4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
46 #include "exec/cpu-all.h"
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
51 #include "exec/memory-internal.h"
53 //#define DEBUG_UNASSIGNED
54 //#define DEBUG_SUBPAGE
56 #if !defined(CONFIG_USER_ONLY)
58 static int in_migration
;
60 RAMList ram_list
= { .blocks
= QTAILQ_HEAD_INITIALIZER(ram_list
.blocks
) };
62 static MemoryRegion
*system_memory
;
63 static MemoryRegion
*system_io
;
65 AddressSpace address_space_io
;
66 AddressSpace address_space_memory
;
67 DMAContext dma_context_memory
;
69 MemoryRegion io_mem_ram
, io_mem_rom
, io_mem_unassigned
, io_mem_notdirty
;
70 static MemoryRegion io_mem_subpage_ram
;
74 CPUArchState
*first_cpu
;
75 /* current CPU in the current thread. It is only valid inside
77 DEFINE_TLS(CPUArchState
*,cpu_single_env
);
78 /* 0 = Do not count executed instructions.
79 1 = Precise instruction counting.
80 2 = Adaptive rate instruction counting. */
83 #if !defined(CONFIG_USER_ONLY)
85 static MemoryRegionSection
*phys_sections
;
86 static unsigned phys_sections_nb
, phys_sections_nb_alloc
;
87 static uint16_t phys_section_unassigned
;
88 static uint16_t phys_section_notdirty
;
89 static uint16_t phys_section_rom
;
90 static uint16_t phys_section_watch
;
92 /* Simple allocator for PhysPageEntry nodes */
93 static PhysPageEntry (*phys_map_nodes
)[L2_SIZE
];
94 static unsigned phys_map_nodes_nb
, phys_map_nodes_nb_alloc
;
96 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
98 static void io_mem_init(void);
99 static void memory_map_init(void);
100 static void *qemu_safe_ram_ptr(ram_addr_t addr
);
102 static MemoryRegion io_mem_watch
;
105 #if !defined(CONFIG_USER_ONLY)
107 static void phys_map_node_reserve(unsigned nodes
)
109 if (phys_map_nodes_nb
+ nodes
> phys_map_nodes_nb_alloc
) {
110 typedef PhysPageEntry Node
[L2_SIZE
];
111 phys_map_nodes_nb_alloc
= MAX(phys_map_nodes_nb_alloc
* 2, 16);
112 phys_map_nodes_nb_alloc
= MAX(phys_map_nodes_nb_alloc
,
113 phys_map_nodes_nb
+ nodes
);
114 phys_map_nodes
= g_renew(Node
, phys_map_nodes
,
115 phys_map_nodes_nb_alloc
);
119 static uint16_t phys_map_node_alloc(void)
124 ret
= phys_map_nodes_nb
++;
125 assert(ret
!= PHYS_MAP_NODE_NIL
);
126 assert(ret
!= phys_map_nodes_nb_alloc
);
127 for (i
= 0; i
< L2_SIZE
; ++i
) {
128 phys_map_nodes
[ret
][i
].is_leaf
= 0;
129 phys_map_nodes
[ret
][i
].ptr
= PHYS_MAP_NODE_NIL
;
134 static void phys_map_nodes_reset(void)
136 phys_map_nodes_nb
= 0;
140 static void phys_page_set_level(PhysPageEntry
*lp
, hwaddr
*index
,
141 hwaddr
*nb
, uint16_t leaf
,
146 hwaddr step
= (hwaddr
)1 << (level
* L2_BITS
);
148 if (!lp
->is_leaf
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
149 lp
->ptr
= phys_map_node_alloc();
150 p
= phys_map_nodes
[lp
->ptr
];
152 for (i
= 0; i
< L2_SIZE
; i
++) {
154 p
[i
].ptr
= phys_section_unassigned
;
158 p
= phys_map_nodes
[lp
->ptr
];
160 lp
= &p
[(*index
>> (level
* L2_BITS
)) & (L2_SIZE
- 1)];
162 while (*nb
&& lp
< &p
[L2_SIZE
]) {
163 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
169 phys_page_set_level(lp
, index
, nb
, leaf
, level
- 1);
175 static void phys_page_set(AddressSpaceDispatch
*d
,
176 hwaddr index
, hwaddr nb
,
179 /* Wildly overreserve - it doesn't matter much. */
180 phys_map_node_reserve(3 * P_L2_LEVELS
);
182 phys_page_set_level(&d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
185 MemoryRegionSection
*phys_page_find(AddressSpaceDispatch
*d
, hwaddr index
)
187 PhysPageEntry lp
= d
->phys_map
;
190 uint16_t s_index
= phys_section_unassigned
;
192 for (i
= P_L2_LEVELS
- 1; i
>= 0 && !lp
.is_leaf
; i
--) {
193 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
196 p
= phys_map_nodes
[lp
.ptr
];
197 lp
= p
[(index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1)];
202 return &phys_sections
[s_index
];
205 bool memory_region_is_unassigned(MemoryRegion
*mr
)
207 return mr
!= &io_mem_ram
&& mr
!= &io_mem_rom
208 && mr
!= &io_mem_notdirty
&& !mr
->rom_device
209 && mr
!= &io_mem_watch
;
213 void cpu_exec_init_all(void)
215 #if !defined(CONFIG_USER_ONLY)
216 qemu_mutex_init(&ram_list
.mutex
);
222 #if !defined(CONFIG_USER_ONLY)
224 static int cpu_common_post_load(void *opaque
, int version_id
)
226 CPUState
*cpu
= opaque
;
228 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
229 version_id is increased. */
230 cpu
->interrupt_request
&= ~0x01;
231 tlb_flush(cpu
->env_ptr
, 1);
236 static const VMStateDescription vmstate_cpu_common
= {
237 .name
= "cpu_common",
239 .minimum_version_id
= 1,
240 .minimum_version_id_old
= 1,
241 .post_load
= cpu_common_post_load
,
242 .fields
= (VMStateField
[]) {
243 VMSTATE_UINT32(halted
, CPUState
),
244 VMSTATE_UINT32(interrupt_request
, CPUState
),
245 VMSTATE_END_OF_LIST()
249 #define vmstate_cpu_common vmstate_dummy
252 CPUState
*qemu_get_cpu(int index
)
254 CPUArchState
*env
= first_cpu
;
255 CPUState
*cpu
= NULL
;
258 cpu
= ENV_GET_CPU(env
);
259 if (cpu
->cpu_index
== index
) {
265 return env
? cpu
: NULL
;
268 void qemu_for_each_cpu(void (*func
)(CPUState
*cpu
, void *data
), void *data
)
270 CPUArchState
*env
= first_cpu
;
273 func(ENV_GET_CPU(env
), data
);
278 void cpu_exec_init(CPUArchState
*env
)
280 CPUState
*cpu
= ENV_GET_CPU(env
);
281 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
285 #if defined(CONFIG_USER_ONLY)
288 env
->next_cpu
= NULL
;
291 while (*penv
!= NULL
) {
292 penv
= &(*penv
)->next_cpu
;
295 cpu
->cpu_index
= cpu_index
;
297 QTAILQ_INIT(&env
->breakpoints
);
298 QTAILQ_INIT(&env
->watchpoints
);
299 #ifndef CONFIG_USER_ONLY
300 cpu
->thread_id
= qemu_get_thread_id();
303 #if defined(CONFIG_USER_ONLY)
306 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, cpu
);
307 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
308 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
309 cpu_save
, cpu_load
, env
);
310 assert(cc
->vmsd
== NULL
);
312 if (cc
->vmsd
!= NULL
) {
313 vmstate_register(NULL
, cpu_index
, cc
->vmsd
, cpu
);
317 #if defined(TARGET_HAS_ICE)
318 #if defined(CONFIG_USER_ONLY)
319 static void breakpoint_invalidate(CPUArchState
*env
, target_ulong pc
)
321 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
324 static void breakpoint_invalidate(CPUArchState
*env
, target_ulong pc
)
326 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env
, pc
) |
327 (pc
& ~TARGET_PAGE_MASK
));
330 #endif /* TARGET_HAS_ICE */
332 #if defined(CONFIG_USER_ONLY)
333 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
338 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
339 int flags
, CPUWatchpoint
**watchpoint
)
344 /* Add a watchpoint. */
345 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
346 int flags
, CPUWatchpoint
**watchpoint
)
348 target_ulong len_mask
= ~(len
- 1);
351 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
352 if ((len
& (len
- 1)) || (addr
& ~len_mask
) ||
353 len
== 0 || len
> TARGET_PAGE_SIZE
) {
354 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
355 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
358 wp
= g_malloc(sizeof(*wp
));
361 wp
->len_mask
= len_mask
;
364 /* keep all GDB-injected watchpoints in front */
366 QTAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
368 QTAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
370 tlb_flush_page(env
, addr
);
377 /* Remove a specific watchpoint. */
378 int cpu_watchpoint_remove(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
381 target_ulong len_mask
= ~(len
- 1);
384 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
385 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
386 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
387 cpu_watchpoint_remove_by_ref(env
, wp
);
394 /* Remove a specific watchpoint by reference. */
395 void cpu_watchpoint_remove_by_ref(CPUArchState
*env
, CPUWatchpoint
*watchpoint
)
397 QTAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
399 tlb_flush_page(env
, watchpoint
->vaddr
);
404 /* Remove all matching watchpoints. */
405 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
407 CPUWatchpoint
*wp
, *next
;
409 QTAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
410 if (wp
->flags
& mask
)
411 cpu_watchpoint_remove_by_ref(env
, wp
);
416 /* Add a breakpoint. */
417 int cpu_breakpoint_insert(CPUArchState
*env
, target_ulong pc
, int flags
,
418 CPUBreakpoint
**breakpoint
)
420 #if defined(TARGET_HAS_ICE)
423 bp
= g_malloc(sizeof(*bp
));
428 /* keep all GDB-injected breakpoints in front */
430 QTAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
432 QTAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
434 breakpoint_invalidate(env
, pc
);
444 /* Remove a specific breakpoint. */
445 int cpu_breakpoint_remove(CPUArchState
*env
, target_ulong pc
, int flags
)
447 #if defined(TARGET_HAS_ICE)
450 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
451 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
452 cpu_breakpoint_remove_by_ref(env
, bp
);
462 /* Remove a specific breakpoint by reference. */
463 void cpu_breakpoint_remove_by_ref(CPUArchState
*env
, CPUBreakpoint
*breakpoint
)
465 #if defined(TARGET_HAS_ICE)
466 QTAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
468 breakpoint_invalidate(env
, breakpoint
->pc
);
474 /* Remove all matching breakpoints. */
475 void cpu_breakpoint_remove_all(CPUArchState
*env
, int mask
)
477 #if defined(TARGET_HAS_ICE)
478 CPUBreakpoint
*bp
, *next
;
480 QTAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
481 if (bp
->flags
& mask
)
482 cpu_breakpoint_remove_by_ref(env
, bp
);
487 /* enable or disable single step mode. EXCP_DEBUG is returned by the
488 CPU loop after each instruction */
489 void cpu_single_step(CPUArchState
*env
, int enabled
)
491 #if defined(TARGET_HAS_ICE)
492 if (env
->singlestep_enabled
!= enabled
) {
493 env
->singlestep_enabled
= enabled
;
495 kvm_update_guest_debug(env
, 0);
497 /* must flush all the translated code to avoid inconsistencies */
498 /* XXX: only flush what is necessary */
505 void cpu_exit(CPUArchState
*env
)
507 CPUState
*cpu
= ENV_GET_CPU(env
);
509 cpu
->exit_request
= 1;
510 cpu
->tcg_exit_req
= 1;
513 void cpu_abort(CPUArchState
*env
, const char *fmt
, ...)
520 fprintf(stderr
, "qemu: fatal: ");
521 vfprintf(stderr
, fmt
, ap
);
522 fprintf(stderr
, "\n");
523 cpu_dump_state(env
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
524 if (qemu_log_enabled()) {
525 qemu_log("qemu: fatal: ");
526 qemu_log_vprintf(fmt
, ap2
);
528 log_cpu_state(env
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
534 #if defined(CONFIG_USER_ONLY)
536 struct sigaction act
;
537 sigfillset(&act
.sa_mask
);
538 act
.sa_handler
= SIG_DFL
;
539 sigaction(SIGABRT
, &act
, NULL
);
545 CPUArchState
*cpu_copy(CPUArchState
*env
)
547 CPUArchState
*new_env
= cpu_init(env
->cpu_model_str
);
548 CPUArchState
*next_cpu
= new_env
->next_cpu
;
549 #if defined(TARGET_HAS_ICE)
554 memcpy(new_env
, env
, sizeof(CPUArchState
));
556 /* Preserve chaining. */
557 new_env
->next_cpu
= next_cpu
;
559 /* Clone all break/watchpoints.
560 Note: Once we support ptrace with hw-debug register access, make sure
561 BP_CPU break/watchpoints are handled correctly on clone. */
562 QTAILQ_INIT(&env
->breakpoints
);
563 QTAILQ_INIT(&env
->watchpoints
);
564 #if defined(TARGET_HAS_ICE)
565 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
566 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
568 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
569 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
577 #if !defined(CONFIG_USER_ONLY)
578 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t end
,
583 /* we modify the TLB cache so that the dirty bit will be set again
584 when accessing the range */
585 start1
= (uintptr_t)qemu_safe_ram_ptr(start
);
586 /* Check that we don't span multiple blocks - this breaks the
587 address comparisons below. */
588 if ((uintptr_t)qemu_safe_ram_ptr(end
- 1) - start1
589 != (end
- 1) - start
) {
592 cpu_tlb_reset_dirty_all(start1
, length
);
596 /* Note: start and end must be within the same ram block. */
597 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
602 start
&= TARGET_PAGE_MASK
;
603 end
= TARGET_PAGE_ALIGN(end
);
605 length
= end
- start
;
608 cpu_physical_memory_mask_dirty_range(start
, length
, dirty_flags
);
611 tlb_reset_dirty_range_all(start
, end
, length
);
615 static int cpu_physical_memory_set_dirty_tracking(int enable
)
618 in_migration
= enable
;
622 hwaddr
memory_region_section_get_iotlb(CPUArchState
*env
,
623 MemoryRegionSection
*section
,
627 target_ulong
*address
)
632 if (memory_region_is_ram(section
->mr
)) {
634 iotlb
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
635 + memory_region_section_addr(section
, paddr
);
636 if (!section
->readonly
) {
637 iotlb
|= phys_section_notdirty
;
639 iotlb
|= phys_section_rom
;
642 /* IO handlers are currently passed a physical address.
643 It would be nice to pass an offset from the base address
644 of that region. This would avoid having to special case RAM,
645 and avoid full address decoding in every device.
646 We can't use the high bits of pd for this because
647 IO_MEM_ROMD uses these as a ram address. */
648 iotlb
= section
- phys_sections
;
649 iotlb
+= memory_region_section_addr(section
, paddr
);
652 /* Make accesses to pages with watchpoints go via the
653 watchpoint trap routines. */
654 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
655 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
656 /* Avoid trapping reads of pages with a write breakpoint. */
657 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
658 iotlb
= phys_section_watch
+ paddr
;
659 *address
|= TLB_MMIO
;
667 #endif /* defined(CONFIG_USER_ONLY) */
669 #if !defined(CONFIG_USER_ONLY)
671 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
672 typedef struct subpage_t
{
675 uint16_t sub_section
[TARGET_PAGE_SIZE
];
678 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
680 static subpage_t
*subpage_init(hwaddr base
);
681 static void destroy_page_desc(uint16_t section_index
)
683 MemoryRegionSection
*section
= &phys_sections
[section_index
];
684 MemoryRegion
*mr
= section
->mr
;
687 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
688 memory_region_destroy(&subpage
->iomem
);
693 static void destroy_l2_mapping(PhysPageEntry
*lp
, unsigned level
)
698 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
702 p
= phys_map_nodes
[lp
->ptr
];
703 for (i
= 0; i
< L2_SIZE
; ++i
) {
705 destroy_l2_mapping(&p
[i
], level
- 1);
707 destroy_page_desc(p
[i
].ptr
);
711 lp
->ptr
= PHYS_MAP_NODE_NIL
;
714 static void destroy_all_mappings(AddressSpaceDispatch
*d
)
716 destroy_l2_mapping(&d
->phys_map
, P_L2_LEVELS
- 1);
717 phys_map_nodes_reset();
720 static uint16_t phys_section_add(MemoryRegionSection
*section
)
722 if (phys_sections_nb
== phys_sections_nb_alloc
) {
723 phys_sections_nb_alloc
= MAX(phys_sections_nb_alloc
* 2, 16);
724 phys_sections
= g_renew(MemoryRegionSection
, phys_sections
,
725 phys_sections_nb_alloc
);
727 phys_sections
[phys_sections_nb
] = *section
;
728 return phys_sections_nb
++;
731 static void phys_sections_clear(void)
733 phys_sections_nb
= 0;
736 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
739 hwaddr base
= section
->offset_within_address_space
741 MemoryRegionSection
*existing
= phys_page_find(d
, base
>> TARGET_PAGE_BITS
);
742 MemoryRegionSection subsection
= {
743 .offset_within_address_space
= base
,
744 .size
= TARGET_PAGE_SIZE
,
748 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
750 if (!(existing
->mr
->subpage
)) {
751 subpage
= subpage_init(base
);
752 subsection
.mr
= &subpage
->iomem
;
753 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
754 phys_section_add(&subsection
));
756 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
758 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
759 end
= start
+ section
->size
- 1;
760 subpage_register(subpage
, start
, end
, phys_section_add(section
));
764 static void register_multipage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
766 hwaddr start_addr
= section
->offset_within_address_space
;
767 ram_addr_t size
= section
->size
;
769 uint16_t section_index
= phys_section_add(section
);
774 phys_page_set(d
, addr
>> TARGET_PAGE_BITS
, size
>> TARGET_PAGE_BITS
,
778 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
780 AddressSpaceDispatch
*d
= container_of(listener
, AddressSpaceDispatch
, listener
);
781 MemoryRegionSection now
= *section
, remain
= *section
;
783 if ((now
.offset_within_address_space
& ~TARGET_PAGE_MASK
)
784 || (now
.size
< TARGET_PAGE_SIZE
)) {
785 now
.size
= MIN(TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
786 - now
.offset_within_address_space
,
788 register_subpage(d
, &now
);
789 remain
.size
-= now
.size
;
790 remain
.offset_within_address_space
+= now
.size
;
791 remain
.offset_within_region
+= now
.size
;
793 while (remain
.size
>= TARGET_PAGE_SIZE
) {
795 if (remain
.offset_within_region
& ~TARGET_PAGE_MASK
) {
796 now
.size
= TARGET_PAGE_SIZE
;
797 register_subpage(d
, &now
);
799 now
.size
&= TARGET_PAGE_MASK
;
800 register_multipage(d
, &now
);
802 remain
.size
-= now
.size
;
803 remain
.offset_within_address_space
+= now
.size
;
804 remain
.offset_within_region
+= now
.size
;
808 register_subpage(d
, &now
);
812 void qemu_flush_coalesced_mmio_buffer(void)
815 kvm_flush_coalesced_mmio_buffer();
818 void qemu_mutex_lock_ramlist(void)
820 qemu_mutex_lock(&ram_list
.mutex
);
823 void qemu_mutex_unlock_ramlist(void)
825 qemu_mutex_unlock(&ram_list
.mutex
);
828 #if defined(__linux__) && !defined(TARGET_S390X)
832 #define HUGETLBFS_MAGIC 0x958458f6
834 static long gethugepagesize(const char *path
)
840 ret
= statfs(path
, &fs
);
841 } while (ret
!= 0 && errno
== EINTR
);
848 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
849 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
854 static void *file_ram_alloc(RAMBlock
*block
,
859 char *sanitized_name
;
866 unsigned long hpagesize
;
868 hpagesize
= gethugepagesize(path
);
873 if (memory
< hpagesize
) {
877 if (kvm_enabled() && !kvm_has_sync_mmu()) {
878 fprintf(stderr
, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
882 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
883 sanitized_name
= g_strdup(block
->mr
->name
);
884 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
889 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
891 g_free(sanitized_name
);
893 fd
= mkstemp(filename
);
895 perror("unable to create backing store for hugepages");
902 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
905 * ftruncate is not supported by hugetlbfs in older
906 * hosts, so don't bother bailing out on errors.
907 * If anything goes wrong with it under other filesystems,
910 if (ftruncate(fd
, memory
))
914 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
915 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
916 * to sidestep this quirk.
918 flags
= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
: MAP_PRIVATE
;
919 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, flags
, fd
, 0);
921 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
, fd
, 0);
923 if (area
== MAP_FAILED
) {
924 perror("file_ram_alloc: can't mmap RAM pages");
933 static ram_addr_t
find_ram_offset(ram_addr_t size
)
935 RAMBlock
*block
, *next_block
;
936 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
938 assert(size
!= 0); /* it would hand out same offset multiple times */
940 if (QTAILQ_EMPTY(&ram_list
.blocks
))
943 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
944 ram_addr_t end
, next
= RAM_ADDR_MAX
;
946 end
= block
->offset
+ block
->length
;
948 QTAILQ_FOREACH(next_block
, &ram_list
.blocks
, next
) {
949 if (next_block
->offset
>= end
) {
950 next
= MIN(next
, next_block
->offset
);
953 if (next
- end
>= size
&& next
- end
< mingap
) {
959 if (offset
== RAM_ADDR_MAX
) {
960 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
968 ram_addr_t
last_ram_offset(void)
973 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
)
974 last
= MAX(last
, block
->offset
+ block
->length
);
979 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
982 QemuOpts
*machine_opts
;
984 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
985 machine_opts
= qemu_opts_find(qemu_find_opts("machine"), 0);
987 !qemu_opt_get_bool(machine_opts
, "dump-guest-core", true)) {
988 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
990 perror("qemu_madvise");
991 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
992 "but dump_guest_core=off specified\n");
997 void qemu_ram_set_idstr(ram_addr_t addr
, const char *name
, DeviceState
*dev
)
999 RAMBlock
*new_block
, *block
;
1002 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1003 if (block
->offset
== addr
) {
1009 assert(!new_block
->idstr
[0]);
1012 char *id
= qdev_get_dev_path(dev
);
1014 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1018 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1020 /* This assumes the iothread lock is taken here too. */
1021 qemu_mutex_lock_ramlist();
1022 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1023 if (block
!= new_block
&& !strcmp(block
->idstr
, new_block
->idstr
)) {
1024 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1029 qemu_mutex_unlock_ramlist();
1032 static int memory_try_enable_merging(void *addr
, size_t len
)
1036 opts
= qemu_opts_find(qemu_find_opts("machine"), 0);
1037 if (opts
&& !qemu_opt_get_bool(opts
, "mem-merge", true)) {
1038 /* disabled by the user */
1042 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1045 ram_addr_t
qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1048 RAMBlock
*block
, *new_block
;
1050 size
= TARGET_PAGE_ALIGN(size
);
1051 new_block
= g_malloc0(sizeof(*new_block
));
1053 /* This assumes the iothread lock is taken here too. */
1054 qemu_mutex_lock_ramlist();
1056 new_block
->offset
= find_ram_offset(size
);
1058 new_block
->host
= host
;
1059 new_block
->flags
|= RAM_PREALLOC_MASK
;
1062 #if defined (__linux__) && !defined(TARGET_S390X)
1063 new_block
->host
= file_ram_alloc(new_block
, size
, mem_path
);
1064 if (!new_block
->host
) {
1065 new_block
->host
= qemu_anon_ram_alloc(size
);
1066 memory_try_enable_merging(new_block
->host
, size
);
1069 fprintf(stderr
, "-mem-path option unsupported\n");
1073 if (xen_enabled()) {
1074 xen_ram_alloc(new_block
->offset
, size
, mr
);
1075 } else if (kvm_enabled()) {
1076 /* some s390/kvm configurations have special constraints */
1077 new_block
->host
= kvm_ram_alloc(size
);
1079 new_block
->host
= qemu_anon_ram_alloc(size
);
1081 memory_try_enable_merging(new_block
->host
, size
);
1084 new_block
->length
= size
;
1086 /* Keep the list sorted from biggest to smallest block. */
1087 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1088 if (block
->length
< new_block
->length
) {
1093 QTAILQ_INSERT_BEFORE(block
, new_block
, next
);
1095 QTAILQ_INSERT_TAIL(&ram_list
.blocks
, new_block
, next
);
1097 ram_list
.mru_block
= NULL
;
1100 qemu_mutex_unlock_ramlist();
1102 ram_list
.phys_dirty
= g_realloc(ram_list
.phys_dirty
,
1103 last_ram_offset() >> TARGET_PAGE_BITS
);
1104 memset(ram_list
.phys_dirty
+ (new_block
->offset
>> TARGET_PAGE_BITS
),
1105 0, size
>> TARGET_PAGE_BITS
);
1106 cpu_physical_memory_set_dirty_range(new_block
->offset
, size
, 0xff);
1108 qemu_ram_setup_dump(new_block
->host
, size
);
1109 qemu_madvise(new_block
->host
, size
, QEMU_MADV_HUGEPAGE
);
1112 kvm_setup_guest_memory(new_block
->host
, size
);
1114 return new_block
->offset
;
1117 ram_addr_t
qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
)
1119 return qemu_ram_alloc_from_ptr(size
, NULL
, mr
);
1122 void qemu_ram_free_from_ptr(ram_addr_t addr
)
1126 /* This assumes the iothread lock is taken here too. */
1127 qemu_mutex_lock_ramlist();
1128 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1129 if (addr
== block
->offset
) {
1130 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1131 ram_list
.mru_block
= NULL
;
1137 qemu_mutex_unlock_ramlist();
1140 void qemu_ram_free(ram_addr_t addr
)
1144 /* This assumes the iothread lock is taken here too. */
1145 qemu_mutex_lock_ramlist();
1146 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1147 if (addr
== block
->offset
) {
1148 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1149 ram_list
.mru_block
= NULL
;
1151 if (block
->flags
& RAM_PREALLOC_MASK
) {
1153 } else if (mem_path
) {
1154 #if defined (__linux__) && !defined(TARGET_S390X)
1156 munmap(block
->host
, block
->length
);
1159 qemu_anon_ram_free(block
->host
, block
->length
);
1165 if (xen_enabled()) {
1166 xen_invalidate_map_cache_entry(block
->host
);
1168 qemu_anon_ram_free(block
->host
, block
->length
);
1175 qemu_mutex_unlock_ramlist();
1180 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1187 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1188 offset
= addr
- block
->offset
;
1189 if (offset
< block
->length
) {
1190 vaddr
= block
->host
+ offset
;
1191 if (block
->flags
& RAM_PREALLOC_MASK
) {
1195 munmap(vaddr
, length
);
1197 #if defined(__linux__) && !defined(TARGET_S390X)
1200 flags
|= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
:
1203 flags
|= MAP_PRIVATE
;
1205 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1206 flags
, block
->fd
, offset
);
1208 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1209 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1216 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1217 flags
|= MAP_SHARED
| MAP_ANONYMOUS
;
1218 area
= mmap(vaddr
, length
, PROT_EXEC
|PROT_READ
|PROT_WRITE
,
1221 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1222 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1226 if (area
!= vaddr
) {
1227 fprintf(stderr
, "Could not remap addr: "
1228 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1232 memory_try_enable_merging(vaddr
, length
);
1233 qemu_ram_setup_dump(vaddr
, length
);
1239 #endif /* !_WIN32 */
1241 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1242 With the exception of the softmmu code in this file, this should
1243 only be used for local memory (e.g. video ram) that the device owns,
1244 and knows it isn't going to access beyond the end of the block.
1246 It should not be used for general purpose DMA.
1247 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1249 void *qemu_get_ram_ptr(ram_addr_t addr
)
1253 /* The list is protected by the iothread lock here. */
1254 block
= ram_list
.mru_block
;
1255 if (block
&& addr
- block
->offset
< block
->length
) {
1258 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1259 if (addr
- block
->offset
< block
->length
) {
1264 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1268 ram_list
.mru_block
= block
;
1269 if (xen_enabled()) {
1270 /* We need to check if the requested address is in the RAM
1271 * because we don't want to map the entire memory in QEMU.
1272 * In that case just map until the end of the page.
1274 if (block
->offset
== 0) {
1275 return xen_map_cache(addr
, 0, 0);
1276 } else if (block
->host
== NULL
) {
1278 xen_map_cache(block
->offset
, block
->length
, 1);
1281 return block
->host
+ (addr
- block
->offset
);
1284 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1285 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1287 * ??? Is this still necessary?
1289 static void *qemu_safe_ram_ptr(ram_addr_t addr
)
1293 /* The list is protected by the iothread lock here. */
1294 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1295 if (addr
- block
->offset
< block
->length
) {
1296 if (xen_enabled()) {
1297 /* We need to check if the requested address is in the RAM
1298 * because we don't want to map the entire memory in QEMU.
1299 * In that case just map until the end of the page.
1301 if (block
->offset
== 0) {
1302 return xen_map_cache(addr
, 0, 0);
1303 } else if (block
->host
== NULL
) {
1305 xen_map_cache(block
->offset
, block
->length
, 1);
1308 return block
->host
+ (addr
- block
->offset
);
1312 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1318 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1319 * but takes a size argument */
1320 static void *qemu_ram_ptr_length(ram_addr_t addr
, ram_addr_t
*size
)
1325 if (xen_enabled()) {
1326 return xen_map_cache(addr
, *size
, 1);
1330 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1331 if (addr
- block
->offset
< block
->length
) {
1332 if (addr
- block
->offset
+ *size
> block
->length
)
1333 *size
= block
->length
- addr
+ block
->offset
;
1334 return block
->host
+ (addr
- block
->offset
);
1338 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1343 void qemu_put_ram_ptr(void *addr
)
1345 trace_qemu_put_ram_ptr(addr
);
1348 int qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
1351 uint8_t *host
= ptr
;
1353 if (xen_enabled()) {
1354 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1358 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1359 /* This case append when the block is not mapped. */
1360 if (block
->host
== NULL
) {
1363 if (host
- block
->host
< block
->length
) {
1364 *ram_addr
= block
->offset
+ (host
- block
->host
);
1372 /* Some of the softmmu routines need to translate from a host pointer
1373 (typically a TLB entry) back to a ram offset. */
1374 ram_addr_t
qemu_ram_addr_from_host_nofail(void *ptr
)
1376 ram_addr_t ram_addr
;
1378 if (qemu_ram_addr_from_host(ptr
, &ram_addr
)) {
1379 fprintf(stderr
, "Bad ram pointer %p\n", ptr
);
1385 static uint64_t unassigned_mem_read(void *opaque
, hwaddr addr
,
1388 #ifdef DEBUG_UNASSIGNED
1389 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
1391 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
1392 cpu_unassigned_access(cpu_single_env
, addr
, 0, 0, 0, size
);
1397 static void unassigned_mem_write(void *opaque
, hwaddr addr
,
1398 uint64_t val
, unsigned size
)
1400 #ifdef DEBUG_UNASSIGNED
1401 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%"PRIx64
"\n", addr
, val
);
1403 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
1404 cpu_unassigned_access(cpu_single_env
, addr
, 1, 0, 0, size
);
1408 static const MemoryRegionOps unassigned_mem_ops
= {
1409 .read
= unassigned_mem_read
,
1410 .write
= unassigned_mem_write
,
1411 .endianness
= DEVICE_NATIVE_ENDIAN
,
1414 static uint64_t error_mem_read(void *opaque
, hwaddr addr
,
1420 static void error_mem_write(void *opaque
, hwaddr addr
,
1421 uint64_t value
, unsigned size
)
1426 static const MemoryRegionOps error_mem_ops
= {
1427 .read
= error_mem_read
,
1428 .write
= error_mem_write
,
1429 .endianness
= DEVICE_NATIVE_ENDIAN
,
1432 static const MemoryRegionOps rom_mem_ops
= {
1433 .read
= error_mem_read
,
1434 .write
= unassigned_mem_write
,
1435 .endianness
= DEVICE_NATIVE_ENDIAN
,
1438 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
1439 uint64_t val
, unsigned size
)
1442 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
1443 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
1444 #if !defined(CONFIG_USER_ONLY)
1445 tb_invalidate_phys_page_fast(ram_addr
, size
);
1446 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
1451 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
1454 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
1457 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
1462 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
1463 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
1464 /* we remove the notdirty callback only if the code has been
1466 if (dirty_flags
== 0xff)
1467 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
1470 static const MemoryRegionOps notdirty_mem_ops
= {
1471 .read
= error_mem_read
,
1472 .write
= notdirty_mem_write
,
1473 .endianness
= DEVICE_NATIVE_ENDIAN
,
1476 /* Generate a debug exception if a watchpoint has been hit. */
1477 static void check_watchpoint(int offset
, int len_mask
, int flags
)
1479 CPUArchState
*env
= cpu_single_env
;
1480 target_ulong pc
, cs_base
;
1485 if (env
->watchpoint_hit
) {
1486 /* We re-entered the check after replacing the TB. Now raise
1487 * the debug interrupt so that is will trigger after the
1488 * current instruction. */
1489 cpu_interrupt(ENV_GET_CPU(env
), CPU_INTERRUPT_DEBUG
);
1492 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
1493 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1494 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
1495 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
1496 wp
->flags
|= BP_WATCHPOINT_HIT
;
1497 if (!env
->watchpoint_hit
) {
1498 env
->watchpoint_hit
= wp
;
1499 tb_check_watchpoint(env
);
1500 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
1501 env
->exception_index
= EXCP_DEBUG
;
1504 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
1505 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
1506 cpu_resume_from_signal(env
, NULL
);
1510 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
1515 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1516 so these check for a hit then pass through to the normal out-of-line
1518 static uint64_t watch_mem_read(void *opaque
, hwaddr addr
,
1521 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_READ
);
1523 case 1: return ldub_phys(addr
);
1524 case 2: return lduw_phys(addr
);
1525 case 4: return ldl_phys(addr
);
1530 static void watch_mem_write(void *opaque
, hwaddr addr
,
1531 uint64_t val
, unsigned size
)
1533 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_WRITE
);
1536 stb_phys(addr
, val
);
1539 stw_phys(addr
, val
);
1542 stl_phys(addr
, val
);
1548 static const MemoryRegionOps watch_mem_ops
= {
1549 .read
= watch_mem_read
,
1550 .write
= watch_mem_write
,
1551 .endianness
= DEVICE_NATIVE_ENDIAN
,
1554 static uint64_t subpage_read(void *opaque
, hwaddr addr
,
1557 subpage_t
*mmio
= opaque
;
1558 unsigned int idx
= SUBPAGE_IDX(addr
);
1559 MemoryRegionSection
*section
;
1560 #if defined(DEBUG_SUBPAGE)
1561 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
1562 mmio
, len
, addr
, idx
);
1565 section
= &phys_sections
[mmio
->sub_section
[idx
]];
1567 addr
-= section
->offset_within_address_space
;
1568 addr
+= section
->offset_within_region
;
1569 return io_mem_read(section
->mr
, addr
, len
);
1572 static void subpage_write(void *opaque
, hwaddr addr
,
1573 uint64_t value
, unsigned len
)
1575 subpage_t
*mmio
= opaque
;
1576 unsigned int idx
= SUBPAGE_IDX(addr
);
1577 MemoryRegionSection
*section
;
1578 #if defined(DEBUG_SUBPAGE)
1579 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1580 " idx %d value %"PRIx64
"\n",
1581 __func__
, mmio
, len
, addr
, idx
, value
);
1584 section
= &phys_sections
[mmio
->sub_section
[idx
]];
1586 addr
-= section
->offset_within_address_space
;
1587 addr
+= section
->offset_within_region
;
1588 io_mem_write(section
->mr
, addr
, value
, len
);
1591 static const MemoryRegionOps subpage_ops
= {
1592 .read
= subpage_read
,
1593 .write
= subpage_write
,
1594 .endianness
= DEVICE_NATIVE_ENDIAN
,
1597 static uint64_t subpage_ram_read(void *opaque
, hwaddr addr
,
1600 ram_addr_t raddr
= addr
;
1601 void *ptr
= qemu_get_ram_ptr(raddr
);
1603 case 1: return ldub_p(ptr
);
1604 case 2: return lduw_p(ptr
);
1605 case 4: return ldl_p(ptr
);
1610 static void subpage_ram_write(void *opaque
, hwaddr addr
,
1611 uint64_t value
, unsigned size
)
1613 ram_addr_t raddr
= addr
;
1614 void *ptr
= qemu_get_ram_ptr(raddr
);
1616 case 1: return stb_p(ptr
, value
);
1617 case 2: return stw_p(ptr
, value
);
1618 case 4: return stl_p(ptr
, value
);
1623 static const MemoryRegionOps subpage_ram_ops
= {
1624 .read
= subpage_ram_read
,
1625 .write
= subpage_ram_write
,
1626 .endianness
= DEVICE_NATIVE_ENDIAN
,
1629 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1634 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
1636 idx
= SUBPAGE_IDX(start
);
1637 eidx
= SUBPAGE_IDX(end
);
1638 #if defined(DEBUG_SUBPAGE)
1639 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__
,
1640 mmio
, start
, end
, idx
, eidx
, memory
);
1642 if (memory_region_is_ram(phys_sections
[section
].mr
)) {
1643 MemoryRegionSection new_section
= phys_sections
[section
];
1644 new_section
.mr
= &io_mem_subpage_ram
;
1645 section
= phys_section_add(&new_section
);
1647 for (; idx
<= eidx
; idx
++) {
1648 mmio
->sub_section
[idx
] = section
;
1654 static subpage_t
*subpage_init(hwaddr base
)
1658 mmio
= g_malloc0(sizeof(subpage_t
));
1661 memory_region_init_io(&mmio
->iomem
, &subpage_ops
, mmio
,
1662 "subpage", TARGET_PAGE_SIZE
);
1663 mmio
->iomem
.subpage
= true;
1664 #if defined(DEBUG_SUBPAGE)
1665 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
1666 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
1668 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, phys_section_unassigned
);
1673 static uint16_t dummy_section(MemoryRegion
*mr
)
1675 MemoryRegionSection section
= {
1677 .offset_within_address_space
= 0,
1678 .offset_within_region
= 0,
1682 return phys_section_add(§ion
);
1685 MemoryRegion
*iotlb_to_region(hwaddr index
)
1687 return phys_sections
[index
& ~TARGET_PAGE_MASK
].mr
;
1690 static void io_mem_init(void)
1692 memory_region_init_io(&io_mem_ram
, &error_mem_ops
, NULL
, "ram", UINT64_MAX
);
1693 memory_region_init_io(&io_mem_rom
, &rom_mem_ops
, NULL
, "rom", UINT64_MAX
);
1694 memory_region_init_io(&io_mem_unassigned
, &unassigned_mem_ops
, NULL
,
1695 "unassigned", UINT64_MAX
);
1696 memory_region_init_io(&io_mem_notdirty
, ¬dirty_mem_ops
, NULL
,
1697 "notdirty", UINT64_MAX
);
1698 memory_region_init_io(&io_mem_subpage_ram
, &subpage_ram_ops
, NULL
,
1699 "subpage-ram", UINT64_MAX
);
1700 memory_region_init_io(&io_mem_watch
, &watch_mem_ops
, NULL
,
1701 "watch", UINT64_MAX
);
1704 static void mem_begin(MemoryListener
*listener
)
1706 AddressSpaceDispatch
*d
= container_of(listener
, AddressSpaceDispatch
, listener
);
1708 destroy_all_mappings(d
);
1709 d
->phys_map
.ptr
= PHYS_MAP_NODE_NIL
;
1712 static void core_begin(MemoryListener
*listener
)
1714 phys_sections_clear();
1715 phys_section_unassigned
= dummy_section(&io_mem_unassigned
);
1716 phys_section_notdirty
= dummy_section(&io_mem_notdirty
);
1717 phys_section_rom
= dummy_section(&io_mem_rom
);
1718 phys_section_watch
= dummy_section(&io_mem_watch
);
1721 static void tcg_commit(MemoryListener
*listener
)
1725 /* since each CPU stores ram addresses in its TLB cache, we must
1726 reset the modified entries */
1728 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1733 static void core_log_global_start(MemoryListener
*listener
)
1735 cpu_physical_memory_set_dirty_tracking(1);
1738 static void core_log_global_stop(MemoryListener
*listener
)
1740 cpu_physical_memory_set_dirty_tracking(0);
1743 static void io_region_add(MemoryListener
*listener
,
1744 MemoryRegionSection
*section
)
1746 MemoryRegionIORange
*mrio
= g_new(MemoryRegionIORange
, 1);
1748 mrio
->mr
= section
->mr
;
1749 mrio
->offset
= section
->offset_within_region
;
1750 iorange_init(&mrio
->iorange
, &memory_region_iorange_ops
,
1751 section
->offset_within_address_space
, section
->size
);
1752 ioport_register(&mrio
->iorange
);
1755 static void io_region_del(MemoryListener
*listener
,
1756 MemoryRegionSection
*section
)
1758 isa_unassign_ioport(section
->offset_within_address_space
, section
->size
);
1761 static MemoryListener core_memory_listener
= {
1762 .begin
= core_begin
,
1763 .log_global_start
= core_log_global_start
,
1764 .log_global_stop
= core_log_global_stop
,
1768 static MemoryListener io_memory_listener
= {
1769 .region_add
= io_region_add
,
1770 .region_del
= io_region_del
,
1774 static MemoryListener tcg_memory_listener
= {
1775 .commit
= tcg_commit
,
1778 void address_space_init_dispatch(AddressSpace
*as
)
1780 AddressSpaceDispatch
*d
= g_new(AddressSpaceDispatch
, 1);
1782 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .is_leaf
= 0 };
1783 d
->listener
= (MemoryListener
) {
1785 .region_add
= mem_add
,
1786 .region_nop
= mem_add
,
1790 memory_listener_register(&d
->listener
, as
);
1793 void address_space_destroy_dispatch(AddressSpace
*as
)
1795 AddressSpaceDispatch
*d
= as
->dispatch
;
1797 memory_listener_unregister(&d
->listener
);
1798 destroy_l2_mapping(&d
->phys_map
, P_L2_LEVELS
- 1);
1800 as
->dispatch
= NULL
;
1803 static void memory_map_init(void)
1805 system_memory
= g_malloc(sizeof(*system_memory
));
1806 memory_region_init(system_memory
, "system", INT64_MAX
);
1807 address_space_init(&address_space_memory
, system_memory
);
1808 address_space_memory
.name
= "memory";
1810 system_io
= g_malloc(sizeof(*system_io
));
1811 memory_region_init(system_io
, "io", 65536);
1812 address_space_init(&address_space_io
, system_io
);
1813 address_space_io
.name
= "I/O";
1815 memory_listener_register(&core_memory_listener
, &address_space_memory
);
1816 memory_listener_register(&io_memory_listener
, &address_space_io
);
1817 memory_listener_register(&tcg_memory_listener
, &address_space_memory
);
1819 dma_context_init(&dma_context_memory
, &address_space_memory
,
1823 MemoryRegion
*get_system_memory(void)
1825 return system_memory
;
1828 MemoryRegion
*get_system_io(void)
1833 #endif /* !defined(CONFIG_USER_ONLY) */
1835 /* physical memory access (slow version, mainly for debug) */
1836 #if defined(CONFIG_USER_ONLY)
1837 int cpu_memory_rw_debug(CPUArchState
*env
, target_ulong addr
,
1838 uint8_t *buf
, int len
, int is_write
)
1845 page
= addr
& TARGET_PAGE_MASK
;
1846 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
1849 flags
= page_get_flags(page
);
1850 if (!(flags
& PAGE_VALID
))
1853 if (!(flags
& PAGE_WRITE
))
1855 /* XXX: this code should not depend on lock_user */
1856 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
1859 unlock_user(p
, addr
, l
);
1861 if (!(flags
& PAGE_READ
))
1863 /* XXX: this code should not depend on lock_user */
1864 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
1867 unlock_user(p
, addr
, 0);
1878 static void invalidate_and_set_dirty(hwaddr addr
,
1881 if (!cpu_physical_memory_is_dirty(addr
)) {
1882 /* invalidate code */
1883 tb_invalidate_phys_page_range(addr
, addr
+ length
, 0);
1885 cpu_physical_memory_set_dirty_flags(addr
, (0xff & ~CODE_DIRTY_FLAG
));
1887 xen_modified_memory(addr
, length
);
1890 void address_space_rw(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
,
1891 int len
, bool is_write
)
1893 AddressSpaceDispatch
*d
= as
->dispatch
;
1898 MemoryRegionSection
*section
;
1901 page
= addr
& TARGET_PAGE_MASK
;
1902 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
1905 section
= phys_page_find(d
, page
>> TARGET_PAGE_BITS
);
1908 if (!memory_region_is_ram(section
->mr
)) {
1910 addr1
= memory_region_section_addr(section
, addr
);
1911 /* XXX: could force cpu_single_env to NULL to avoid
1913 if (l
>= 4 && ((addr1
& 3) == 0)) {
1914 /* 32 bit write access */
1916 io_mem_write(section
->mr
, addr1
, val
, 4);
1918 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
1919 /* 16 bit write access */
1921 io_mem_write(section
->mr
, addr1
, val
, 2);
1924 /* 8 bit write access */
1926 io_mem_write(section
->mr
, addr1
, val
, 1);
1929 } else if (!section
->readonly
) {
1931 addr1
= memory_region_get_ram_addr(section
->mr
)
1932 + memory_region_section_addr(section
, addr
);
1934 ptr
= qemu_get_ram_ptr(addr1
);
1935 memcpy(ptr
, buf
, l
);
1936 invalidate_and_set_dirty(addr1
, l
);
1937 qemu_put_ram_ptr(ptr
);
1940 if (!(memory_region_is_ram(section
->mr
) ||
1941 memory_region_is_romd(section
->mr
))) {
1944 addr1
= memory_region_section_addr(section
, addr
);
1945 if (l
>= 4 && ((addr1
& 3) == 0)) {
1946 /* 32 bit read access */
1947 val
= io_mem_read(section
->mr
, addr1
, 4);
1950 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
1951 /* 16 bit read access */
1952 val
= io_mem_read(section
->mr
, addr1
, 2);
1956 /* 8 bit read access */
1957 val
= io_mem_read(section
->mr
, addr1
, 1);
1963 ptr
= qemu_get_ram_ptr(section
->mr
->ram_addr
1964 + memory_region_section_addr(section
,
1966 memcpy(buf
, ptr
, l
);
1967 qemu_put_ram_ptr(ptr
);
1976 void address_space_write(AddressSpace
*as
, hwaddr addr
,
1977 const uint8_t *buf
, int len
)
1979 address_space_rw(as
, addr
, (uint8_t *)buf
, len
, true);
1983 * address_space_read: read from an address space.
1985 * @as: #AddressSpace to be accessed
1986 * @addr: address within that address space
1987 * @buf: buffer with the data transferred
1989 void address_space_read(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
, int len
)
1991 address_space_rw(as
, addr
, buf
, len
, false);
1995 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
1996 int len
, int is_write
)
1998 return address_space_rw(&address_space_memory
, addr
, buf
, len
, is_write
);
2001 /* used for ROM loading : can write in RAM and ROM */
2002 void cpu_physical_memory_write_rom(hwaddr addr
,
2003 const uint8_t *buf
, int len
)
2005 AddressSpaceDispatch
*d
= address_space_memory
.dispatch
;
2009 MemoryRegionSection
*section
;
2012 page
= addr
& TARGET_PAGE_MASK
;
2013 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2016 section
= phys_page_find(d
, page
>> TARGET_PAGE_BITS
);
2018 if (!(memory_region_is_ram(section
->mr
) ||
2019 memory_region_is_romd(section
->mr
))) {
2022 unsigned long addr1
;
2023 addr1
= memory_region_get_ram_addr(section
->mr
)
2024 + memory_region_section_addr(section
, addr
);
2026 ptr
= qemu_get_ram_ptr(addr1
);
2027 memcpy(ptr
, buf
, l
);
2028 invalidate_and_set_dirty(addr1
, l
);
2029 qemu_put_ram_ptr(ptr
);
2043 static BounceBuffer bounce
;
2045 typedef struct MapClient
{
2047 void (*callback
)(void *opaque
);
2048 QLIST_ENTRY(MapClient
) link
;
2051 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2052 = QLIST_HEAD_INITIALIZER(map_client_list
);
2054 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
2056 MapClient
*client
= g_malloc(sizeof(*client
));
2058 client
->opaque
= opaque
;
2059 client
->callback
= callback
;
2060 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2064 static void cpu_unregister_map_client(void *_client
)
2066 MapClient
*client
= (MapClient
*)_client
;
2068 QLIST_REMOVE(client
, link
);
2072 static void cpu_notify_map_clients(void)
2076 while (!QLIST_EMPTY(&map_client_list
)) {
2077 client
= QLIST_FIRST(&map_client_list
);
2078 client
->callback(client
->opaque
);
2079 cpu_unregister_map_client(client
);
2083 /* Map a physical memory region into a host virtual address.
2084 * May map a subset of the requested range, given by and returned in *plen.
2085 * May return NULL if resources needed to perform the mapping are exhausted.
2086 * Use only for reads OR writes - not for read-modify-write operations.
2087 * Use cpu_register_map_client() to know when retrying the map operation is
2088 * likely to succeed.
2090 void *address_space_map(AddressSpace
*as
,
2095 AddressSpaceDispatch
*d
= as
->dispatch
;
2100 MemoryRegionSection
*section
;
2101 ram_addr_t raddr
= RAM_ADDR_MAX
;
2106 page
= addr
& TARGET_PAGE_MASK
;
2107 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2110 section
= phys_page_find(d
, page
>> TARGET_PAGE_BITS
);
2112 if (!(memory_region_is_ram(section
->mr
) && !section
->readonly
)) {
2113 if (todo
|| bounce
.buffer
) {
2116 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
2120 address_space_read(as
, addr
, bounce
.buffer
, l
);
2124 return bounce
.buffer
;
2127 raddr
= memory_region_get_ram_addr(section
->mr
)
2128 + memory_region_section_addr(section
, addr
);
2136 ret
= qemu_ram_ptr_length(raddr
, &rlen
);
2141 /* Unmaps a memory region previously mapped by address_space_map().
2142 * Will also mark the memory as dirty if is_write == 1. access_len gives
2143 * the amount of memory that was actually read or written by the caller.
2145 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
2146 int is_write
, hwaddr access_len
)
2148 if (buffer
!= bounce
.buffer
) {
2150 ram_addr_t addr1
= qemu_ram_addr_from_host_nofail(buffer
);
2151 while (access_len
) {
2153 l
= TARGET_PAGE_SIZE
;
2156 invalidate_and_set_dirty(addr1
, l
);
2161 if (xen_enabled()) {
2162 xen_invalidate_map_cache_entry(buffer
);
2167 address_space_write(as
, bounce
.addr
, bounce
.buffer
, access_len
);
2169 qemu_vfree(bounce
.buffer
);
2170 bounce
.buffer
= NULL
;
2171 cpu_notify_map_clients();
2174 void *cpu_physical_memory_map(hwaddr addr
,
2178 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
2181 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
2182 int is_write
, hwaddr access_len
)
2184 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
2187 /* warning: addr must be aligned */
2188 static inline uint32_t ldl_phys_internal(hwaddr addr
,
2189 enum device_endian endian
)
2193 MemoryRegionSection
*section
;
2195 section
= phys_page_find(address_space_memory
.dispatch
, addr
>> TARGET_PAGE_BITS
);
2197 if (!(memory_region_is_ram(section
->mr
) ||
2198 memory_region_is_romd(section
->mr
))) {
2200 addr
= memory_region_section_addr(section
, addr
);
2201 val
= io_mem_read(section
->mr
, addr
, 4);
2202 #if defined(TARGET_WORDS_BIGENDIAN)
2203 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2207 if (endian
== DEVICE_BIG_ENDIAN
) {
2213 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
2215 + memory_region_section_addr(section
, addr
));
2217 case DEVICE_LITTLE_ENDIAN
:
2218 val
= ldl_le_p(ptr
);
2220 case DEVICE_BIG_ENDIAN
:
2221 val
= ldl_be_p(ptr
);
2231 uint32_t ldl_phys(hwaddr addr
)
2233 return ldl_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2236 uint32_t ldl_le_phys(hwaddr addr
)
2238 return ldl_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2241 uint32_t ldl_be_phys(hwaddr addr
)
2243 return ldl_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2246 /* warning: addr must be aligned */
2247 static inline uint64_t ldq_phys_internal(hwaddr addr
,
2248 enum device_endian endian
)
2252 MemoryRegionSection
*section
;
2254 section
= phys_page_find(address_space_memory
.dispatch
, addr
>> TARGET_PAGE_BITS
);
2256 if (!(memory_region_is_ram(section
->mr
) ||
2257 memory_region_is_romd(section
->mr
))) {
2259 addr
= memory_region_section_addr(section
, addr
);
2261 /* XXX This is broken when device endian != cpu endian.
2262 Fix and add "endian" variable check */
2263 #ifdef TARGET_WORDS_BIGENDIAN
2264 val
= io_mem_read(section
->mr
, addr
, 4) << 32;
2265 val
|= io_mem_read(section
->mr
, addr
+ 4, 4);
2267 val
= io_mem_read(section
->mr
, addr
, 4);
2268 val
|= io_mem_read(section
->mr
, addr
+ 4, 4) << 32;
2272 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
2274 + memory_region_section_addr(section
, addr
));
2276 case DEVICE_LITTLE_ENDIAN
:
2277 val
= ldq_le_p(ptr
);
2279 case DEVICE_BIG_ENDIAN
:
2280 val
= ldq_be_p(ptr
);
2290 uint64_t ldq_phys(hwaddr addr
)
2292 return ldq_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2295 uint64_t ldq_le_phys(hwaddr addr
)
2297 return ldq_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2300 uint64_t ldq_be_phys(hwaddr addr
)
2302 return ldq_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2306 uint32_t ldub_phys(hwaddr addr
)
2309 cpu_physical_memory_read(addr
, &val
, 1);
2313 /* warning: addr must be aligned */
2314 static inline uint32_t lduw_phys_internal(hwaddr addr
,
2315 enum device_endian endian
)
2319 MemoryRegionSection
*section
;
2321 section
= phys_page_find(address_space_memory
.dispatch
, addr
>> TARGET_PAGE_BITS
);
2323 if (!(memory_region_is_ram(section
->mr
) ||
2324 memory_region_is_romd(section
->mr
))) {
2326 addr
= memory_region_section_addr(section
, addr
);
2327 val
= io_mem_read(section
->mr
, addr
, 2);
2328 #if defined(TARGET_WORDS_BIGENDIAN)
2329 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2333 if (endian
== DEVICE_BIG_ENDIAN
) {
2339 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
2341 + memory_region_section_addr(section
, addr
));
2343 case DEVICE_LITTLE_ENDIAN
:
2344 val
= lduw_le_p(ptr
);
2346 case DEVICE_BIG_ENDIAN
:
2347 val
= lduw_be_p(ptr
);
2357 uint32_t lduw_phys(hwaddr addr
)
2359 return lduw_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2362 uint32_t lduw_le_phys(hwaddr addr
)
2364 return lduw_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2367 uint32_t lduw_be_phys(hwaddr addr
)
2369 return lduw_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2372 /* warning: addr must be aligned. The ram page is not masked as dirty
2373 and the code inside is not invalidated. It is useful if the dirty
2374 bits are used to track modified PTEs */
2375 void stl_phys_notdirty(hwaddr addr
, uint32_t val
)
2378 MemoryRegionSection
*section
;
2380 section
= phys_page_find(address_space_memory
.dispatch
, addr
>> TARGET_PAGE_BITS
);
2382 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
2383 addr
= memory_region_section_addr(section
, addr
);
2384 if (memory_region_is_ram(section
->mr
)) {
2385 section
= &phys_sections
[phys_section_rom
];
2387 io_mem_write(section
->mr
, addr
, val
, 4);
2389 unsigned long addr1
= (memory_region_get_ram_addr(section
->mr
)
2391 + memory_region_section_addr(section
, addr
);
2392 ptr
= qemu_get_ram_ptr(addr1
);
2395 if (unlikely(in_migration
)) {
2396 if (!cpu_physical_memory_is_dirty(addr1
)) {
2397 /* invalidate code */
2398 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
2400 cpu_physical_memory_set_dirty_flags(
2401 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
2407 void stq_phys_notdirty(hwaddr addr
, uint64_t val
)
2410 MemoryRegionSection
*section
;
2412 section
= phys_page_find(address_space_memory
.dispatch
, addr
>> TARGET_PAGE_BITS
);
2414 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
2415 addr
= memory_region_section_addr(section
, addr
);
2416 if (memory_region_is_ram(section
->mr
)) {
2417 section
= &phys_sections
[phys_section_rom
];
2419 #ifdef TARGET_WORDS_BIGENDIAN
2420 io_mem_write(section
->mr
, addr
, val
>> 32, 4);
2421 io_mem_write(section
->mr
, addr
+ 4, (uint32_t)val
, 4);
2423 io_mem_write(section
->mr
, addr
, (uint32_t)val
, 4);
2424 io_mem_write(section
->mr
, addr
+ 4, val
>> 32, 4);
2427 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
2429 + memory_region_section_addr(section
, addr
));
2434 /* warning: addr must be aligned */
2435 static inline void stl_phys_internal(hwaddr addr
, uint32_t val
,
2436 enum device_endian endian
)
2439 MemoryRegionSection
*section
;
2441 section
= phys_page_find(address_space_memory
.dispatch
, addr
>> TARGET_PAGE_BITS
);
2443 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
2444 addr
= memory_region_section_addr(section
, addr
);
2445 if (memory_region_is_ram(section
->mr
)) {
2446 section
= &phys_sections
[phys_section_rom
];
2448 #if defined(TARGET_WORDS_BIGENDIAN)
2449 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2453 if (endian
== DEVICE_BIG_ENDIAN
) {
2457 io_mem_write(section
->mr
, addr
, val
, 4);
2459 unsigned long addr1
;
2460 addr1
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
2461 + memory_region_section_addr(section
, addr
);
2463 ptr
= qemu_get_ram_ptr(addr1
);
2465 case DEVICE_LITTLE_ENDIAN
:
2468 case DEVICE_BIG_ENDIAN
:
2475 invalidate_and_set_dirty(addr1
, 4);
2479 void stl_phys(hwaddr addr
, uint32_t val
)
2481 stl_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
2484 void stl_le_phys(hwaddr addr
, uint32_t val
)
2486 stl_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
2489 void stl_be_phys(hwaddr addr
, uint32_t val
)
2491 stl_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
2495 void stb_phys(hwaddr addr
, uint32_t val
)
2498 cpu_physical_memory_write(addr
, &v
, 1);
2501 /* warning: addr must be aligned */
2502 static inline void stw_phys_internal(hwaddr addr
, uint32_t val
,
2503 enum device_endian endian
)
2506 MemoryRegionSection
*section
;
2508 section
= phys_page_find(address_space_memory
.dispatch
, addr
>> TARGET_PAGE_BITS
);
2510 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
2511 addr
= memory_region_section_addr(section
, addr
);
2512 if (memory_region_is_ram(section
->mr
)) {
2513 section
= &phys_sections
[phys_section_rom
];
2515 #if defined(TARGET_WORDS_BIGENDIAN)
2516 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2520 if (endian
== DEVICE_BIG_ENDIAN
) {
2524 io_mem_write(section
->mr
, addr
, val
, 2);
2526 unsigned long addr1
;
2527 addr1
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
2528 + memory_region_section_addr(section
, addr
);
2530 ptr
= qemu_get_ram_ptr(addr1
);
2532 case DEVICE_LITTLE_ENDIAN
:
2535 case DEVICE_BIG_ENDIAN
:
2542 invalidate_and_set_dirty(addr1
, 2);
2546 void stw_phys(hwaddr addr
, uint32_t val
)
2548 stw_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
2551 void stw_le_phys(hwaddr addr
, uint32_t val
)
2553 stw_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
2556 void stw_be_phys(hwaddr addr
, uint32_t val
)
2558 stw_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
2562 void stq_phys(hwaddr addr
, uint64_t val
)
2565 cpu_physical_memory_write(addr
, &val
, 8);
2568 void stq_le_phys(hwaddr addr
, uint64_t val
)
2570 val
= cpu_to_le64(val
);
2571 cpu_physical_memory_write(addr
, &val
, 8);
2574 void stq_be_phys(hwaddr addr
, uint64_t val
)
2576 val
= cpu_to_be64(val
);
2577 cpu_physical_memory_write(addr
, &val
, 8);
2580 /* virtual memory access for debug (includes writing to ROM) */
2581 int cpu_memory_rw_debug(CPUArchState
*env
, target_ulong addr
,
2582 uint8_t *buf
, int len
, int is_write
)
2589 page
= addr
& TARGET_PAGE_MASK
;
2590 phys_addr
= cpu_get_phys_page_debug(env
, page
);
2591 /* if no physical page mapped, return an error */
2592 if (phys_addr
== -1)
2594 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2597 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
2599 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
2601 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
2610 #if !defined(CONFIG_USER_ONLY)
2613 * A helper function for the _utterly broken_ virtio device model to find out if
2614 * it's running on a big endian machine. Don't do this at home kids!
2616 bool virtio_is_big_endian(void);
2617 bool virtio_is_big_endian(void)
2619 #if defined(TARGET_WORDS_BIGENDIAN)
2628 #ifndef CONFIG_USER_ONLY
2629 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
2631 MemoryRegionSection
*section
;
2633 section
= phys_page_find(address_space_memory
.dispatch
,
2634 phys_addr
>> TARGET_PAGE_BITS
);
2636 return !(memory_region_is_ram(section
->mr
) ||
2637 memory_region_is_romd(section
->mr
));