
2106 uint64_t helper_be_ldq_mmu(CPUArchState
*env
, target_ulong addr
,
2107 MemOpIdx oi
, uintptr_t retaddr
)
2109 validate_memop(oi
, MO_BEUQ
);
2110 return load_helper(env
, addr
, oi
, retaddr
, MO_BEUQ
, false,
2115 * Provide signed versions of the load routines as well. We can of course
2116 * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2120 tcg_target_ulong
helper_ret_ldsb_mmu(CPUArchState
*env
, target_ulong addr
,
2121 MemOpIdx oi
, uintptr_t retaddr
)
2123 return (int8_t)helper_ret_ldub_mmu(env
, addr
, oi
, retaddr
);
2126 tcg_target_ulong
helper_le_ldsw_mmu(CPUArchState
*env
, target_ulong addr
,
2127 MemOpIdx oi
, uintptr_t retaddr
)
2129 return (int16_t)helper_le_lduw_mmu(env
, addr
, oi
, retaddr
);
2132 tcg_target_ulong
helper_be_ldsw_mmu(CPUArchState
*env
, target_ulong addr
,
2133 MemOpIdx oi
, uintptr_t retaddr
)
2135 return (int16_t)helper_be_lduw_mmu(env
, addr
, oi
, retaddr
);
2138 tcg_target_ulong
helper_le_ldsl_mmu(CPUArchState
*env
, target_ulong addr
,
2139 MemOpIdx oi
, uintptr_t retaddr
)
2141 return (int32_t)helper_le_ldul_mmu(env
, addr
, oi
, retaddr
);
2144 tcg_target_ulong
helper_be_ldsl_mmu(CPUArchState
*env
, target_ulong addr
,
2145 MemOpIdx oi
, uintptr_t retaddr
)
2147 return (int32_t)helper_be_ldul_mmu(env
, addr
, oi
, retaddr
);
2151 * Load helpers for cpu_ldst.h.
2154 static inline uint64_t cpu_load_helper(CPUArchState
*env
, abi_ptr addr
,
2155 MemOpIdx oi
, uintptr_t retaddr
,
2156 FullLoadHelper
*full_load
)
2160 ret
= full_load(env
, addr
, oi
, retaddr
);
2161 qemu_plugin_vcpu_mem_cb(env_cpu(env
), addr
, oi
, QEMU_PLUGIN_MEM_R
);
2165 uint8_t cpu_ldb_mmu(CPUArchState
*env
, abi_ptr addr
, MemOpIdx oi
, uintptr_t ra
)
2167 return cpu_load_helper(env
, addr
, oi
, ra
, full_ldub_mmu
);
2170 uint16_t cpu_ldw_be_mmu(CPUArchState
*env
, abi_ptr addr
,
2171 MemOpIdx oi
, uintptr_t ra
)
2173 return cpu_load_helper(env
, addr
, oi
, ra
, full_be_lduw_mmu
);
2176 uint32_t cpu_ldl_be_mmu(CPUArchState
*env
, abi_ptr addr
,
2177 MemOpIdx oi
, uintptr_t ra
)
2179 return cpu_load_helper(env
, addr
, oi
, ra
, full_be_ldul_mmu
);
2182 uint64_t cpu_ldq_be_mmu(CPUArchState
*env
, abi_ptr addr
,
2183 MemOpIdx oi
, uintptr_t ra
)
2185 return cpu_load_helper(env
, addr
, oi
, ra
, helper_be_ldq_mmu
);
2188 uint16_t cpu_ldw_le_mmu(CPUArchState
*env
, abi_ptr addr
,
2189 MemOpIdx oi
, uintptr_t ra
)
2191 return cpu_load_helper(env
, addr
, oi
, ra
, full_le_lduw_mmu
);
2194 uint32_t cpu_ldl_le_mmu(CPUArchState
*env
, abi_ptr addr
,
2195 MemOpIdx oi
, uintptr_t ra
)
2197 return cpu_load_helper(env
, addr
, oi
, ra
, full_le_ldul_mmu
);
2200 uint64_t cpu_ldq_le_mmu(CPUArchState
*env
, abi_ptr addr
,
2201 MemOpIdx oi
, uintptr_t ra
)
2203 return cpu_load_helper(env
, addr
, oi
, ra
, helper_le_ldq_mmu
);
2210 static inline void QEMU_ALWAYS_INLINE
2211 store_memop(void *haddr
, uint64_t val
, MemOp op
)
2218 stw_be_p(haddr
, val
);
2221 stw_le_p(haddr
, val
);
2224 stl_be_p(haddr
, val
);
2227 stl_le_p(haddr
, val
);
2230 stq_be_p(haddr
, val
);
2233 stq_le_p(haddr
, val
);
2236 qemu_build_not_reached();
2240 static void full_stb_mmu(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
2241 MemOpIdx oi
, uintptr_t retaddr
);
2243 static void __attribute__((noinline
))
2244 store_helper_unaligned(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
2245 uintptr_t retaddr
, size_t size
, uintptr_t mmu_idx
,
2248 const size_t tlb_off
= offsetof(CPUTLBEntry
, addr_write
);
2249 uintptr_t index
, index2
;
2250 CPUTLBEntry
*entry
, *entry2
;
2251 target_ulong page1
, page2
, tlb_addr
, tlb_addr2
;
2257 * Ensure the second page is in the TLB. Note that the first page
2258 * is already guaranteed to be filled, and that the second page
2259 * cannot evict the first. An exception to this rule is PAGE_WRITE_INV
2260 * handling: the first page could have evicted itself.
2262 page1
= addr
& TARGET_PAGE_MASK
;
2263 page2
= (addr
+ size
) & TARGET_PAGE_MASK
;
2264 size2
= (addr
+ size
) & ~TARGET_PAGE_MASK
;
2265 index2
= tlb_index(env
, mmu_idx
, page2
);
2266 entry2
= tlb_entry(env
, mmu_idx
, page2
);
2268 tlb_addr2
= tlb_addr_write(entry2
);
2269 if (page1
!= page2
&& !tlb_hit_page(tlb_addr2
, page2
)) {
2270 if (!victim_tlb_hit(env
, mmu_idx
, index2
, tlb_off
, page2
)) {
2271 tlb_fill(env_cpu(env
), page2
, size2
, MMU_DATA_STORE
,
2273 index2
= tlb_index(env
, mmu_idx
, page2
);
2274 entry2
= tlb_entry(env
, mmu_idx
, page2
);
2276 tlb_addr2
= tlb_addr_write(entry2
);
2279 index
= tlb_index(env
, mmu_idx
, addr
);
2280 entry
= tlb_entry(env
, mmu_idx
, addr
);
2281 tlb_addr
= tlb_addr_write(entry
);
2284 * Handle watchpoints. Since this may trap, all checks
2285 * must happen before any store.
2287 if (unlikely(tlb_addr
& TLB_WATCHPOINT
)) {
2288 cpu_check_watchpoint(env_cpu(env
), addr
, size
- size2
,
2289 env_tlb(env
)->d
[mmu_idx
].iotlb
[index
].attrs
,
2290 BP_MEM_WRITE
, retaddr
);
2292 if (unlikely(tlb_addr2
& TLB_WATCHPOINT
)) {
2293 cpu_check_watchpoint(env_cpu(env
), page2
, size2
,
2294 env_tlb(env
)->d
[mmu_idx
].iotlb
[index2
].attrs
,
2295 BP_MEM_WRITE
, retaddr
);
2299 * XXX: not efficient, but simple.
2300 * This loop must go in the forward direction to avoid issues
2301 * with self-modifying code in Windows 64-bit.
2303 oi
= make_memop_idx(MO_UB
, mmu_idx
);
2305 for (i
= 0; i
< size
; ++i
) {
2306 /* Big-endian extract. */
2307 uint8_t val8
= val
>> (((size
- 1) * 8) - (i
* 8));
2308 full_stb_mmu(env
, addr
+ i
, val8
, oi
, retaddr
);
2311 for (i
= 0; i
< size
; ++i
) {
2312 /* Little-endian extract. */
2313 uint8_t val8
= val
>> (i
* 8);
2314 full_stb_mmu(env
, addr
+ i
, val8
, oi
, retaddr
);
2319 static inline void QEMU_ALWAYS_INLINE
2320 store_helper(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
2321 MemOpIdx oi
, uintptr_t retaddr
, MemOp op
)
2323 const size_t tlb_off
= offsetof(CPUTLBEntry
, addr_write
);
2324 const unsigned a_bits
= get_alignment_bits(get_memop(oi
));
2325 const size_t size
= memop_size(op
);
2326 uintptr_t mmu_idx
= get_mmuidx(oi
);
2329 target_ulong tlb_addr
;
2332 tcg_debug_assert(mmu_idx
< NB_MMU_MODES
);
2334 /* Handle CPU specific unaligned behaviour */
2335 if (addr
& ((1 << a_bits
) - 1)) {
2336 cpu_unaligned_access(env_cpu(env
), addr
, MMU_DATA_STORE
,
2340 index
= tlb_index(env
, mmu_idx
, addr
);
2341 entry
= tlb_entry(env
, mmu_idx
, addr
);
2342 tlb_addr
= tlb_addr_write(entry
);
2344 /* If the TLB entry is for a different page, reload and try again. */
2345 if (!tlb_hit(tlb_addr
, addr
)) {
2346 if (!victim_tlb_hit(env
, mmu_idx
, index
, tlb_off
,
2347 addr
& TARGET_PAGE_MASK
)) {
2348 tlb_fill(env_cpu(env
), addr
, size
, MMU_DATA_STORE
,
2350 index
= tlb_index(env
, mmu_idx
, addr
);
2351 entry
= tlb_entry(env
, mmu_idx
, addr
);
2353 tlb_addr
= tlb_addr_write(entry
) & ~TLB_INVALID_MASK
;
2356 /* Handle anything that isn't just a straight memory access. */
2357 if (unlikely(tlb_addr
& ~TARGET_PAGE_MASK
)) {
2358 CPUIOTLBEntry
*iotlbentry
;
2361 /* For anything that is unaligned, recurse through byte stores. */
2362 if ((addr
& (size
- 1)) != 0) {
2363 goto do_unaligned_access
;
2366 iotlbentry
= &env_tlb(env
)->d
[mmu_idx
].iotlb
[index
];
2368 /* Handle watchpoints. */
2369 if (unlikely(tlb_addr
& TLB_WATCHPOINT
)) {
2370 /* On watchpoint hit, this will longjmp out. */
2371 cpu_check_watchpoint(env_cpu(env
), addr
, size
,
2372 iotlbentry
->attrs
, BP_MEM_WRITE
, retaddr
);
2375 need_swap
= size
> 1 && (tlb_addr
& TLB_BSWAP
);
2377 /* Handle I/O access. */
2378 if (tlb_addr
& TLB_MMIO
) {
2379 io_writex(env
, iotlbentry
, mmu_idx
, val
, addr
, retaddr
,
2380 op
^ (need_swap
* MO_BSWAP
));
2384 /* Ignore writes to ROM. */
2385 if (unlikely(tlb_addr
& TLB_DISCARD_WRITE
)) {
2389 /* Handle clean RAM pages. */
2390 if (tlb_addr
& TLB_NOTDIRTY
) {
2391 notdirty_write(env_cpu(env
), addr
, size
, iotlbentry
, retaddr
);
2394 haddr
= (void *)((uintptr_t)addr
+ entry
->addend
);
2397 * Keep these two store_memop separate to ensure that the compiler
2398 * is able to fold the entire function to a single instruction.
2399 * There is a build-time assert inside to remind you of this. ;-)
2401 if (unlikely(need_swap
)) {
2402 store_memop(haddr
, val
, op
^ MO_BSWAP
);
2404 store_memop(haddr
, val
, op
);
2409 /* Handle slow unaligned access (it spans two pages or IO). */
2411 && unlikely((addr
& ~TARGET_PAGE_MASK
) + size
- 1
2412 >= TARGET_PAGE_SIZE
)) {
2413 do_unaligned_access
:
2414 store_helper_unaligned(env
, addr
, val
, retaddr
, size
,
2415 mmu_idx
, memop_big_endian(op
));
2419 haddr
= (void *)((uintptr_t)addr
+ entry
->addend
);
2420 store_memop(haddr
, val
, op
);
2423 static void __attribute__((noinline
))
2424 full_stb_mmu(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
2425 MemOpIdx oi
, uintptr_t retaddr
)
2427 validate_memop(oi
, MO_UB
);
2428 store_helper(env
, addr
, val
, oi
, retaddr
, MO_UB
);
2431 void helper_ret_stb_mmu(CPUArchState
*env
, target_ulong addr
, uint8_t val
,
2432 MemOpIdx oi
, uintptr_t retaddr
)
2434 full_stb_mmu(env
, addr
, val
, oi
, retaddr
);
2437 static void full_le_stw_mmu(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
2438 MemOpIdx oi
, uintptr_t retaddr
)
2440 validate_memop(oi
, MO_LEUW
);
2441 store_helper(env
, addr
, val
, oi
, retaddr
, MO_LEUW
);
2444 void helper_le_stw_mmu(CPUArchState
*env
, target_ulong addr
, uint16_t val
,
2445 MemOpIdx oi
, uintptr_t retaddr
)
2447 full_le_stw_mmu(env
, addr
, val
, oi
, retaddr
);
2450 static void full_be_stw_mmu(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
2451 MemOpIdx oi
, uintptr_t retaddr
)
2453 validate_memop(oi
, MO_BEUW
);
2454 store_helper(env
, addr
, val
, oi
, retaddr
, MO_BEUW
);
2457 void helper_be_stw_mmu(CPUArchState
*env
, target_ulong addr
, uint16_t val
,
2458 MemOpIdx oi
, uintptr_t retaddr
)
2460 full_be_stw_mmu(env
, addr
, val
, oi
, retaddr
);
2463 static void full_le_stl_mmu(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
2464 MemOpIdx oi
, uintptr_t retaddr
)
2466 validate_memop(oi
, MO_LEUL
);
2467 store_helper(env
, addr
, val
, oi
, retaddr
, MO_LEUL
);
2470 void helper_le_stl_mmu(CPUArchState
*env
, target_ulong addr
, uint32_t val
,
2471 MemOpIdx oi
, uintptr_t retaddr
)
2473 full_le_stl_mmu(env
, addr
, val
, oi
, retaddr
);
2476 static void full_be_stl_mmu(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
2477 MemOpIdx oi
, uintptr_t retaddr
)
2479 validate_memop(oi
, MO_BEUL
);
2480 store_helper(env
, addr
, val
, oi
, retaddr
, MO_BEUL
);
2483 void helper_be_stl_mmu(CPUArchState
*env
, target_ulong addr
, uint32_t val
,
2484 MemOpIdx oi
, uintptr_t retaddr
)
2486 full_be_stl_mmu(env
, addr
, val
, oi
, retaddr
);
2489 void helper_le_stq_mmu(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
2490 MemOpIdx oi
, uintptr_t retaddr
)
2492 validate_memop(oi
, MO_LEUQ
);
2493 store_helper(env
, addr
, val
, oi
, retaddr
, MO_LEUQ
);
2496 void helper_be_stq_mmu(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
2497 MemOpIdx oi
, uintptr_t retaddr
)
2499 validate_memop(oi
, MO_BEUQ
);
2500 store_helper(env
, addr
, val
, oi
, retaddr
, MO_BEUQ
);
2504 * Store Helpers for cpu_ldst.h
2507 typedef void FullStoreHelper(CPUArchState
*env
, target_ulong addr
,
2508 uint64_t val
, MemOpIdx oi
, uintptr_t retaddr
);
2510 static inline void cpu_store_helper(CPUArchState
*env
, target_ulong addr
,
2511 uint64_t val
, MemOpIdx oi
, uintptr_t ra
,
2512 FullStoreHelper
*full_store
)
2514 full_store(env
, addr
, val
, oi
, ra
);
2515 qemu_plugin_vcpu_mem_cb(env_cpu(env
), addr
, oi
, QEMU_PLUGIN_MEM_W
);
2518 void cpu_stb_mmu(CPUArchState
*env
, target_ulong addr
, uint8_t val
,
2519 MemOpIdx oi
, uintptr_t retaddr
)
2521 cpu_store_helper(env
, addr
, val
, oi
, retaddr
, full_stb_mmu
);
2524 void cpu_stw_be_mmu(CPUArchState
*env
, target_ulong addr
, uint16_t val
,
2525 MemOpIdx oi
, uintptr_t retaddr
)
2527 cpu_store_helper(env
, addr
, val
, oi
, retaddr
, full_be_stw_mmu
);
2530 void cpu_stl_be_mmu(CPUArchState
*env
, target_ulong addr
, uint32_t val
,
2531 MemOpIdx oi
, uintptr_t retaddr
)
2533 cpu_store_helper(env
, addr
, val
, oi
, retaddr
, full_be_stl_mmu
);
2536 void cpu_stq_be_mmu(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
2537 MemOpIdx oi
, uintptr_t retaddr
)
2539 cpu_store_helper(env
, addr
, val
, oi
, retaddr
, helper_be_stq_mmu
);
2542 void cpu_stw_le_mmu(CPUArchState
*env
, target_ulong addr
, uint16_t val
,
2543 MemOpIdx oi
, uintptr_t retaddr
)
2545 cpu_store_helper(env
, addr
, val
, oi
, retaddr
, full_le_stw_mmu
);
2548 void cpu_stl_le_mmu(CPUArchState
*env
, target_ulong addr
, uint32_t val
,
2549 MemOpIdx oi
, uintptr_t retaddr
)
2551 cpu_store_helper(env
, addr
, val
, oi
, retaddr
, full_le_stl_mmu
);
2554 void cpu_stq_le_mmu(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
2555 MemOpIdx oi
, uintptr_t retaddr
)
2557 cpu_store_helper(env
, addr
, val
, oi
, retaddr
, helper_le_stq_mmu
);
2560 #include "ldst_common.c.inc"
2563 * First set of functions passes in OI and RETADDR.
2564 * This makes them callable from other helpers.
2567 #define ATOMIC_NAME(X) \
2568 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
2570 #define ATOMIC_MMU_CLEANUP
2572 #include "atomic_common.c.inc"
2575 #include "atomic_template.h"
2578 #include "atomic_template.h"
2581 #include "atomic_template.h"
2583 #ifdef CONFIG_ATOMIC64
2585 #include "atomic_template.h"
2588 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128
2589 #define DATA_SIZE 16
2590 #include "atomic_template.h"
2593 /* Code access functions. */
2595 static uint64_t full_ldub_code(CPUArchState
*env
, target_ulong addr
,
2596 MemOpIdx oi
, uintptr_t retaddr
)
2598 return load_helper(env
, addr
, oi
, retaddr
, MO_8
, true, full_ldub_code
);
2601 uint32_t cpu_ldub_code(CPUArchState
*env
, abi_ptr addr
)
2603 MemOpIdx oi
= make_memop_idx(MO_UB
, cpu_mmu_index(env
, true));
2604 return full_ldub_code(env
, addr
, oi
, 0);
2607 static uint64_t full_lduw_code(CPUArchState
*env
, target_ulong addr
,
2608 MemOpIdx oi
, uintptr_t retaddr
)
2610 return load_helper(env
, addr
, oi
, retaddr
, MO_TEUW
, true, full_lduw_code
);
2613 uint32_t cpu_lduw_code(CPUArchState
*env
, abi_ptr addr
)
2615 MemOpIdx oi
= make_memop_idx(MO_TEUW
, cpu_mmu_index(env
, true));
2616 return full_lduw_code(env
, addr
, oi
, 0);
2619 static uint64_t full_ldl_code(CPUArchState
*env
, target_ulong addr
,
2620 MemOpIdx oi
, uintptr_t retaddr
)
2622 return load_helper(env
, addr
, oi
, retaddr
, MO_TEUL
, true, full_ldl_code
);
2625 uint32_t cpu_ldl_code(CPUArchState
*env
, abi_ptr addr
)
2627 MemOpIdx oi
= make_memop_idx(MO_TEUL
, cpu_mmu_index(env
, true));
2628 return full_ldl_code(env
, addr
, oi
, 0);
2631 static uint64_t full_ldq_code(CPUArchState
*env
, target_ulong addr
,
2632 MemOpIdx oi
, uintptr_t retaddr
)
2634 return load_helper(env
, addr
, oi
, retaddr
, MO_TEUQ
, true, full_ldq_code
);
2637 uint64_t cpu_ldq_code(CPUArchState
*env
, abi_ptr addr
)
2639 MemOpIdx oi
= make_memop_idx(MO_TEUQ
, cpu_mmu_index(env
, true));
2640 return full_ldq_code(env
, addr
, oi
, 0);